
ELASTTC-PLASTIC TORSION OF A SQUARE BARÍ1)

BY

TSUAN WU TING

1. Introduction. Consider a cylindrical bar twisted by terminal couples. Ac-

cording to the theory for elastic-plastic solids [2], [3], the twisted bar will behave

elastically, if the angle of twist per unit length is sufficiently small. Under such

circumstances, one calls it purely elastic torsion. However, as the applied torque

increases to a certain critical value, some portion of the bar will become plastic,

i.e., the maximum shearing stress there exceeds a definite value. Furthermore,

it is assumed that as the applied torque increases the plastic portion of the bar

will continue to grow. It is in this situation that one calls it elastic-plastic torsion.

Apparently, von Mises was the first to give a complete description of the

elastic-plastic torsion problem. He described it as follows: "Find a continuous

function ib with given constant Aib in some interior region, given |gradi//| in

the outer region and given a constant value on the closed contour." In [2] the

same problem is described in a more detailed way as follows: "Find a function

ib(x, y) which vanishes on C and, together with its first derivatives, is continuous

in the domain bounded by C; nowhere on C or its interior must the gradient

of ij/ have an absolute value larger than a given constant k; wherever the absolute

value of vA is smaller than k, the function \b must satisfy the differential equation

At^ = -2p0."

From what has been described in [1] and [2] together with the results for

completely plastic torsion [4], it is not difficult to see that elastic-plastic torsion is

a free-boundary-value problem for the Poisson equation, Ai// = — 2p6. In what

follows, attention will be restricted only to the simple case of a square bar. Also,

as a method for overcoming certain difficulties, we shall formulate it as a varia-

tional minimum problem. The object of this paper is to exhibit a smooth solution

for the minimum problem and to establish the uniqueness of the smooth solution

and its continuous monotone dependence upon parameters.

2. Statement of the problem. Let Q be a square plane domain. Let *¥(x,y)

be the function defined by the formula,

V(q) = kp(q, ÔQ),        qeQ,
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where piq,dQ) stands for the distance from the point q to the boundary of Q,dQ,

and where k is a positive constant. The problem to be considered is to find the

function t^(x,y) such as to minimize the integral,

(2.1) I[u] = í f [(vw)2 - 4p0u]dxdy

q'

with p, 6 being positive constants. The admissible class consists of those func-

tions which are continuous and are less than or equal to W in Q and which vanish

on 8Q and possess finite Dirichlet integrals over Q.

Remark 1.   Clearly, the values of the expressions in (2.1) are bounded from

below. For if u* is the solution of the Dirichlet problem,

(2.2) Au* =   -2«0 in Q,   u* = 0 on dQ,

then for every admissible function, I[u] = /[«*] . Furthermore, from the integral

representation for the solution u* of (2.2),

ii
u*ix,y) = 2p6 J J    Gix,y;Z,ij)didri

Q

with G being Green's function of (2.2) in Q, we see that m* > *P somewhere in Q

provided that p6 is sufficiently large. Therefore, the admissibility condition,

u rg *F in Q, is essential.

Remark 2. If p9 is so small that the solution u* of the Dirichlet problem

(2.2) is less than or equal to *P in Q, then it is a solution of the minimum problem.

Thus the present formulation of the elastic-plastic torsion problems does include

purely elastic torsion problems as a special class.

Remark 3.   Consider the integral,

// PSr-K4p0
Q

If we let 0 -» oo, i.e., the angle of twist becomes infinite, then the minimum problem

is that of maximizing the integral,

(2.3) u(x,y) dxdy

a

subject to the condition that u ^ *P in Q. Accordingly, the present formulation

also includes completely plastic torsion as a limiting case [4].

Remark 4.   The minimum problem (2.1) may be regarded as a principle of

minimizing the energy,
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(2.4) jj(Vu)2dxdy,

Q

under the additional isoperimetric condition that the integral (2.3) is equal to

a given constant. That is, the applied torque is given. For these two minimum

problems are equivalent if we identify the constant, — ApO, as a Lagrange multi-

plier. In both formulations, the yield condition, i.e., that the maximum shearing

stress be less than or equal to the constant k, has been replaced by the somewhat

stronger inequality, u-—\jj in Q. However, such a replacement will not only

simplify the analysis, it also insures that the extremal will actually solve the

elastic-plastic problem.

The main object is now to show that the minimum problem has a unique

smooth solution which fulfills all the requirements as listed in [1], [2]

3. Minimizing sequence and symmetrizations.    Let

(3.1) d = inf I[uy

Suppose that no extremal can be found, then there is a minimizing sequence

{\j/„} such that

(3.2) 11   [( V«2 - 4pö«//„] dxdy = d„ -* d.

To select a pointwise convergent subsequence from the minimizing sequence,

we apply the following symmetrization processes:

a. Steiner symmetrization. In what follows, we choose the center of Q as

the origin of a rectangular coordinate system, (x,y), with the coordinate axes

coinciding with the diagonals of Q. We apply Steiner symmetrization [5] with

respect to the plane, x = 0, to the body B„ bounded by the plane z = 0 and the

surface z = i//„(x,y),(x,y)eQ. This symmetrization process leaves the volume

of B„ and its base Q unchanged and it diminishes (does not increase) the surface

area of B„. Accordingly, the function ib*(x, y) obtained from \bn(x, y) by such a

symmetrization process yields a smaller (not larger) Dirichlet integral over Q [5].

Also, it is clear that i//„* is continuous and is less than or equal to *P in Q. Hence,

it is an admissible function.

Since Steiner symmetrization about the plane y = 0 transforms a body which

has already been symmetrized about the plane x = 0 into one retaining that

property, we conclude that no generality is lost if we assume that each ibn in the

minimizing sequence has been symmetrized with respect to both of the planes,

x = 0 and y = 0. We note that such a function \j/„(x,y) is monotone nonincreasing

in |x| and |y| in its domain of definition.

b. Partial Steiner symmetrization. Denote by 1, 2, 3, 4 the vertices of Q
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and by 0 the center of Q. Let Ql2 be the subdomain of Q bounded by the line

segments 01, 02 and 12. Consider the body b„ bounded by the three planes, x = 0,

y = 0 and

z = 4'(x,y),       (x,y)eQl2,

and that portion of the surface, z = i//n(x, y), where (x, y)e^i2 and

xhix> y) < yix> y) • The body b„ may consist of many pieces. We shall apply

"partial Steiner symmetrization" to this body b„ so as to define a function

^*(x,y),(x,y)eQ12, such that i¡/* will yield smaller value of the integral (2.1)

and that both the functions \p* and f — \¡j* are monotone in | x | and | y |.

To this end, we choose the point with the coordinates,

x = y = 0,       z = 4/(0,0),

as the origin of a coordinate system (£,*/, 0 such that the ¿-axis is perpendicular

to the plane y = 0 and that the positive £-axis contains the vertex 1 of Q (see

Figure 1). Let A„ be the orthogonal projection of the body bn upon the plane

(a) (b)
Figure 1

£ = 0. We construct the body b* from the body b„ by the following geometrical

relations: A straight line through a point (£,rj) in A„ and parallel to the Ç-axis

intersects db„ at 2m points,

(3.3) K.t7.Ci). «l.«l,Ca).-,tf,íí.CaJ
with

(3.4) íi(í,n)>r2(tl,n)>->i:2m(Ln);

the same straight line intersects db* at two and only two points,

OÜ.f.Co).       (£>7>0,

where the point (£,>/, £0) l-es on the plane x = 0 and
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(3.5) a¿,'/) = £<,(>/)+ L i-iy-'Cji&ti).
j = i

We emphasize that (,2m = Co an^ that Co ¡s a function of n alone. The body b*

so obtained is bounded by the three planes, x = 0, y = 0 and z = *¥(x,y), (x,y)

in Qi2 and the surface defined in (3.5), i.e., the surface

(3.6) C = Ç«,tf),     (É,»f)e 4,.

The procedure we have just outlined is meaningful if the surface ^„(x,y) is

sufficiently smooth, but the construction remains valid for all admissible func-

tions also because they can be obtained as the limiting cases of sufficiently smooth

functions. Denote by v(bn), v(b*) respectively the volume of b„ and b*. Then

v{b„) = v(b*). Indeed,

v(K)   =   j j   m,tl)-Ut,r,)]dt;dn

A„

- s s Ub-vw
An

n)    didtf = v{b„),
U = i J

A„

where the relations in (3.3)—(3.5) have been used.

Let Sn be the surface area of the surface

(3.7) z = i//„(x,y),       (x,y)eg12 and i¡/n(x,y) <yV(x,y).

Let S* be the surface area of the surface defined by (3.5) and (3.6). We assert that

(3.8) s: = sn.

To prove this inequality, we first add the following remark:

Remark 5. Steiner symmetrization leaves unchanged the area of the inter-

section of the body with any cylinder whose generator is perpendicular to the

plane of symmetrization [5].

The same proof as shown in [5] also shows that the above remark is equally

applicable to the partial Steiner symmetrization. Let an be the area of those cy-

lindrical parts of the surface in (3.7), where its tangential planes are all perpen-

dicular to the plane ( = 0. According to Remark 5, this portion of the surface

(3.7) is only translated without changing its area by the partial Steiner symmetri-

zation and it becomes a part of the surface (3.6). Let er* be the area of those

cylindrical parts of the surface (3.6) where its tangential planes are normal to

the plane J = 0. It is easy to see that a* is caused by jump discontinuities of the

functions Ç;(f,i/), / = 1,2, •••,2m. Thus, we conclude that

(3.9) < = crn.
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We proceed now to calculate the value of Sn — on by using the coordinate

system (£,,n,Q and the functions £,(£,«).To do this we note that the points of

intersections, (Ç,n,(,f), j = 1,2,•••,2m — 1, all belong to the surface (3.7). How-

ever, whether the point, (i;,n,Ç2m), lies on the plane x = 0 depends on whether

the equality Ç2m = Ç0 holds. If Z,2m > Ç0, the point (Ç,n,Ç2m) also belongs to the

surface (3.7). Thus.

1/2^

dÇdtj,«"•   *-*■-Il & H®*®
where to exclude the area contributed by the plane x = 0 we set

(3.10a) N(é-,n) = 2mtf,n) - 1   if Ç2m - C0 = ^ = g^(Ca.-Ca)-0,

(3.10b)        Ni¿;,n) = 2m(^,f/)   otherwise.

Correspondingly, we have

s:-'*-/J{i+fé(c°+!(-i,<"'c')F
(3.11) An

[|(c»+i,(-1,i"'Cj)]) **

We proceed to show that the value of the integrand in (3.10) is not less than that

in (3.11) for almost all points in An where these values are defined. Now, if (3.10a)

holds, then the integrand in (3.10) becomes

while the integrand in (3.11) can be written as

/ r a     2m-1 -l 2        r-3    2m-l -i ;

cud      {i+^sc-iy-'c] +[-z(-ir%]

On the other hand, if (3.10b) holds, then the integrand in (3.10) becomes

äH¥ (t)T*
while the integrand in (3.11) can be written as
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because dÇ0/dÇ = 0. Moreover, t//„(x, y) is a single-valued function of x and y,

geometrical consideration shows that

<Ko__  [Xlm <     j    *%*»

on        dn        =   I    3iy

Thus, by the same proof as for Steiner's theorem about surface area [5], our

assertion (3.8) follows from (3.9), (3.12) and (3.13) or from (3.9), (3.14) and (3.15).

Since \¡J„(x,y) is monotone nonincreasing in |x| and |y|, it is easy to show

that Ç(£,jO defined in (3.5) is monotone nonincreasing in |w|. Consequently,

the surface (3.6) has the nonparametric representation,

2 = tä(x,y),       (x,y)eq12,

with respect to the coordinate system (x,y,z), where ql2 is a subset of Qi2.

However, we can extend \¡/*(x,y) to the closed domain Q12 by putting

tä{x,y) = V(x,y)

wherever ib* is not defined by the relation in (3.5). It is easy to see that \¡i* so

extended to Qy2 is continuous and it is less than or equal to lF in Q12 and it

vanishes along the segment 12. Moreover, S* is precisely the area of that portion

of the surface,

z = ib*(x,y),       (x,y)eQl2 and ib*<y.

Let §n be the surface area of that portion of the surface z = i//„(x,y) where

(x,y)eQy2 and i¡/n(x,y) = vP(x,y). Similarly, let §* be the surface area of that

portion of the surface z = ij/*(x,y) where (x,y)eßi2 and ij/* = XV. Let S be the

surface area of the surface z = *F(x, y), (x,y) in Qi2 and V the volume under

this surface. Let ô„,ô* be respectively the area of the intersection of bn and

b* with the plane z = y¥(x,y), (x,y) in Qi2. In view of Remark 5, we have

<t„ = ¿>*. Hence,

§n = S - dn = S - â* = S*.

This equality together with the inequality (3.8) implies that

sn + §n = s; + Êï.

That is, the surface area of the surface, z = ij/n(x,y),(x,y) in Q12, is greater than

(not less than) that of the surface, z = \b*(x,y), (x,y) in Ql2. From the fact that

v(b„) = v(b*), we also conclude that the volumes under these two surfaces are equal.

For they are equal to V — v(b„) = V — v(b*).

Finally, we extend the function \J/*(x,y) to the whole closed square Q by two

successive reflections about the lines x = 0 and y = 0 respectively. Then i¡/*(x,y)

so extended is continuous in Q andlvanishesaon dQ. Because of the symmetry of
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^V(x,y),\¡/* is less than or equal to 4* in Q and hence it is an admissible function.

Also, from the fact that i¡J„(x,y) has been symmetrized about both of the planes

x = 0   and y = 0, we conclude that the surface area of the surface,

z = i¡i*ix,y),       (x,y)eQ,

is less than or equal to that of the surface,

z = yb„ix,y),       (x,y)eg,

and that the volumes under these two surfaces are equal. Since both \¡/„, ip* vanish

along dQ, it follows [5] that

I[ib*n] = l[^„].

In passing, we note that (i) i^*(x,y) is also monotone nonincreasing in |x|.

and |y|, (ii) *P(x,y) — \¡>*ix,y) is monotone nonincreasing in |x|.

Now, we proceed to define another admissible function i¡/** from the function

\¡i*. To this end, we choose the point with coordinates,

x = y = 0,       z = T(0,0),

as the origin of a coordinate system (Ç',n',Çf) such that the ¿'-axis is perpendi-

cular to the plane x = 0 and the positive ¿'-axis contains the vertex 2 of Q. Let

A* be the orthogonal projection of b* upon the plane ¿' = 0. We transform

the body b* into a body b** by the following relations: A straight line through

a point (¿',1/') in A* and parallel to the ¿'-axis intersects db* at 2m points,

i£,',n'Xi)ÁZ,n'X2),-ÁiWÁ2,n)
with

ViiíW)>C2Í^W)>->C2mX,r1');

it intersects db** at two and only two points,

iv,*,q. (i'.i'.n,
where the point (e¡',n',r¡f) lies on the plane y = 0 and

2 m

raw) = e (-iy'_1C(£V).
/-i

By construction completely analogous to what has just been done, we obtain

a function ib**(x,y),(x,y) in Q, from the function t/'*(x,y),(x,y) in Q, such that

iff** is an admissible function with

Furthermore, (i) i[/**(x,y) is also monotone nonincreasing in \x\ and \y\ and

(ii) ^(x,y) — i¡/**ix,y) is monotone nonincreasing in |x| and \y\.
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Remark 6. The property (ii) of \b**insures that ij/** will be invariant under

further partial Steiner symmetrization with respect to the plane £ = 0 or the

plane ¡¡' = 0. Furthermore, since \j/** is, by its construction, symmetric with

respect to the planes x = 0 and the plane y = 0, the property (i) of \jj** insures

that it is invariant under Steiner symmetrization about the plane x = 0 or the

plane y = 0.

Remark 7. We may also expect that •/>„** will also be invariant under Steiner

symmetrization about the plane x + y = 0 or the plane x — y = 0. Indeed, if

this were not the case, we can easily construct a function i/>*** with this additional

property. To do this, let m be the middle point of the segment 12. Let Aml ,A,„2

denote respectively the triangles 0ml and 0m2. Suppose that

[(VO2 - 4p0</>r] dxdy 1% j j [(v^D2 - 4/t#?*] dxdy.

à,„ 1 &ml

Then we define

ib***(x,y) = ibr(x,y),       (x,y)eAmy,

and extend i//*** to the whole closed square Q by repeated reflections about the

lines of symmetry of Q. The function ib*** so defined will have the following

properties: (i) it is monotone nonincreasing in |x| and |y|, (ii) it is symmetric

with respect to each of the planes, x = 0, y = 0, x + y = 0 and x — y = 0 and

(iii) *F(x,y) - ij/***(x,y) is monotone nonincreasing in |x| and |y|. Without

loss of generality, we shall assume that each function i¡/„ in the original minimizing

sequence {ib„} has these three properties.

Remark 8. The above conclusions (i)-(iii) obtained by partial Steiner sym-

metrizations can also be reached by the following method. Let {ibn} be the mini-

mizing sequence obtained from a minimizing sequence by Steiner symmetrizations

with respect to both of the planes, x = 0 and y = 0. Consider the functions,

Xn(x,y) = ^(x^-i/^y),       »=1,2,3, — ,

for (x,y) in Q. We may apply Steiner symmetrizations with respect to the planes,

x = 0 and y = 0, to the body, b„, bounded by the surface, z = z„(x,y), (x,y) in

Q and the plane z = 0. In this way, we can construct a body b* which is

bounded by the surface z = /*(x,y) and the plane z = 0. The interesting point

is that for all integers n the function,

i¡/*(x, y) = »P(x, y) - xt(x, y),      (x, y) e Q,

satisfies the inequality,

/on à/M.
Furthermore, geometrical consideration also shows that this geometrical oper-

ation is actually a partial Steiner symmetrization.
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4. Existence of extremal. Based on what has been proved, we shall assume

with no loss of generality that for each n the function ij/n(x,y) in the minimizing

sequence, {^„}, has the properties (i)-(iii) in Remark 7. Hence, it is possible to

deduce from Helly's selection principle that the sequence {i//„} includes a con-

vergent subsequence. However, the monotonicity of the functions, ibn and T — ij/„,

yields much stronger results. Indeed, for 0 ^ Xy g x2 or x2 = Xy ̂  0, we have

0 Ú ^n(xi,y)-^n(x2,y)

Ú V¥(xy,y) - *P(x2,jO] - {\y(Xl,y) - ibn(xy,yy} - [»F(x2,y) - <//„(x2,y)]}

ÚV(xy,y)-V(x2,y) ii k\xy-x2\.

Thus, for all integers n, i//„ satisfies the single Lipschitz condition

|'/',1(xi,J'i)-'Wx2,y2)| = k[\xy -x2\ + \yy - y2\].

Hence, the minimizing sequence, {{//„}, is equicontinuous and by Arzela's theorem

it must, therefore, contain a subsequence that converges uniformly to the Lip-

schitz continuous limit, ib(x,y), which is less than or equal to *P in Q. As is well

known, the absolute continuity of i// implies that its partial derivatives exist almost

everywhere and they are locally summable and hence square summable over Q.

Therefore, \¡i is an admissible function of our minimum problem. Furthermore,

the monotonicity of the functions, ib„ and T — i//„, is still preserved in the limit.

Consequently, both i// and *? — \¡/ are nonnegative and monotone nonincreasing

in |x| and |y| for (x,y) in Q.

We proceed to show that the limit function \¡/ actually minimizes the integral

I[u]. To do this, we introduce the functions,

cb(x,y) = \¡i{x,y) +   - pOr2,   (x,y) in Q,

(4.1)

0(x,y) = *¥{x,y) +  ¿pQr2,   (x,y) in Q,

where r2 = x2 + y2. These functions are clearly absolutely continuous in Q.

Hence, we may apply a divergence theorem to derive that

(4.2) /[>] = (ycb)2dxdy + constant.

Q

Thus, to show that i// is an extremal it suffices to show that cb minimizes the integral

(4.3) J[p]  =   j j (yv)2dxdy,

G

among the class of functions v which are continuous and are less than or equal
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to 4> in Q, which have finite Dirichlet integrals over Q and which are equal to

<D on dQ.

In what follows, we shall write ||/||2 for the Dirichlet integral of/over Q when-

ever it exists. Clearly, the sequence,

{<!>„} - {^n + \pQr2\,

is a minimizing sequence for the integral J[v] and that the parallelogram law,

(4.4)
(Pm + fpn

+
<Pm-4>n <Pm\2   +   \4>n\

2        II 2

holds for all integers m,n. For any e > 0, we can choose m, n so large that

(4.5) II epm I2 ècî2 + E, || epn ||2 ̂  d2 + E, d = infj[v].
{.}

On the other hand, for the admissible function, (epm + epn)¡2, for J[v], we must have

<t>m + <Pn   "
(4.6)

It follows from (4.4)-(4.6)

d2 +

> d2.

<Pm-<Pn   f < d2 + £ + d2 + E =  J2 + e

After subtraction of d2 from both sides, this is enough to prove the desired con-

vergence of the sequence, {ebn}, with respect to the Dirichlet norm.

According to the Riesz-Fischer theorem, there exist two limit functions, epx,epy,

which are uniquely defined almost everywhere in Q which have summable squares

over Q and which satisfy the relations

(4-7)   'rJi{^-*')'"'■"-izII(t-4"""=0-
ß Q

In view of the Schwarz inequality,

S5 (j¡j?-+')uixdy]2* \\ (¡^-hjdxdyjju'dxdy,

we see that

(4.8)
Q Q

Q Q

for any function u with a summable square over Q. In particular, for u being
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continuously differentiable and with compact support in Q, we have, by integra-

tion by parts of the left-hand sides in (4.8),

(4.9)

lim       \cb„—dxdy =        cp—dxdy=   j      cbxudxdy,

Q Q Q

IZ S5+'Tydxdy = ¡¡*irydxdy = fS*>udxdy-
Q Q Q

This proves that the functions  cbx,qby ate the  weak partial derivatives of cp.

But cb(x,y) is absolutely continuous in Q. The last two equalities in (4.9) also

show that cbx, cpy are actually the partial derivatives of cp.

Since for all integers n,

2
\\cb-cbn\\2= ll^p-ll^l

we conclude from the limit relations in (4.7) that

J14>] = II 4> II2 =    [[ (<PÎ + 4>l) dxdy = inf J[v~].
J J M

That is, cp does minimize the integral J[v}. Hence i// minimizes the integral l[u~\

and it is an extremal to be sought.

5. Elastic-plastic partition of Q. It has been proved that the partial derivatives

of the extremal \p exist almost everywhere. However, we wish to show that ib is

actually smooth in Q. To achieve this purpose, we need to consider the following

sets associated with the extremal \b:

{5l) E = {(x,y)\(x,y)eQ, ib(x,y) < ¥(x,y)},

P = {(x,y)\(x,y)eQ,<r>(x,y) = V(x,y)}.

From these definitions, it follows that E + P = Q, E is open and P is closed.

We shall call E the elastic region and P the plastic portion of Q. Although these

definitions seemingly differ from the usual ones, it will be shown that they are

actually equivalent to those as used in the theory of plasticity, [2], [3].

Since the diagonals of g are precisely the sets where grad *F is discontinuous,

we intend to show that the diagonals of Q ate contained in E. To prove this we

shall assume the contrary and then derive a contradiction. Let px be a point

on the segment 01 (see Figure 2(a)) such that

p(0,1)^p(1,Pi) = yó>o.

Suppose that py eP. Then the monotone nonincreasing property of the function

*P — ib implies that the triangle lpip" is contained in P, where the segment p¡p"
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Figure 2

passes through p. normal to segment lp, with its end points pl,p" on dQ. Con-

sider a diamond-shaped region P(<5) which stays in the triangle l'plpy and contains

the segment Ipy. This region R(ô) is bounded by two straight lines parallel to the

segment Ipy with distance -5 from it and by another four straight lines through

the points 1 and py respectively and parallel to the sides of Q.

Now we define a function \p¡ in R(a) to be such that it is equal to 4* on dR(è)

and it remains to be constant along any segment perpendicular to the segment

Ipy. By choosing the vertex 1 of Q as the origin of a coordinate system (x',y'),

with the positive y'-axis containing the segment lpls then we have for (x',y')

in P(<5),

4'(x',y') = 2"1/2/c(y'

The area of R(S) is given by

|*'|),       ^i(x',y') = 2-ll2k(y'-è).

A =   f f dx'dy' = 2 Í dy' 1 dx' = 2ô(y'0 - S).
KO)

Direct computation gives

ww

WA

= j j [(Vh)2-4p0^]dx'dy'

= 1/c2/! - A(2)xl2kp0 ̂ y'o2o - |y¿áa + <53] ,

■   J i [(V402 - 4^0*] dx 'dy '

R(d)

=  k2A - 4(2)1/2/cp0^yox' - y'0ô2 + |á3l.
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Hence .,

W)M - /jwCW - ko y(2)ll2p6ö2 -ik + 2**p£y¿)o + ky^ .

Consequently if we choose ô to be sufficiently small, say

n  . <-  ,_ky'0

°<3<k + 2* *0y> '

then /R(i)[4'] > IR(»\}¡it]. Accordingly, if we define

tip     in Q-Rio),
r -

l .>.   in P(«5),

then i/-* is also an admissible function and I[i¡/*] < l[t¡i]. But this contradicts

that i¡/ is an extremal and hence the point py must be contained in E. Since the

point py was arbitrarily chosen, we reach the conclusion which was set to prove.

Consider the frontier,

I = PnPng = QndE = QndP,

which we shall call the elastic-plastic boundary. Let l12 be that portion of / con-

tained in the subdomain Q12 of Q. Because of the monotonicity of the function

4* — \p, any line parallel to the x- or y-axis intersects l12 not more than one point.

Thus Z12 has a nonparametric representation, y = y12ix), with yi2 being monotone.

As is well known, the monotone property of l12 implies that its tangent is defined

almost everywhere and that it is a rectifiable curve. It may also be noted that

I — ll2 consists of the mirror images of li2 with respect to the diagonals of Q.

Accordingly, / consists of exactly four monotone arcs.

From what it has been shown it is now clear that £ is a simple connected

region containing the diagonals of Q and that the interior of P, if it is nonempty,

consists of exactly four simply connected components each of which can be

covered by the inward normals of dQ.

6. Smoothness of the extremal in E. Since \b = 4* in the plastic portion P

and P does not contain the diagonals of Q, if the interior of P is nonempty, i]/

is evidently smooth there. We intend to show that \b is twice continuously dif-

ferentiable in the elastic region E and it satisfies the Poisson equation (2.2) there.

The proof will be essentially the same as that for the Dirichlet problem. The

only additional care which has to be taken is that all admissible functions must

be less than or equal to W. To avoid this difficulty as well as for simplicity, we

follow the technique introduced in [6] to make proper choice of the variations

so as to transform the variational condition into an integral representation for

if/, which will exhibit more clearly the nature of the extremal.

To construct the desired variation, we take the fundamental solution of the

Laplace equation,
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(6.1) S(x,y;t;,n) = ^log1-,     r = [(x - 02 + (y - n)2]1'2.

For any point (£„n) in E, let X > 0 be small enough so that the disk Ek of radius

X around ({,«) is contained in E. Consider the function

(6.2) Sx{x,yA,n) =  j j S(x,y;t',n')d!;'dn'.

Direct evaluation [7] gives that

f -lX2logr + \(X2-r2),   r = X,

(6.3) Sx(x,y;ct,n) = \

[ -^X2logr,   r = X.

Thus for any point (x,y) in the exterior of E¿,

(6.4) \Sx{x,y;Ç,tt) - 0;

while for (x,y) in Ex,

(6.5) ASx{x,y;Z,n) = -1,

where the Laplacian operator applies at the point (x,y).

We shall multiply S¿ by an auxiliary factor so as to transform it into a localized

variation of ip. To do this, let Ey, E2 be two concentric disks such that

E zz> E2 ZD Ey => E¿. Let œ(x, y) be a sufficiently smooth function which vanishes

for (x,y) in the exterior of E2, reduces to one for (x,y) in Ey and takes on the

values between 0 and 1 otherwise. For example,

(6.6) «  =

[ 0   for r ^ r2,

exp {()• - r¡)2l(r2 - r\)}   for rt < /• < r2,

1   for r ^ ry,

where rx and r2 stand for the radii of Ey and JS2 respectively. The localized

variations which we set out to construct arc essentially

(6.7) v(x,y;Ç,n) = co(x,y)SÀ(x,y;c;,n).

Indeed, T — \p is positive and continuous in E; if we choose the radii of £2 and

Ex to be sufficiently small, then it follows from (6.3), (6.6) and (6.7) that for

some e0 > 0,

(6.8) y(x, y) - [iP(x, y) + ev(x,y;c:,n)-]=0inE

for all values of e, -c0 ^ s = c0. Thus,for such choice of r2 and X, the functions,
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\¡JÍx,y) + svix,y;C,n),       |e|<80,

are all admissible for our variational problem. Consequently, we have the varia-

tion^ condition,

(6.9) j j [v^(x, y) • vi**, y'A,n)- 2pQv(x, y ; ¿, n)] dxdy = 0,

Q

where the gradient operator, y-, applies at the point (x, y).

From (6.3)-(6.7) we see that v is continuously differentiable and piecewise twice

continuously differentiable in Q and it vanishes in the exterior of £2. Under

these circumstances, we may apply a divergence theorem to transform (6.9)

into the form,

(6.10) j j [ï(x,y)Av(x,y;t;,n) + 2p0v(x,y,Ç,n)]dxdy = 0.

Q

Since the auxiliary factor íü which appears in (6.6) is constant outside the shell,

E2 — Ey, by taking (6.4) and (6.5) into account in Ex and its complement re-

spectively, we transform (6.10) into the equivalent result,

(6.11 )      fr ■>(*, y) dxdy =    f f   i^à(eoS;) + 2p0e»Sf] dxdy + 2d0 ( \Sxdxdy,

B,

where the operator, A, applies at the point (x,y).

From (6.3) and (6.6) we see that if the inequality (6.8) holds for some A > 0,

then it holds for all smaller values of A. Thus dividing the equation (6.11) by

itk2 and letting A->0, we find

(6.12)

iAo(¿,i) » Um jjTTj  !   I  Hx,y)dxdy

=   ([ {\¡/(x,y)¿s.[co(x,y)S(x,y;¡;,n) + 2p0üiS]}dxdy

Ei-Ei

+ 2p0  f f Six,y;Ç,ti)dxdy.
Ex

For the definition (6.2) shows that as A->0 the quotient, SJnP, converges to

S uniformly in E together with all its first and second derivatives. Furthermore,

the integral of \¡/0 over Ex has the value given by the expression on the right of

(6.11). Thus, we have

a [ipix,y) - yb0ix,y)]dxdy = 0

Ex

for any disk Ek lying inside Ey. This implies that ip and ip0 are identical in Ey
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because both of them are continuous there. This proves that ip(C,n) has throughout

Ey the integral representation (6.12) and hence it possesses continuous first and

second derivatives in Ey [8]. Furthermore, the conclusion is valid throughout

the entire elastic region £ because the location there of the disk Ey is quite

arbitrary.

Now we are able to apply a divergence theorem to the variational condition

like the one in (6.9) to obtain

(6.13) i j   [Aip + 2pfí]v*dxdy = 0

E

for every continuously differentiable variation v* which vanishes in some neigh-

borhood of BE. We emphasize that here v* is not necessarily of the form (6.7).

Since *P — i// is strictly positive in E, the fundamental lemma of the calculus

of variation insures that the equation, Aip = —2p6, must hold throughout the

entire elastic region E. This conclusion can also be proved by directly differen-

tiating the integral representation of ip given in (6.12).

7. Smoothness of the extremal in Q. It has been shown that the extremal \p

satisfies the Poisson equation in the elastic region E. By definition it is equal

to ¥ in the plastic portion P of Q. Since the region E contains the diagonals of

Q where gtadip is discontinuous, to show that ip is smooth in Q it suffices to

establish that it is smooth along the entire elastic-plastic boundary /. For an

interior point q of /. we can choose the coordinate axes coinciding with the diag-

onals of Q in such a way that q falls in the first quadrant with an abscissa x0 > 0.

Since q is an interior point of Q and it is off the diagonals of Q, there are two

points qx,q2 with abscissas Xy and x2 respectively such that 0 < Xy <x0<x2

and that the arc q¡q2 of I stays in the first quadrant. Let

y = a — x,       a > x > 0,

be the equation of that portion of 8Q staying in the first quadrant and let

(7.1) y=f(x), Xy^X^X2,

be the nonparametric representation of the rectifiable arc qyq2. Then

0 < e, =f(x2),     0<e2=    min    (a-x-f(x)).

Let n(x) be a smooth function defined in the closed interval, [x,,x2], such

that n(x)>0 for x,<x<x2 and i/(x,) = n(x2) = 0. Let C, ,C2,C3 be three

rectifiable curves defined respectively by the equations,

Cyi y =f(x)-en(x),

(7.2) C2: y=f(x) + en(x),       Xy%%x%%x2,   e>0.

C3: y=f(x) + 2En(x),
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If 80 is the greatest number such that

max   (2E0n(x))z%min(8y,e2),
X\ £x^x¿

then for all values of e,0 < e = e0, the curve Cy lies in the elastic region E while

the curves C2 and C3 stay in the plastic portion P. However, as £-»0, all these

three curves approach the arc qvq2 as limit. Let C0 be a fixed rectifiable curve

defined by

(7.3) C0: y = f(x) - 2e0n(x),   Xy^x^x2.

For all positive values of e ^ e0, the region Ry enclosed by C0 and Cx is con-

tained in E while the region R2 enclosed by C2 and C3 is contained in P and they

are separated by the region R enclosed by Ct and C2 (see Figure 3).

Figure 3

Let co0(x) be a non-negative smooth function defined on the interval [xlsx2]

such that o)0(x)¡n(x) vanishes at the end points Xy and x2. Now, define the con-

tinuous function co(x,y) in Ry + R + R2 by the following rules:

(i)   for (x,y) in Ry, ca is the solution to the Dirichlet problem,

(7.4) Aoi + 0 in Ry,     ca = 0 on C0 and w = co0(x) on C¡ ;

(ii)   for (x,y) in R,

(7.5) ca(x,y) = (o0(x);

(iii)   for (x,y) in R2, it is given by the formula,

(7.6) co(x, y) = co0(x) [f(x) + 2en(x) - y]ler¡(x).

Clearly, the function ca is continuous and piece-smooth in Ry + R + R2 and it

vanishes on C0 + Cy= d(Ry + R + R2). From (7.5) and (7.6) we also see that

ca(x, y) is non-negative in R2 4- R. Further, as a consequence of the maximum

principle for the solution of (7.4), it follows that ca is non-negative in Ry. Ac-

cordingly, for all values of e, 0 < e t% e0, the function ipt defined by the equations
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/ t/r(x,y) for (x, y) in Q - (P. + P + P2),
(7.7) toy) =

y \¡i(x,y) - Eü)(x,y) for (x,y) in Pt + P + P2,

is an admissible function of our minimum problem; and it converges to \f as

s->0. However, we emphasize that eoy(x,y) is of the order 0(l/e) for (x,y) in

R2 as s ->0.

Since \p minimizes the integral I[u] among all admissible functions u, we have

(7.8) /[>J - /[>] ^ 0 for all values of e, 0 < s = e0.

Now for í; being sufficiently small we have

-TO - 'M =       j j C(vW2 - (V-A)2 - 4/i0(i/r, - *)] dxc/y

R1+.R + R2

(7.9) =   — 2e [yi/f • yo) — 2p0co] dxdy

R¡

-2e f |   [v4* • vw - 2p0co] dxdy + 0(e2) .

Ri

For the area of P is of the order of 0(e); co = cj0(x) in P; and for almost all values

of x and y with x > 0 and y > 0,

(7.10) 0\=ipx = ^x=-k¡(2)112,       0^ij,y = ^y=-kl(2)112,

which follows from the fact that 4* — \¡i is monotone nonincreasing in x and y

there. Since the function/(x) in equation (7.1) is monotone nonincreasing, it is

easy to see from the equations in (7.2) that Ry, R and P2 are Jordan domains.

Hence, the divergence theorem [9] can be applied to the two integrals in equa-

tion (7.9). After taking into account the facts that

A\b = -2p6 in Ry,   A4/ = 0inP2,

we find that

(7.11) /[>J - /[>] = -2e f   oo0^-ds - 2ej   oj0~ds + 0(e2),

where dib/dn, d*¥¡dn denote the outward normal derivatives and the increasing

direction of the arc length S will be so chosen that if we travel along Cy or C2

in the increasing direction of S then the region P,orP2 stays on our left. Further-

more, using the defining equation (7.2) for Cy, we find

j w° iL ds = [   Wo(x) i ~ Wx'^"(x) ~£,?(x))+»fr-fo/M - £i?M) ¿!~] dx

-£       co0(x
J X2

x(x,f(x)-£n(x))^^  dx.
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But the value of the last integral on the right is bounded uniformly in a in view

of the restrictions on ca0(x) and r¡(x) and the inequalities in (7.10). It follows that

œ°~fadS = ~ \    œ°W   ~Wx'/W~£,?(x)) + x¡'x(x,f(x)-«fW)^ dx + 0(e).

Similarly, from the second equation in (7.2) and the inequalities in (7.10), there

follows

f co0 ̂ dx = j ca0(x) T - <¥¿x,f{x) + a¡(x)) + M^x,/« + eu(x)) dM dx + 0{e)

= pco0(x)\-Vy(x,f(x) - En(x)) + *¥x{x,f{x) - en(x))^j dx+0(E).

By substituting the last two expressions into the the equation (7.11), it gives

/[W - /[>] = 2s JX2{ |Wx,/(x) - £ij(x)) - iPy(x,f(x) - cr,(x) j j

-   Vx(x,f(x) - 8i?(x)j - i¡fx(x,f(x) - eij(x))  ^-j co0(x) dx + 0(e2).

Since for almost all values of x,x1 = x^x2,

df(x)jdx^0,

this inequality together with that in (7.10) insures that for almost all values of

x,Xi^x^x2, and for all values of e, 0<e^£0, the integrand in (7.12) is,

almost everywhere, nonpositive. Hence, for the inequality in (7.8) to hold for

all positive values of e, it is necessary that

lim  pF/x,/(x) - e/j(x)) - ipy(x,f(x) - ei/(x))] = 0,
£->0

lim  [yx(x,f(x) - £/?(x)) - 4>x(x,f(x) - En(x))] = 0,
£->0

for almost all values of x, xi = x^x2. In particular, this implies that the normal

derivatives

(7.13) *-.|£on      on

almost everywhere along any curve which approaches I in the way as described

in (7.2) by letting £->0.

Our object is to establish that ôip[dn = ô^jcn everywhere on / so as to insure

the smoothness of ip in the entire domain Q. However, to do this we shall first

establish the analyticity of / in the next section by applying the relation (7.13).
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8. Analyticity of elastic-plastic boundary. In this section we shall use the

splendid idea developed in [10]-[12J to establish the analyticity of the elastic-

plastic boundary and then prove that ip is continuously differentiable across /.

Since analytic continuation will be an essential tool, we shall adopt the usual

notations for complex numbers. Throughout this section we shall choose the

center of Q as the origin of a coordinate system with the coordinate axes coin-

ciding with the diagonals of Q. Because of symmetry, we need only to establish

the analyticity of that portion of the elastic-plastic boundary / which stays in

the first quadrant.

Instead of the extremal ip we shall be concerned with the function w(x,y) given

by the formula,

(8.1) u(x,y) = T(x,y) - >A(x,y) - ±«0(x2 + y2).

Clearly u is harmonic in E except on the diagonals of Q and it takes on the con-

tinuous boundary values on /,

(8.2) _^0(x2 + y2),

and almost everywhere on /,

T
(8.3) gradw = - grad 2p0(x2 + y2)

Consider the fundamental singularity,

(8.4) S(z,z;U) - Iog(z-0(¿-D,

of the Laplace equation where

(8.5) z = x + iy, z = x-iy; Ç = e% + in, I = £ — it).

Let Ey be that portion of the elastic region E lying in the first quadrant. If T is

any closed rectifiable Jordan curve in the region Ey, we have from Green's

formula

<m» /,(■£-4)*">
for points C outside the closed curve T. Let r0 be an interior point of the elastic-

plastic boundary / which stays in the first quadrant. That is, f0 is not on vQ.

We denote by £0 and P0 respectively the intersections of £, and P with the disk,

| z — t01 < p. If we let one arc of T approach / while restricting the remainder

of T to lie in Ey but outside the disk, |z — r0| <p, we obtain
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(8.7) I   [U(z,z) ̂|p_ S(z,z;U)-D-U^} ds - P{U)

for points ÇeP0> where

(,8)   ^..(ï + i. ££_«).     18,0-¿w(»^-^)*.

Since S is analytic in the real variables £ and n, we see that P(Ç, Ç) is a regular

analytic function of £ and i; in P0. We can extend S analytically by letting ç

and n take independent complex values; and due to the principle of permanence

of functional relations, the identity (8.7) also holds for the independent complex

variables, i^ = Ç + in, £* = £ = £—117, where £ and n ate now independent

complex variables in P0. After this analytic continuation, we let £* -* i0 on /

for C in P0 and obtain the relation,

(8.9) jt   [u(z,z)dS^fn^ - S(z,z;Uo) ^} ds = P(Uoh

Since S = log(z — Ç)(z — i0), we have to state the branch of the logarithm used

in (8.9). For this purpose, we draw an arbitrary curve from Ç to f0, which meets

/ only at i0 and which lies in the disk, | z — i01 < p. Outside this branch line

the above logarithm is a single-valued function in the whole z-plane. We may

determine it in a unique way by requiring, for example, that its imaginary part

at a given point tel be greater than or equal to zero but less than 2n.

For points £e£0, we now define an analytic function Û(Ç,t0) by the formula,

(8.10) 0(C,f0) = j   S(z,z;C,t0)^lU(z,z)ds

- j   U(z,z)^S(z,z;t;, f0)ds - P(C,t0).

We use again the above convention in the determination of S. Here as well as

in what follows, we use n to stand for the inward normals and the direction of

increasing s will be so chosen that the arc length s increases if we proceed along

T with the region enclosed by T on our left. We proceed to determine the limiting

values of  #(£, i0) as £ approaches a point t on 1 from F0.

Clearly the function P(C,t0) is continuous in £ across I. However, the jumps

of the integrals on the right of (8.10) have to be carefully evaluated so as to deter-

mine the boundary values of Û(Ç, i0). The expression,

(8.11) | ^-Sds = i j^ [log(z - 0(z- - i0)-](Uzdz - Ufdz),

jumps, as C across I into E0 at the point t, by the integral along the elastic-plastic

arc /,
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(8.12) - 2ni f   dU(Z' Z^ds = 2k f   [Uz(z,z)dz - Us(z,z)dz],
Jto     dn J,0

where we have adopted the notations,

2~- — --~    2—       —     i —
dz     dx       dy '     dz       dx       dy

For dUjdn is independent of ( and the value of S jumps by 27t¿ on that portion

of / between t0 and t. To evaluate the jumps of the second integral on the right

of (8.10), we first calculate that

Since U assumes the continuous boundary values as given in (8.1), it follows

from Plemelj formula [13] that the jump of the expression in (8.13), as £ across /

into £0 at t, is equal to

(8.14) -2n[U(t,i)+U(t0,t0)].

From (8.10), (8.12) and (8.14) we see that Û(Ç,t0) assumes the continuous bound-

ary values along /,

(8.15) Û(t,i0) = 2n[U(t,t) + U(t0,i0)] + 2n   f   {17, dz - Uzdz
fa

where the integral is to be evaluated along /.

Since Û(z,z*)/4k is, for z, z* in £0, an analytic continuation of the function

U(x,y) through the formula,

1 ft,     *,        (z + z*   z-z*\
J-ûiz,z*) = u[-1-,-ir),
4n

by letting the variables x and y take independent complex values in £0. Formula

(8.15) is itself also interesting. Moreover, upon an integration by parts, it goes

over to

(8.16) Ûit,t0) = 47tUit0,f0) + 47i Uziz,z)dz,
Jto

where the integral is still to be evaluated along /. This shows that for fixed r0

on /, {?(z,/o) and the analytic function, defined by the line integral

4tt   fW,0dC

along any rectifiable path in £0, have the same boundary values up to the additive

negative constant,4n U(i0f0). Furthermore, we may applyCauchy's integral theorem
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to replace the path of integration in (8.16) by any rectifiable simple curve lying

in £0. For our purpose, formula (8.15) remains more useful and the Helmholtz

representation (8.10) will play the essential role.

The elastic-plastic boundary  / has the parametric representation,   t = t(s).

We shall write

%' = dt¡ds,       V = dtfds.

Our intention is to derive an integral equation satisfied by the tangent vector t'

to the elastic-plastic boundary /. To this end we first differentiate the equation

(8.15) purely formally with respect to t to obtain there the relation

(8.17) Ût(t,t0) = 4nU,(t,t) - 2nU,(t,t)i'2.

We proceed to show that the analytic function Û(Ç,f0) has, indeed, derivatives

almost everywhere on / as given by the expression on the right of (8.17).

From (8.10), (8.11) and (8.13) we see that for £ in £0

V(Uo) = i j [log(z - Q(z-- i0)](Uz(z,z)dz - U,(z,z)dz)

Hence, for £ in £0, we have

(8,8)   »*«-< J_ Hibüäzz^m.i in-nnij.

Thus, our next step is to evaluate the expressions on the right as £ approaches

almost all t on / from £0. Since PrCÇJf) is continuous in £ across I, it suffices

to evaluate the jumps of the two integrals as £ crosses / into £0 at any point t

where the function, U,i', is uniquely defined.

From now on we restrict / to be that portion of / in the disk, | z — i01 < p.

On / we define a function

(8.19) Ait) =   f Uz(z,z)dz,

where the integration is to be carried out along /. We know that almost every-

where on / the derivatives

(8.20) f = dt/ds, Ut(t,t), U¡it,t),

exist. Hence

(8.21) dAit)¡dt = U,it,t)i'2

wherever the right-hand side is uniquely defined. Since I is a monotone curve,
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let ty be a point on / where the relations (8.20) and (8.21) hold and let t[ denote

the tangent vector to / at that point. As has been shown, / descends mono-

tonically in the first quadrant. Thus points z = x + iy, on a line making an angle

45° with the horizontal and intercepting I at ty = Xy + iyt, lie in £0 for y < y y

and in P0 for y > y y. We now denote by z a point in £0 which lies on such a line

through ty and denote by

(8.22) w = 2ty - z

the point in P0 on the same line and at equal distance

(8.23) £ = | z - ty |

from ty. We wish to prove the jump condition,

»«« ■•      Í  f U,(t,i)di      Ç Ui(t,i)di\      „  .,,  .     _     -
(8.24) hm ( J     yjz    - J      At'_'w   j = 2niUli(ty,ty)t[2,

where ty=Xy + iyy. By Cauchy's integral formula, we have immediately

,. if     Uyf'ydt f     Ujf'ydt) „    ,„, -x-,2

Therefore, an integration by parts shows that equation (8.24) is equivalent to

(Z  -   W)\t -  ty)2
dt\=0,

where A(i) has been defined in (8.19).

To prove the relation (8.25), we introduce a coordinates system (a,x) with its

origin at ty, and with the er-axis inclined at -45° with the x-axis. Since / is mono-

tone nonincreasing in the first quadrant, geometrical consideration shows that if

t = x + i y and a + h represent the same point on / and if | a | ^ 2e then

\t-z\=E\2^2,  |i-w|^e/21/2,    |i-/1|^21/2(j,    \dt\^21,2do-,

while if j cr | ^e1/2 then

\t-z\£o,    \t-w\^o,    |t-i1|^21/2o-,    | dt | g 2i/2do-.

Therefore, the integral (8.25) is in absolute value smaller than a fixed constant times

'      A(t)-A(ty)

i 2«! Í-Í!

+  £

+   £

-Uhi'y¿\ a2da

-e pe'/2 \

-e"2 Je        I

j*    I     ̂ (Q   -   A(ty)
J t-u

A(t)   -    A{ty) 2
~  UlflÍ-Í,

do
*2

uuii7
der
—      =      ¡y+I2   +   I3,
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where the last integral 73 is extended over the projection of / on the a-axis, out-

side the interval, —e1,2= a — e1'2. The first two integrals, I y and I2, approach

zero as £->0 because

lim
t->t,

e&^4tä-vjk.v?\ - o

by (8.21 ) and by the choice of ty. The last integral I3 -» 0 as e -» 0 because the

difference quotient,

A(t)  -   A(ty)

t-ty

is bounded. Hence (8.24) is proved.

In a completely similar way, we also obtain the jump conditions,

z-*ti   V Jl       t — Z J,       t - W    )

for almost all ty on / where the right-hand side is uniquely defined, where the

points z in £0 and w in P0 ate also related by the equations in (8.22) and (8.23).

Finally, we wish to establish another jump condition; namely,

(8-27)        15, (1 v^dt-(j^wdt }-**w»n-

wherever Uu is uniquely defined. Here, the points z in £0 and w in P0 arc a'so

related by equations in (8.22) and (8.23). The improper integral in (8.27) can

be written as

limif^M)      (t-ty)2(Z-w)2dt

Ht \Jit-h (t - w)2(t - z)2

From this we can see that it does converge as z->ix. Indeed upon integration

by parts, (8.27) goes over to

(8.28) lim ( [Mlhdt-   ¡ ¥áhl)dt\ . 2niUtí(t,t).
i-*t¡ I J   t ~z Jt t ~w      !

But this is precisely the same as that in (8.26). Therefore, we can prove its validity

in the same way as has been done for (8.24).

Our equation (8.17) obtained by purely formal differentiation is now com-

pletely justified by the results in (8.24), (8.26) and (8.27). It shows that for fixed r0

on I, the function £/(£,f0) is analytic in £0 and continuous in E0 + I and that

for almost all t on l, Û,(t,t0) has the boundary values as given by the right-hand

side of (8.17). Since for all t on /,

(8.29) /=f0+   I   z'2dz,= i0+   ¡'i'*

Jto
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where the integral is, of course, evaluated along /, it also means that the complex-

valued function V must satisfy the Volterra integral equation of the second kind,

(8.30) t'2 = 2k + 0&i[9>. +  Vl r2dz,
t npOt J,0 í

for almost all t on / where the integral is evaluated along / and where we have

substituted the expressions in (8.2) and (8.3) for evaluating l/,(r,f) and í/-(í,f)

respectively.

We wish to construct a function analytic in £0 with V as its boundary values

almost everywhere along /. To do this, we introduce the following Volterra

integral equation of the second kind,

(8.31) /(z) - 2k + ÎÂZgà. +  VI /(£) rf£,
z npOz        Jt0 z

for the determination of the unknown analytic function/(z) in £0 + L This

was obtained by replacing the variable í on / by the variable z in £0 + / and by

replacing I'2 by the unknown function/(z). This integral equation has a sense

for analytic function/(z), since by Cauchy's integral theorem the integral on

the right is independent of path. Moreover, we may expect the solution to be

analytic because Ûz(z,i0) is analytic in £0 and according to the results in §5

the variable z in (8.31) will never vanish in a sufficiently small neighborhood for /.

Indeed, such an analytic function/(z) can be constructed by the iteration process

and its uniqueness can be proved in a way similar to that in [14].

It follows from the uniqueness theorem for the solution of (8.31) that f(z)

must agree with the known function t'2 almost everywhere along / because it

satisfies the equation (8.30) along /. Now, the function g(z) defined by the line

integral in £0 + /,

g(z) = t0+¡'M) dC,

is analytic in £0 and it must be continuous in £0 + I. Furthermore, for all Ion/,

(8.32) g(t) = t0 +   f/(£)</£ = f0+ f V2 = i
Jto Jto

in view of (8.29). Thus, if we define the analytic functions in E0 + I by the

formulas,

(8.33) Giz) = z + g(z),       ff(z) = z - giz),

then because of (8.32) we find that G and H assume the continuous boundary

values on /,

Git) = t + i = 2 Re{r},       H(t) = t - I = 21m {f}.
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Therefore, G maps / onto a horizontal line segment and H maps / onto a vertical

line segment. Denote by z = Fiw) a conformai mapping of the upper half w-plane

onto £0. Since / is a monotone curve, the mapping F can be extended continuous-

ly to the real-axis of the w-plane. It follows from the Schwarz principle of re-

flection that the analytic functions, G(F(w)), H(F(w)), of w can be continued

analytically across those segments of the real axis of the w-plane corresponding

to 1. Hence, G(z) and H(z) can be continued analytically across the elastic-plastic

boundary /. Consequently, we have from (8.33) that in a complete neighborhood

of those segments of the real axis of the w-plane corresponding to /, the

function,

z = I {G(F(w)) + H(F(w))},

is analytic in w. In particular, the function,

/ = -2{G(F(w)) + H(F( w))},

which defines the elastic-plastic boundary /, is analytic in those segments of the

real axis of the w-plane corresponding to /. This completes the proof that the

elastic-plastic boundary consists of analytic arcs.

Once the elastic-plastic boundary I is known to be analytic, it is well known

that the harmonic function u(x,y) has all derivatives continuous up to the bound-

ary /. However, in the present case, it can be shown directly that u is analytic

on / by the Cauchy-Kowalewski power series method [11]. Hence, from the

defining relation (8.1), we conclude that \p is analytic on /. In particular

dipjdn = d*¥¡dn on / and ip is smooth on Q.

9. Solution of elastic-plastic torsion problem. We have established the

existence of the extremal \p which is continuous in Q and continuously differen-

tiable in Q. The square Q is partitioned by the analytic elastic-plastic arcs into

a plastic portion P where \p = 4* and an elastic region P where xp < 4*. The

plastic portion P consists of four simply connected closed regions each of which

does not intersect the diagonals of Q. The elastic region £ is simply connected

and contains the diagonals of Q. Moreover ip is analytic in £ and satisfies the

Poisson equation (2.2) there.

In a coordinate system with origin at the center of Q and with coordinate

axes coinciding with the diagonals of Q, the three functions, 4*, ip and 4/ — ip,

are all monotone nonincreasing in | x | and | y |, it follows that

|<M s\v,\,    |*,U|y,|
in Q except on the diagonals of Q where grad 4* is not uniquely defined. But
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gradi/* is continuous in Q and |grad4*|2 = k2 in Q except on the diagonals of

ß, so we conclude that

(9.1) ¡gradin2 z% k2 in Q.

In particular, we have the important inequality,

(9.2) |gradi>|2 ^ k2 on dE.

Since ip is analytic in £, we may appeal to direct computation to obtain the in-

equality,

(9.3) A(|grad->|2) = 2(i\,J + 2^2 + <Pyy2) = 0inE.

This shows that |gradi/í|2 is subharmonic in £. Hence we conclude from the

strong maximum principle [15] and the inequality (9.2) that the following strict

inequality must hold,

(9.4) | grad ip |2 < k2 in £.

For if | grad \p |2  is identically equal to k2 in £, then it follows from (9.3) that

•Axx   =   4>xy   =   «Ayy   =   0   in   £.

which contradicts that tp is a solution of the Poisson equation (2.2) there. On

the other hand, ip = 4* in the plastic portion P. If P is nonempty, it is obvious that

(9.5) |gradiA|2 = |grad4/|2 = k2 in P.

The strict inequality (9.4) and the equality (9.5) indicate that our definitions in

(5.1) for the elastic region £ and the plastic portion P are completely equivalent

to those used in the theory of plasticity. Thus, we have proved that the extremal

fulfills all the requirements listed in [1], [2] and hence it solves the elastic-plastic

torsion problem.

10. Uniqueness and continuous dependence upon parameter. We have estab-

lished the existence of elastic-plastic torsion by using the minimum problem

(2.1). We wish to show the uniqueness of a smooth solution and its continuous

and monotone dependence upon the applied torque or equivalently upon the

angle of twist per unit length.

To prove the uniqueness of the continuous stress distribution, let ip¡, \p2 be

two smooth solutions of the minimum problem. Consider the function,

i} = (\p2 + tpy)l2. It is continuous and is less than or equal to 4* in Q and it pos-

sesses finite Dirichlet integral over Q. Hence it is an admissible function of our

variational problem. Accordingly,

(lo.i) iífo = \mi]+ií<i>2]}.
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On the other hand, direct computation shows that

=   jj [\i(V^i)2 + 2(^i-V^2) + (^2)2]-2pO(iPy+iP2y\dxcly

Q

(10.2) jri]   S   JJ ¡^[(V</'i)2-4pi¥1]+   \[(^2)2-^0iP2^dxdy
Q

= jww+w.
Thus we have from (10.1) and (10.2) that

#]=2-W.] + W.

For this to be the case, it is necessary that the Cauchy inequality in (10.2) is

actually an equality. That is,

[v(^2 - *l>i)Y = W2)2 + (vM2 - Wi ■ v«A2 = 0

identically in Q. But \py = \p2 on dQ, it is immediate that ipy is equal to i//2 in

Q. The uniqueness of the smooth solution is established.

Let ip(x,y;9y), ip(x,y; 02) be the solutions of the minimum problem (2.1)

for 0 = 0l5 02 respectively with the same constant p. We shall first establish

the following weaker results; namely, if 02 > Oy then

(10.3) iP(x,y,e2) = iP(x,y;Oy)inQ.

To simplify notations, we shall write

<h(x» y) = Hx, y,0y),    i//2(x, y) = ^(x, y ; 02).

Let Ey, E2, Py, P2 be respectively the elastic regions and the plastic portions

of Q associated with the stress functions ip¡ and ip2. Then we have the following

decompositions of Q:

Q   =   Ey+Py  = E2 + P2,
(10.4)

Q = £1 n £2 + £1 n P2 + PyC\E2 + P,nP2.

It may be noted that the plus signs on the right of (10.4) mean more than just

disjoint unions of sets. Furthermore, as solutions of the minimum problem, it

follows from the uniqueness theorem that both \py and ip2 must have all the

properties established in §§5-9. In particular we, have

|gradi//i|2<fe2 in Eit     IgradtM2 = k2 in Pt;
(10.5)

|gradi//2|2 < k2 in E2,      |gradi//2|2 = k2 in P2.
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Now consider the function, ip = \p2 — ipy. It is (uniformly) continuous in Q~

and continuously differentiable in Q. We assert that ip is nonnegative in Q. For

if this were not the case, it must achieve a negative interior minimum at some q

in Q. Clearly, q does not belong to Py O P2 because \p vanishes identically there.

If q belongs to the set Ey O P2, then we have, in view of (10.5), the absurd in-

equality,

/c2>|grad^1(g)|2  =  \&adxp2(q)\2 = k2;

if q belongs to the set E2C\Py, then we have again an absurd inequality

k2 > |gradiPM|2 =   |grades)|2 = k2.

Thus, q can only belong to the open set Ey(~.E2. But for 02 > 0.,

Ai£ =  - 2p(02 - Qy) < 0 in Ey n£2.

Therefore, q cannot belong to the set Ey n£2 either. For if q were in £t n£2,

then necessarily Aip(q) ̂  0. Since there is no place for q in Q as listed in (10.4),

we conclude that \¡i possesses no negative interior minimum in Q. That is, the

inequality (10.3) must hold. We proceed to refine this inequality and to explore,

its physical significance.

Consider the set, Px n £2. We assert that it is empty. For if there were a point

q in this set, then it follows from the very definitions for P¡ and £2 that

xPyiq) = ¥(•?) > tP2iq).

But this contradicts the inequality (10.3) and the assertion follows. Now from

the first equation in (10.4) we have

QClPy    =   Ey   ClPy    +   Py   HPy    =   £2  H Py   + P\  C\ Py .

Since both the sets Ey HP, and £2 C\Py are empty, this equation simply becomes

p, =P2c\Py. It means that

(10.6) PyeZzP2,   EyZ0E2.

That is, the plastic portion of Q grows as the angle of twist per unit length in-

creases. Indeed, this is what has been conjected in the literature [2]. We proceed

to show how the plastic portion grows with increasing angle of twist.

Let ly and l2 be the elastic-plastic boundaries corresponding to the angle of

twist 0! and 02 respectively. We refine the results in (10.6) by proving that Z. and

12 have no point of contact in Q = Q — dQ. For if ly and l2 should have a point

q in common which lies in Q, then (10.6) implies that the analytic arcs ly and l2

must have a common tangent at the point q. But considering the function,

(j) = \p2 — \py, in £2, (10.6) also implies that

(10.7) Aï// = - 2p(02 - 0,) < 0 in E2,     ip = 0 on 8E2.
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It follows that \p cannot achieve its minimum in the region £2 and hence \p(q) = 0

is the minimum of \¡i in £2. Now, the strong maximum principle [16] asserts

that the inward normal derivative at q,

But this contradicts that

which is necessary for \py and \p2 being smooth in Q. Thus our assumption that

ly and l2 have a common point q in Q is false and the contention is proved. What

has been proved means that if 62 > 0t then for every interior point q of l2 we

can draw a disc around q such that it is contained in Ey. Thus the set, Ey — E2,

has positive area. Furthermore, the differential inequality (10.7) together with

the inequality for the boundary values there implies that \p2 > ipy in £2. Since

ip = \p2-ipy = x¥ -ipy>0in Ey-E2,

we can now state ithe inequality (10.3) more precisely as follows; namely, if 02 > 0,

then

(10.3') ip2>ipyinEy,       ip2 = ipyinPy.

From this wc reach the conclusion that 02 > 0t if, and only if,

\p2(x,y)dxdy > \py(x,y)dxdy.

Q Q

That is, the angle of twist per unit length is a continuous strictly monotone

increasing function of the applied torque.
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