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Introduction. Let £ be a finite dimensional vectorspace over a field k, and let

cp be a nondegenerate E-hermitian form, cp: E x E -* k, (i.e. cp is a reflexive sesqui-

linear form, additive in both arguments and such that for X,pek, cp(xX, y) = X Jcp(xy),

cp(x,yp) = cp(x,y)p and cp(x, y) = ecp(y, x)J, where J is an involutory antiau-

tomorphism and e is in the center of k). If, in addition, cp is trace-valued (that

is for every xeE there exists an aek such that cp(x,x) = a. + eaJ) then Witt's

famous theorem holds : if F is an arbitrary subspace of E then every metric homo-

morphism a> : F -* E which is injective can be extended to a metric automorphism

of £ [1]. Furthermore, provided F remains finite dimensional, the theorem holds

for E of arbitrary dimension.

The following results concerning infinite subspaces of an infinite space E were

proved in [4]. Let £ be a k-vectorspace of denumerable dimension and cp a non-

degenerate, alternate forint) (i.e. cp(x, x) = 0 for all x e £). If F and F ate sub-

spaces with F x = (0), Fx = (0) and dim(£/F) = dim(E/F) then there exists a

metric automorphism of £ which maps F onto F. Furthermore, there also exists

such an automorphism when F and Fate closed subspaces (Fxx = F) with F cz F1,

FczFL, dimF = dim/" and dimF-1 = dimF "'"(cf. the explicit normal form in

1.2 below).

In contrast to the finite case, however, prescribed isomorphisms between such

subspaces F and F cannot, in general, be extended to automorphisms of £.

In the following we shall prove some isomorphism theorems of this kind,

concerning both symmetric and alternate forms. They are generalizations of the

results in [1] and [4]. The class of subspaces covered by these theorems includes

in particular all the closed subspaces F and all the "dense" subspaces F. The

dimension of £ will be kept denumerably infinite throughout.

It is appropriate to mention that this line of attack follows closely Kaplansky's

investigations in [4].

1. Notations and results.

1.1. Let £ and £ be fe-vectorspaces, supplied with E-hermitian forms cp and cp~ re-

spectively. A metric (orthogonal) isomorphism is a vector space isomorphism
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ep : E -* E such that epicpx, epy) = epix, y) for all x, y e E. In particular, two subspaces

F and F of £ are said to be isomorphic (F s F) if there is a metric isomorphism

between F and F with respect to the restrictions eb\F and ep\p of ep to F and F"

respectively. If F is a subspace of £ then F n F1 is called the radical (rad F) of F;

F is called semisimple if and only if its radical is trivial ; ep is nondegenerate if and

only if £ itself is semisimple. As usual, we shall write || x || for </>(x,x). A subspace F

of £ is said to be closed if Fx ± = F. If F is closed and G is a finite dimensional

subspace, then F+G is closed. F is said to be dense in £, if Fx± = E, or

FA = (0).

1.2. We now assume that eb is trace-valued and that £ has denumerably infinite

dimension (i.e. £ possesses a denumerable algebraic basis). If F is a closed subspace

of £ with F ezz F "'"then there exists a closed subspace F' with F'ezzF'^ and

F C\F' = (0) such that F © F' has an orthogonal supplement in £, £ = (F © F')

©(F©F')X. Furthermore F@F' admits a basis {e„e',}i<¡r with epie„e'j) = ô,,

and such that F is spanned by the vectors e, and F' is spanned by the vectors

e'„ i £ /. In other words, F © F' is the orthogonal sum of card / hyperbolic planes

P,= kie„e), i\e,\ = \e',\=0, </>(e¡, e|) = 1). Thus for a closed F ezz E with

F ezz Fx we always have an orthogonal decomposition £ = (0»P¡)©G,

P, = kie„e'¡) a hyperbolic plane, F = k[e,~]isI.

(A complete proof of this for the alternate case is given in [4]; it carries

over without change, cf. [1, p. 78]).

1.3. Since we shall restrict ourselves to the symmetric case (</>(x, y) = epiy, x))

and the alternate case (</>(x,x) = 0), the antiautomorphism J (corresponding to eb)

is necessarily the identity, hence the underlying field is commutative. If char/c#2,

these forms are trivially trace-valued. When char k = 2, a trace-valued form is

necessarily alternate.

1.4. In the case of a symmetric, nonalternate form we shall make further re-

strictions on the underlying field, and admit only Kneser fields. A Kneser field k

is a commutative nonformally real field of characteristic # 2 with a finite group

k*/k*2 (the multiplicative group of nonzero elements modulo squares). For a

detailed discussion of such fields see [3]. If ep is a nondegenerate symmetric form

on the fc-space £ (£ is always of denumerable dimension), and k is a Kneser

field, then £ possesses an orthonormal basis. In particular, every infinite dimen-

sional subspace of £ which is semisimple contains vectors x of arbitrarily pre-

scribed length || x ||. In fact, this is the crucial property we impose in order that the

theorems proved below will hold in the symmetric case. The proofs hold without

change for any such field. Fields other than Kneser fields for which the alleged

property holds are for example the algebraic function fields in one variable over a

finite constant field, as follows from the classical results on quadratic forms over

such fields in the finite dimensional case (here the order of k* ¡k*2 is K0). However

our knowledge of examples other than Kneser fields is rather limited. The cases

of some important formally real fields will be treated elsewhere.
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1.5. In [2] the following theorem was proved: Let k be a Kneser field and cp a

symmetric, nondegenerate form on £. Let F and F be subspaces of £ with Fx czF,

F± cz F satisfying the conditions

F s Fand dim(£/F) = dim(£/F).

Then there exists an orthogonal isomorphism of £ which maps F onto F. This

theorem will be essential in the proof of Theorem 2 below.

2. Isomorphism theorems.

Lemma 1. Let k be a Kneser field, E semisimple with respect to the sym-

metric form cp and of denumerable dimension. Let F and W be subspaces of E

with the properties:

(1) £ is a finite dimensional subspace spanned by the vectors fx,f2,---,fn; and

(2) Wis an infinite dimensional semisimple subspace with W1' OF = (0).

Then there exists a vector xeE such that

(i) xeW,

(ii) x$Wr\F,

(iii) I x I = a for arbitrarily prescribed aek,

(iv) cp(x,f) = ßi for arbitrarily prescribed ßtek (1 ^ iÍ ¿g n).

Proof. (A) Let F y be the subspace of F spanned by/2,/3, ••-,/. By (2) we have

W^t~\Fy =(0). Ff is trivially closed and of finite codimension in Ft + W.

Therefore Ff + Wis closed and we find Ff + W= (Ff +W)±-L = (Ff3- O W^

= (Fy n W^f = (0)1- = E. Hence dim(W¡(Wr\F\)) = dim((W + Fj^/Ff) =

dim(E¡Fy±) = dimF,. Thus WnFf has an algebraic complement K in W,

K®(WC\Ft)=W, with dim K = dim Fy.

(B) We next show that F is not perpendicular to Wr\Fj. For, if F <= (Wn Ff)1-

then trivially F nK1- <= (Ifnf,1)1 nT^ = [(WnFj1-) + K^ = W\ Since

F r\W± = (0) (by the assumption of the theorem), F dK-*- = (0). On the other

hand, dim(F n 7<"L)^dim F — dim 7C = dim F —dim Fy = l,a contradiction. Thus,

F is not perpendicular to WC\ F\. By the definition of F y we see therefore that fy ,

is not perpendicular to WnFj. Hence there exists XyeWnFy  with

cp(xi,fy)*0,cP(xy,fi) = 0       (l<i^n).

This procedure can be repeated n times with Fj, spanned by all the/ with i #j,

in lieu of F,. We find in this manner n vectors x1,x2,,",xa with cp(x¡,fj) = 0 for

i*j and cP(xi,f)^0 (l£i,j = n). The vector z0 = Z^/Sr^/i)"1 ' *i

satisfies (i) and (iv).

(C) By 1.4 IF possesses an orthonormal basis. Hence, by the same token

WC\(F + feizo))"1 contains an infinite dimensional subspace S spanned by an

orthonormal basis. Therefore since k is not formally real, S contains a vector zx

with IZy I = a — Iz0 I for arbitrarily prescribed aek. The vector z2 = z0 + zx
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now possesses the properties (i), (iii) and (iv). Thus, if z2$WC\F then we are

through with our construction. If we should have z2eWC\F, then we pick a

vector s in S with s$F, \\s\\ = 0 and s Lz2. The vectors z2 + s still has the

properties (i), (iii) and (iv) and now we also have z2 + s$W'C.F.

Lemma 2. Let k, iE,ep) and the subspace F be as in Lemma 1. Let W be an

infinite dimensional subspace ofE such that (1) W ±= (0) and (2) W + F # £.

Then there exists a vector xeE with the properties (iii) and (iv) of Lemma 1

and such that x$W + F.

Since W x = (0) the assumption W x O F = (0) of Lemma 1 is trivially satisfied

and, by starting out with a vector z0 with the properties (i) and (iv) (see Step (C)),

a proof for Lemma 2 can be found. A complete proof is given in [2].

Theorem 1. Let k be a Kneser field, E semisimple with respect to the sym-

metric form ep and of denumerable dimension. Let V and V be infinite dimensional

subspaces of E with the properties:

(1) V1' and V± are infinite dimensional and semisimple,

(2) dirmT-1-1- IV) = dim^ X¡V),

(3) dim(E¡(V± + V±x)) = dim(£/(f ^ + V±A-)).

Then there exists an orthogonal automorphism T:E-*E with T(V)= V.

Proof. We shall build the automorphism step by step. Assume that we have

already constructed four finite dimensional subspaces F„F„G, and G, with the

following properties:

(a)F,ez:V±X,    F,ezzV±J-,

(b) G, niVx + V±X) = G, n Va-,   G,n(Vx + vxx) = G,r\ V\

There exists an orthogonal isomorphism T,: F,®G,->F,®G, with(2)

(c) T,(F) = F„

(d) T,(F, nV) = F,nv,
(e) T,iG,) = G„

(f) TiG,r\Vx) = G,r\Vi-.

We are going to enlarge F, © G, and F, © G, step by step in such a fashion that

each basis vector e„ of a fixed basis (e„)„â, of £ is eventually picked up by some

£¡ © G, and some F¡ © Gj. In other words, we shall have

E = \JF,@G, = \JF,®G,.
i i

Furthermore the construction will be done in such a fashion that at every step

conditions (a) through (f) are satisfied : At every step the isomorphism T, is extended

to an orthogonal isomorphism Ti+l: F,+ 1 ©G¡+1 -*Fi+1 ®G+1 satisfying the

properties (c) through (f) with i + 1 in lieu of i. It is clear by properties (a) through

(d), that in this fashion we obtain an orthogonal automorphism T of £ which

(2) Notice that by the semisimplicity of V   conditions (a) and (b) imply that the sum F, + G,

is direct.
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maps V=\^JiVCiFi onto V=\JVC\Fr We now describe one step in detail.

Let e„ be the first basis vector not contained in F¡ © G¡. We will adjoin it to F¡ © G¡

in a suitable way and try to adjoin a matching vector x of £ to F¡ © G¡.

Case 1. en<ß(Vl®V-L-L) + (Fi®Gi).LetusputW=VJ-®V±A-, F=Fi®Gi

and similarly lF= PX©PXX and F=F¡®G¡. Thus e„<£W+F. In particular

IF + F ?£ £. Therefore

(I) dim(F/Wn F) = dim(lF+ F¡W)< dim(E¡W) = dim(£/lF).

(The last equality follows from Hypothesis 3 of the theorem.) Furthermore,

(V±®Vxx)n(Fi®Gi)=Fi + (V±nGdand(Vx®Vxx)rl(Fí®Gl)=Fi+(V±r\G¡)

by (a) and (b), hence, by (c), (e) and (f), we obtain dim(F¡(ÍVnF))=dim(FI(WnF)).

Therefore by using (I), dim((F+ W)¡W) = dim(F¡(Wn F)) <dim(£/IF), from

which we conclude that F+ W j=E. Now let /i, ••-,/„ be a basis of F. By our

induction assumption 7]/,, •••, TJ„ is then a basis for F. By Lemma 2 there exists a

vector xe£ with the properties

(II) xtW+F,\\x\\ = \\ en I, cp(x, TJj) = 4>(en,f¡)      (1 = j Ú n).

We put F¡+1 = F;, Gi+l = Gi® k(en), Fi+1 = F"; and Gi+l = G¡® k(x). By virtue

of (II) it is clear that T¡ can be extended to an orthogonal isomorphism

T¡+1:Fi+1©G¡ + 1->77¡ + 1@G¡+1   by  mapping  en  into  x.  Let

zGGi + 1n(Fx©Fxx),

then z = Xen + g, geG¡. Since zeVx®V±x we have Xe„e(Vx ®VX±) + Gi.

Therefore X = 0 since en$(Va-® Vl±) + (^©G,) in the present case. Thus

Gi+yn(V±®V±±) = G,n(V±®V±±). By the same reasoning G^yCW1-

= GinVJ-. Hence, together with (b), G1+1 0(7"" © Fx x) = G^W1- © Fxx)

= Gf n Fx = Gi+1 n Fx. As x was chosen with x £ W + F we find by the same

steps that Gi+1 n(fx© fxx) = (7i+1 r>Fx. We see that the intersection

property (b) again holds with i + 1 in place of i. Since Gi+yCiV1- = G^cW1-

and Gi+1 n Fx= G¡ n Fx, the remaining conditions (a) through (f) remain

trivially valid after the extension.

Case 2. e„ e (Fx © Fx x) + (F¡ © G¡). We decompose en, en = e'n +e'¿ + f+g

with e'„e Fx, e¡¡e Fxx, /eF¡, ge G¡. In this case we shall adjoin e'n and e'l to G¡

and F i respectively in two successive steps. Assuming that e'n is not already an

element of G¡ we first adjoin e'n to G¡ and try to enlarge G¡ by a suitable match.

By the semisimplicity of Fx, (Fx n fxx = (0)), and by (b) it follows that

Î?-L-L n G¡ = (0). Let gi,g2, •■•,gm be a basis of G¡. By (e), Tfo,»', T¡gm is a basis

for G¡. By Lemma 1 (with Fx and G¡ in the roles of W and F respectively) there

exists  a  vector ys£ with the properties

(III) yeV,ytVnGi,\\y\\ = \\e'n\\,cP(y,TigJ) = cP(e'n,gJ)   (l=j = m)



1966] WITT'S THEOREM IN THE DENUMERABLY INFINITE CASE 54T

Since e„'e Vx and y e Fx we have by (a) that e'n LF, and y ±F¡. Using this together

with (III) we can extend T, : F, © G, -» F, © G, to an orthogonal isomorphism

T,+y\ F,®G,®k(e'„)^ F,®G,®k(y) simply by mapping e„' into y. Setting

Pi+1 = Ft, Gi+1 - G, + fe(0, F,+1=F, and Gi+1=G;©fc(y) we find
Gi+1n(Kx©FJ-J-) = Gjn(F"L©F"LJ-)©fc(e;) and G,+l nVx = (G,CiVx)

© k(e^). By (b) we obtain again Gi+1 n(Fx © Fxx)= G;+, n Fx and similarly

for G,+y. Furthermore, by the definition of the extension Ti+1 we have

Ti+1(Gi+1 n Fx) = I^G, n vx) + T,+likie'n)) = (G, n Fx) © fc(y) = G,+ 1 n Fx.

Thus, (b) and (f) remain valid after the extension. For the rest of the conditions

this is trivially the case.

There remains e"n to be adjoined to Fi+1. We recall that e'¿e V±x. Let us first

consider the case where e'¿e V (assuming that e"n is not in F,® G, already). Let H y

be an algebraic complement of G,+yC\Vx in Gi+1. Since Ti+1(Gj+1 n Vx)

= G,+l n Vx by (f), the image H y — T¡+,(//,) is an algebraic complement of

G,+y n Fx in Gi+1. We next convince ourselves of the fact that

(IV) Vx n (F;+1 © Ht) = (0), fx n iF,+ y®Hy) = (0).

For, if xeFx n(Fi+1©//,) with x=/+g then g£fx +Fi+1c:Kx ©Fxx

by (a). So by (b) geCVx © Vxx) nGl+l = Vx OGi+1. Consequently g = 0

since g also belongs to the complementary space //,. Furthermore/= 0 by (a)

and the fact that Vx is semisimple CVX n Vxx = (0)).

By virtue of (IV) we may apply Lemma 1 (with Fand Fi+1® H y in the roles of

IT and F). We choose a basis ly,---,lr of Fi+1©//.. Tj+1Z1,-.-,Ti+1/r is then a

basis for F, + y@Hy. There exists a vector zeE with the properties

(V) z £ F, z ¿ F n (F-¡+ y ® H y), I z I = I e; H, ePiz, T,+ 1lj) = epie"tt,lf) (1 g / á r)

We set F¡+2 =Fi+í®k(eQ, G,+2= G,+ l, F,+2 = F,+l®kiz) and G,+2 = G,+l.

We have

(VI) G,+ y = iG,+1nVx)®Hy and Gl+1 = (GJ+1 n Fx)©^.

Furthermore by (a) we have c¡ 1 G1+1 O Vx and z lG¡+1 n Fx. Thus, by (V)

and (VI) we extend T,+i to an orthogonal isomorphism Ti+2: Fi+2 © G¡+2 -» £"¡+2

© Gi+2 by mapping e,"into z. Since e^'e Fand z e Fwe find Fi+2 n F= (Fi+1 n V)

+ kié'f) etc. and conditions (a) through (f) remain trivially valid after the ex-

tension. The case where e„"£Fxx but e"n<£ V remains to be discussed. We have

F+F¡+15¿FXX  since e^V+F,+i by assumption. Therefore,

dim(Fi+1 HVnF,+ i)) = dim((Fi+1 + V)¡V) < dim(Fxx/F) = dim(Fxx/F)

where the last equality is obtained by the assumption 2 of the theorem. By (c) and

(d)  we  obtain  dim(Fi+1/(FnFi+1)) = dim(/,¡+1/(Fn£¡+1))  hence

dim((F-¡+1 + F)/F) = dim(Fi+1/(FnJFj+1))<dim(Fxx/F)
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and we learn that V + F,+ 1 # Fxx. Let Fx° be the orthogonal complement of F

in Vxx. Since Fx is semisimple, we have Fx° = (0). Hence we can apply Lemma

2 to the semisimple vectorspace CVxx,ep\ i/J~l), Fand F,+ l in the roles of Wand F

respectively. We choose a basis /«, • ■ • ,fm for F, +, and find a vector z0eVxx with

the properties

(VII)     z0 i V+ F(+1, | z01 - I e;I and ^(z0, T¡+t/,) = 0«,/;)   (1 z% j S m).

Then let g,, •••,gs be a basis of H y where H y is again an algebraic complement of

G i +1 C\ Vx in G; + [. T; + y g,, • • •, T, +, gs is then the basis of an algebraic complement

/?! of Gi+1 n Fx in Gi+1. One proves as before that

Fxn(/,i+1©^1©k(zo)) = (0).

Once more we apply Lemma 1 (with F and Fi+1® //, © fc(z0) in the roles of W

and F respectively) and find a vector z00e£ with

z00 6 F, z00 £ F O F"i+ ! © #. © fc(z0)(3), II z00 II = 0.

(VIII)
epiz00,z0) = 0, <p(z00, Ti+,/,) = 0, epiz00, T,+ 1g,) = rp«,g,) - </>(z0, T¡+ .g,)

(lá/'gm,l^/^s).

We set z = z0 + z00 and by (VII) and (VIII) we find that

zeVxx,ziV + F,+ l + G,+1, || z I = || <||,

(IX)
</>(z, Ti+ yff) = #<,/}) and ¿(z, T,+ lgl) = ftC g,).

We put F,+2=F,+l ®kie"n), G2 + l=G,+1, F,+2 = F,+ 1©fc(z) and G¡+2 = G¡+1.

As  before  we  have  e'ñ-LG,+l C\VX,  z LGi+yC\Vx.

From (IX) we see that T,+i can again be extended to T¡+2: Fi+2©G¡+2->F¡+2

© Gi+2. In this case we have F,+2 nV=Fi+lrlV and Fi+2 nP= F,+1r\V.

All the conditions (a) through (f) remain trivially satisfied after this extension.

This completes the proof of our theorem. Summarizing, we remark that we

have seen how to enlarge F, © G, and F, © G, by at least one dimension in such a

fashion that (a) through (f) remain valid after the extension. Furthermore,

F,® G, has been enlarged by adjunction of a prescribed basis vector. It is clear

that in this fashion we can arrive at \J,F, ®G, = E. However, in order to make

sure that |J F, ® G, = £ also, one has to alternate between F, © G, and F, © G,.

In the next step the first basis vector not contained in F,+1 ©Gi+1is added to

F,+ y®G,+ y and Fi+1©G;+, this time is enlarged by a suitable match.

We are now in a position to prove our main theorem. It covers the class of

subspaces HezzE for which rad H = rad(//x). In particular, this condition is

satisfied by closed subspaces. Examples of spaces which are not closed and which

satisfy this condition are the dense subspaces since every space H with Hx <= H

falls into our category.

(3) This property will not be needed.
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Theorem 2. Let k be a Kneser field(4), E semisimple with respect to the

symmetric form cp and of denumerable dimension. Let 77 and H be isomorphic

subspaces with rad 77 =rad(77x) and iadH = rad(J?x) satisfying the following

properties :

(i) 7ixs/?x,

(ii) dim((77x + 77xx)/(77x + 77)) = dim((7fx + 7? xx)/(7?x + 77)),

(iii)dim((rad77)x /(77x + 77xx)) = dim((rad#)x /(77x + 7?xx)).

Then there exists an orthogonal automorphism of E which maps 77 onto ff.

Conditions (i), (ii) and (iii) are trivially necessary for such an automorphism to

exist. Furthermore, condition (i) can be replaced (under the present conditions)

by simpler conditions on dimensions, namely

(i') dim((7i + 7fx)/77) = dim((H + Hx)jH)

provided that this dimension is infinite. If dim((77 + 77x)/77) is finite, the (neces-

sary) condition that 77x and Hx be isomorphic is not implied by (i') and the

other conditions, unless k is "perfect" (i.e. the order of k* Ik*2 is 1). For otherwise,

there are at least two nonisomorphic 1-dimensional fc-spaces Lt and L2. The

external sums E@Ly and £©L2 possess orthonormal bases, hence E®Lt

S £ © L2 and therefore they provide a simple counterexample.

Proof, (a) Let 770 be an algebraic complement of rad 77 in 77 and Ht an

algebraic complement of rad 77 in 77x. We then have the orthogonal decompo-

sition 77 + 77x =770©rad(7í)©771. Furthermore let L be an algebraic comp-

lement of 77 in 77x x. Since rad 77 = rad (77x), we find that (77 + 77x) n 77x x = H.

In particular, Ln77 = (0) and we have the direct decomposition

77 + 77x + H±± = H0®tad(H)®H1®L.

(b) Since rad77 =rad(77x) = (77 + 77x)x we see that rad 77 is a closed space.

Therefore by 1.2 there exists a subspace R with R OradTJ = (0) and a decompo-

sition E = (rad(77) © R) © £0 with £0 1 rad(TF) + R, where rad(77)©7? is an

orthogonal sum of hyperbolic planes:

rad(77)©R=©F¡,
¡el

(1) card 7 - dim(radTi),

Pi = Ke^e'y) with rad 77 - fc[<U/.* = fe[«f]to/

There exist subspaces H*,H*,L* all orthogonal to R such that

rad(77) © TiJ = rad(77) © 770 ( = 77),

tad(H)®H^ = tad(H)®Hy ( = 77x),

rad(77)©L* = rad(77) © L (so rad(77) © 77* © L* = 77x x).

(*) Cf. the discussion at the end of 1.4.
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Since rad77 177*, 77*, L* we have 77*, 77*, L* c £0. Without loss of generality

we may assume that 77* was chosen for 770 at the beginning and similarly for

77*and L*. Hence we shall drop the asterisks. Thus, if iC is some algebraic com-

plement of 770 © H y © L ( = 77* © 77* © L*) in £0 we have the decompositions

(2) £ = (rad(77) © R) © £0 with £0 1 (rad(77) + R) and £0 = H0®Hy © L© K.

We find (rad 77)x =rad(77)©£0. This gives

(3) dim K = dim((rad 77)x /(77x + 77x x)).

We also read off

(4) dim L = dim((77x + 77x x)/(77x + 77)).

With respect to the subspace H we have a similar decomposition

£ = (rad(Tf)© R) © EQ with E0 ± (tad(H) © R) and rad(7?) © R = © A,
(5) -»-,-. <*7

(with Pt,H0,Hy,L,K analogous objects to those above).

(c) By assumption 77 and 7? are isomorphic, in particular dim(rad H) = dim(rad 77)

since a radical is mapped on a radical under any isomorphism. We therefore have

the same number of hyperbolic planes in the decompositions (1) and (5) of

rad(77)©B and rad(7?)©i? respectively: card 7=card 7. Hence, by linear ex-

tension of the index map which sends the basis vectors e¡, e'¡ of P¡ into the basis

vectors e¡,e'¡ of P¡ respectively, we obtain an orthogonal isomorphism

(6) Ty : rad(77) © R ->• rad(77) © R withjT^rad 77) = rad H.

Similarly, 77 S 77 implies that any two algebraic complements of (the totally

isotropic spaces) rad 77 and rad H in H and 77 respectively, are isomorphic. In

particular

(7) 770^770.

Since furthermore 77x ^ 77x by assumption of the theorem and since rad(77x)

= radTi etc., by the same token,

(8) ff,»5,

By assumptions (ii) and (iii) of the theorem and by (3) and (4) (and their ana-

logues for L and R) we obtain

(9) dim L= dim L and dim K = dimK.

(d) We now consider various cases which may arise and which have to be

treated separately.

Case 1.   770 and H y ate both finite dimensional. Since we have seen that
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rad H is closed, the same is true for H = rad(//) © H0 and hence for
Hxx +HX =H + HX =H®Hy (1.1). Therefore Hx + Hxx = (Hx + Hxx)xx

= (//xx ntfx)x = (// n//)xx = (radf/)x. Hence L= K = L = /?= (0) by (3),

(4) and (9). £ decomposes as follows:

£ = (rad(//) © P) © (ZZ0 © //,) and £ = (rad(/7) © P) © (#„ ©#i)»

Since H0®Hy and //0 © H y are orthogonal summands in these decompositions,

isomorphisms (6), (7) and (8) define an automorphism of £ which maps

H = rad(/Z) ®H0   on   H = rad(/7) © H  (//0 1 Hy, H0 1 /?, !).

We are left with the case where at least one of H0 and H y is infinite dimensional.

In particular, the semisimple spaces £0 and £0 are then both infinite dimensional

and so possess orthonormal bases (1.4). In other words, we have

£o = fo-

case 2.   H0 is finite dimensional. Since H0 is also semisimple, H0 has an

orthogonal supplement Et in £0. The same is the case for H0 by virtue of (7). So

E0 = H0® Ey, E0 = H0®Ey with Et 1H0, Et 1H0.

£, and £t are semisimple and they are infinite dimensional since they contain

the infinite dimensional spaces Hy and Hy respectively. Thus Ey and £\ possess

orthonormal bases and therefore

Ey=Ey.

E decomposes into orthogonal subspaces as follows

£ = (rad(H) © P) © tf0 © £,, £ = (rad(/?) © P) © H0 ® Ey

and this case is now completed as in case 1.

Case 3. Hy is finite dimensional. £ decomposes into orthogonal subspaces

as in the second case:

(10) £ = (rad(H) © P) © H. © £2, £ = (rad(H) © R) © By © E2, E2 s E2

Let £ (F) be an algebraic complement of H0 (/7/0) in £2 (£2). If Hx° iHx° ) is the

orthogonal complement of H0 iH0) in £2 (£2) we find that

(11) Ht° =i0) and ffXo =i0).

Furthermore, dim F=dim K+dim Land dimF= dim./?+dim L. By (9) therefore

(12) dim(£2 ¡Hf) = dim(£2 ¡H0).

In view of (11) and (12) we can apply the theorem quoted in 1.5: There exists an

orthogonal isomorphism T0: E2^E2 with T0(//0) =H0. From isomorphisms (6)

and (8) and decomposition (10) we thus secure an orthogonal automorphism

of £ which maps H = rad(H) © H0 onto R = rad(/T) + H0.
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We are thus left with

Case A.   770 and 77 ¡ are both infinite dimensional. We have

(13) E0 = H0®Hy®L®K,E0 = H0®Hy®L®K and £0 = E0.

In order to find an isomorphism T0 : £0 -* £0 which maps 770 onto 770 we shall

apply Theorem 1 to the space £0. The orthogonal complement 77^° of 770 in £0

is precisely 77^ similarly 77x° = Hy. Finally 77x° =H0®Land 77x° = 770 ©L.

Hence

dim(H¿0±0IH0) = dimL= diml = dim(770x°Xo /770)

and

dim(£0 /(Tío10 + íío°±0)) = dimTC = dimR = dim(£0 ¡(fío ° + B¿° ±0))-

Finally we recall that 770 and 77 y ate both trivially semisimple. Thus the assump-

tions of Theorem 2 are satisfied: there exists an orthogonal isomorphism

T0:£o->£o with T0(H0)=H0. Together with the isomorphism Ty of (b) we

obtain an orthogonal isomorphism of £ which maps 77 = rad(77) © 770 onto

77 = rad(77) © 770. This completes the proof of Theorem 2.

If cp is a nondegenerate alternate form on the infinite dimensional space £ (1.3)

then Lemmas 1 and 2, with the obvious modification that (Hi) be dropped, hold

for any commutative field whatsoever. For this reason the theorem quoted in

1.5 carries over to the alternate case for any arbitrary underlying field and the

proof of Theorem 2 goes through mutatis mutandis (for example, £0 = £0 in the

last three cases because these spaces now possess symplectic bases and are of the

same dimension). Furthermore, conditions on isomorphisms can now be replaced

by simpler conditions on dimensions, as every semisimple space of at most denu-

merable dimension now admits of a sympletic basis. Thus, we obtain the following

companion to Theorem 2:

Theorem 3.   Let cp be a nondegenerate, alternate form on the k-vectorspace E

of denumerable dimension, and k an arbitrary commutative field (of any

characteristic). Let 77 and H be subspaces of E with rad(77x)= rad 77,

rad(77x) = rad(77) and satisfying the following properties:

(i)    dim 77 = dim 7?, dim(rad77) = dim(rad77),

(ii)   dim(77/rad77) = dim(77/rad7?),
(iii) dim(77 + 77x ¡H) = dim((B + 7?x) ¡H),
(iv) dim((77x + 77x x)/(77x + 77)) = dim((77x + /7X x)/(77x + 77)),

(v)   dim((rad77)x/(77x + 77xx)) = dim((rad77)x/(77x + /7XX)).

Then there exists a metric automorphism of E which maps 77 onto R.

The last theorem partly confirms a conjecture by Kaplansky to the effect that

equality of corresponding cardinal numbers defined by the subspaces 77 and 77

is sufficient in the alternate case for an automorphism of the required kind to

exist [4].
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