COMPACTIFICATION AND DUALITY
OF TOPOLOGICAL GROUPS

BY
HSIN CHU(1)

1. Introduction. In this paper we give a unified approach to two distinct theorics
in topological groups. On the one hand we have the Pontrjagin and Tannaka duali-
ties for locally compact abelian groups and compact groups, respectively. On the
other hand, in abstract harmonic analysis, we have the compactification of a group
in the sense of Weil (see [2], [3], [13], [19]). Let G be a topological group. Let G}
and G™ be the set of all unitary representations (finite dimensional) with the
discrete topology and with the compact open topology, respectively. Let (G})*
and G™ bethe groups with the compact open topology of all unitary mappings
(see Definition 2) of G;and G* respectively. These groups are always maximally
almost periodic in the sense of J. von Neumann. Let G be the compact group
attached to G (i.e. G is the compactification of G in the sense of Weil). We prove
that for any topological group, (G)* = G, which gives rise to a new method for
constructing the compact group G. In particular, if G is abelian, then
(GH* = G, where G} is the character group of G with the discrete topology and
(GP* is the character group of G with the compact open topology, which is an
extension of a known result of Kakutani (see [2]and [3]). Let G = 4 x B be the
direct product of two topological groups. We prove that G=~4 x B and
G* =~ A* x B**. A similar result is known for Stone-Cech compactification of
certain spaces. If G is locally compact, then G**= G. If G is maximally almost
periodic, locally compact with a o-compact commutator and it has a compact
normal subgroup 4 such that (G/4)** =~ G /A4 in a natural sense, then G™ =~ G,
which is a generalization of Pontrjagin duality and Tannaka duality. In particular,
if G is maximally almost periodic, locally compact with a compact commutator,
then G*™ = G. In [17], Takahashi proved the same statement except he used a
topology for G* other than the usual compact-open topology. In other directions,
there are several papers which recently studied Tannaka duality alone; forexample,
see [1], [5], [9], [10], [11], [16]. Throughout the paper, the Pontrjagin duality
and the Tannaka duality are assumed.
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2. Topologies for G* and G**.

DrrFINITION 1. Let G be a topological group. Let G5 be the set of all unitary
representations of degree n of G with the usual compact open topology. Let
G* = U,,Gf,‘ as the sum of all topological sets G, n =1,2,-.-. We call G* the
unitary space of G and G; the unitary subspaceof degree nof G. Weknow that
G~ is closed with respect to the following operations: sum ( 4 ), Kronecker product
( X), equivalence, and complex conjugate. We denote

U(D,K,&) = U(D) = {D’|| D(g) — D'(g) | <e, where
ge K <= G,K is a compact set in G, D
and D’ in G, and ¢ is a positive real number}

as a ncighborhood of D, where | D(g) — D'(g) | =(Xi(di;(g) — dij())""*.

LEMMA 1. Theset of all neighborhoods U(D, K, €) forms a base of a topology
for G;. Moreover, it is a Hausdorff uniform space.

Proof. It is a straighforward computation.

LEMMA 2. The subspace G} is locally compact for each n, if G is locally
compact.

Proof. This lemma is known. For example, it is a direct consequence of
Theorem 1 in [8].

COROLLARY. The dual space G=U,,G,’f is a locally compact Hausdorff
uniform space, if G is locally compact.

DEFINITION 2. A unitary mapping A of G is a continuous function of G*
into the set of all unitary groups U(n), n = 1,2, -+, such that:

(D A(D)e U(d(D)),

(1) A(D + D) = A(D) + A(D"),

(III) A(D x D)= A(D) x A(D'),

(IV) A(T™'DT) =T 'AD)T,
where D, D’ € G, d(D) = the degree of D and Te U(d(D)).

If A is a unitary mapping of G, then it is known that (4(D))~ = A(D).(See [18].)
Denote the set of all unitary mappings of G* by G**. Let us introduce a multi-
plication of 4 and B in G** by (4B) (D) = A(D)B(D) for D e G*. Define A™" for
AeG™ by A”Y(D) =(A(D))"! for all DeG. Introduce the usual compact open
topology to G*. Then it is easy to verify the following lemma.

LEMMA 3. Theset G**is a topological (Hausdorff) group and G** is also
maximally almost periodic in the sense of John von Neumann. (See [14].)

LeMMA 4. If G is a discrete group, then Gj is a compact space and therefore
G* is g-compact.
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Proof. Let U(n) be the group of all unitary representations of degree n over
the complex field C. Then the product group[[..cU,(n) is compact, where
U,(n) = U(n) for every geG.

Define

f:Gy > [] Ugn) by f(D)={D(g)} forall geG, DeG,.
geG

It is not hard to see that f is a homeomorphic into mapping and f(Gj}) is closed in
[T¢ccUg(n). This proves that G, is compact.

LEMMA 5. Let G be a locally compact group satisfying the second axiom of
countability. Then G; satisfies the second axiom of countability and so does G*.

Proof. Wemayimitate a method used in [15, pp. 128-130] for the proof of
this lemma.

COROLLARY 1. Let G be a locally compact group satisfying the second
axiom of countability. Then G*is metrizable.

Let U and V be two equivalent unitary representations of the same degree n
of a topological group G, i.e., there exists a constant matrix P € GL(n, C) such
that P 'U(x)P = V(x) for x € G. Then it is known that P =Q - a - 1, where Q
is a unitary matrix and a is a positive real number, that is, two unitary represen-
tations are equivalent if and only if they are unitarily equivalent. We denote
URY for two equivalent unitary representations U and V. It is clear that R is an
equivalence relation.

LEMMA 6. Let G be a compact group. Then there exists for each C* e G,
a neighborhood V=V(C*; G,1[n)such that all elements in V are unitarily
equivalent to C”. Consequently, the quotient space G,[R is discrete.

Proof. Let dx be the Haar measure of G normalized by [,dx =1. Let x; be
irreducible characters and a; be integers, i =1,---,m. Let x = Xa;x;. Then, by
the orthogonality relations, we have [x%¥dx = Xa? =1, unlessalla;,i=1,---,m,
are zero. By using this fact, it is easy to see that V(C? G, 1/n) contains no elements
other than those unitarily equivalent to C*.

The following theorem, which is a direct consequence of Lemma 4 and Lemma 6,
is analogous to a known theorem of locally compact abelian groups:

THEOREM 1. If G is a discrete group, then G} is compact. If G is a compact
group, then G}, modulo the unitary equivalence relation, is discrete.

LEMMA 7. Let G bea locally compact group. IfH is a closed normal subgroup
of G, then (G},H) is a closed subset of G and (G[H)}is topologically homeo-
morphic to (G;,H). Consequently, (G/H)* ~(G* H), where
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(G H)={D|DeG,;;D(h)=1, for all he H}
and
(Gx,H) = {DIDG Gx, D(h) = ld(D) for all h EH}.

Proof. For each De(G,, H), define D'(xH) = D(x) for each xeG. It is
clear that D’ € (G/H)}. Define f: (G}, H)—(G |H), by f(D)=D' where D € (G}, H).
1t is not hard to see that fis one-to-one, onto and open mapping. We shall show
that f is continuous.

Let V' =V’ (D,; FH,¢) be a neighborhood of D, in (G/H);, where FH is
compact in G/H. For each x € F and a neighborhood V of identity in G whose
closure, ¥V, is compact, we have FH < UxeFxVH. Because FH is compact in
G /H, there exists a finite set F’' = {x,,---,x,} = F such that FHU,leiVH and
F'Vis compact in G. Define V" = V” (D, ; F'VH,¢) to be a neighborhood of
D, in (G [H)}. It is easy to see that V" < V'. Define V= V(D,; F'V, ¢) a neighbor-
hood of D, in (G;, H), where f(D,) = D,. Then f(V)=V" < V’'. This proves
that f is continuous. Hence, (G, H) ~ (G/H);. Consequently, (G*, H) =~ (G/H)".

The following theorem is analogous to a known theorem of locally compact
abelian groups.

THEOREM 2. Let G be a locally compact, maximally almost periodic group.
Let H be a closed normal subgroup of G. Let ® =(G%H)={g*|g"e G*and
g (h) =1, for all he H, where n = degree of g*} and let H' = (G, ®) = {g|{(g)
=1, for all { € ® where n = degreeof {}. If G|H is maximally almost periodic
then

H' =H or H =(G,(G", H)).

Proof. We know that
H'=[) {g|lg) =1, where n=degree of {}.
Le®

This shows that H' is a closed normal subgroup of G. It is easy to see, by the
definition of H’, that H < H’'. We shall show that H' < H. Suppose there is an
ae H'\H.Then aH # H and {(x) = 14, for all { € ®, where d({) is the degree of {.
Consequently, {(ah) = 1,4, for all {e ® and all he H. By Lemma 7, we know
f:®=(G*,H)—>(G[H) by f({) =’ where { e H and {'(xH) = {(x) for xHe G |H
is a homeomorphic onto mapping. Then f({) (aH) = 14, for all {€ H. By the
hypothesis, G/H is maximally almost periodic. For aH e G/H which is not
identity, we have, by definition, f({,)e(G/H)*, for some {; € ® such that
[f(£1)] (aH) # 14,- This gives a contradiction to our earlier conclusion. Hence,
H'=H.
The following lemma is clear.

LeEMMA 8. Let G be a topological group. Let g € G and define $(D) = D(g) for
all De G* Then ge G™. Define ¢: G—->G ™ by ¢(g)=g. Then ¢ is a contin-
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uously homomorphic mapping of G into G™ if G is locally compact. Moreover,
if G is maximally almost periodic, then ¢ is isomorphic.

DEFINITION 3. Let G be a topological group and let G and G™ and a mapping ¢
as defined in the Lemma 8. If ¢ is a topologically isomorphic onto mapping,
then we say that G has a unitary duality.

For example, locally compact abelian groups, compact groups, free groups
with finite generators with discrete topology, etc., are maximally almost periodic.

3. Unitary duality and Tannaka duality. Let G be a compact group and let
G*be the set of all representations of G with the discrete topology. Define a
representation mapping A ofG*to be a mapping of G into the set of U,‘:,°= 1GL(n,C)
such that (I) A(D) eGL (d(D),C), (II) A(D 4+ D’) = A(D) + A(D’), (1I1) A(D x D)
= A(D) x A(D"), (IV) (A(D)) ~ = A(D), and (V) A(P"'DP) = P~ ' A(D)P, where D
and D’ inG*, Pe GL(d(D), C). Denote the set of all representation mappings with
the usual finite open topology by G**. Introduce the same muitiplication in G**
as in G**. Define ¢’: G — G**in the same way as defined in Lemma 8. It is well

known that ¢’ is a topological isomorphic onto mapping, and it is called the
Tannaka duality (see [18]).

THEOREM 3. Let G be a compact group. Then G has the unitary duality
which is the same as the Tannaka duality.

Proof. The proof of this theorem is a matter of straightforward computation.

COROLLARY 1. Let G be a compact group. Let G be the set G* with the usual
discrete topology. Let (G})* be the set of all unitary mappings (see Definition 2)
defined on Gj with the finite open topology. Introduce a natural multiplication in
(GY)* as we did for G™. Define ¢: G —(G;)™ as we defined in the Definition 3.
Then ¢ is a topologically isomorphic onto mapping from the topological group
G onto the topological group (G})™.

4. Unitary duality and Pontrjagin duality. Let GT = {the set of all unitary
representations of degree one of a locally compact abelian group G}. We use the
Kronecker product of G* as the multiplication for G§. Then G7 is a topological
group such that G] = G*, where G* is the character group of G with the compact
open topology. Let Gi™ = {the set of all one-dimensional unitary representations
of the topological group G7}, with the compact open topology. Then G = G**,
where G** is the character group of G* with the compact open topology.

THEOREM 4. Let G be a locally compact abelian group, then G has the
unitary duality which is the same as the Pontrjagin duality.

Proof. The proof of this theorem is a matter of straightforward computation.
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5. Unitary duality on direct product groups. The following fact is known (e.g.
see [19]).

LEMMA 9. Let G = A x B be a direct product of two closed normal groups
A and B. Let D be an irreducible unitary representation of the topological
group G. Thenthere exist two irreducible unitary representations D, and D,
of A and B respectively such that D is unitarily equivalent to D(;y x D), where
D(1y(a) = D(a) and Dy (b) =14p,,,) and Diy(b) = D\(b) and D’\(a)
= lype,)» Where ae A and beB.

DEerINITION 4. Let A;, By, C;, Dy, etc., be the unitary spaces of degree n
of topological groups 4,B,C,D, etc., respectively. Let

fai Ay > B, g,:Bi— C}, h,: C;— D] etc.,

be continuous mappings such that g, 1 (1,) = £.(4,), k; 1 (1,) = g.(B,), etc., where 1,
is the trivial representation of each one of A,,B,,C,,D,, etc. Then we call the

sequence
Jo . & . h,

. _’A:'—’an_’ Cn—->D:—>---

exact.

LeMMA 10. Let G be a locally compact group. Let G = A x B where G is a
direct product of two closed normal subgroups A and B. Then

(N 1—)A—l> GLB—)I
and
© le 428 G2 B, foralln

areexact sequences where i is the inclusion mapping and j is the projection and
Lin(gn](a) = g(i(a)), a€ 4, g;€ G, and [(j)(b)](8) =bi(i(8)), g€ G, be B
Furthermore,

X ix X j X
3 l- A" « G* & B <1,
where i* = U,,i,’,‘and j*= U,,jjf, is exact.
This lemma is a direct consequence of Lemma 7 and Lemma 9.

THEOREM 5. Let G be a direct product of two topological groups A and
B,G = A x B. Then G*™ = A™ x B* is a direct product of A*™ and B**.

Proof. Let

(49, ={gi|gie Gl gi(B)=1,}
and
(B, ={gr|gre Gy, gx(4A) =1,}.
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Let
@) =U ", and B =U (B,

Define f ,: Ay = (A7), by fi.(a")(xy) = a¥(x) for xeA and yeB. Define
San: By = (BY), by f1,(b")(xy) = b*(y) for x€ A and y € B. Define f;: A" - (47)’
by fi=Ufi» and £5: B* > (BY by f,=U,fo..

For a** e A™, define (a™)' (g") = a™(g"| A) for g*€G* and for b*™eB™,
define (b*)’ (g") = b™(g"| B) for g*e G*. Then (a™)’ and (b™)’ are in G*. Let
(A™)’ be the set of all these (a™)" and let (B™) be theset of all these (b™)’. We
shall show that (4™)’ and (B**)" are closed normal subgroups of G**. It is clear
that (4¥)" and (B*)" are subgroups of G**. By the definition of (4™)", we know
(@) (b*)' = 14pxy for each (a™)" € (4™)" and (b™)' € (BY)'. Let S e G*\(4™)".
Then there exists f* e (B¥)’ such that g*(8) # 1,4x). Suppose not, then for each
p*eG*, by Lemma 9 there exists D, ;,--,D; ,in(A%)"and D, ,,++, D, ,in (B*)’ such
that p* = S™'(Dy,; % Dy + -+ + Dy, x D, ,) S where Se U(d()) and g™ (")
=8"Ng"(Dy,0)) X Luw,.y + -+ + §7(D2,) X lap,, ))S = g7(B*A).

It follows that g* € (4™)’. This contradicts the assumption g€ G*™|(4™)".
Therefore, there is an B*e(B*)" such that g™(8%) # 1,4x). Let || (%) — 1y, | =1
and choose ¢ = 17/2. Then it is easy see that W(g™; f Fe) N (A™)' =. This
shows that (4™)" is closed. For each g**e G* and each (a™)’ € (4™)’, we shall
show that (g~ ! (a*)’ (g*) € A™. For each y* € G*, by Lemma 9, we may write
}’x:S-l(Dl,l X Dy + 4+ Dy, x D,y )S for SeU(d(Y)), Dy,q,+, Dy, in
(4% and D, y, -+, D, , in (B¥)’. We have

(€)@ (™)) = (&) (a™) (&™)
“(S7'(Dy,y x Dyyy o+ F - 4 Dy, X D, )S)
= S_I((gxx(Dl,1))—‘((0’“)’(1)1,1))gxx(D1,1) X 1yp,, 1))
+ -+ (gxx(Dl ,r))— l((axx)/ (Dl ,r))gxx(Dl ,r) X 1d(Dz,r))S
=(g™) (@) (€)™ | ).
Hence (&)™ (@)’ g** € (4™)’. This shows that (4™) is a closed normal subgroup
of G**. Similarly, we can show that (B**)" is a closed normal subgroup of G*.
For g€ G, we define gj* and g5 by g:(v) = g7(f1(y*| 4)) and g5 (y")
= g*(f5(y*| B)) respectively. Then gi*, g5" € G**. We shall show that g™ = gi*- g5".
For each y* e G*, there exist, by Lemma 9, Dy 4,+-,D, ,in(4%)"and D, ;,+-,D, ,
in(B®)'suchthaty™=S"'(D, ; x Dy , 4 -+ + Dy, x D, ,)S where Se U(d(y")).
We have
gx g () =gi(vIgr (v
= S_l(gxx(Dl,l) x g%(Dy,1) + - + &7(D;,,) x g7(D;,))S=g"(y").
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This shows g§~" - g5 = g™~

We shall show gz*e(4™)’ and g§ e(B™)’. Define a™ (%) = g (fi(«®)) for
a*e A%, then a** e A™ and (a*)'(f*) = (a™)(B*| A) for B e G. Then (a™)' (%)
= (@™)(B*| 4) = g (f1(B*| 4)) = g’ (B"). This proves that (™)' =gj* and
consequently, g%" €(4™)’. Similarly, we can show that g e (B*)’. Hence G*
=(A™)" x (B™)" is a direct product of two closed normal subgroups (4*),
and (B**)’. Define:

Byt A (A7) by hy(a™) = (@)
and

h,: B¥™ = (B™)’ by h,(b**) = (b™)".
It is not hard to see that h; and h, are topologically isomorphic onto mappings.
Therefore, we have G** =~ 4™ x B**,

Let G}, A and Bj be the set of all unitary representations of G, A and B with the
discrete topology, respectively. Let (G3)*, (45)" and (B])™ be the groups of all
unitary mappings of G, A} and B] with the usual finite open topology, respectively.
By the proof of Theorem 5, we have the following results.

COROLLARY 1. Let G be a direct product of two topological groups A and B,
G = A x B. Then (G})* =(A3))" x (B}))” is a direct product of (A})" and (B))*.

COROLLARY 2. Let G=A x B be a direct product of two locally compact
groups A and B. Then

(1) 1>456L B 51,

@ 1« 4% L By,

and

©) 1 - 4~ 15 6= Ly B,

where i,j,i%j° are defined in Lemma 10 and [i*(a™)](g") = a™(i*(g")) and
(&™) (b") = g7 (b)), a™ € A, g*e Gy b*e B} are exact and i** and j*
are continuous and open with respect to their images.

COROLLARY 3. Let G be a locally compact maximally almost periodic group
and G = A x Bis a direct product of two closed normal subgroups A and B.
If both A and B have the unitary duality, then so has G.

Proof. Applying the five-lemma of algebraic topology (e.g. see p. 16 of [6]) to
Corollary 2, we have the desired result. We notice that the five-lemma is known
true for the case of abelian groups. However, it is still true for the case of non-
abelian groups, if we read the proof of the lemma carefully.
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COROLLARY 4. Let G be a locally compact, connected maximally almost
periodic group. Then G has the unitary duality.

Proof. This is a direct consequence of Corollary 3, Theorem 3, Theorem 4,
and a result of H. Freudenthal (see [7]) that says any such group G can be de-
composed into a direct product of two closed normal subgroups 4 and B such
that A is abelian and B is compact.

6. Unitary duality on another class of groups. Let G be a topological group.
Let R; be the algebra of all finite linear combinations with complex coefficients
J(x)= Xp_ a,di(x) where dij(x) is a coefficient of some D*(x)=(df(x))e G*
with the usual uniform norm. We call R the resprentative algebra of G over the
field of complex numbers.

LEMMA 11. Let G be a maximally almost periodic group. Then for every
compact normal subgroup K of G we have the natural homomorphism i*: RG> Rg
which is onto, where i* is induced by the inclusion i: K — G and the least ideal
containing (j*(Rgx), K) = {f]f€j*(Rg/x) and f(k) =0 for all ke K} is dense in
(Rg,K) where j* is induced by the natural projection j: G— G/K.

Proof. We show i*: R; — Rg is onto. It is enough to show i*: G*—> K” is
onto. It is clear that for each g*e G*,(i*(g"))” €i*(G*) and for each g, and g,
in G%,i%(gT x g3) =i (g}) x i*(g3) and each irreducible part of i*(g5 x g7)over K is
in 17 (G¥). By a well known theorem of Van Kampen (see [12]): ‘All continuous
representations of any compact group F can be obtained, by taking conjugates and
decomposing direct products, from any collection of such representations, not
all equal on any two distinct points of F.”’ Since i*(G*)is such a subset of K*, we
have i*(G*) = K*. This shows that i* is onto.

We show that the least ideal containing (j*(Rg/x), K) is dense in (Rg, K).
Let G be the compact group attached to G in the sense of Weil (see [19]) (the
Bohr compactification of G, (e.g. see [2] and [3])) and a continuous homo-
morphism f: G- G, with (f(G))~ = G, be defined naturally. Then K ~ fK) =~ K
and G/f(k) = (G| K). We may identify these groups, since (Rg,K) = (Rg,(K) and
(*(Rg/x),K) =(j*(R g %), K). Since G is compact, by a usual technique in analysis
it is not hard to see that the least ideal containing (j*(R¢/x), K) is dense in (Rg,K).

DErINITION 5. Let G be a maximally almost periodic, locally compact group.
A representation of the algebra R is an algebraic homomorphism F of the algebra
R; into the field of complex numbers such that F(g) = (F(g))~ for geRg.

LemMA 12. There is a one-to-one correspondence between the set of all
representations of Rg and the set ((G¥),)* of all unitary mappings of (G*);, which
is the set of all unitary representations of G with the discrete topology.

Proof. For each representation F of the algebra Rg, define f(D) = F(d;;)
for D = (d;))€(G¥),. It is easy to verify that fe ((G¥),)". Using the fact that
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(G*)y = (G"),, where G is the compact group attached to G, we may complete the
proof by imitating a method used by Chevalley (see [4, Proposition 2, p. 196]).

LeMMA 13. Every representation of Rg is continuous with respect to the
uniform norm of Rg.

Proof. Using the fact that R; = Rg, where G is the compact group attached to
G, and the unitary duality on the compact group G, we may prove this lemma by
Lemma 12 and the unitary duality on compact groups (the Corollary 1 to Theorem
3).

DErINITION 6. A closed normal subgroup B of a topological group G is called
extendible if the sequence

1—>B= L 615 (G/B™ —>1

is exact with i** and j** continuous, where i**: B** — G** defined by i**(d) (g*)
= a(i*(g")), «e B** and g*e G where i*: G* — B defined by i*(g*) (b) = g*(ib),
g"eG*, beB.

It is trivial that every minimal almost periodic, closed normal subgroup of a
minimal almost periodic group is extendible. By the Corollary 2 to Theorem 5,
the subgroup 4 of G = A x B, as direct product, is extendible. By Theorem 4,
every closed subgroup of a locally compact abelian group is extendible.

LEMMA 14. Let G be a locally compact group. Let A be an extendible
subgroup of G, if A and G[A both have the unitary duality, then the mapping
¢,: G—> G, as defined in Lemma 8, is continuously isomorphic onto.

Proof. Because of Lemma 8, it is sufficient to prove the mapping ¢, is one-to-
one and onto. Consider the following diagram:

1 —>4 —5 6 L5 Gl4—>1
l b l ¢zl b5 l l
1 — A~ — &L 5 (Glay—s1

where ¢y, ¢,, @5 are defined as in Lemma 8. It is easy to verify that this diagram
is commutative. By Lemma 8, we know ¢,,¢,, ¢ are continuously isomorphic
into. Since ¢, and ¢, are also onto, by the well-known five-lemma (see the remark
in the proof of Corollary 3 to Theorem 5), we know ¢, is a one-to-one and onto

mapping.
LemMA 15. Let G be a maximally almost periodic, locally compact group.

Let A be a compact normal subgroup of G. If G |A has the unitary duality, then
A is an extendible subgroup of G.
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Proof. Consider the commutative diagram in the proof of Lemma 14. We
shall show that the sequence

1 —>4™ = 6™ L (G/A)"—>1

is exact. It is clear that i** and j* are continuous. The mappings i and ¢, are
isomorphic into and ¢, is isomorphic onto. This implies that i** is isomorphic
into. The mappings j and ¢ are onto; this implies that j** is onto. We shall show
that im(i*™) =ker(j™). It is clear thatim(i**) cker(j**). Let F e ker(j**) = {H|He G**,
H(j*(@)) = 12 €(G/A)"}. From Lemma 7, we have j(a)|4 =14, for all
o€ (G/A)*. By Lemma 12, we may consider F as a representation of the repre-
sentative algebra Rs. We shall show F(a) =0 for each ae(i*(Rg,,),A4). The
subalgebra j*(Rg,,) is generated by all the coefficients (representative functions)
in j5((G/A)"). Since for each {e€(G/A)" and each Feker(j™), F(j(&) = 1y
and j"(ﬁ)lA = 1), every ae(j*(RG,A),A) may be expressed as a polynomial
= X 20:5,20 rserm> 51 SaX1 o Xy Y1t Yy where x; and y; are coeffi-
cients of elements in j*((G/A)%), respectively, such that y; are on the diagonals
and x; are not. Consequently, x,-|A =0, yj|A =1, F(x)=0, F(y)=1, and
Xdg 05 5150058, = 0. It follows that F(«) =0, for all ae(j*(Rg.4),4). By
Lemma 11, the least ideal containing (j*(Rg,4), 4) is dense in (Rg,i(A4)). We have
F(d) =0 for all a € (Rg, i(A)) and from Lemma 11, we have 1*: R; — R, is onto,
i.e., Ry = R;/(Rg, i(A)). Since A is compact, by the Corollary 1 to Theorem 3 and
Lemma 12, there exists an a € 4 such that F(&) = &(a) for é € Rg/(Rg, A). For each
¢ e(Rg,i(A)), we have £(a) =0 or F(£) =0. Consequently, we may say F(&)
= ¢(i(A)) for £eRg or F(g¥) = g(ia) for g"e G*. We have F(g*) = i"g"(a) =
¢1(a)(i*g") =("(¢1(a))) (g¥). This shows that i**(¢,(a)) = F and im(i**) = ker(j*¥)
Consequently, A is extendible.

LEMMA 16. Let G be a locally compact group with a -compact commutator
subgroup. Let the group G* be locally compact. If the homomorphism ¢ defined
in Lemma 8 is onto then ¢ is open.

Proof. Let M be the commutator subgroup of G. Choosing a compact neigh-
borhood U of the identity in G, the group B = U,,(UM U™Y)" is an open and
closed normal subgroup of G. By Lemma 4, (G/B){ is compact because G /B is
discrete. By Lemma 7, we have (G/B){ = (G{, B) and (G, B) is compact subset
of Gy. Let B’ ={f|f(a) =1 for ae(G},B), fe G**}. We shall show that B’ is
open. For any ¢,1 > ¢ > 0, let U(e; (G7%, B), &) be aneighborhood of the identity e
in G*. Let he|J(e; (G3,B),e). Then k|G e (G}, which may be considered as
the character group of Gi. Let i:(G{:B) — G be the inclusion mapping. Then
i1 (G} = ((G1, B)); where (G}, B){, as the character group of compact abelian
group (G7, B), is discrete. For each o € (G}, B)T, h(®) =(h| G7)(2). Any neighborhood
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W(e; (G3, B),¢) of the identity e in (GT, B)] with 0 < ¢ < 1, from Lemma 6, contains
the identity e only. Hence (if(h| GY)) (a) = 1for a €(G{;B) or

(i{(h| GD) (o) = h]| Gf(joc) = h(e) = 1.

This shows that he B’ and U(e; (G7, B), ¢ = B'. Consequently, B’ is an open sub-
group.

We shall show that ¢(B) = B’. It is clear that ¢(B) = B’. Let a € B'\ ¢(B). Since
¢ is onto, there exists an x € G such that ¢(x) = a and xBe G'\B. From the fact
that G/B is a locally compact abelian group, (G/B)] = (G7{, B), and x B is not the
identity in G /B, there exists o € (GT, B) such that a(x) # 1. This shows ¢(x) («)
=a(x) # 1and a ¢ B'. A contradiction! Since B and B’ are locally compact and
B is o-compact, by a well-known theorem ¢ is open from B onto B’. From the
fact that B’ is open, the lemma is proved.

THEOREM 6. Let G be a maximally almost periodic, locally compact group
with a o-compact commutator subgroup. Let A be a compact normal subgroup
of G. If G|A has the unitary duality, so does G.

Proof. By Lemma 15 and Lemma 14, we know the mapping ¢,: G— G, as
defined in Lemma 8, is continuously isomorphic onto. It is sufficient to prove
that ¢, is open. By Lemma 16, it is enough to prove that G* is locally compact.
Consider the commutative diagram in the proof of Lemma 14. From the fact
that ¢, is one-to-one and j and ¢, are open, it follows that j** is open. From the
exact sequence

2 XX

1—> A% 2567 L (G4 —1

with ** and j** open, continuous and 4™ and (G/A4)™ are locally compact,
we have G** is locally compact. The theorem is proved.

CorOLLARY 1. Let G be a maximally almost periodic, locally compact
group with a compact commutator subgroup. Then G has the unitary duality.

The above result is similar to a result of Takahashi (see [17]). In fact, the dif-
ference is that in his paper he used two different topologies: for G** he used the
usual compact open topology and for G* he did not. In this paper, we use the
compact open topology for both. However, we reproduced some of his techniques
in the proofs of Lemma 15 and Lemma 16.

7. The compact group attached to a topological greup. Let G be a topological
group. We denote G the compact group attached to G. (See [13] or [19].) Let
f:G— H be a continuous homomorphism from a topological group G into a
topological group H. We denote the induced, continuous homomorphism by f
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and G into A. The following theorem suggests a new way to construct the compact
group attached with a topological group other than the known methods (see [13]
and [19]).

THEOREM 7. Let G be a topological group. Then (Gi)* = G.

Proof. Since the sets G and (G)] are same (see [19]), we have (G})* = ((G)})".
By the Corollary 1 to Theorem 3, we have ((G)})*= G, since G is compact.

COROLLARY 1. Let G be a topological, abelian group. Then the character
group with the finite open topology of the character group of G with the discrete
topology is the compact group associated with G, ie., (GD)i =G

Proof. This Corollary is a direct consequence of Theorem 4, Corollary 1 to
Theorem 3 and Theorem 7.

In [2] and [3], Professor Kakutani established the same results for the case
that G is either the additive group of all integers with the discrete topology or the
additive group of all real numbers with the usual topology.

COROLLARY 2. Let

NN R N N

be an exact sequence of locally compact abelian groups such that fi,f,,fs, are
continuous and open with respect to their images. Then

Nrpz o, 2 s

AAI _>A2 s A3 ‘_>A4_$
is exact.

COROLLARY 3. Let G= A x B be a direct product of two topological groups.
Then G=4 x B.

Proof. It is a direct consequence of the Corollary 1 to Theorem 5 and of

Theorem 7.

COROLLARY 4. Theimageof the group G is one-to-one into G by f if and
only if G is maximally almost periodic, where f is the natural continuous hom-
omorphism from G into G.

THEOREM 8. Let G be a locally compact group. Then (G*)= G.

Proof. Consider the following commutative diagram:

¢ L5 ¢

Nan

Gxx i * (G) xx
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where f is the natural, continuous homomorphism from G into G, f**is induced
by f, and ¢, and ¢, are defined in Lemma 8. From Theorem 3, we know ¢, is a
topological isomorphism. Consequently, there is a continuous homomorphism h
from G** into G such that ho ¢, =f. Both the image of f and the image of h are
dense in G and G respectively.

Now the statement follows obviously from the characterization of the compact
group G attached to G by Weil’s procedure that, if the natural homomorphism
f: G—G canbe writtenasf = h o ¢ where ¢: G —» G’ and h: G’ - G are continuous
homomorphisms and G’ is a topological group, then G’ = G.

If G is maximally almost periodic, locally compact, with a compact commutator
subgroup, then by the Corollary 1 to Theorem 6, we know the homomorphism ¢
above is topologically isomorphic onto. The author does not know whether the
condition that the commutator subgroup be compact is necessary for the conclusion
that ¢ is a topological isomorphism.

The author cannot answer the question even for the case of the free group with
two generators (with the discrete topology).

The author wishes to take this opportunity to express his indebtedness to
Morikumi Goto for his encouragement.
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