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1. Introduction. In this paper we give a unified approach to two distinct theories

in topological groups. On the one hand we have the Pontrjagin and Tannaka duali-

ties for locally compact abslian groups and compact groups, respectively. On the

other hand, in abstract harmonic analysis, we have the compactification of a group

in the sense of Weil (see [2], [3], [13], [19]). Let G be a topological group. Let Gxd

and Gx be the set of all unitary representations (finite dimensional) with the

discrete topology and with the compact open topology, respectively. Let (Gx)x

and Gxx be the groups with the compact open topology of all unitary mappings

(see Definition 2) of G ¿and Gx respectively. These groups are always maximally

almost periodic in the sense of J. von Neumann. Let G be the compact group

attached to G (i.e. G is the compactification of G in the sense of Weil). We prove

that for any topological group, (Gxd)x £ G, which gives rise to a new method for

constructing the compact group G. In particular, if G is abelian, then

(G*)* = G, where G* is the character group of G with the discrete topology and

(G*)* is the character group of G* with the compact open topology, which is an

extension of a known result of Kakutani (see [2] and [3]). Let G £ A x B be the

direct product of two topological groups. We prove that G = Äxß and

Gxx = Axx x Bxx. A similar result is known for Stone-Cech compactification of

certain spaces. If G is locally compact, then Gxx ̂  G. If G is maximally almost

periodic, locally compact with a o--compact commutator and it has a compact

normal subgroup/I such that (G¡A)XXl^ G ¡Ain a natural sense, then Gxx ^ G,

which is a generalization of Pontrjagin duality and Tannaka duality. In particular,

if G is maximally almost periodic, locally compact with a compact commutator,

then Gxx = G. In [17], Takahashi proved the same statement except he used a

topology for Gx other than the usual compact-open topology. In other directions,

there are several papers which recently studied Tannaka duality alone; for example,

see[l], [5], [9], [10], [11], [16]. Throughout the paper, the Pontrjagin duality

and the Tannaka duality are assumed.
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2. Topologies for Gx and Gxx.

Definition 1. Let G be a topological group. Let Gx be the set of all unitary

representations of degree n of G with the usual compact open topology. Let

G' = U„Gn as the sum of all topological sets Gx, n = 1,2, •■•. We call Gx the

unitary space of G and G*the unitary subspace of degree nofG. Weknow that

Gx is closed with respect to the following operations: sum (+), Kronecker product

(x), equivalence, and complex conjugate. Wedenote

UiD,K,e) = UiD) = {D' | fl Dig) - D'(g) || < e, where

g e K ezz G, K is a compact set in G, D

and D' in Gx, and £ is a positive real number}

as a neighborhood of D, where || Dig) - D'(g) \\ =(£,/áy(g) - d'{fig)))U2.

Lemma 1. The set of all neighborhoods U(D,K,¿) forms a base of a topology

for Gx. Moreover, it is a Hausdorff uniform space.

Proof.   It is a straightforward computation.

Lemma 2. The subspace Gx is locally compact for each n, if G is locally

compact.

Proof. This lemma is known. For example, it is a direct consequence of

Theorem 1 in [8].

Corollary. The dual space G = ^„G* is a locally compact Hausdorff

uniform space, if G is locally compact.

Definition 2. A unitary mapping A of G is a continuous function of Gx

into the set of all unitary groups U(n), n = 1,2,—, such that:

(I) A(D)eUidiD)),

(II) A(D + D') = AiD) + A(D'),
(III) A(D x D') = A(D) x AiD'),

(IV) A(T~1DT) = T~iA(D)T,
where D,D'eG, d(D) = the degree of D and Te U(d(D)).

If A is a unitary mapping of G, then it is known that (A(D))~ = A(D). (See [18].)

Denote the set of all unitary mappings of Gx by Gxx. Let us  introduce a multi-

plication of A and B in Gxx by (AB) (D) = A(D)B(D) for D e Gx. Define A~ * for

AeGxx by A~l(D) =(A(D))~i for all DeG. Introduce the usual compact open

topology to Gxx. Then it is easy to verify the following lemma.

Lemma 3. The set Gxxis a topological (Hausdorff) group and Gxx is also

maximally almost periodic in the sense of John von Neumann. (See [14].)

Lemma 4. If G is a discrete group, then Gx is a compact space and therefore

Gx is er-compact.
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Proof. Let U(n) be the group of all unitary representations of degree n over

the complex field C. Then the product group Y\geoUg(n) is compact, where

Ug(n) g U(n) for every g eG.

Define

/: Gx -> [I Ut{n) by/(D) = {D(g)}     for all geG, De Gxn.
ged

It is not hard to see that/is a homeomorphic into mapping and f(Gx) is closed in

\~[geGUg(n)- This proves that Gx is compact.

Lemma 5. Let G be a locally compact group satisfying the second axiom of

countability. Then Gx satisfies the second axiom of countability and so does Gx.

Proof. We may imitate a method used in [15, pp. 128-130] for the proof of

this lemma.

Corollary 1. Lei G be a locally compact group satisfying the second

axiom of countability. Then Gxis metrizable.

Let U and V be two equivalent unitary representations of the same degree n

of a topological group G, i.e., there exists a constant matrix PeGL(n,C) such

that P'iU(x)P = V(x) for x e G. Then it is known that P = g ■ a ■ 1„ where g

is a unitary matrix and a is a positive real number, that is, two unitary represen-

tations are equivalent if and only if they are unitarily equivalent. We denote

URVfot two equivalent unitary representations U and V. It is clear that R is an

equivalence relation.

Lemma 6. Let G be a compact group. Then there exists for each CxeGx

a neighborhood V = V(CX; G, l ¡n) such that all elements in V are unitarily

equivalent to Cx. Consequently, the quotient space Gx/R is discrete.

Proof. Let dx be the Haar measure of G normalized by jgdx = 1. Let x¡ be

irreducible characters and a¡ be integers, i = l,--,m. Let x = Sapc,. Then, by

the orthogonality relations, we have jxxdx = JLaf ïï 1, unless all a¡, i = 1, •••, m,

ate zero. By using this fact, it is easy to see that V(Cx, G, Ijn) contains no elements

other than those unitarily equivalent to Cx.

The following theorem, which is a direct consequence of Lemma 4 and Lemma 6,

is analogous to a known theorem of locally compact abelian groups :

Theorem 1. If G is a discrete group, then Gx is compact. If G is a compact

group, then Gx, modulo the unitary equivalence relation, is discrete.

Lemma 7. Let G be a locally compact group. If H is a closed normal subgroup

of G, then (GX,H) is a closed subset of Gx and (GIH)xis topólogically homeo-

morphic to (GX,H).  Consequently, (G¡H)X x(Gx,H),  where
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(G* H) = {D | D e Gx Dili) = 1„ for all heH}

and

iGx,H) = {D\DeGx, D(h) = ld(D) for all heH}.

Proof. For each DeiGx,H), define D'(xH) = D(x) for each xeG. It is

clear that D'e(G¡H)x. Define/: (GX,H)^(G¡H)xby f(D) = D' where De(GX,H).

It is not hard to see that fis one-to-one, onto and open mapping. We shall show

that / is continuous.

Let V = V (D'n; FH,e) be a neighborhood of D'n in (G/H)x, where F H is

compact in GjH. For each xe£ and a neighborhood V of identity in G whose

closure, V, is compact, we have FH ezz \jxeFxVH. Because FH is compact in

GjH, there exists a finite set £' = {xy,---,x„} c: F such that FH\j"=yX,VH and

P'Pis compact in G. Define V" = V" (D'„;F'VH,e) to be a neighborhood of

D'„ in (G/H)x. It is easy to see that V" ezz V. Define V= V(D„; F'V,e) a neighbor-

hood of D„ in (GX,H), where /(£>„) = D'n. Then /(K) = V" c K'. This proves

that fis continuous. Hence, (GX,H) x (G¡H)X. Consequently, (Gx,H)x(G¡H)x.

The following theorem is analogous to a known theorem of locally compact

abelian groups.

Theorem 2. Let G be a locally compact, maximally almost periodic group.

Let H be a closed normal subgroup of G. Let <S> = (GX,H) = {gx\gxeGxand

gx(h) = l„for all heH, where n = degree of gx} and let H' =(G,4>) = {g|Ç(g)

= lnfor all Ç e <b where n = degreeofQ. If GjH is maximally almost periodic

then

H' = 11 or H =(G,(GX,H)).

Proof.    We know that

H'= D   UK(s) = !«>   where n = degree of £}.
Ç<=4>

This shows that H' is a closed normal subgroup of G. It is easy to see, by the

definition of H', that H ezz H'. We shall show that H' c= H. Suppose there is an

aeH' \H. Then aH # H and £(x) = ld(Ç) for all £ e <J>, where dCQ is the degree of Ç.

Consequently, Ç(afc) = 1,,(Ç), for all Ç 6 <£ and all /i e H. By Lemma 7, we know

/: <D = (Gx,/Í) ->(G¡H)X by /(C) = Ç' where C e H and C'(^W) = C(x) for xHeGfH

is a homeomorphic onto mapping. Then/(() (ai/) = 1,,(Ç) for all (e//. By the

hypothesis, GjH is maximally almost periodic. For aHeG¡H which is not

identity, we have, by definition, f(t,y)e(G¡H)x, for some (.e$ such that

[/(d)] iaH) # l</(Çi)- This gives a contradiction to our earlier conclusion. Hence,

H' = H.

The following lemma is clear.

Lemma 8. Let G be a topological group. Let geG and defineg(D) = D(g)for

all DeGx. Then geGxx. Define eb: G-+Gxx by eb(g) = g. Then eb is a contin-
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uously homomorphic mapping of G into Gxx if G is locally compact. Moreover,

if G is maximally almost periodic, then cb is isomorphic.

Definition 3. Let G be a topological group and let G and G**and a mapping cb

as defined in the Lemma 8. If cb is a topologically isomorphic onto mapping,

then we say that G has a unitary duality.

For example, locally compact abelian groups, compact groups, free groups

with finite generators with discrete topology, etc., are maximally almost periodic.

3. Unitary duality and Tannaka duality. Let G be a compact group and let

G be the set of all representations of G with the discrete topology. Define a

representation mapping A of G to be a mapping of G into the set of \Jm = yGL(n,C)

suchthat (I) A(D)eGL (d(D), C), (II) A(D + D') = A(D) 4- A(D'), (III) A(D x £>')
= A(D) x A(D'), (IV) (A(D)) ~ = A(D), and (V) A(P~l DP) = P"l A(D)P, where D

and D' inG , PeGL(d(D),C). Denote the set of all representation mappings with

the usual finite open topology by G . Introduce the same multiplication in G

as in Gxx. Define cb': G ->G in the same way as defined in Lemma 8. It is well

known that cb' is a topological isomorphic onto mapping, and it is called the

Tannaka duality (see [18]).

Theorem 3. Let G be a compact group. Then G has the unitary duality

which is the same as the Tannaka duality.

Proof.   The proof of this theorem is a matter of straightforward computation.

Corollary 1. Let G be a compact group. Let Gx be the set Gx with the usual

discrete topology. Let (Gx)x be the set of all unitary mappings (see Definition 2)

defined on Gx with the finite open topology. Introduce a natural multiplication in

(Ga)x as we did for Gxx. Define cb: G->(GX)X as we defined in the Definition 3.

Thencb is a topologically isomorphic onto mapping from the topological group

G onto the topological group (Gx)x.

A. Unitary duality and Pontrjagin duality. Let Gx = {the set of all unitary

representations of degree one of a locally compact abelian group G}. We use the

Kronecker product of Gx as the multiplication for Gx. Then Gx is a topological

group such that Gx s G*, where G* is the character group of G with the compact

open topology. Let Gxx = {the set of all one-dimensional unitary representations

of the topological group Gx}, with the compact open topology. Then Gxx s G**,

where G** is the character group of G* with the compact open topology.

Theorem 4. Let G be a locally compact abelian group, then G has the

unitary duality which is the same as the Pontrjagin duality.

Proof.   The proof of this theorem is a matter of straightforward computation.
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5. Unitary duality on direct product groups. The following fact is known (e.g.

see [19]).

Lemma 9. Let G = A x B be a direct product of two closed normal groups

A and B. Let D be an irreducible unitary representation of the topological

group G. Then there exist two irreducible unitary representations Diy) and D(2)

of A and B respectively such that D is unitarily equivalent to D'^ x £)('2), where

D'.y^á) = Da)(a) and D'w (b) = ld(D(1)) and D[2)(b) = D,2)(b) and D\2)(a)

— »<i(D(2))' where aeA and beB.

Definition 4. Let AX,BX, Cx,Dx, etc., be the unitary spaces of degree n

of topological groups A,B,C,D, etc., respectively. Let

/„: Ax -* Bx,  gn: Bxn -> Cx, hn: Cx- Dx, etc.,

be continuous mappings such that g~1 (1„) =fn(An), h~l (1„) = g„(£„), etc., where 1„

is the trivial representation of each one of An,Bn,C„,D„, etc. Then we call the

sequence

-^  a x ¿1 r x S' rx ^2 n*

exact.

Lemma 10.    Let G be a locally compact group. Let G = A x B where G is a

direct product of two closed normal subgroups A and B. Then

(1) l-^A^G^B^l

and

(2) 1 «- Ax ¿ GXT- Bx<- I,for all n

are exact sequences where i is the inclusion mapping and j is the projection and

[»M]0) = «SOX»). oeA, gxe G„ and [i]x)ibxnf]ig) = bx„ijig)), geG, bnxeBx

Furthermore,

(3) 1<- AXC Gx I Bx<-1,

where ix = \jnixandjx=\j„jx„, is exact.

This lemma is a direct consequence of Lemma 7 and Lemma 9.

Theorem 5.   Let G be a direct product of two topological groups A  and

B,G = AxB. Then Gxx S Axx x Bxx is a direct product of Axx and Bxx.

Proof. Let

iAx)'n = {gx\gxeGxn,gxiB) = ln}

and

iBx)'n={gxn\gxeGx,gxiA) = ln}.
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Let

(Axy = \J   04*);,and(B*)' = lJ   (ßX
n n

Define fy „: Ax^(Ax)'n by f1¡n(ax)(xy) = ax(x) for xeA and yeB. Define

f2 n:Bxn-*'(Bx)'n byfy,n(bx)(xy)'= bx(y) fotxeA and yeB. Dehne fy-. AX->(AX)'

by /, = U/i.n and f2:Bx^(BxY by f2 = LU,,,
For axxeAxx, define (axx)' (gx) = axx(gx \ A) for gxeGx and for bxxeBxx,

define (bxx)' (gx) = bxx(gx\B) for gxe Gx. Then (a**)' and (bxx)' ate in Gxx. Let

(A**)'be the set of all these (a**)' and let (Bxx)' be the set of all these (bxx)'. We

shall show that (.4**)' and (Bxx)' ate closed normal subgroups of Gxx. It is clear

that (Axx)' and (Bxx)' ate subgroups of Gxx. By the definition of (Axx)', we know

(axx)' (bx)' = liit*y for each (axx)'e(Axx)' and (bx)' e (Bx)'. Let reGMl(r)'.

Then there exists ßxe(Bx)' such that gxx(ßx) # 1^). Suppose not, then for each

ßxeGx, by Lemma 9 there exists Dt !,••-, Dj, in (Ax)'and D2 j,---, D2r in (ßx)'such

that ßx = S-\Dy y x D2A 4- ■■■'+ D1¡r x D2>r)Swhere Se U(d(ßx))andgxx(ßx)

= S_1(***(öi.i)) x l4(B2it) 4- - 4- ^(D2,P) x l„(1,2>l))S = gxx(ßx/A).

It follows that gxxe(Axx)'. This contradicts the assumption gxx e Gxx \(AXX)'.

Therefore, there is an ßxe(Bx)' suchthat gxx(ßx) # ld(ßX). Let | gxx(ßx) - ld(fiX) || = i/

and choose e = »7/2. Then it is easy see that W(gxx; ß f e) n (Axx)' =0. This

shows that (Axx)' is closed. For each gxxeGxx and each (axx)'eL4xx)', we shall

show that (gxxy ' (a**)' (gxx) e .4**. For each yx e Gx, by Lemma 9, we may write

yx = S-\D1A x £>2>1+ ••• +£>lir x D2,r)S for Se t7(d(yx)), Dlilf •••,!>!., in

(A")' and D2,!,-•■,D2>r in (Bx)'. We have

(«*")-V)'(i*">(y"> - l**")" V>'(**")
■(ST'il»»,, x D2(1 4- .» 4- - 4- Dlir x D2¡r)S)

= S-i((gxx(DlA)yí(iaxx)'(Di,y))gxx(Dy,y) x lítDatl))

+ - +(gxx(Dyt,)y1((axxy(Dy¡r))gxADy,r) x ld(D2,r))S

= (g-)-i(a-)'(g-)(y-|A).

Hence (gxx)~ ' (axx)' gXJC e (4XX)'. This shows that (4XX) ' is a closed normal subgroup

of Gxx. Similarly, we can show that (Bxx)' is a closed normal subgroup of Gxx.

For gxxeG, we define ^x and gxx, by ^x(yx) = gxx(fy(yx \ A)) and ^x(yx)

- gxV2(lx | B)) respectively. Then g*,*, gjx e Gxx. We shall show that gxx = gxAx ■ gxBx.

For each yxeGx, there exist, by Lemma 9, Dy u—, £>1>r in (Ax)' and D2 u—, D2¡r

in (B1)' such that y x= S~ \DlA x D,,2 + ••• +D1>,X D^S where  Se U(d(yx)).

We have

gx/ ■ gxBx(yx) = gxAx(f)gxBx(f)

= S-\gxx(Dy_y) x gxx(D2A) 4- - 4- gxx(D2>r) x ^xx(D2,r))5 = gxx(yx).
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This shows gxAx ■ gxBx = gxx.

We shall show g?eiAxx)' and gxBxeiBxx)'. Define axx(<xx) = gxx(fy(a.x)) for

«*e.4*,then axxeAxx and (axx)'(ßx) = (axx)(ßx\A) for fe G. Then (axx)'(ßx)

= (axx)ißx\A) = gxAx(fiißx\A)) = gxx(ßx). This proves that (axx)'= gxAx and

consequently, gAxeiAxx)'. Similarly, we can show that gxBxeiBxx)'. Hence Gxx

= iAxx)' x iBxx)' is a direct product of two closed normal subgroups iAxx),

and (Bx*)'. Define:

hy-. Axx ->iAxx)' by hyiaxx) = iaxx)'

and
h2: Bxx^iBxx)' by h2ibxx) = (bxx)'.

It is not hard to see that hy and h2 are topologically isomorphic onto mappings.

Therefore, we have Gxx S Axx x Bxx.

Let Gx, Ax and Bx be the set of all unitary representations of G, A and B with the

discrete topology, respectively. Let (Gx)x, (Axd)x and (Bx)x be the groups of all

unitary mappings of Gf, Ad and Bd with the usual finite open topology, respectively.

By the proof of Theorem 5, we have the following results.

Corollary 1. Let G be a direct product of two topological groups AandB,

G = AxB. Then (Gx)x = (Axd)x x (Bd)x is a direct product of (Äff and (Bxd)x.

Corollary 2. Let G = A x B be a direct product of two locally compact

groups A and B. Then

(1) l-»4-^Giß^l,

(2) 1 <- Axt GXC B*<-1,

and

(3) 1 -+ Axx ---» Gxx-Í—> Bxx—>1,

where i,j,ix,jx are defined in Lemma 10 and [ixx(axx)](gx) = axx(ix(gx)) and

ÍJXXiSxx)]ibx) = g^ifib")), axxeAxx, gxeGxbxeBx are exact and ixx and j"

are continuous and open with respect to their images.

Corollary 3. Let G be a locally compact maximally almost periodic group

and G = Ax Bis a direct product of two closed normal subgroups A and B.

If both A and B have the unitary duality, then so has G.

Proof. Applying the five-lemma of algebraic topology (e.g. seep. 16of [6]) to

Corollary 2, we have the desired result. We notice that the five-lemma is known

true for the case of abelian groups. However, it is still true for the case of non-

abelian groups, if we read the proof of the lemma carefully.
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Corollary 4. Let G be a locally compact, connected maximally almost

periodic group. Then G has the unitary duality.

Proof. This is a direct consequence of Corollary 3, Theorem 3, Theorem 4,

and a result of H. Freudenthal (see [7]) that says any such group G can be de-

composed into a direct product of two closed normal subgroups A and B such

that A is abelian and B is compact.

6. Unitary duality on another class of groups. Let G be a topological group.

Let RG be the algebra of all finite linear combinations with complex coefficients

/(x)= TPk = yakdk,jix) where d-/x) is a coefficient of some Dfc(x)=(i/?/x))eG*

with the usual uniform norm. We call RG the resprentative algebra of G over the

field of complex numbers.

Lemma 11. Let G be a maximally almost periodic group. Then for every

compact normal subgroup K of G we have the natural homomorphism i*: RG-yRK

which is onto, where i* is induced by the inclusion i: K-*G and the least ideal

containing 0*(PC/k)>K) = {/|/e7*(Rc/*:) ond/(/c) = Ofor all keK} is dense in

iRG,K) where j* is induced by the natural projection j: G-+G/K.

Proof. We show i*:RG-*RK is onto. It is enough to show ix: Gx-*Kxis

onto. It is clear that for each gxe Gx,(ix(gx))~ e ix(G*) and for each gy and g2

in Gx,ix(gx x g2) = ix(gx) x ix(gx) and each irreducible part of ix(gxy xg2)owerKis

in lx (Gx). By a well known theorem of Van Kampen (see [12]): "All continuous

representations of any compact group F can be obtained, by taking conjugates and

decomposing direct products, from any collection of such representations, not

all equal on any two distinct points of P." Since ix(Gx) is such a subset of Kx, we

have ix(G*) = Kx. This shows that i* is onto.

We show that the least ideal containing (j*(RG/K), K) is dense in (Pc, K).

Let G be the compact group attached to G in the sense of Weil (see [19]) (the

Bohr compactification of G, (e.g. see [2] and [3])) and a continuous homo-

morphism f:G-*G, with (f(G))~ = G, be defined naturally. Then K s fK) s K

and G¡f(k) = (G/K). We may identify these groups, since(RC,K) g (RG,(K) and

ÍJ*ÍRg/k)>K) =íj*ÍRg/k),K). Since G is compact, by a usual technique in analysis

it is not hard to see that the least ideal containing (j*(RG/K), K) is dense in (R%,K).

Definition 5. Let G be a maximally almost periodic, locally compact group.

A representation of the algebra RG is an algebraic homomorphism F of the algebra

RG into the field of complex numbers such that Fig) = iFig))~ for geRG.

Lemma 12. There is a one-to-one correspondence between the set of all

representations ofRG and the set ((G^ff of all unitary mappings ofiGx)d, which

is the set of all unitary representations of G with the discrete topology.

Proof. For each representation F of the algebra RG, define /(D) = Fid,f)

for D = id,j) e (Gx)d. It is easy to verify that fe HGx)f)x. Using the fact that
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(Gx)d = (Gx)d, where G is the compact group attached to G, we may complete the

proof by imitating a method used by Chevalley (see [4, Proposition 2, p. 196]).

Lemma 13. Every representation of RG is continuous with respect to the

uniform norm of RG.

Proof. Using the fact that RG £ Kg, where G is the compact group attached to

G, and the unitary duality on the compact group G, we may prove this lemma by

Lemma 12 and the unitary duality on compact groups (the Corollary 1 to Theorem

3).

Definition 6. A closed normal subgroup B of a topological group G is called

extendible if the sequence

■ XX 'XX

1 —>bxx —> GJ-^>(G¡B)XX —>1

is exact with ixx and jxx continuous, where ixx: Bxx ->GXX defined by ixx(d)(gx)

= ot(ix(gx)), a e Bxx and gxe Gx where ix: Gx -* Bx defined by ix(gx) (b) = gx(ib),

gxeGx,beB.

It is trivial that every minimal almost periodic, closed normal subgroup of a

minimal almost periodic group is extendible. By the Corollary 2 to Theorem 5,

the subgroup A of G = A x B, as direct product, is extendible. By Theorem 4,

every closed subgroup of a locally compact abelian group is extendible.

Lemma 14. Let G be a locally compact group. Let A be an extendible

subgroup of G, if A and G ¡A both have the unitary duality, then the mapping

cb2:G-+Gxx, as defined in Lemma 8, is continuously isomorphic onto.

Proof. Because of Lemma 8, it is sufficient to prove the mapping cb2 is one-to-

one and onto. Consider the following diagram:

ï-ï   G/A-»1

xx V- >'

-^(G/A)XX->1

where cby,cb2,cb3 ate defined as in Lemma 8. It is easy to verify that this diagram

is commutative. By Lemma 8, we know cby,cfi2,cb3 ate continuously isomorphic

into. Since cbx and cb2 are also onto, by the well-known five-lemma (see the remark

in the proof of Corollary 3 to Theorem 5), we know rp2 is a one-to-one and onto

mapping.

Lemma 15. Let G be a maximally almost periodic, locally compact group.

Let Abe a compact normal subgroup ofG. IfG/A has the unitary duality, then

A is an extendible subgroup of G.

->   (

->   (
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Proof. Consider the commutative diagram in the proof of Lemma 14. We

shall show that the sequence

1 —>AXX -C Gxx-C (G¡A)XX— »1

is exact. It is clear that ixx and jxx ate continuous. The mappings ¡' and cb2 are

isomorphic into and cby is isomorphic onto. This implies that ixx is isomorphic

into. The mappings j and cb3 are onto; this implies that,/xx is onto. We shall show

that im(ixx)=ker(jxx). It is clear thatim(ixx) cker(jxx). Let F e ket(jxx) = {H\He Gxx,

H(jx(a)) = ldMoce(GIA)x}. From Lemma 7, we have yx(<x) | A = ld(tr) for all

ae(G/4)x. By Lemma 12, we may consider F as a representation of the repre-

sentative algebra RG. We shall show F(a) = 0 for each ae(i*(RG/A),A). The

subalgebra j*(RG/Ä) is generated by all the coefficients (representative functions)

in jx((G/A)x). Since for each £e(G¡A)x and each Feker(jxx), F(f(0) = ld<4)

and jx(Ç) | A = ld((), every a e (J*(Rg/a), A) may be expressed as a polynomial

<x= X,r¡go;S,go./r1...rm; ^í •" VÍ'- xï, yV'" ys„" where x¡ and y¡ are coeffi-

cients of elements in jx((G¡A)x), respectively, such that yj are on the diagonals

and x¡ ate not. Consequently, x¡\A = 0,yj\A = l, F(x¡) = 0, F(y¡) = l, and

La0-..,0; Sy,---,sn = 0. It follows that F(a) = 0, fot all ae(j*(RG/A),A). By

Lemma 11, the least ideal containing (j*(RG[A),A) is dense in (RG,i(A)). We have

F(d) = 0 for all aeLRG, i(A)) and from Lemma 11, we have 1*: RG -+RAis onto,

i.e., RA s RGI(RG, i(A)). Since A is compact, by the Corollary 1 to Theorem 3 and

Lemma 12, there exists an a e A such that F(Ç) = {(a) for £, e RGI(RG,A). For each

£ e (RG, i(A)), we have £(a) = 0 or F(Ç) = 0. Consequently, we may say F(£)

= Ç(i(A)) for £eBG or F(gx) = gx(ia) for gxe Gx. We have F(gx) = ixgx(a) =

(¡>i(a)(ixgx)=(ixx(cpy(a)))(gx). This shows that ixx(cby(a)) = F and im(ixx) = ker(jxx).

Consequently, A is extendible.

Lemma 16. Let G be a locally compact group with a c-compact commutator

subgroup. Let the group Gxx be locally compact. If the homomorphism cb defined

in Lemma 8 is onto then cb is open.

Proof. Let M be the commutator subgroup of G. Choosing a compact neigh-

borhood U of the identity in G, the group B = \jTUMU~1)" is an open and

closed normal subgroup of G. By Lemma 4, (G¡B)X is compact because G\B is

discrete. By Lemma 7, we have (GIB)X^(GX,B) and (GX,B) is compact subset

of Gy. Let B' = {/|/(a) = 1 for a.e(G\,B), feGxx}. We shall show that B' is

open. For any s, 1 > e > 0, let (J(e; (Gx, B),s) be a neighborhood of the identity e

in Gxx. Let he{j(e;(Gx,B),E). Then h\Gxe(Gx)x, which may be considered as

the character group of Gx. Let i : (GX,B) ->GX be the inclusion mapping. Then

'f: (Gî)ï -*((Gx,B))i where (GX,B)X, as the character group of compact abelian

group (Gy,B), is discrete. For each a e (Gx,B)x, h(a) = (h\ Gx)(a). Any neighborhood
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Wie; (Gx,B),s) of the identity e in (Gx, B)x with 0 < e < 1, from Lemma 6, contains

the identity e only. Hence (ix(h | GÍ)) (a) = 1 for ae(G*,B) or

(ii(/i|GÎ))(a) = ri|Gr(ia) = h(o) = 1.

This shows that /ieB' and U(e! (G\,B), e ezzB'. Consequently, B'is an open sub-

group.

We shall show that 0(B) = B'. It is clear that 0(B) c B'. Let a eB'\0(B). Since

0 is onto, there exists an x e G such that 0(x) = a and xB e G' \B. From the fact

that G/B is a locally compact abelian group, iG¡B)x = iGx, B), andx B is not the

identity in G/B, there exists ae(G?,B) such that a(x) ^ 1. This shows 0(x) (a)

= a(ot) # 1 and a £B'. A contradiction! Since B and B' are locally compact and

B is <7-compact, by a well-known theorem 0 is open from B onto B'. From the

fact that B' is open, the lemma is proved.

Theorem 6. Let G be a maximally almost periodic, locally compact group

with a a-compact commutator subgroup. Let A be a compact normal subgroup

of G. If G ¡A has the unitary duality, so does G.

Proof. By Lemma 15 and Lemma 14, we know the mapping 02: G-> Gxx, as

defined in Lemma 8, is continuously isomorphic onto. It is sufficient to prove

that 02 is open. By Lemma 16, it is enough to prove that Gxx is locally compact.

Consider the commutative diagram in the proof of Lemma 14. From the fact

that 02 is one-to-one and j and 0, are open, it follows that jxx is open. From the

exact sequence

l^^^G"^ iG¡A)xx —»1

with t** and jxx open, continuous and Axx and (G/^4)x*are locally compact,

we have Gxx is locally compact. The theorem is proved.

Corollary 1. Let G be a maximally almost periodic, locally compact

group with a compact commutator subgroup. ThenG has the unitary duality.

The above result is similar to a result of Takahashi (see [17]). In fact, the dif-

ference is that in his paper he used two different topologies: for Gxx he used the

usual compact open topology and for Gx he did not. Tn this paper, we use the

compact open topology for both. However, we reproduced some of his techniques

in the proofs of Lemma 15 and Lemma 16.

7. The compact group attached to a topological group. Let G be a topological

group. We denote G the compact group attached to G. (See [13] or [19].) Let

f:G-*H be a continuous homomorphism from a topological group G into a

topological group H. We denote the induced, continuous homomorphism by /
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and G into H. The following theorem suggests a new way to construct the compact

group attached with a topological group other than the known methods (see [13]

and [19]).

Theorem 7.   Let G be a topological group. Then(Gx)x = G.

Proof. Since the sets G¿and (G)¡¡ are same (see [19]), we have (Gd)x S ((G)x)x.

By the Corollary 1 to Theorem 3, we have ((G)d)x^ G, since G is compact.

Corollary 1. Let G be a topological, abelian group. Then the character

group with the finite open topology of the character group of G with the discrete

topology is the compact group associated with G, i.e., ((Gx)d)x = G.

Proof. This Corollary is a direct consequence of Theorem 4, Corollary 1 to

Theorem 3 and Theorem 7.

In [2] and [3], Professor Kakutani established the same results for the case

that G is either the additive group of all integers with the discrete topology or the

additive group of all real numbers with the usual topology.

Corollary 2.   Let

A      fl A       ft y      A        /3.      A
*Ay —    A2->At, —>AA

be an exact sequence of locally compact abelian groups such that fy,f2,f3, are

continuous and open with respect to their images. Then

_v 7 lhy.2  ll±À Ikà _±...>/ll >/¡2 > ^3 >Sl¿ }■•••

is exact.

Corollary 3. Let G = A x B be a direct product of two topological groups.

Then G = Äx B.

Proof. It is a direct consequence of the Corollary 1 to Theorem 5 and of

Theorem 7.

Corollary 4. The image of the group G is one-to-one into G by f if and

only if G is maximally almost periodic, where fis the natural continuous hom-

omorphism from G into G.

Theorem 8.   Let G be a locally compact group. Then (Gxx)= G.

Proof.   Consider the following commutative diagram:

/
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where/is the natural, continuous homomorphism from G into G,fxx is induced

by/, and cby and cp2 ate defined in Lemma 8. From Theorem 3, we know cb, is a

topological isomorphism. Consequently, there is a continuous homomorphism h

from Gxx into G such that h o <px =/. Both the image of/and the image of h are

dense in G and G respectively.

Now the statement follows obviously from the characterization of the compact

group G attached to G by Weil's procedure that, if the natural homomorphism

/: G-+G can be written as/= h o cbwhetecb: G ->G' and h: G' -> G are continuous

homomorphisms and G' is a topological group, then G' g G.

If G is maximally almost periodic, locally compact, with a compact commutator

subgroup, then by the Corollary 1 to Theorem 6, we know the homomorphism cb

above is topologically isomorphic onto. The author does not know whether the

condition that the commutator subgroup be compact is necessary for the conclusion

that cb is a topological isomorphism.

The author cannot answer the question even for the case of the free group with

two generators (with the discrete topology).

The author wishes to take this opportunity to express his indebtedness to

Morikumi Goto for his encouragement.
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