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I. Introduction. In this paper we study the level curves of harmonic functions,

i.e., curves T for which there exists a harmonic function u(x,y) vanishing on T

but not identically. A necessary condition is that T be an analytic curve and,

if we do not permit u to have any singularities, that T have no closed loop. There

are however much more subtle necessary conditions, given in §4 of the present

paper, if we require that u be everywhere harmonic, which rule out many plausible-

looking curves, such as y = x3.

Usually in the present paper we mean by harmonic, harmonic in the whole

plane. In some sections we have results valid also for harmonic functions in a less

restrictive sense; these distinctions will always be pointed out explicitly. Of course,

to have any nontrivial theory we must restrict attention to functions harmonic

in a reasonably large neighborhood of the given curve; a purely local characteri-

zation of level curves beyond the requirement of analyticity is not possible. Indeed,

if T is any analytic curve which divides the plane into two components, and

w = f(z) maps one of these components conformally on Re w > 0, the function

u(z) = Ref(z) is harmonic in a neighborhood of T and vanishes on T.

The results of the present paper are somewhat fragmentary, but a complete

solution of the problem of characterizing even algebraic level curves seems quite

difficult.

In §2 a special study is made of the level curves of harmonic polynomials. In

§3 conic sections are treated in detail, the most noteworthy result being that some

hyperbolas are level curves and some are not. In §4 some general necessary con-

ditions are derived, and examples given of curves which are not level curves.

An interesting feature of the problem here under study is its close connection with

the study of automorphisms of analytic functions. In §5 some open questions

are pointed out.

II. The level curves of harmonic polynomials. Let T denote the algebraic curve

p(x,y) = 0 where p(x,y) is a given polynomial with real coefficients. F will be the

level curve of a harmonic polynomial if there exists a harmonic polynomial u(x,y)
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which vanishes on T. We may assume that p splits into distinct irreducible factors

so that the above assertion is equivalent to p\u. The uniqueness problem

reduces then to determining the divisors of harmonic polynomials. Let

p = p„ + pn-i + ■•■ + pm where p¡ im S j ig n) is a homogeneous polynomial

of degree j. We state

Theorem 2.1. A necessary condition for the existence of a harmonic poly-

nomial u such that p\u is that P„ = Y\"=yL¡, pm = ní"=i^¡ where the Lfs and

K,'s are real homogeneous linear factors, the angle between any two lines

L, = 0 (1 ;£ i z^n) [K, = 0, (1 z% i ^ mf] being a rational multiple of n. If p is

homogeneous then the above condition is also sufficient.

Proof. Let p | u where u = u, + «._. + ••• + us,Uj(s —j z^t) denoting a ho-

mogeneous polynomial of degree ;'. Since u, is homogeneous of degree t,

u, = C/sin[i(0 — <5)] for an appropriate choice of C and «5. Thus u, = 0 on the

lines 0 = 5 + knft (0 ^ k z% t — 1) so that ut = n£ = o^* where Lk is a real linear

homogeneous polynomial, Lk = 0 denoting the line 0 = ô + knjt. p\u implies

p„\u, so that p„= í»n¡ = i^*i where a is a constant and 0z%ky<k2<---<knz%t— 1.

The same reasoning yields the similar result for p,„.

Conversely if P = ní'=i^''íi where L, = 0 (0 ^ i ^ / — 1) denotes the line

0 = 5 + in¡t then p|fl/r¿L¡ = Cr'sin[f(0 - <5)] and Cr'sin[r(0 - 5)] is clearly

a harmonic polynomial.

HI. Conic sections. We give a complete description of the conic sections which

are level curves of harmonic functions. We may immediately rule out ellipses,

for a harmonic function which vanishes on a closed curve must vanish identically.

Of course, if we permit the function to have singularities this is no longer the case,

e.g. the harmonic function log r vanishes on the unit circle, and has only one

finite singularity. In the case of conies we are also able to obtain results for harmonic

functions which are permitted to have certain singularities.

ULI. Degenerate conic (two straight lines). The reflection principle settles

this problem. If the angle between the two lines is an irrational multiple of n, the

repeated use of the reflection principle shows that a harmonic function vanishing

on the two lines vanishes on a dense set of lines and hence everywhere. If the angle

is a rational multiple of %, say nfnm, then the harmonic polynomial Re(cz")

vanishes on both lines for an appropriate choice of c.

The case of two parallel straight lines is dealt with similarly. If we choose the

lines to be y = 0 and y = a the reflection principle shows that a harmonic function

w(x,y) vanishing on these lines must vanish on the lines y = na, n = 0, + 1, + 2, •••

and moreover u(x, y + 2a) = u(x, y). For a polynomial u this implies u = 0,

whereas if u is merely assumed harmonic this does not imply u = 0, as we see from

the example u(z) = Imexp(7rz/a).

IIÏ.2. Parabolas. Since the class of harmonic functions remains invariant with
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respect to magnifications and rigid motions, there is no real loss of generality in

studying the curve T:x = y2. Writing z = x + iy,w = u + iv consider the mapping

z =(w2 + l)/4. It maps the half-plane v > 1 conformally on the region to the left

of T, and the straight line T1 : v = 1 is mapped on T. Suppose now U(x,y) = U(z)

is harmonic in the z-plane and vanishes on T. Then V(w) = U((w2 + l)/4) is

harmonic in the w-plane and vanishes on the line T1. Then, V satisfies the two

relations

(i) V(u,v)+V(u,2-v) = 0,

(ii) V(u,v)=V(-u,-v),

the first because V vanishes on I*1, and the reflection principle, and the second

because F is a single-valued function of w2. Conversely, it is readily seen that

if V is any harmonic function satisfying (i) and (ii) then the function

U(z) = V((Az — 1)1/2) is single-valued and harmonic in the whole z-plane, and

vanishes on the parabola T. Therefore the given problem is equivalent to the

study of harmonic functions V satisfying (i) and (ii). Note that by combining (i)

and (ii) we get V(u,v) = U(u,v + A) showing a periodic behaviour in v. Thus,

a polynomial solution V^O is not possible, but transcendental solutions exist,

the simplest being V(w) = Im cosh nw, giving rise to the function U(z)

= Im cosh(n(Az — 1)1/2) which is harmonic and vanishes on the given parabola.

Note that in the present case we are able to characterize all harmonic functions

vanishing on T. Also, by further exploiting the correspondence given by the

conformai mapping, we could obtain the "reflection principle" appropriate to

harmonic functions which vanish on a parabola. Note the curious fact that if a

harmonic function vanishes on a parabola, than it necessarily vanishes on an

infinity of parabolas, and namely (in the present instance) the images of the lines

v = 2n + 1, n = 0 + 1, ± 2, ••• under the map z =(w2 + l)/4.

III. Hyperbolas. We may discuss hyperbolas in a similar fashion, starting

from the mapz = sinw, or

x = cosh v sinw,

y = sinhucosw.

The straight lines v = v0 ate mapped into ellipses Evo in the z-plane, and the lines

u =u0 map into hyperbolas Huo. Since every nondegenerate ellipse (resp. hyper-

bola) is equivalent (modulo magnifications and rigid motions) to one of the

curves EVo (resp. Huo) there is no loss of generality in studying only the curves

Hun (as regards hyperbolas) and, in the following paragraph F„0 (as regards

ellipses).

Suppose now  U(z) = U(x, y) is everywhere harmonic and vanishes on the

hyperbola H„. Then,  V(w) = U(sin w) is everywhere harmonic, and vanishes
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on the line u = a. Moreover, as a function of sin w it is invariant under the trans-

formations w -> w + 2n, and w -*n — w; and conversely since these automorphisms

generate all the automorphisms of sin w, any function invariant under them is a

single-valued function of sin w.

We therefore conclude, in a manner similar to that of 111.2 that V satisfies

(i) V(u,v) + V(2a — u,v) = 0 (from reflection principle),

(ii) V(u+2n,v)   =  V(u,v),

(iii) Vin-u,-v)   = Viu,v)

and conversely, any harmonic V satisfying these three relations gives rise, by the

transformation l/(z) = F (arc sin z) to a single-valued harmonic function U

vanishing on the hyperbola Ha. Now, from (i) and (iii) we deduce that

Viu + 2n — 4a,v) = Viu,v) so that V has period 2jr — 4a, and hence period 4a,

as well as period 2n, with repect to the variable u. This implies, if a/71 is irrational,

the existence of a dense set of periods, and consequently V = 0. In view of the

geometrical meaning of the number a (we recall that 2a is the angle between the

asymptotes) we have thus proved the first part of the following(4).

Theorem III.3. If a harmonic function vanishes on a hyperbola, and the angle

between the asymptotes is not a rational multiple of n, it vanishes identically.

If the angle between the asymptotes is a rational multiple of n, there exists a

nonnull harmonic polynomial vanishing on the hyperbola.

To prove the second part, we give the following simple construction, which is

motivated by the previous discussion. Suppose a = mtz/n, then F(w) = Imcos2nvv

is harmonic and satisfies (i), (ii), (iii). i/(z) = F(arcsin z) is a harmonic polynomial

in z vanishing on the hyperbola Ha.

Note that in Theorem III.3 there is no need (in the uniqueness assertion) to

suppose that U is everywhere harmonic ; if we assume, for instance, that U is a

single-valued harmonic function on a dense open connected subset of the plane,

that is sufficient for the proof to work, and even much weaker hypotheses are

sufficient. The same remark applies also to the following discussion concerning

ellipses, where we have not attempted to formulate results of maximum

generality.

111.4. Ellipses. Suppose l/(z) is harmonic in a dense open subdomain of the

plane, and vanishes on the ellipse Ea (we continue to use the notation of the

previous paragraph). Then V(w) = U(sinw) vanishes on the line v = a. The ana-

lysis is now similar to that in III.3 except that (i) is replaced by

(i') V(u, v) + V(u, 2a-v) = 0.

if) A somewhat simpler discussion would result from using the mapping z = cos w.
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This equation together with (iii) of III.3 implies

V(u,v + Aa) = V(u,v).

Thus, V has period 2% with respect to u, and period 4a with respect to v. In parti-

cular, V vanishes on the lines v = (An + l)a, n = 0, + 1, + 2,••■. We therefore

conclude that U vanishes on a certain countable set of ellipses (confocal with the

given one), namely the images of these lines under the map z = sin w, and must

therefore have at least one singularity in the domain bounded by each pair of

ellipses ; this implies that U must have a sequence of a singularities z„ with zn -» 0,

and also a sequence of singularities z'n with z„'-+ oo. And functions U of this type

are easily constructed, namely U(z) = ImF(arcsinz) where F(w) is an elliptic

function having periods 2n and 4ai and is real on the line v = a. The limiting

case a = oo corresponds to a circle; here, as the function logr shows, only one

finite singularity is forced.

III.5. An alternate method. In the case of parabolas and hyperbolas, we may

use a somewhat simpler variant of the above method which does not involve

conformai mapping, but which also gives somewhat less information, and is

limited to the case that U is everywhere harmonic (and so is the real part of an

entire function). As this method will be useful to us in the sequel, we illustrate it

briefly here, for the case of the parabola. The following simple lemma is funda-

mental :

Lemma. Suppose T is a curve given by the parametric equations x = p(t),

y = q{t) (a < t <b) where p and q are holomorphic in some region R containing

the segment (a,b). If there exists a function u(z) everywhere harmonic and

vanishing onT,Ujà 0, then there exist nonconstant entire functions f, g such that

(1) /(KO + iq(t)) = g(p(t) - iq(t)),       t e R.

Moreover, ifu is a polynomial, f and g may be chosen to be polynomials.

Proof. The proof is immediate, since there exists an entire function F(z) such

that u(z) = ReF(z) = $F(z) + jF(z) = \F(z) + jF*(z) where F*(z) denotes

the entire function F(z). Writing f(z) = F(z)/2, g(z) = - F*(z)/2 we see that

(1) holds first for a < t < b, and therefore by analytic continuation for all teR.

In applying this lemma, we exploit the fact that the function h(t) = f(p(t) + iq(t))

- g(p(t) — lq(t)) is holomorphic in R, and admits all the automorphisms, i.e.,

makes all the identifications, of the two functions p(t) + iq(t) and p(f) — iq(t).

For example, let us use this approach to prove that a harmonic polynomial which

vanishes on the parabola x = y2 vanishes identically (less trivial applications will

be given in the following sections). Here p(t) = t2, q(t) = t. It is enough to show

that the relations

h(t)=f(t2 + it) = g(t2-it)
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where f,g are polynomials, implies h = constant. Now, t2 + it is invariant under

the substitution t -» — i — t and t2 — it is invariant under the substitution t -> i — t.

Since h is invariant with respect to both of these, it is invariant with respect to

the substitution t -* t + 2i which they generate; i.e., hit) has period 2i, and being

a polynomial it is constant.

Remark. Actually, we do not have to assume « is a polynomial, it is enough

to assume for instance that

|u(z)|<V|z|P

where p < \, and it is easy to formulate sharper theorems of this kind.

IV. Various examples of curves which are not level lines of harmonic functions.

We consider the curves y = x" (1 ^ n < oo) and show that these are not level

lines of a harmonic function except for n = 1,2. We give two different proofs,

the second one being applicable to a larger class of curves described later on.

The first proof gives a local version of the result.

Theorem IV. 1. Let n be an integer > 2. // i»(x,y) is harmonic in the disc

x2 + y2 < 5 and vanishes on y — x" = 0, then u vanishes throughout the disc.

Proof. The reasoning employed to establish the lemma of §111.5 shows that

we may write m(x, y) = Fiy + ix) — Giy — ix) where Fiz) and Giz) are analytic

in | z | < 51/2. Note then, that F(x" + ix) = G(x" + ix) for all x, - 1 ̂  x ^ 1.

Since Fiz" + iz) and Giz"— iz) are both analytic for \z\ — 1 we conclude that

(1) Hiz) = Fiz" + iz) = Giz" - iz) for | z | g 1.

The crux of our proof lies in the notion of a local automorphism, (l.a.). Namely,

we say that a map a + bt -* c + dt is an l.a. for the function fiz) if fiz) is analytic

at a and at c and if the expansion of fia + bt) and /(c + dt) about r = 0 agree

in the constant and the first nonvanishing terms, (the convention being that the

map is an l.a. if fiz) is a constant). Let us take note of certain trivial properties

of these l.a.'s. We have

(2) If a + bt -* c + dt and c + dt -> e + ft are l.a.'s for /(z) then so is

a + bt -* e + ft.

(3) If a + bt-*c + dt is an l.a. for fiz) and giw) is analytic at w =/(fl)( = /(c))

then a + bt -* c + dt is an l.a. for gifiz)).

(4) If a + t -» a + It is an l.a. for fiz), and if A is not a root of unity, then

fiz) is a constant. Now set

r any prime divisor of n — 1 if n is even,

p = <
{ 2* if n - 1 = 2*m, k = 1, m odd

and
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Thus

(5) »""»--1;   a"~1=tann/2p =     " ~ *    .
' e       i(ca + 1)

Using (5) one can easily show that

6(a) (acoJ)n + ( - l)i-1iacoj = (acaj+1)" + ( - l^-1 iacoJ+ »,

6(b)        lnia<ai)n-1+ ( - 1) J'_1i]£J' = [n(acai+1)n-1 + ( - l)J'_1i]CJ'+1-

It follows from 6(a) and 6(b) that

(7) For j odd, aco J+ £ ;i -+ acoJ+1 + £y+*i is an La. for z" + iz.

(8) For j even, acoJ + Ift -» acaj+1 + £/+1i is an La. for z" - iz.

We conclude then from (1) and (3) that for every j, aca' + ÇJt-+acaJ+i + ÇJ+1t

is an La. for H(z). Repeated application of (2) now insures that a + t -* a + £2<n_1)r

is an La. for H(z). And so, by (4), the following lemma is all that is required to

prove our theorem.

Lemma. £ is not a root of unity.

Proof. We will produce the irreducible polynomial for £ 4- 1 and thereby show

that £ + 1 is not even an algebraic integer by dint of the fact that the leading

coefficient of this polynomial does not divide its constant term.

Case I. n odd; p a power of 2 and the irreducible polynomial for ca is xp + 1.

The irreducible polynomial for £ + 1 is [(n + l)x - 2]p + [(n - l)x + 2]p. Here

the leading coefficient, (n + l)p + (n — l)p is > 2P + 2P, which is the constant

term.

Case II. n even; p is an odd prime and the irreducible polynomial for ca is

(xp + l)/(x + 1). Hence the irreducible polynomial for £ + 1 is [(n + T)x — 2]p/x

+ [(n - T)x + 2]p/x. The leading coefficient is (n + l)p+ (n - l)p and the

constant term is np2p. This time we have

(n + l)p + (n - l)p = 2n[(n + l)p_1 + (n + l)"'2(n - 1) + •••]

>2«[2P_1 +2P_1+ •••]= 2np2p_1=np2p.

The proof of the lemma, and so of the theorem, is now complete.

Remark. It is clear that harmonicity throughout the entire disc x2+y2<5

was not necessary to the proof. Of course 5 could be replaced by any number

larger than 4 but even further reduction of the region is possible. We leave these

details to the reader.

In the next two Theorems IV. 2 and IV. 3, p(z) and q(z) denote meromorphic

functions defined in a region R0 of the extended z plane. p(z) and q(z) are assumed

to be real for a < z <b where (a, b) c R0. It is furthermore assumed that the

finite images of R0 under p + iq, p — iq ate contained respectively in R and R
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where Pis a region of the z plane and R = {z|zeP}. T denotes the curve x = pit),

y = 9(0 ia < t < b) so that r is contained in P.

Theorem IV.2. (a) Suppose there exist a point z0eR0 such that p(z) and

qiz) are both analytic at z0 and m Jf 2n, n J( 2m, m and n denoting the re-

spective orders of the zeros of piz) — piz0) and qiz) — g(z0) at z0. If w(x,y) is

harmonic in R and vanishes on F, then u vanishes throughout R.

(b) Let p and q have a common pole at z0 e P0, m and n denoting the respective

orders of these poles. Suppose that m # n¡2, n, 2 n . If i/(x,y) is harmonie in R

and vanishes on T, then u vanishes throughout R.

Corollary. Let p and q be nonconstant polynomials with real coefficients and

assume that m # n/2, n,2n,m and n denoting the respective degrees of p and q.

In this case R0 is the extended z-plane; p and q have a common pole at 00,

the orders of these poles being respectively m and n. We conclude from Theorem

IV. 2(b) that if w(x,y) is harmonic in the entire (x,y) plane and vanishes on the

curve x = pit), y = qit) ( — 00 < t < 00), then u vanishes for all (x,y).

Proof. We first treat part (a). Without loss of generality, we may assume z0 = 0,

mz%n, p(0) = «(0) = 0. Hence p(z) = amzm + -,qiz) = b„z"+ •••, (amb„ # 0)

in a neighborhood of 0. Let F y = T^c), T2 = T2(c) denote respectively the curves

I p + iq j •" c, I p — iq I = c where c > 0. For c sufficiently small Ty and T2 will

be closed Jordan curves contained in R0 and surrounding 0. Furthermore for c.,

c2 sufficiently small and Cy < c2,T,icf) will be in the interior of r,(c2) (i = 1,2).

(For a discussion of the facts concerning the r,'s see [1, p. 108 and the relevant

Figure 21].) Let P. and R2 denote the closed regions enclosed respectively by Fy

and r2. The reasoning employed to establish the lemma of §111.5 shows that if

w(x, y) is harmonic in P then w(x, y) = P(x + iy) — G(x — iy) with Fiz) analytic

in P and Giz) analytic in R. Since u = 0 on T we have //(z) = Fipiz) + iqiz))

= Gipiz) — iqiz)) for a < z < b. Hence, by analytic continuation,

ff(z) = F(p(z) + iqiz)) = Gipiz) - iqiz))

at all z in P0 where p and q are both regular.

By the maximum modulus theorem the maximum modulus My of |//| in Ry

is attained at some point zt on Fy. piz) + iqiz) has a zero of order m at 0. It follows

that there exist m — I points on T2 distinct from z< (we call them z2,---,zm) such

that

pizy) + iqizy) = pizf) + iqizf) = ■■■= p(zm) + /<j(zm)       [1, p. 108].

Hence \H\ attains its maximum My in Ry at Zy,---,zm. A similar argument shows

that IHI attains its maximum M2 in R2 at m points z'y,---,z'monT2.

Now   \p + iq\ > \p - iq\o \p + iq\2 > \ p — iq \2 o (p + iq)ip + iq) >
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(p — iq) (p + iq) <*• Im qp < 0. Similarly | p + iq | < | p — iq | o Im qp > 0. For

sufficiently small z we have

q(z)pTz) = bna^znzm-r-

so that

QP = bna~lrm+nexp [i(n-m)9+ ]0(rm+n+1)

where z = re'e. Let 9y = atgzy = Ô+ 2n/m. Then 9¡ = atgz} = Ö ■\-2itj\m + e}

(ë! = 0) where e_, -» 0 as c -♦ 0 (I ^ / ^ m) [1, p. 108]. Hence

q(zj)pjzj) = fcnâmrm+"exp[i(n - m)(ô + £y)] exp [2™;/™] + 0(rm+"+1).

Let (n,m) = d, n = nyd, m = m1d. The set of numbers exp[2ninj/m](l^j^m) is

identical with the set of numbers exp[27ti//m] (l=j = my). It follows that for

my = 3,  lm(q(Zj)p(zj)) > 0 for some j,   1 = j = m.  Thus

I P(Zj) - '«(Zj) | < | P(Zj) + iq(zj) | = c

so that Zj is inside T2. Hence My ^ M2. Repeating the argument we find a z^

(l^k — m) for which Im(gXz£)p(z¿)) < 0 so that z'k lies inside Ty. Hence

M2 — My and therefore My = M2. Since \H\ assumes its maximum inside rlt

it follows that H is constant in Ry and hence constant in R0. Thus u = 0 in R.

One can readily check that my = 1 or 2om\2n. Hence my — 1omX2n and

we have proven part (a) of Theorem IV.2).

We sketch the proof of part (b) as it is very similar to that of part (a). We assume

again without loss of generality that z0=0 and m S n so that p(z) = ajzm' H—, q(z)

= bjz" + ••• (ambn # 0) in a neighborhood of 0. We choose a fixed circle K:\ z | = r

so that p(z) and q(z) ate analytic for 0 < | z | ^ r. T¡ = T¡(c) (i = 1,2) is defined

as before and R¡ is now defined as the closed annular region bounded by K and

r(. r2 lies inside K for c sufficiently large and for large eit c2 (cy > c2) T¡(cy) lies

inside r,(c2). Since p + iq, p — iq have poles of order n at 0, H assumes its

maximum in R¡ at n points ziX,---,zin on T¡, provided c is sufficiently large. We

have

2ni
6,j = argzl7 = Ö, + — + «o      (i = l,2;l^jgn)

where 0a = S¡ + 2n¡n (so that en = e2i = 0) and su -+0 as c -» oo.

<zu)~P&j) = ^txplKm-n)iôt+s)-]+exp[2nim /»] + O {—i^ .

The set of numbers exp[27r/m//w] (l^j - n) is identical with the set of numbers
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exp[2nij¡nf] (Iz^j z% nf). If nt 2: 3, then we conclude as before that u = 0 in P.

It is easily verified that Bj = 1 *»> n = m and n2 = 2 o n = 2m. Hence

iiy = 3on # m, 2m and we have proven part (b) of Theorem 4.2(5).

We have not been able to settle.the exceptional cases mentioned in Theorem IV.2.

Some restriction on m and n is of course necessary as x = t, y = t and x = t,

y = i2(—oo<i<oo) are level curves of harmonic functions. We do however

obtain the following partial results for the exceptional cases.

Theorem IV.3. Let p(z) and q(z) have a common pole at oo of multiplicity n

so that p(z) = Anz" +...+A0+ If^ajz*, »/OO = Bnz" + ...+B0+ I&ybjz*

(AnB„ # 0) for large z. Assume the Afs and Bfs real (0 fí i ^ n) and B„An-s

— Bn-SA„ i= Ofor some s,0 < s < n¡2. Ifu(x,y) is harmonic in R and vanishes

on T, then u vanishes throughout R.

Proof. The reasoning is similar to that of Theorem 4.2b. We choose za,---,zin

(i = 1,2) as in the proof of Theorem 4.2b. It suffices to show that for c sufficiently

large there exist points Zy3,z2k (Izijzin) such that lm(q(zyf)p(zyff) > 0,

lm(q(z2k)p(z2k))<0. Let BnA„.s - B„_sAn # 0, BnAn_j - B„_jAn = 0 for

0 <j < s. The vectors (Bn_j,An_f)(l gj < s) are all multiples of (P„,^4„) so that

any two are linearly dependent. Thus Bn_jA„_k — B„_jA„_k = 0 for 0?¿j<s,

0 z%. k < s, a direct computation yields

lm[qp]=(BnAn_s- B„_sAn)r2"-ssinsO + O^2"-'-1)

for large z. Let 0y = argz;j- (i = 1, 2; 1 S í= «)• The distance between

two successive zeros of sins0 is n/s and d,¡ — &,j-y -*2n¡n as c —> oo

(i = 1,2; 2 *§,/ ̂  n). Since 2n¡n < n¡s, it follows that for large c there exists a z,¡

for which Im (q(z l7)p(z ! y)) > 0. Similarly, for c sufficiently large there exists

a z2k for which Im (q(z2k)p(z2k)) < 0. The rest of the proof is identical with that

of Theorem IV.2b.

V. Concluding remarks. A number of questions suggest theselves for further

investigation ; we wish here to point out only a few of these.

(a) Analogous problems for harmonic functions of more than two variables,

and for partial differential equations other than the Laplace equation. Insofar

as the present paper uses essentially the methods of classical function theory, it

cannot cope with these questions.

(b) Considering uniqueness curves for more general classes of harmonic func-

tions ; for example, can the theorems of the last section be strengthened so as to

permit isolated singularities?

(c) We have shown in §111.2 that the parabola is an algebraic level curve of a har-

(5) A technique very similar to that used here was employed for a different purpose by

A. and C. Rényi in their paper Some remarks on periodic entire functions,}. Analyse Math. 14

(1965), 303-310.
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monic function without being the level curve of a harmonic polynomial. Are

there any other algebraic curves for which this is true?

(d) Given, say two polynomials p(z) and q(z), when do there exist nonconstant

entire (or meromorphic) functions /, g with f(p(z)) = g(q(z)): (Certain necessary

conditions follow from the analysis in §4.)(6)

(e) If T is a level curve, i.e. such a curve that the values of u(z) on T do not

uniquely determine u, what additional data will suffice to determine u uniquely?

Knowledge of the normal derivative of u along T is enough, but in general "over-

determines" the problem; i.e. there is no corresponding existence theorem in

general. Another type of additional condition is a restriction on the growth at

infinity, as we observed in the case of the parabola.

(f) The whole question of existence of a harmonic function with prescribed

values on a given curve seems an interesting one. More precisely, the curve T will

be said to have the existence property if, given any entire function F(x,y) of two

complex variables, which is real when both x and y are real, there exists an

everywhere harmonic function u(x, y) such that u(x, y) = F(x, y) for

(x, y) e T.

To gain some insight into the problem, let us consider two simple examples:

(1) T is a straight line. Here we can prescribe both u and its normal derivative

as arbitrary real-entire functions; the solution is then unique. (These statements

are readily proved, e.g. by use of the Cauchy-Kowalewski procedure.) (2) T is a

parabola. We now show: T has the existence property.

Indeed, as is readily seen from the discussion in §111.2, it is enough to show,

if cp(u) is any entire function of u we can construct an everywhere harmonic

function V(w), w = u + iv, such that

(0   V(-w)=V(w),

(ii) V(u,l) = cP(u).

Moreover, considering the decomposition cp(u) = cpy(u) + cp2(u) where cpy is even

and cp2 is odd, it is enough to solve the problem when </>(u) is an even function

and when cp is an odd function of z. Consider first the case of an even function.

It is known from the classical theory of difference equations that there exists

an entire function f(u) such that the equation

(^)m-m-qt^--m

is satisfied. If cp(u) is even, and real for real u, then we may find a solution/

which is even and real for real u. The harmonic function

K(„,r)./(„)_/W„1+/^Oc4_...

(6) For some results on this question, see a forthcoming paper by H. S. Shapiro, On the

functional equation f(P{z)) = g(Q(z)), in the Publications of the Hungarian Academy of Sciences.
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then satisfies (i) and (ii). The case ep odd is treated similarly, here

V(u,v) = ^v-q±v> + -..

where g satisfies the difference equation (sin d/du)g(u) = </>(")•

Added in proof. An example of a set without the existence property is the set

A : xy = 0. There is no harmonic function u(x, y) equal to y2 on A, since vanishing

on y = 0 implies u(x, — y) = — u(x, y).
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