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1. Introduction. According to a classical result of Rellich [6] if « is a solution

to the Helmholtz equation

Aw(x) + k2u(x) = 0

in the exterior of a sphere, and if u = o(|xl_(iV_1)/2 ) as x-> oo, where N is the

dimension of the space, then u vanishes identically in that region. Numerous

improvements of this result have been given, for example Miranker [5], Kato [2],

Wilcox [9], Wolsson [10].

The above mentioned result can be restated in the following form: Suppose

Au + k2u =f(x)

and f(x) is a C°° function with compact support then u must also have compact

support, which by the unique continuation property must be the same as that of /.

More recently, Trêves [8] has investigated the following problem: Let

P(D) s P((l/t") (d/dx)) be a partial differential operator with constant coefficients.

If P(D)u = /, and / in C°° and has compact support, when can we conclude that u

has compact support, assuming that ue£f, i.e. u is infinitely differentiable and

together with its derivatives decays at infinity faster than any power of x_1?

Trêves showed that for the answer to be in the affirmative it is necessary and

sufficient that the complex solution manifold of each irreducible factor of the

polynomial P(x) intersect RN.

It seems desirable to be able to reach the conclusions of Trêves' result without

the strong condition that u be rapidly decreasing at infinity, but with conditions

at infinity more nearly like those in the Rellich result, i.e., decay faster than a

prescibed power. For this weakening of hypothesis we must, however, pay a price

i.e., one imposes greater restrictions on the polynomial P. That is the point of

Theorem 1.
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Theorem 1. Let each irreducible factor Q of the polynomial P have the

following properties

(a) the set S of real solutions to Q(x) = 0 forms a smooth JV - 1 dimensional

surface S;

(b) gradP(x) #0 on S ;

(c) at each point of S, k of the JV — 1 principal curvatures are different from

zero;

Suppose u e Ca(Rn) satisfies the equation

P(D)u=f,        feS;

andu(x) = o(\x\kl2-<N-»);

Then u has compact support(2).

Remark 1. By Lions' theorem on the support of a convolution, it follows

that the convex hull of the support of m is the same as the convex hull of the support

of f. In case the equation Lu = 0 satisfies the unique continuation property, the

supports are actually the same.

Remark 2. Condition (a) of Theorem 1 implies that each irreducible factor

g of F must be real, apart from a multiplicative complex constant. To see this,

let 6 = 6i + 'Ô2- Picking a point x0 on S, the complex solution manifolds of Qy

and Q2 through x0 must each be JV - 1 complex dimensional. Their intersection

W must be either JV - 2 complex dimensional or JV - 1 complex dimensional.

In the first case W PiR" is JV - 2 real dimensional, contrary to assumption.

In the second case Qy and Q2 vanish simultaneously on an N — 1 complex dimen-

sional set, implying their ratio is constant. Thus we may without loss of generality

assume that P, as well as each of its irreducible factors is real.

2. Proof of Theorem 1 modulo asymptotic estimates. We begin by introducing

some notation and stating some preliminary results used in the proof, some of

which are proved in later sections.

We shall use L to denote the operator P(D). 2 denotes the space of functions

C°° with compact support in R". 2F(Qi) shall denote the space of Fourier transforms

of functions in B. The Fourier transform iv = w(x) of the function w(y) is given by

»v(x)=   (¿j"  j e-ix-'w(y)dy.

We shall often refer to e,( }by e( ). For w e !F(9)) define the mapping

(2) Wolsson [10] derives this result for the special case in which the differential equation

is elliptic, and in which k has the value JV — 1 (corresponding to a surface P(x) = 0 with only

convex sheets). His derivation is based on a study of the behavior of the fundamental solution

at infinity. Estimates for such fundamental solutions are also due to V. V. Grusïn and B. B. Vain-

berg. (See [1] and references there.)
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(2.1) w^t;(y) = Tw=P.V. \ eix'y^\dx.

Here "P.V." means "Cauchy principal value". The "Principal value" is dis-

cussed in §4, and the above integral is studied in later sections.

One easily established property of the function v as defined above is that it

satisfies the equation

(2.2) P(D)v = w.

Whe e there is no chance of confusion we shall let r stand for either | x | or | y |.

Lemma 1. For any C° functions, u, v, such that

Dxv = 0(r-k/2),    \<x\=m,

u = o(rkl2-XN-x)),

we have

(L v, u) = (v, Lu).

(Parentheses denote the L2 inner product.)

Proof. Let  ep(x) = v(x)i¡/h(x),  where  \¡/h(x) = \¡/(r — h),  and where  \p(t) is a

C00 function of the single real variable t such that

■KO =1       for  r ̂  0,

= 0       for  t = 1.

We have

Livipf) = Lvi¡/h+ HaxßDxv ■ D0i¡/„,

where the summation extends for | a | < m, | ß | > 0, | a | + | ß | ^ m. It follows that

iLiep) - Up)) = Lv-il-eb)+ ZaxßD*v ■ D^h,

iLieb - v),u) = ((1 - ej>)Lv,u) + YaxßiD*v ■ Dßibh,u).

Since the Df\¡/h are bounded it suffices to estimate

i    |Dai>||u|<ix, 0g|a|gm.

h<r<h+l

This integral is majorized by

0(1).p-*/2.r*/2-(W-I). r(^-D=o(1).

Hence (L<p, m) — (Lv, u) -» o as h -» oo. But (Lep, u) = (vi¡/h, Lu) -y (v, Lu) as h -» 0,

which is the desired result.
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Lemma 2. Let v be given by (2.1). Then

D'v = 0(r'k'2) as r-*co,

uniformly with respect to all directions and any finite number of derivatives.

The proof is given in §§5-7.

Lemma 3. Let S be C^N — 1 surface embedded in RN and a smooth mass

density a with compact support in S be given on S. Suppose that at each point

of S, k of the N — 1 principal curvatures are different from zero. Then

I(y)=j eix-\(x)dSx=0(\y\-kl2) as y->co.

xeS

Furthermore any derivative D"I(y) of fixed order satisfies the same condition.

The first part of the lemma is proved in [4] ; the second part is an immediate

consequence of the first.

We now proceed with the proof of Theorem 1.

Case I. Suppose /= 0. Then by Lemmas 1 and 2, (w,u) = (Tw,Lu) = 0 for all

w e ¿F(3>), or (w, u) = 0 for all w in 2. Hence û = 0 and u = 0.

Case II. Suppose there exists a point in R N at which P(x0) = 0 and /(x0) # 0.

Since / has compact support / is analytic, hence continuous. Thus f(x) # 0 in a

whole open set intersecting S. Let a be a C°° function on S ( s P(x) = 0) with

compact support. Consider the measure p = px with support on P(x) = 0 defined by

cp(x)dp =       cp(x)a(xs)dS,      cpe@.
Jrn J s

Clearly, for some such function a we have

jf(x)dpx # 0.

Next, given v = (Tw)^, w e ¿F(£H), let us determine a constant a in such a way that

(v + apj) = 0,

i.e., a= - (vj)l(pj).
With a thus determined (and depending on w), define the transformation T" by

(T'w)"=v + ap,

i.e., v'(y) = T'w(y) = v(y) + a ¡elx'y dp(x). It is easily seen that the integral

is a solution to L(¡) = 0, hence that Lv' = w. It follows from Lemmas 2 and 3

that D"v' = 0(r~k/2). Hence, since (v',f) = 0, by Lemma 1 we have

0 = (Lv',u) = (w,u) for all w

hence û = 0 and u = 0.
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Case III. The remaining possibility is that /(x) ?é 0 and /(x) vanishes on the

N — 1 surface S czRN where P(x) = 0. We shall need the following lemma taken

from Trêves [7].

Lemma 4. Let Pix¡,---,xN) be an irreducible polynomial with complex

coefficients and let V be the set of zeros of Pizy,---,zN) in N dimensional complex

space CN. Let ep be an entire function on CN. Assume that the function ep/P defined

in CN — V can be extended as a holomorphic function to an open set Q inter-

secting V. Then ep/P can be extended to CN as an entire function.

Suppose first that P is irreducible. Pick a point x0 on S. The set V of complex

zeros of P restricted to a complex neighborhood U of x0 is an analytic set of

complex dimension N — 1. Since / has compact support, /(x) can be extended

as an entire function /(z) of exponential type. In U (possibly restricted further)

/(z) vanishes on a set of complex dimension N — 1 containing x0. Hence the set

W of common zeros of Piz) and /(z) in U either coincides with the set of zeros of

Piz) in U or has complex dimension N — 2. In the latter case however the re-

striction of Wto RN must have real dimension = N — 2, contrary to assumption.

Hence whenever Piz) vanishes in U, /(z) must also vanish. From this and the

fact that grad Pizf) # 0 it follows that fiz)¡Piz) can be continued as a holo-

morphic function to a complex neighborhood of x0. Using the above lemma it

follows that wx(x) = /(x)/P(x) can be extended to all of CN as an entire function.

It is easily seen that this function must be of exponential type. This implies that

Uyiy) must have compact support. Hence, by case I, so must «(y).

Next suppose P is not irreducible, say, for example P = Q¡Q2 where Qt and Q2

are irreducible. Since gradP ¥= 0 on S, the real solution manifolds S, of QL and

S2 of Q2 must not intersect. Hence gradgt # 0 on S,,gradg2 #0 on S2, and

f¡Q2 can, as before, be extended as an entire function (since / vanishes where Q2

does in RN). We now repeat the argument, letting f¡Q2 take the place of/and Qx

replace Q2. Clearly this argument can be extended to any number of factors.

3. Fourier transforms of surface-carried mass distributions. The purpose of this

section is to state a previously proved result. Suppose we are given a C°° N — 1

surface S embedded in P^. S need not be a closed surface, i.e. S may have a

boundary, which however we do not include in S. Also given is a C00 mass dis-

tribution a(x) defined on S with compact support S' in S. At each point of S the

Gaussian curvature K, i.e. the product of N — 1 principal curvatures, is bounded

away from zero. Given a unit vector co, let p¡ = p/co) be the (finite set of) points

on S ' at which the normal to S is parallel to co. Taking co as the positive direction

at pj, denote by kJ+ = k(ico) and fc_ the number of positive and negative principal

curvatures at p¡ respectively. Letting n = N — I, y = rco (r > 0), e'( ) = e( ),

and denoting surface element by dS, the following asymptotic formula holds as

r -> + co, uniformly with respect to all directions a>.
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e(x • y)cc(x)dSx
JxeS

(3-D = r-"'2 Z   (¿J" (1 4- if *(1- if-\Kipj)\ -ll2e(Pj ■ y)a(Pj)

+ 0(r-(n/2)-(1/2)).

This formula is essentially derived in [4], where, however, it is not stated ex-

plicitly in this form. There only one point pj occurs, which is the origin, and the

factors involving the fc's are erroneously omitted (although that is of no further

consequence either there or in the present paper). The essence of the proof is to

show that the asymptotic behavior of the integral is the same (within a constant

factor) as that of the integral ¡e(Xyx\ + X2x\ + ••• + Xnx2)dxy ■••dxn, the A's

being the principal curvatures.

It should be noted that for the case of closed convex S a similar result has been

obtained by Grusin [1], who also obtained estimates for integrals of the type

(2.1) for that case. However his method does not seem suitable to yield (3.1) in

the nonconvex situation.

4. The principal value integral. Let A(x) and g(x) be "sufficiently smooth",

complex valued functions defined in RN, g with compact support. Let S be the

surface ^l(x) = 0. It is assumed that grad A # 0 on S near the support of g, and

that the support of g is bounded away from the boundary of S. We wish to define

the Cauchy principal value

P.V.    f    jgdx.
Jr" A(x)

By using an appropriate partition of unity it is easily seen that the definition and

proof of existence of the principal value can be reduced to the case where the

support of g is contained in a sphere of arbitrarily small prescribed radius with

center on S. Let us introduce a new coordinate system in such a sphere, depending

smoothly on the x coordinates,

{t,u} = {ty,t2,-,t„,u}       (n = N-l)

such that u = 0 corresponds to xeS. Suppose that the Jacobian J = d(x)jd(t, u)

of the transformation is bounded away from zero and infinity; then g(x) = gi(t,u)

and A(x) = A¡(t,u). By Taylor's theorem for fixed t,

Ay(t,u) = uuy(t) + u2a2(t,u),

where a^O) # 0 and a y and a2 ate smooth functions. Then

A(x)-1 = [uay(t) + u2a2(t,u)Yl

= [uayWY'+R^u),
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defining R as a smooth fonction of t and u. We may, without loss of generality,

suppose that the support of g lies in the set | it | < 1. Then

h=  [        gix)¡Aix)dx
Je<\h]<1

=        giO,") - Jit,u)Ayit,u)~l dtdu.

Writing gyj = g2 the above integral equals

/..f    f    tern du\dt

JE<|u|<l «l(0«

+ g2it,u)Rit,u)dudt.
J £<|u|<l

The first integral vanishes, while the remaining integrals converge as e -> 0, since

the integrands are smooth functions of t and u.

It is easily seen that the value of I0 = lim£_0L »s independent of the particular

coordinate system {t,u} chosen. Hence, to evaluate or estimate it one may choose

the one most convenient. From here on we shall omit the "P.V." in front of the

integral sign.

5. Estimate of Fourier transforms: the almost horizontal part of the surface,

X 5e 0. To prove Lemma 2 for the case X ^ 0, i.e., k = N - 1, it is necessary to

estimate the integral

(5 1) I     g(x) e •* ■ y ¿x
{    } )R» P(x)e       dX'

where f e3. We divide g into g, vanishing near the surface S:P(x) = 0 and g2

with support near the surface S. By integrating by parts an appropriate number

of times the integral involving g, is easily seen to approach zero as y -» co faster

than any negative power of y. Hence we may focus in g2. We shall hereafter write

g for g2.

We shall estimate in a given direction ea. By means of a partition of unity,

a translation and rotation of axes (which do not change the validity of the derived

estimate), we may assume that S passes through the origin, and that there it is

perpendicular to the yN axis. For the time being we assume that the support of g

is contained in a sphere centered at the origin. We require the sphere to be suf-

ficiently small so that in it the projection of the unit normal to S on the yN axis

exceeds 1/2 in absolute value. We now introduce new coordinates {t,u} as follows:

t = {ty,t2,---,t„} = {xy,x2,---,xl)    ,    n = N-l,
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If the surface S near the origin is given by Xjy = z(xy,---,x„), then the u coordinate

of the point x = (xlt ■■■,xN) is given by u = x„ — z(xy,---,x„). Thus u = ± distance

from S measured in a direction parallel to the x,, axis. (This coordinate transfor-

mation was used in [1].) The integral (5.1) is then given by the limit as e -* 0 of

J« - f if    8á¡t7\j(t,u)e(y(z(t) + u))dSu] du
J ]u\>e      Us.,   rlV>u) J

where g(x) = gy(t,u) etc., S„ represents the surface z(xy,---,x„) = u, dS is surface

element on it, and J(t,u) is the appropriate Jacobian, which incidentally equals 1

at the origin. Let g2 = gi ■ J, and \p(u) be an even C°° function of u with compact

support, having the property that \p(u) s 1 in an interval about the origin which is

sufficiently large so that the set of {t,u} where \p(u) = 1 contains the support

of g2(t, u). Then

/.=  f      e""f eUtit)'g2(t,u)iiua1it))-1+R{t,Uy}dSdu
J|u|>t      Js„

=   f      Çip(u)du\\    eh™ g2(t,0)afty{ds\ ( = Iy(e))
J |«|>« u L J s„ J

+   f       eiu*du[   ^(U)e*i»>82(t,u)-g2{t,0)    ds { = I2{e))
J\u\>t Js„ u-ay(t)

+   f      e^du\   <P(u)ehu'y   g2(t,u)R(t,u)   dt ( = I3(e)).
J \u\>e J Su

Consider the integral I'¡ in square brackets. Since the integrand is independent

of u, clearly the S„ may be replaced by S = S0. From the results of §3 it follows

that for y > 0,

/; = M ■ g2(0,0)ay   (0)y-"2 + y-/2-ll2B(y),

where B(y) is a bounded function of y and with the notation of §3,

m= (|)"/2 a+ /)*♦(!- o*- \k\-v2:

Since, as can be seen by integrating by parts k times,

-(ip(u)-l)du = 0(y-k),s.
we have ly(0) = nl\ + 0(y k) for any k> 0.

It is easily seen that g2(0,0) = g(0,0) and a^O) is the normal derivative of P

with respect to S at the origin. Next, letting e -> 0 in I2(e) and I3(e) we see that
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the resulting integrals can be integrated by parts any number of times (since the

inner integrands are smooth functions of t,u), from which it follows that /2(0)

and /3(0) -» 0 faster than any power of y-1 as y -> oo.

Returning to the general situation we note that the set of points pj on S at which

S is normal to a given direction is finite in number. By a partition of unity we can

decompose g into a sum of g0 with support bounded away from the pj and g}

with support in a neighborhood of pj, but with support of different gfs (j # 0)

bounded away from each other. We shall see later that the integral involving

g0 -> 0 faster than any power of 1/y. Taking this for granted for the time being

and reverting back to original coordinates, we have (in the notation of §3)

j^^^to-'"^p-(fra+^*(i"°p'"',c&i)i"i/iícpi',>,ípi)
-i

\dpt   s + 0(fxn'¿)~xll¿)),

as y -> oo along the ray y = reo, r>0,eo being a unit vector. dPjdea is the direc-

tional derivative of P in the to direction. That this formula is valid uniformly

for all directions m follows from a careful checking of the proof.

6. Estimate for nonhorizontal part of surface. In this section we estimate

the integral (5.1) where the support of g is near S but bounded away from

the set of points on S at which S is normal to eo. We need not assume here that

X # 0. By use of a partition of unity we see that it suffices to consider the case

where the support of g lies in a sphere of arbitrarily small, but fixed radius, such

that in this sphere the unit normal to S stays bounded away from the eo direction.

We again translate and rotate axes so that m coincides with the positive yN axis.

We suppose that in the support of g, S can be described by x, = Z(x2,---,xN)sZ(t),

after a possible reordering of the (xy,---,xN-f). As before, we let ip(u) be an even

C00 function with compact support, having the property that \p(u) = 1 in an

interval about the origin sufficiently large so that the set of {r, «} where \p(u) = 1

contains the support of g(t,u). Letting u = x{ — Z(x2,---,xN), g(x) = gy(t,u),

g2 = J • g,, as in §5, the integral (5.1) is the limit as g -> 0 of the integral

Pit,u)f    du f
J|o|>s        Ji

= f     m  ^L f   *&*/*> i8m
J\U\>S «      JSu Oyity

f f i£l
ua¡(t)

+   f f     ftft»)-ft(*. 0)   e,z<o, Hu)dSudu
J |u|>£    J Su

+ eiZyg2(t,u)R(t,u)\p(u)dSudu.
J |u|>s JSU
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The first integral vanishes ; letting e -* 0, we notice that in the last two integrals

the integrands are smooth, hence for fixed u the inner surface integrals can be

estimated by the results of [4] §2, according to which they approach zero faster

than any power of y as y-> oo, and this uniformly with respect to u. Hence the

iterated integrals also approach zero in the same manner.

7. The case of zero curvature. We now consider the integral involving g

with support in a neighborhood of the set of points on S at which the normal

to S points in the ca direction. It suffices to consider g with support in a sufficiently

small sphere with center on S, so that after translation and rotation of axes, the

center of the sphere is the origin, ca points in the direction of the x„+1 = xN axis,

and the surface S is described in the sphere, (after possibly renaming some of the

x's among x¡,---,x„) by

k

xN = z(xy,---,x„) =   2 XjX2 + 0(|x|3 ).
J = l

Let x' = (xy,---,xk) and x" = (xk+1, —,x^. Consider the integral

l=j[je,p[iz(x',x1yi^)dx']dx''.

Keeping x" fixed, the inner integral = 0(y~k/2) as y -* oo uniformly in x". In-

tegrating with respect to x" gives us

l = 0(y~kl2) as y -co.

Combining this result with results of §§5,6 shows that

*O0»  f    MeiX'ydx = 0(\y\-^)       asy-co.
Jrn *\X)

That the result holds uniformly in all directions of the vector y, again follows from

a careful analysis of the proof. That the same estimate is valid for any derivative

D"h(y) can be seen immediately from the formula

D*h =    f X —   eix'ydx
J    P(x) '

where x" = xy x"2 •••x°7. This completes the proof of Lemma 2.

8. Improvements and refinements.

Theorem 2. Let us suppose that for a certain polynomial P(x) the hypothesis

of Theorem 1 are not satisfied but that there exist a finite number of points

such that if we delete closed neighborhoods of these points, no matter how small,

from the surface P(x) = 0 then in the remaining surface the conditions of Theorem 1

prevail; then the conclusions of Theorem 1 are still valid,



1966] PARTIAL DIFFERENTIAL EQUATIONS 459

To see this we need only change the proof of Theorem 1 slightly. Namely in

selecting w(x)eS>, we choose the w so that it vanishes in said neighborhoods.

In case II care must be taken to insure that the measure p vanishes in these

neighborhoods. This can be accomplished by appropriate choice of p and by

choosing the neighborhoods sufficiently small. It then follows (in Cases I and

II) that û vanishes except at the above mentioned points, û must then be a sum

of delta functions and derivatives of delta functions, which means that u must

violate the assumed growth estimate, unless u vanishes identically. Case III pro-

ceeds as before.

Example. The wave operator satisfies the conditions of Theorem 2 with

k = JV — 2. Hence one must assume u = o(r~N/2). The operator fju + u, on the

other hand satisfies the conditions of Theorem 1 with k = JV — 1. Hence it suffices

to assume u = o(r~ÍN~í)l2).

Secondly the proof of lemma 1 is also valid if one only assumes that the volume

average of u over the shell r ^ |x| ^ r+ 1 iso(rk,2~(N~1}), instead of the uniform

approach to zero.

Finally, instead of assuming ueC™, it suffices to assume that u is locally

integrable and is a generalized solution. This is seen by mollifying u and applying

our results to the mollified function.
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