
UNKNOTTTNG IN M2 x I

BY

E. M. BROWN

1. Introduction. Let JV be a manifold, P cz JV a '"naturally" embedded

submanifold of JV. An embedding/: P^N unknots in JV if there is a homeo-

morphism h of JV onto itself such that

hf(P) = PczN

i.e. we can put/(F) into the "natural" position of F in JV via a homeomorphism

of JV. Classically N is the 3-sphere and P is a great circle in JV. This case was

solved by C. D. Papakyriakopoulos [6] in the sense that he reduced it to a

computation of the fundamental group ny(S3 — /(-S1)).

We shall consider the case where JV = M2 x I, M2 a compact 2-manifold

and I = [0, 1]. In this case there are several "natural" submanifolds of JV viz.;

(i) For Pi, •••, p„ points in the interior of M, there is the natural submanifold

\Jj-iPjxI-
(ii) For a a simple arc in JV7, joining boundary points of M, the disk a x 7.

(iii) For X a simple loop in the interior of JV7, the annulus X x I.

(iv)   Mxl/2.

We give necessary and sufficient conditions for unknotting in the above four

cases. The condition we give for (i) is of the same nature as that of Papakyri-

akopoulos, and the theorem we prove is equivalent to his Theorem (28.1 i) of

[6] when n = 1 and M is a disk. It was shown by Zeeman [11] that an arc reg-

ularly (see §2 for definitions) embedded in a ball of dimension greater than

three is always unknotted (this is a combinatorial theorem). One may well ask

what the situation of (i) is when the dimension of M is greater than two.

Case (iv) is also interesting in higher dimensions, in particular when M is

a sphere. A locally flat version of our (7.2) would establish the annulus conjecture.

A solution of case (iv) identical to ours was obtained in [2] when M is a closed

2-manifold.

In §2 occur definitions and some elementary propositions which will be needed

throughout the paper.

In §3 we shall prove the main geometric theorem that we need, the Product

Theorem (3.4). It may be paraphrased as follows: If a compact 3-manifold B

has the same boundary as has M x I, for M a 2-manifold, if it has

the  same  homotopy  type  as  M x I,   and if the Poincaré  conjecture is  true
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inside B, then B is homeomorphic to M x /. Actually Theorem (3.4) is quite

a bit stronger than this, and somewhat more useful. This is related to a result

of John Stallings in [8J .

In §§4-7 we get necessary and sufficient conditions for unknotting in cases

(i) through (iv) above.

In what follows a manifold is a combinatorial manifold with possibly vacuous

boundary. It is equipped with a fixed triangulation. If P is a manifold we denote

its boundary by dB. All maps between manifolds are assumed to be piecewise

linear.

2. Definitions and preliminary propositions.

Definition. A3-manifoldPis said to be a Poincaré3-manifold if every homotopy

3-cell in B is homeomorphic to a 3-cell. A homotopy 3-cell in B is a connected,

simply connected, compact submanifold of B, bounded by a 2-sphere.

A word about Poincaré 3-manifolds. The Poincaré conjecture in dimension

3 is true if and only if every homotopy 3-cell is homeomorphic to a 3-cell. Thus

a Poincaré 3-manifold is one in which the Poincaré conjecture is true. The extent

of this notion is indicated by:

(2.1) Proposition,   (a) Euclidean 3-space is a Poincaré 3-manifold.

(b) // B is a Poincaré 3-manifold, so is every 3-dimensional submanifold

ofB.
(c) If B is a Poincaré 3-manifold, and is a covering space of a 3-manifold

B', then B' is a Poincaré 3-manifold.

id) If M is a 2-manifold then M x I is a Poincaré 3-manifold.

Proof, (a) This is Alexander's theorem.

(b) This is clear.

(c) Let n:B-+B' be a covering map, and let C ezz B' be a homotopy 3-cell.

If i':C-+B' is the inclusion function, then there is a continuous function

i : C-+B so that ni = 1", because C is simply connected. Then i is a homeomorphism.

Since B is a Poincaré 3-manifold, ¿(C), and hence C, is homeomorphic toa

3-cell.

(d) We may assume M is connected.

If M is compact and orientable then M x I can be embedded in R3, Euclidean

3-space, so (a) and (b) show that M x / is a Poincaré 3-manifold.

If M is compact and nonorientable, then M has an orientable double covering

N, which is also compact. But JV x / is a Poincaré 3-manifold and covers M x I

so by (c), M x I is a Poincaré 3-manifold.

Finally suppose M is noncompact, and let C c M x / be a homotopy 3-cell.

Since C is compact we can choose a compact submanifold JV of M so that

C ezz N x I. By (b) again, C is homeomorphic to a 3-cell.
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Definition. Let JV and F be manifolds. An embedding f:N->P is said

to be regular if

f(8N)=f(N)n8P.

That is, the image of JV meets the boundary of F exactly in the boundary of

JV. Notice that if JV has no boundary, this means that f(N) is contained in the

interior of P. All our unknotting theorems are proved with respect to regular

embeddings.

The Dehn lemma, as proved by Papakyriakopoulos, says that a simple closed

curve in a 3-manifold, which is homotopic to a point, and which is contained

in the boundary of the 3-manifold, bounds an embedded disk. When considering

the fundamental group of a space, one usually considers homotopy classes of

loops with fixed base point. However, one may equally well consider homotopy

classes of paths with fixed end points. The only difference is that there is no

preferred class to play the role of the point loop. Proposition (2.3) part (a) is

the proof of the form that the Dehn lemma takes in this point of view. The extra

difficulty which occurs because of the lack of a "trivial" path is taken care of

in Lemma (2.2) part (a).

Shapiro and Whitehead on the other hand have proved a generalization of

the Dehn lemma which says, in particular, that given two disjoint simple closed

curves in the boundary of a 3-manifold, homotopic to one another, and

neither null-homotopic and which "preserve orientation", then they bound

an embedded annulus. Proposition (2.3) part (b) shows that the theorem is still

valid if one relaxes the condition that both curves be simple, and only assumes

that one of them is simple.

(2.2) Lemma, (a) Let D be a 2-disk and let p0, pyedD. Let K cz D be a sub-

complex which separates p0 from py. Then K contains a subcomplex which

is a simple arc regularly embedded in D, and which also separates p0 from py.

(b) Let A be an annulus. Let K cz A be a subcomplex which separates the

two components of dA. Then K contains a subcomplex which is a simple loop

regularly embedded in A, and which also separates the two components of dA.

Proof. In both cases let L be a minimal subcomplex of K which still separates.

While it is intuitively clear that L is the desired subcomplex, I cannot find a short

proof of this fact. I list the steps of a long proof, each being verified by an appeal

to the minimality of L.

1. L contains no isolated vertices.

2. L contains no 2-simplexes.

3. In case (a) L contains no 1-simplex on 3D.

A. No vertex of L in the interior of D (or A) is an end point of a single 1-sim-

plex of K.
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5. L contains no simple loops homotopic to a point in D (or A).

6. Choose a vertex v0 of L which in case (a) is on 3D. Pick an edge ey of L

having v0 as a vertex, and let Vy be the other vertex of et. Now pick an edge

e2 # ey of L having ey as vertex and continue.

In case (a) we get a new vertex and a new edge at each stage since L contains

no loops. This procedure only terminates when we reach dD again, and it gives

us a simple arc regularly embedded in D. By minimality of L, this arc separates

Po from py.

In case (b) we must finally form a loop, which cannot be homotopic to a point.

Such a loop separates the components of BA.

1. In either case the subcomplex constructed in 6 is all of L since it separates.

(2.3) Proposition. Let B be a 3-manifold, and M a 2-dimensional sub-

manifold of dB.

(a) Let a be a simple arc in dB which meets M exactly in its end points.

Suppose a is homotopic in B, with end points fixed, to a path in M. Then there

is a regularly embedded disk D in B whose boundary is a U(£) n M), and

D n M is a regularly embedded arc in M.

(b) Let X be a simple loop in dB, not homotopic to a point in B, and not

meeting M. Suppose X is freely homotopic to a loop in M. Suppose further

that X generates an orientation preserving covering transformation in the

universal cover of B (we say X is an orientation preserving loop in B). Then

there is a regularly embedded annulus A in B whose boundary is lu(in M)

and Ad M is regularly embedded in M.

Proof. Let H = B x {0} U M x / U B x {1} . Then H is a 3-manifold whose

boundary is:

idB -M)x {0} U idM) x I U (<3B - M) x {1} .

(a) Since a is homotopic with end points fixed to a path in M, the simple loop

a x {0} U(5a) x / U oc x {1}

in dH is homotopic to a point in //. By Dehn's lemma [6] it bounds a nonsingular

disk £ regularly embedded in H. Let p0, pt be the midpoints of a x {0} and

a x {1} respectively. Let K = En M x {0} . Then K separates p0 from pt

in £, so by part (a) of Lemma (2.2) we can find a simple arc ß x {0} <= K,

regularly embedded in £ which also separates p0 from pt in £. Then ß x {0}

is regularly embedded in M x {0}, and has the same end points as a x {0}.The

simple loop (a U ß) x {0} is homotopic to a point in H. But the composition

KyiB) -> ItyiB   X0)-> TtyiH) -> TtyiB  X   I)

is a monomorphism, so a u ß is homotopic to a point in B. By Dehn's lemma

again it bounds a nonsingular disk D regularly embedded in B.
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(b) The proof is similar to (a), we use part (b) of Lemma (2.2), and the

generalization of Dehn's lemma due to Shapiro and Whitehead [7]. It is to

apply this last theorem that we need the special assumptions about X.

The next proposition establishes the existence of a tubular neighborhood

for a 2-manifold, regularly embedded in a 3-manifold. One could prove this

for a regularly embedded (n — l)-manifold in an n-manifold. There is a dif-

ficulty with the "cutting apart" operation however. In three dimensions topolog-

ical, triangulated, combinatorial, etc., manifolds are all the same. In higher

dimensions the situation is not at all clear. In the "cutting apart" operation

one may go from a combinatiorial manifold to the possibly weaker, «-star

manifold. For this reason we have restricted the dimensions.

(2.4) Proposition. Let B be a compact 3-manifold, and M a regularly

embedded compact 2-dimensional submanifold of B. Then M has a tubular

neighborhood in B. That is, a neighborhood U such that U is homeomorphic

to a l-dimensional disk bundle over M, the homeomorphism carrying M to

the zero section of the bundle, and carryng UC\dB to the part of the bundle

over dM.

Proof. We cut B apart along JV7. Since we have restricted ourselves to three

dimensions, we need not worry about what type of manifold we get by this

process. We may proceed as follows; each closed 2-simplex of M is a face of

exactly two 3-simplexes of B. Replace the closed 2-simplex by two copies of itself,

one on each of the 3-simplexes. The resulting space is easily seen to be a manifold,

it is necessarily a combinatorial manifold. This gives us a compact 3-manifold

B. M goes into M c dB, a double covering of JV7. The second regular neighborhood

V of M in B is homeomorphic to M x I according to Whitehead's regular

neighborhood theory [9]. Such a homeomorphism may be assumed to carry

Vn(8B - M) to (dM) x (0, 1). When we paste B back together to get B, then

V becomes the desired neighborhood U.

In what follows we shall make constant use of Van Kampen's theorem (as

in [5, p. 243]). A little notation here will be useful. For groups Gy, G2 and U

and monomorphisms i/.U -> Gr, r = 1,2 we denote by Gy*vG2 the free product

of G y and G2 with amalgamation of the group U via iy and i2. That is Gy*vG2

is generated by the union of a set of generators of Gy with a set of generators

of G2, and has as relations those of Gy, those of G2, and those of the form

iy(u) = i2(u) for each u in Í7. Now G¡*u G2 depends on i y and i2. But for

us iy and i2 will be maps of fundamental groups induced by inclusion functions.

Since iy and i2 ate fixed we may regard U as the intersection of the groups Gy

and G2. We shall do this in the future without further comment.

The following theorem is from [4, p. 314] .

Theorem. Let Gy, G2 and U be as above. Let xik be a fixed choice of coset
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representatives of the right cosets of U in G, different from U itself. Then

each element of Gy*,; G2 has a unique representative of the form uzy--zm

where ueU, the z, are from among the x,k, and z¡ and zJ+1 come from different

G's.

We draw a useful corollary from this :

(2.5) Proposition. Let Gr, r = 1,2 be groups with intersection the common

subgroup U. Let Hr, r = 1,2 be a subgroup of Gr, which also contains U. If

the natural homomorphism

j : H y *u H2-*Gy*vG2

is an isomorphism then Hr = Gr.

Proof. Let iy : Gy -» Gy *VG2 be the natural monomorphism. Let geGy

and write g = ux1¡k for some ueU where x,k are as in the preceding theorem.

Using a subset of the x,k to represent the cosets of U in H„ by the preceding

theorem there is a unique representative u'zy ■■■ zm of the element of H y *v H2

which j carries into iyig) .Then u'zy-zmand uxlk both represent iy(g)in G1*u G2.

Hence u = u', zt = xlk and m = 1. But then x1¡k is a representative of a coset

of U in Hy, so g = ux,k is in Hy. Since g was arbitrary Hy = Gy. Similarly

H2 = G2.

3. The Product Theorem.

(3.1) Theorem. Let B be a compact, connected, Poincaré 3-manifold. Let

M be a compact connected 2-manifold other than the projective plane. Let

h : M x {0} U (dM) x / -► dB

be an embedding such that:

(1) My = dB - /¡(M x {0} U(3M) x [0, 1)) is a nonvacuous, connected

submanifold of dB.

(2) For i = 0,1 the natural homomorphisms

TlyiM) -> TlyiB)

are isomorphisms, where M0 = hCM x {0}). Then h can be extended to a

homeomorphism of M x I onto B.

Proof. The proof is in three steps. In Step (I) we reduce by an induction

argument to the case where M has at most one handle or one cross-cap. In Step

(II) we reduce the theorem for manifolds with boundary to the theorem for

a disk. In Step (III) we verify the theorem for the few special cases left.

Step (I). Let c(M), the complexity of M, be the number of handles of M if

M is orientable, or the number of cross-caps of M if M is nonorientable. Assume

c(M) = 2. We shall split M into two pieces of lower complexity, and also split
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B. We then show that the theorem for these simpler manifolds implies the theorem

forM.

As for the splitting, we may choose a simple loop p regularly embedded in

M which splits M into two submanifolds JV and P. Choose p so that c(N) > 0

and c(P) > 0. Then c(N) + c(P) = c(M), so each of c(N) and c(P) is less

than c(M).

Let X = h(p x {0}). Then X does not meet My, but X is homotopic to a loop

in My since nfjvly) -» 7ty(B) is onto. Moreover X is not homotopic to a point

in M0, and since ny(M0) -> rc^B) is a monomorphism, A is not homotopic to

a point in B. We wish to apply Proposition (2.3) part (b) to X and My. For this

we need X to be an orientable loop in B. But X is an orientable loop in M0 since

it separates M0. From the fact that M0 lies on the boundary of B we conclude

that X is an orientable loop in B. Thus Proposition (2.3) part (b) can be applied.

Let A be a regularly embedded annulus in B with one boundary component

X and the other in the interior of My. Extend h to a homeomorphism of p x 7

onto /I.

We now claim that A splits B into two pieces. Suppose to the contrary that

B — A is connected. Choose a path in B — A joining points in distinct compo-

nents of M0 — X. Since ny(M0) -» ^(B) is onto we can deform our path, hold-

ing its end points fixed, to a path in M0. Now before the deformation our

path meets A an even number, (in fact zero) of times. Thus after the deformation

we have a path whose mod 2 intersection number with A is zero. This means

a path which starts in one component of M0 — X, intersects X an even number

of times, and ends in the other component of M0 — X. This is clearly impossible.

Let C and D be the closures of the two components of B — A, notation chosen

so that

C => h(N x 0) = JV0,

D => h(P X 0) = F0.

We shall be finished with Step (I) when we prove:

(3.2) Lemma. Under the hypotheses of Theorem (3.1) assume h has been

extended to a regular embedding of p x I into B where p is a simple separating

loop in the interior of M not homotopic to a point. Assume further that h(px {1})

is regularly embedded in My . With notation as above we let

k = h | JV x {0} U (ôN) x I,

I = h\P x {0} U(dP) x I.

Then the triples (C, N, k) and (D, P, I) satisfy all hypotheses of Theorem (3.1).

Extensions of k and I give an extension ofh,
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Notice that for this lemma we do not assume that N and P have lower com-

plexity than M or that c(M) = 2 .

Proof of (3.2). Clearly C and D are compact, and connected. Since they

are submanifold   of B, Proposition (2.1) says that they are Poincaré manifolds.

Now Ny = C r\My and Py=Dr\My are the closures of the components

of My — h(p x {1} . Thus they are nonvacuous and connected. This estab-

lishes hypothesis (1).

We turn to the algebraic hypothesis (2). We wish to apply Proposition (2.5),

and for this we must show that certain homomorphisms are monomorphisms.

First rcy(X) -+Tty(N0) and ny(X) -* 7ty(P0) are monomorphisms since A is a boundary

component of both JV0 and P0, and neither is a disk. Thus 7r.(JV0) *n¡w rty(P0)

is well defined and by Van Kampen's theorem is isomorphic to Tiy(M0). Second,

using that 7r,XA) -* 7iy(A) and Uy(M0) -* Tty(B) are isomorphisms it is not hard

to check that rty(A) -» rty(C) and riy(A) -> rty(D) are monomorphisms also. Thus

niiC) *ni(.A)niiD) is well defined and is isomorphic to ity(B). In the commutative

diagram

Tty(C):*ndA)Tli(D)^7ty(B)
A JK

KliNo) »,iW TtyP0) -► Tli(M0)

Three of the maps are isomorphisms, thus the left-hand vertical map is also

an isomorphism. By Proposition (2.5) now, ny(N0) -* riy(C) and Uy(P0) -* riy(D)

are isomorphisms. Similarly jt1(7V1) -* 7t1(C)and ny(Pf) -* ny(D) are isomorphisms.

This completes the proof of Lemma (3.2), and of Step (I). Thus we have reduced

the theorem for manifolds with complexity at least two, to the theorem for mani-

folds with complexity at most one and with nonvacuous boundary.

Step (II). In this step we reduce the theorem for manifolds with boundary

to the theorem for the disk. The idea is similar to Step (I), only we split B along

a nonseparating disk instead of a separating annulus.

Let a be a simple arc, regularly embedded in M, and not separating M. Now

if a joins points of distinct boundary components, then cutting M apart along

a decreases the number of boundary components by one and does not alter

the complexity. On the other hand if a joins points of the same boundary com-

ponent, then cutting M apart along a decreases the complexity by one, and

increases the number of boundary components by at most one. Thus we shall

do an induction argument on twice the complexity plus the number of boundary

components.

Since 7iy(Mf) -> rty(B) is onto, the simple arc h(a x {0} U (da) x /) is homo-

topic with end points fixed to a path in My. By Proposition (2.3) part (a) we

can extend h to a regular embedding of a x / into P such that h | a x {1} is

a regular embedding in My. Denote by D the image h(a x /).
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Choose a tubular neighborhood U of D in B (Proposition (2.4)). Since D is

contractible, U is equivalent to D x [— 1, 1] and U O M0 is equivalent to

h(<x x {0}) x [- 1, 1] . Let V be the neighborhood of a in M such that

h(V x {0}) = U n JV70. Now /i has already been defined on V x {0} U a x 7,

and it is easy to see that h can be extended to a homeomorphism of F x 7 onto U.

Let (7° be the interior of U in B, and let Vo be the interior of V in M. We

may assume U° = h(V° x I). Let B' = B - 17°, M' = M - Vo and

ft' = /i | M' x {0} U(5JV7') x 7. We shall have completed Step (II) when we

show:

(3.3) Lemma. Under the hypotheses of Theorem (3.1), and with a non-

separating arc a, regularly embedded in M, suppose an extension of h over

a x I is given so that h\otx{l} is a regular embedding in My. With nota-

tion as above choose an extension over V x I to U. Then the triple (B', M', h')

satisfies all hypotheses of Theorem (3.1).

This lemma, and Lemma (3.2) are singled out since they will be used again later.

Proof of (3.3). First note that B' is a compact Poincaré manifold since it

is a closed submanifold of B. Using the fact that M' and B are connected it is

not hard to show that B' is connected. Now M\ = B' t~\My is nonvacuous,

an argument as in Step (I) about intersection numbers shows that JV7/ is con-

nected. This verifies hypothesis (1).

To show that nfMj) -» 7r,(B') is an isomorphism for j = 0,1 we shall show

that there is a retraction of B onto B' which carries M¡ onto M'y Then the iso-

morphism conclusion follows easily. We shall work on V x I and follow by ft.

First retract V x I to V x {0} \J(V - Vo) x I. Holding (V - Vo) x I

fixed, retract V x {0} into an arc joining points in the distinct components

of (V — Vo) x I. Finish the retraction by mapping this arc into M' x {0}

holding its end points fixed. This is possible since M' is connected. See Figure 1-

FxO

£L&
Figure 1
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Following this composed retraction by h we get a retraction of B to B', which

carries M0 to M0 . Of course, all this could have been done in U. A similar argument

in U retracts B to B' carrying My to M'y. This concludes the verifications of

hypothesis (2) and of (3.3).

Step (III). In Steps (I) and (II) we have reduced the theorem for manifolds

of complexity at least two, or with nonempty boundary, to the theorem for

the disk. We shall have completed the proof when we prove the theorem for

the disk, the two-sphere, and the torus.

The disk. If M is a disk then iZy(M) a ny{M0) m ity(B) m re1(M1) at 1.

We can extend h to a homeomorphism of M x 1 onto My, say radially from

the center of the disks. Now B is compact, connected, simply connected, and

ft maps d(MxI) homeomorphically onto dB which is thus a 2-sphere. Since

B is a Poincaré manifold, it is a 3-cell. Thus we can extend h, say radially again

over M x I.

The 2-sphere. Since dM = 0 we must only show that B is homeomorphic

to M x 7. For if 77 is any homeomorphism of M x I onto B, by reflecting in

M x 1/2, if necessary, we may assume that h(M x 0) = 77(M x 0). Letting

hy = 77 | M x 0 the map HihT1 h x id) is the desired extension of ft.

Form a new manifold By by attaching a 3-cell C onto B along the 2-sphere

M0. Now dBy = My which is a 2-sphere since it is closed and simply connected.

Furthermore, Bt is compact, connected, and simply connected by Van Kampen's

theorem. If we can show that By is a Poincaré manifold, then we will know that

it is a 3-cell. To see this we shall embed Bt in B.

We note that there is a homeomorphic image, B\, of By contained in the

interior of B, (using a collar neighborhood of dBy). Choose a 3-cell in the interior

of B, not meeting B[. Map this 3-cell by an orientation preserving map homeo-

morphically onto C. According to Gugenheim [3], we can extend to a homeo-

morphism of By onto itself. Since the image of B[ under this homeomorphism

misses C, it is contained in B. Thus By is a 3-cell.

Hence we can map By homeomorphically onto the set of vectors in R3 of length

not greater than 1, and using Gugenheim again, we may insist that C go onto

the set of vectors of length not exceeding 1/2. This maps B homeomorphically

onto M x I.

The torus.   For this case we put together the methods of Steps (I) and (II).

Choose a simple loop in M not homotopic to a point. We can apply Propo-

sition (2.3) part (b) since M0, and hence B, is orientable. This gives us an annulus

in B whose ends are simple loops in M0 and My not homotopic to a point. A

tubular neighborhood of this annulus meets M0 and My in annuli. We

may retract this tubular neighborhood onto its sides and its intersection

with M0. Then we may take the annulus in JV70 and retract it onto its

complement which is also an annulus. As in Step (II) this verifies the algebraic

hypothesis (2) for the complement of the interior of our tubular neighborhood.



490 E. M. BROWN [June

The other hypotheses are easily verified, and this reduces the case for the torus

to the case for the annulus. This finishes the proof of Theorem (3.1).

We get a generalization of this theorem by applying Theorem (1.1) of [1].

(3.4) Theorem. Let B be a compact connected Poincaré 3-manifold.

Let M be a compact connected 2-manifold not the projective plane such that

X(M) ^ /(£) where x is the Euler characteristic. Let

h:Mx {0} \J(dM) x l-*dB

be an embedding to a proper subset of dB. Suppose that the natural, homo-

morphism

KyihiM x {0})) -+ KyiB)

is onto. Then h can be extended to a homeomorphism of M x I onto B.

Before we proced to the proof of this theorem let us make a few remarks

about what it says. The manifold B is a cobordism between M and

JV = dB- /¡(int M x {0}).

The theorem says that under certain mild hypotheses, this cobordism is a car-

tesian product of M with an interval. Mazur has shown that if the natural maps

of M and JV into B are simple homotopy equivalences (i.e. B is an s-cobordism),

then B is a cartesian product of M with an interval, in those dimensions where

the Poincaré conjecture is known to be true. It is also known that if the natural

maps are only homotopy equivalences, then B need not be a product space.

Our theorem says that in three dimensions we need not even assume that both

maps are homotopy equivalences.

Proof of the theorem. Let T = Cl(<3£ - /¡(M x {0})). Then applying

Theorem 1.1 of [1] to B and S = h{M x {0}) we have that both S and T are

strong deformation retracts of P. But h((dM) x I) has h((3M) x {1}) as a

strong deformation rectract, so T has

My = dB - h(M x {0} U (dM) x [0, 1))

as strong deformation retract. In particular the natural homomorphisms

TlyiM)  - TtyiB) , i   =0,1,

are isomorphisms, where M0 = /i(M x {0}). By Theorem (3.1) we are finished.

4. The unknotting of disks. In this section we shall consider embeddings

of a disk in M2 x /. The "natural" or unknotted positions will be a x / for

a an arc in M. We shall consider the domain disk to be / x / and we shall ask

to unknot embeddings / such that /(s, 0) = (<x(s), 0). If a is contained in the

interior of M, then to all intents and purposes it is a point path, and we are



1966] UNKNOTTING IN M2 X / 491

asking about the unknotting of arcs in M x 7. This is treated separately in

§6, so here we make the restriction that a be regularly embedded in M. With

a regularly embedded in M, we have a x 7 a regularly embedded disk in M x 7.

Since a homeomorphism of M x 7 to itself carries regular embeddings to reg-

ular embeddings, we must require that/be a regular embedding. We shall also

require that/(0, s) = (oc(0), s) and/(l, s) = (a(l), s) but this is no real restriction.

For consider a collar neighborhood of dM x 0 in M x 0. There is a homeo-

morphism of M x 7 onto itself which carries this collar neighborhood onto

(dM) x I. Since we required/(x, 0) = (a(s), 0), this "straightens out the edges"

of/(7x7).

(4.1) Theorem. Let otj, j = 1, ••■, m, be a finite collection of pairwise

disjoint arcs regularly embedded in the compact 2-manifold M. Let f be a

regular embedding of |^j7=i ' x ' x 0} in M x I such that

f(s,o,j) = (ctj(s),o),

f(o,s,j) = (otj(o),s),

f(l,s,j) - (otj(l),s),

for j = 1, •••, m, and such that f\ M*-i 7 x {1} x {j} is a regular embedding

in M x {1} . Then there exists a homeomorphism ft of M x I onto itself such that

h(m,o) = (m,o), meM,

ft(m, i) = (m, t), me dM, t e I,

hf(s, t,j) = (ctj(s), t), j = 1, •••, m.

Proof. Since we can work with one component at a time it is clearly no loss

of generality to assume that M is connected. We proceed by induction on m,

so assume first that m = 1. We construct ft~ ' rather than ft. Let

k: (M x {o}) U ((dM) x 7) U (ai(7) x 7) -► M x 7

be defined by

k(m, o) = (m,o), meM,

k(m, f) = (m, t), me dM, t e I,

k(<xy(s),t) = f(s,t), sel, tel.

We shall extend k to a homeomorphism of M x I onto itself, whence ft = fc~ *

satisfies all conditions of the theorem.

There are two cases according as cty does or does not separate M.

Case I. M — oty is connected. We note that M x 7 is a Poincaré manifold

by (2.1). Andif we take for B the manifold M xlthen the pair B./c|Mx0u(dM)x I

satisfies all hypotheses of Theorem (3.1). Then by Lemma (3.3) and Theorem

(3.1) we can extend k to a homeomorphism of M x I onto itself.
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Case II. M — a.y is not connected. Let the closures of the two components

of M — ocj be denoted M' and M". Now by the simple intersection number

argument which appears in the proof of Case I of (3.1) we can see that M xl

—/(/ x /) is not connected. Let the closures of the two components be denoted

B', B", with notation chosen so that B' => M'.

In the commutative diagram (the isomorphisms are by Van Kampen's theorem)

iti(B>.,(/(/X/)ÎIi(£> *iiM x -0
A A

7T1(M'xO)*nr(aiXO)7r1(M"xO)~7r1(M x 0)

the right-hand vertical map is an isomorphism. Thus the left-hand vertical map

is also. By (2.5) both

ityiM') -> UyiB')   and   UyiM") -► 7r,(£")

are isomorphisms, in particular they are onto. Now

XÍM xl) = y(B') + xiB") - lifil x I)) = xiB') + xiB") - 1.

X(M x 0) = xiM' x0) + xiM" x 0) - *(«. x 0) = xiM') + x(M')-l,

Since xiM x 0) = y/M x /) we may assume that xiM') = xiB) (otherwise

XiM") > %(B")). According to (3.4) we can extend k\M' x 0 u(ôM') x / to

a homeomorphism of M' x I onto B'. In particular XiM') = xiB'), so

XÍM") = xiB") and we may use (3.4) again to extend k \ M" x 0 U (<3M") x /

to a homeomorphism of M" x I onto B". These two extensions together extend

k to a homeomorphism of M x / onto itself as desired.

This finishes the case m = 1, we assume inductively that m > 1, and that

the theorem has been proved for m — 1 arcs.

Let h y be a homeomorphism of M x / onto itself which is the identity in

M x 0 U (<5M) x / and such that A./(s, t, 1) = (a,(s), t ). Let F be a tubular

neighborhood of a.(I) in M, so small that

iV x F) n hyfil xlx {;}) = 0   for   j > 1.

Let Vo be the interior of F in M and let My = M — Vo , a compact 2-manifold

Let
m

fy-.    \JlxIx{j}^MyXl
/ = 2

be defined by fy = hyf. Then the pair fy, My satisfies all hypotheses of this

theorem, but with m — 1 arcs. Let h2 be the homeomorphism of My x I onto

itself guaranteed by the induction assumption. Since h2 | idMf) x I is the identity

map, we can extend h2 over V x I by making it the identity. Then h = h2hy

is easily seen to satisfy all conditions of the theorem.
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5. The unknotting of annuli. In this section we shall consider the unknotting

of a regular embedding/of S1 x I into M x I, "based" at a simple loop X

regularly embedded in JV7. By this we mean f(s,o) = (X(s),o) for seS1, and

f\S*x {1} is a regular embedding in M x 1. This second requirement is

not essential, as in the last section, an argument involving a collar neighborhood

of dM x 0 shows this. We shall further require that X not be homotopic to a

point. If X is homotopic to a point, it turns out that/is the boundary of a tubular

neighborhood of an embedded arc. This fact, which is demonstrated in §6,

enables us to handle the null-homotopic case the same way we handle an arc,

and we do so in §6.

We comment now on the structure of the proof. If X separates M, the un-

knotting becomes an easy application of (3.2). If M is orientable, then X separates

a neighborhood of itself in M, even though it does not separate M. In this case

we find a handle in JV7 which contains X. We '"unknot" the product of the handle

with an interval in M x 7, and then working inside this smaller product, prove

the special case which results there. An induction argument then extends our

result to the case of finitely many annuli when M is orientable. We next take

up the case when M is not orientable. In the orientable double covering of M,

the loop X becomes either one or two loops. By the orientable case for finitely

many loops we can use the theorem here to establish certain facts about the homo-

topy of M, which together with (3.4) finishing this case. An easy induction ar-

gument extends the result to the unknotting of a finite number of disks and annuli

in an arbitrary JV7.

(5.1) Theorem. Let M be a compact orientable 2-manifold. Let X}, j= 1, •■■,m,

be a finite number of pairwise disjoint, regularly embedded simple loops in M,

none of which is null homotopic. Let

m

f:  US1x7x{y}->Mx7
j = i

be a regular embedding such that

f(s,0,j) = (Xj(s),0), seS1,

f(s,l,j) e intMx {1}, seS1.

Then there exists a homeomorphism ft of M x I onto itself such that

h(m,o) = (m,o), meM,

h(m,t) = (m,t), medM,     tel,

hf(s,t,j) = (XAs),t) seS1,   tel.

Proof. We first remark that we may assume M connected. The proof now

proceeds by induction on m. We dispose of the reduction step of the induction
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first since it is almost identical to that of (4.1). The only difference is that when

we remove a tubular neighborhood of XyiS1) to get My, we must check that no

Ay j > 1 becomes null-homotopic. But this is immediate since JV^ c: M and none

is null-homotopic in M.

We may assume now that m = 1 and A = Xy is a single loop. There are two

cases according as A does, or does not separate M.

Case I. A separates M. We define

k:M x {0}u(dM) x IyJXiS1) xI-*M x I

by

k\M x {0} U((3M) x / = identity,

kiXis),t) =fis,t), seS1,   tel.

As before we extend k to a homeomorphism of M x I onto itself and take h = k~1.

We first extend fctoa tubular neighborhood of A x /. Then by Lemma (3.2)

and Theorem (3.1) we can further extend k to a homeomorphism of M x / onto

itself.

Case II. A does not separate M. Define h to be as required on

M x {0} U(3M) x / (JfiS1 x I).

If M is a torus then h can be extended to a homeomorphism of M x / onto itself

by Case III of (3.1) for the torus. We may then assume that M is not a torus.

We claim that there is a simple separating loop <5 in M, such that the component

of M — ô which contains A is a torus with a hole in it ; see Figure 2. For a tubular

neighborhood of A in M is an annulus by orientability, and we can choose an arc

in the complement of the tubular neighborhood which joins the two components

of its boundary. Thickening the arc to a band gives us, using orientability again,

the torus with a hole whose boundary is -5.

Figure 2

By (2.3) we can find an annulus A regularly embedded in M x I such that

dA = ô x 0 U(y4 r\CM x 1)) and in(Mx 1) is regularly embedded in M x 1.

For this we need that ô is not homotopic to a point, i.e. M is not a torus. We
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claim that A can be chosen disjoint from /(51 x 7). We first take A to be in

general position with respect to f(Sl x I). Then A nffê1 x 7) is a regularly

embedded 1-dimensional submanifold of both A and /(S11 x 7). Thus A nftS1 x I)

is a finite number of disjoint simple closed curves regularly embedded in both,

together with a finite number of disjoint simple arcs with their end points inMj,

(in My since X n ô = 0). Let p be one of the simple loops. If p were not homotopic

to a point on /(51 x 7), then X would be homotopic to a loop on A, and this is

clearly false. The same reasoning shows that p is homotopic to a point on A.

Then p bounds disks D on /(S1 x 7) and D' on A. We assume p chosen an "in-

nermost" loop on flS1 x 7), i.e., so that int(D) contains no points of A. Now

replace A by (A - D') U D. See Figure 3.

Figure 3

By a small motion in a neighborhood of D, we can replace (A — D') U7) by

an annulus A', having the same boundary as A and so that

A' nfiS1 xI) = (A nfiS1 x 7)) - p.

Since int(D) contains no points of A, we have that A' is an embedded annulus.

Thus by induction we may assume that A is chosen so that A rtfiS1 x I) consists

entirely of disjoint simple arcs.

A simple arc with its endpoints on the same end of an annulus, cuts off a disk

from that annulus. Choose a simple arc a in A C\f(Sl x I) such that the disk D in

/(S1 x 7) cut off by a contains no points of A in its interior. Let D' be the disk on

A cut off by a, and form (A — D') U D. Since D contains no points of A in its

interior, this is a regularly embedded annulus in M x 7 (see Figure 4).

Figure 4
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By a small motion in a neighborhood of D, we can displace L4 — D') UÖ to

a new position A' so that A' is regularly embedded in M x I and

A' C\fiSl xl) = A nfiS1 x I) - a.

By induction we see that it is possible to choose A disjoint from /(S1 x /).

Let JV be the closure of the component of M — ô which contains A. Let

hybe a homeomorphism of M x I onto itself which is the identity map on

M x 0 U((3M) x /, and which carries A onto ô x I. This exists by Case I, since <5

is a non-null-homotopic separating curve. Let g = hf then g(S1 x I) is regularly

embedded in JV x / since A was disjoint from /(S1 x /). From now on we shall

work with N and g. As noted before, JV is a torus with a hole in it (see Figure 2).

Choose a simple, nonseparating arc/? regularly embedded in N with ß C\X = 0.

According to Proposition (2.3) we can find a regularly embedded disk £ in JV x /

such that

<3£ = /?x {0}u(dß)x /U(£OJVx {1})

and £ nJV x {1} is a regularly embedded arc in JV x {1}. By exactly the same

argument as used for the annulus A, we can show that £ may be chosen disjoint

from g(Sx x I). By Theorem (4.1) we can find a homeomorphism h2 of N x I

onto itself which is the identity on JV x {0} U(dJV) x / and so that h2(E) = ß x I.

We extend h2 over M x I to be the identity map on (M — JV) x /. Let / = h2g.

Let P be the result of cutting JV apart along ß; that is, we remove from JV the

interior of a tubular neighborhood V of ß in N. We assume V chosen so small

that (V x I) nliSy x /) = 0. Then /(51 x /) c P x /. Now P is an annulus

(see Figure 2), and A is a separating loop in P. According to Case I we can find

a homeomorphism h3 of P x I onto itself so that h3 is the identity on

Px {0} u(öP) x/and

Ma(s),0-=(A(s),0, seS\teI.

We extend /i3 over iM—P) x I by making it the identity map. Then h = h3h2ht

satisfies all requirements of the theorem.

We proceed now to the nonorientable case, and generalize to include both disks

and annuli.

(5.2) Theorem. Let M be a compact 2-manifold ipossibly nonorientable),

and let Xj,j = l,---, m, be a finite family of pairwise disjoint, regularly embedded

loops in M, none of which is null homotopic. Let ak, k = 1, •••,«, be pairwise

disjoint arcs, regularly embedded in M, and disjoint from the X¡. Let

m m

f:  M S1 x I x {j} u M / x / x [k] ->M x /
j=l k=1

be a regular embedding so that
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f(s,o,j) = (Xj(s),o), seSl,j=l,-,m,

f(t,o,k) = (ock(t),o), tel,   k = l,---,n,

f(o,t,k) = (<xk(o),t), tel,   k = l,---,n,

f(l,t,k) = (ak(l),t), tel,   k = l,-,n,

andsothatfWJf^yS1 x {1} x {j}u\Jkm=lI x {1} x {k} is a regular embedding

in M x {1}. Tfteii there exists a homeomorphism ft of M x I onto itself so that

hf(s,t,j)   = (Xj(s),t), (s,t)eSlxI,

hf(s,t,k) = (ock(s),t), (s,t)elxl,

h(p,o) = (p,o), peM,

h(p,t) = (p,t), pedMjel.

Proof. We proceed by induction onm + n. The reduction step for m + n > I is

as in (4.1) and (5.1). We need treat only the case m + n = 1. If m = 0, n = 1 we

apply (4.1) while if n = 0, m = 1 and M is orientable we have (5.1). Thus we may

assume M is nonorientable, n = 0, m = 1, and we may further assume that M is

connected.

Assume that m = 1 and denote Xy by just X. Let F be a tubular neighborhood

of X in M. Define

k:M x {0} U(3M) x IUV x7->M x I

by k | M x {0} U (dM) x 7 is the inclusion function, k | V x I is a homeomorphism

onto a tubular neighborhood of /(«S1 x 7) in M x I such that k(X(s),t) =f(s,t).

If we can extend k to a homeomorphism of M x I onto itself, then ft = k ~1 is the

desired homeomorphism.

Let V be the interior of V in M, and let My = M - V. Let B=M x 7 - k( V x I),

then k\My x {0} U(dMy) x 7-»SB is an embedding, and we shall extend it by

applying (3.4). Clearly B is a compact connected manifold, as a submanifold of

M x 7 it is a Poincaré manifold by (2.1). We must check that x(My) 2: x(B), and

that the map induced by inclusion TCy(k(My) x {0}) -> Tty(B) is an epimorphism.

We prove both by proceeding to an orientable double covering. Let p:M-*M

be an orientable double covering of M, so p x i : M x I -* M x I is an orientable

double covering of M x 7, where i : I -» 7 is the identity map. Let My = p~1(Ml),

B = (px i)~l(B), l = p~l (X), and Ä = (px iyl(f(S1 x I)). Then X, Ä consists

of a pair of disjoint loops and a pair of disjoint annuli, or a single loop and a

single annulus. In either case the hypotheses of (5.1) are satisfied as long as M

is not the projective plane. Leaving this exception aside for the moment there is a

homomorphism of M x I onto itself which is the identity on M x {0} and which

carries Ä onto Ix I. Thus the inclusion function (M - X) x {0} -» (M x I) — Ä
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is a homotopy equivalence. In particular xiiM - A") x {0}) = xiiM x I) - Ä)

and ityi(M — X) x {0}) -» Uy((M x /) — Ä) is an epimorphism. Since the pair

(B, Mf) is a strong deformation retract of the pair ((71? x I) — Ä, (JV? — X) x 0)

we have also %(fiïy) = liB) and ^(JG^) -> rty(B) is an epimorphism. But

2-XÍMy) = z(-^i) and 2x(B) = x(S) since these are double coverings and have

twice as many cells in each dimension. So /(M,) = xiB). If a is a path in P, with

its end points in My x 0, then a can be lifted to a path in B with its end points

in My. Since ity(Mf) -» Uy(B) is an epimorphism, we can deform 5, with end points

fixed to a path in My. This deformation covers a deformation of a, with end points

fixed, to a path in My. Thus ity(My)-*Tty(B) is an epimorphism. For the excep-

tional case where M is the projective plane, M is a 2-sphere and 1 is null-homotopic.

Then Ä separates M x I into two components, which are easily seen to be cells,

each of which covers P. Then xiMf) = xiB) = 1, and ny(B) is trivial. In any case

we can apply theorem (3.4) to the pair (M,,P) (note that M, is not a projective

plane) and this concludes the proof.

6. The unknotting of arcs. Our first theorem in this section is also the main

result of the section. It gives a condition for the simultaneous unknotting of a

family of arcs in M x I. The theorem states that a certain condition on a mapping

of the fundamental group of M x {0} less the initial points of the arcs is both

necessary and sufficient for the unknotting. There is no reason to prefer M x {0}

in the statement of the theorem. If t, 0 ;£ t z% 1, is any number such that the surface

M x {r} intersects each arc in one point, the same condition on the fundamental

group of M x {t} less these points is also both necessary and sufficient.

Another remark we might make is that we restrict M to be connected only for

convenience in the statement of the theorem. One may allow M to be non-

connected and replace the condition on the fundamental group by a condition on

the fundamental group of each component, or by an hypotheseis about defor-

mations of loops.

(6.1) Theorem. Lei M be a compact connected 2-manifold, and leta¡,j = l,---,n,

be a finite number of pairwise disjoint simple arcs regularly embedded in

M x I. We suppose a/i) £ int(M x {i])for i = 0,1. //

7iy(M x {0} - (j a, (0)) -> ny(M x I - (j a//))
J = i J«i

is onto, then there exists a homeomorphism h of M x I onto itself such that

hip,0)   = (p,0), peM,

h(P,t)   = O,0, pedM,   tel,

h(a.j(t)) = (pj,t) wherea/0)=(pj,0), j = l,-,n.
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Proof. The arcs a,- have arbitrarily small tubular neighborhoods in M x I,

in fact by Whitehead [10], we may choose the second regular neighborhood

in a sufficiently fine subdivision of M x 7. Thus there exist pairwise disjoint

disks Dj about p¡ in the interior of M and an embedding k : |J "= yD x I -► M x 7

so that

k\DjX0 = identity,

k(pj,s) = o,(s),

k(Dj x {1}) cz int(M x {1}),

k(DjX (0,1)) cz (intM)x(O.l).

We further define k \ M x 0 U (dM) x 7 to be the identity map. Our only

problem now is to extend k over M x I and ft = k~1 is as desired.

Let N = M - \J"=yint(Dj), and let B = M x 7 - k(\J"=yint(Dj) x I). Then
k | JV x 0 U(cW) x 7 is a homeomorphism onto a proper subset of dB. We extend

it to all of JV x 7 by Theorem (3.4). To apply Theorem (3.4) we must show that

X(N) â X(B), and that ny(N x {0}) -♦ 7iy(B) is onto. (Clearly B is a Poincaré

manifold and JV is not the projective plane.) If JVt = M x I — k(\^J"=yintDj x 1)

then x(N) = x(Ny), and by considering the double of B we see that 2x(B)

= l(N) + x(Ny). Thus x(N) = x(B). On the other hand, the pair (B,JVx{0}) is a

strong deformation retract of the pair((M x 7) - \Jj"m y«j(I),(M x {0}) - \J¡ I y0i,(0)).

Thus by hypothesis we have rty(N x {0}) -> ny(B) is onto. We may now use (3.4)

to extend k over JV x 7 and hence over M x I. This completes the proof.

As we claimed in the introduction this yields the classical result that a simple

closed curve X in S3, the 3-sphere, is unknotted provided the fundamental group

of its complement is infinite cyclic. To see this pick a tubular neighborhood of X

and remove the interior of the part of the tubular neighborhood around a segment

of X. That is, we remove the interior of a closed cell from S13. We are left with

a closed cell, that is D2 x I where D2 is a closed disk, and an arc a regularly em-

bedded in D2 x 7 going from (p,0) to (p, 1) where p is some interior point of D.

Then X is unknotted if and only if we can find a homeomorphism of D2 x I onto

itself, leaving d(D2 x I) pointwise fixed and carrying a to {p} x 7. It is enough,

however, to find a homeomorphism which leaves D2 x {0} KJ(dD2) x I pointwise

fixed and carries a to {p} x 7. For then one can force it to leave D x {1} pointwise

fixed also. Thus we are in a position to apply Theorem (6.1), and we conclude

that X is unknotted if and only if the natural homomorphism of the infinite cyclic

group 7ty(D2 x {0} - (p,0)) to Tty(D2 x I — a) is onto. That is to say, using Van

Kampen's theorem, X is unknotted if and only if the "perpendicular loop"

p = dD2 x {0} generates ny(S3 — X). Since the homology class of p generates

Hy(S3 — X) in any case, X is unknotted if and only if Tiy(S3 — X) is infinite cyclic.

The situation for links however, is not so simple. If we replace X by a finite

number of pairwise disjoint loops, this has the effect of replacing a by a finite
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number of pairwise disjoint arcs. However a homeomorphism of D2 x I onto

itself which is the identity on (D2 x {0}) U((3D2) x /), and which maps the arcs

to product lines, cannot be forced to be the identity on D2 x {1}. To get an un-

knotting criterion for links some further hypothesis is necessary.

We now return to something postponed in §5, that is, the problem of unknotting

an annulus whose base curve is homotopic to a point. We state and prove an

unknotting theorem for a single annulus, it is clear from the proof that it extends

to a finite number of annuli.

(6.2) Theorem. Let M be a compact 2-manifold, X a simple, regularly em-

bedded loop in M which is null-homotopic, and let f:X x I ->M x I be a regular

embedding such that f\ Xx {0} is the identity, and f\X x {1} is a regular em-

bedding in M x {I}. Then there exists a homeomorphism h of M x I onto itself

such that

h\M x {0} U(<3M) x / =  identity,

hf(X(s),t) = iXis),t).

if and only if every path in M x I — /(Ax /) with its end points in Mx {0}—(Ax {0})

can be deformed over M x I — fiX x I), with end points fixed, to a path in

M x {0} -fiX x {0}).

Proof. As far as the necessity of the condition goes, it is obvious, and we shall

only prove the sufficiency.

The loop A is null-homotopic in M, so it is null-homologous in M. Thus M — X

has two components, whose closures we denote by JV and P. If neither JV nor P

were a 2-cell, then the homotopy class of A would be of infinite order in the funda-

mental group of each of these spaces, since A lies on the boundary of each. Then

by Van Kampen 's theorem A would not be null-homotopic in M. Let us choose

notation so that P is a 2-cell.

Let A =/(A x /), we claim that A disconnects M x I. For otherwise we could

choose a path in M x I — A joining a point of int/V x {0} to a point of intP x {0}.

By our hypothesis this path could be deformed, with end points fixed, to lie in

M — Xx {0}, an obvious contradiction. Let the closures of the components

of M x I — A be denoted B and C, B containing JV x {0}. By our hypothesis

both 7i,(JV x {0}) ->■ 7T,(B) and nfiP x {O})-^^) are onto. Further xiM x I)

= xiB) + x(C) and xiM) = X(N) + x(P). Thus either Z(JV) ̂ xiB) or Z(P) = Z(C).

Suppose that xiN) = xiB)- Then by (3.4) B is homeomorphic to JV x / and hence

XiN) = xiB) and Z(P) = X(C). Similarly if Z(P)^(C).

Consider the mapping k from M x {0} U (ôM) x / U A x / into M x I de-

fined by

k\M x {0} KJiôM) x I = identity,

fc(A(s),0 = fiXis),t).
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We have that JV, B, k\N x {0} \J(8N) x I and P, C, k\P x {0} U(dP) x I

satisfy all hypotheses of (3.4). Thus we can extend k to a homeomorphism of

M x I onto itself, and ft = k~l is as desired. The proof is complete.

In the above proof we see that C is homeomorphic to F x 7, a 3-cell. Thus

there is a 3-cell C in M x I whose boundary is A U(F x {0}) U(C O M x {1}).

Now the existence of this cell does not depend on the deformation hypothesis

of (6.2), but only on the fact that X is null-homotopic. For consider the disk

A U(F x {0}). It is not hard to see that this disk separates M x 7, let the closures

of the components of its complement be B and C, C containing F x {0}. We assert

that C is a cell. First Tty(M)^jty(M x7)^re1(BU(Fx {0})) * 7iy(C), and the

map Uy(B U(F x {0})) -> Uy(M x I) is onto since even ny(M x {0}) -*Tty(M x I)

is onto. Thus ity(C) = 1, it follows that Cr\M x {1} has no nontrivial loops,

i.e. that it is a disk. Thus dC is a 2-sphere and we conclude that C is a 3-cell since

M x 7 is a Poincaré manifold. Thus we can extend / to a homeomorphism

h:Px I->M x I so that ft|Px {0} = identity and h(P x {1}) <= M x {1}. For

any such extension, and any point p in int(F) we refer to ft({p} x 7) as a core of

f(X x I). Then we have

(6.3) Theorem. Let M, X and f be as in (6.2), but do not assume the defor-

mation hypothesis. Then the conclusion still holds provided f(X x I) has an

unknotted core; that is a core h({p} x I) which satisfies the hypotheses of (6.1).

Proof. We need only note that in the proof of (6.1) we can choose h(P x I)

as the tubular neighborhood of ft({p} x 7).

This last result may be paraphrased by saying that a null-homotopic annulus

in M x 7 is unknotted if and only if it bounds an unknotted piece of rope.

We may expand or contract C slightly, by using a tubular neighborhood of

f(X x I) in M x I, without changing whether or not f(X x I) is unknotted. Thus

we may use f({p} x 7) as a representative core for f(X x I), where p is any point

on X. Putting this together with (6.1) we get the last theorem of this section.

(6.4) Theorem. Let M be a compact connected 2-manifold, X a null-homotopic

simple loop on M. Let f:XxI-+MxI be a regular embedding so that

f(Xx {1}) is regularly embedded in Mx {1}, and f(X(s),0) = (X(s),0). Then

there exists a homeomorphism ft of M x I onto itself so that

h\M x {0} KJ(8M) x I = identity,

hf(X(s),t)   = (X(s),t),

if and only if for some point p in X, the homomorphism

Ky(M x {0} - (p,0))^7iy(M x I -f({p} X I))

induced by the inclusion map is onto.
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7. The unknotting of M. In this section we shall consider the unknotting

of M in M x I. The case where M is a 2-sphere is essentially Alexander's theorem.

The case where M is a torus was first solved by C. H. Edwards, and more recently

he extended this to all compact, nonbounded manifolds [2]. Our proof makes

no distinction between the bounded and the nonbounded case, so it provides

a new proof of Edwards' theorem. According to our Theorem (3.4) the proof is,

with the exception of M a projective plane, almost entirely algebraic. The next

theorem is the algebraic heart of the unknotting theorem.

(7.1) Theorem. Let M, N be compact, connected, 2-manifolds with homeo-

morphic boundaries, and let f:N ->M x / be a regular embedding such that

/(JV) separates M x {0} from M x {1}. Denote the closures of the components

of M x I -/(JV) by C0 and C,, Cjzz> M x {j}. Then we have

(0    XÍN)^XÍM).
(ii)   IfN = M then 7iyifiN))->nyiCf) is a monomorphism for j = 0 andforj = l.

(iii) IfxiN)<xiM) then nyifiN))->7iyiCf) cannot be a monomorphism for

both j = 0 and j = 1.

(iv) IfnyifiN))-*nyiCj) is a monomorphism for both j = 0 and for j = 1 then

7ti(/(7V))-»-7r1(CJ) is an isomorphism in both cases.

Proof. We start by proving (iv). If both maps are monomorphisms then by

Van Kampen nf(M x I) ^7tt(C0) *„,(/(ív)) ̂(C,). Thus the maps rtyiCf) -> nffM x I)

are monomorphisms. They are also epimorphisms since the composition

KyiM x {j}) -> TtyiCf) -* TiyiM x I) is an epimorphism. Using the theorem

quoted from Hall [4, p. 314], which appears just before Proposition (2.5), it is

immediate that 7r,(/(iV)) -* nfiCf) is an epimorphism for 7 = 0,1. Notice that

(iii) follows now since we may further conclude that

UyifiN))  S 7tyiC0)  S  7T,(M   Xl) = TlyiM)

and this cannot happen if/(JV) < xiM).

We prove (i) and (ii) simultaneously, by supposing that /(TV) ¡g xiM) and

showing 7t,(/(A0)-*-7r,(C;) is a monomorphism for both j = 0 and j = 1. It

then follows as above that /(JV) > xiM) is impossible, so /(JV) ^ xiM). The

proof is in two cases according as M is orientable or not.

Case I. M is orientable, and suppose that 7t,(/(JV)) -> ny(C0) is not a mono-

morphism. Then according to the loop theorem [9], there is a regularly embedded

disk D ezz C0 with its boundary a regularly embedded, non-null-homotopic loop

in f(N). We thicken D and remove its interior; that is find an embedding

g: D x [- 1, 1]-+C0 so that

g((int£>)x [-1, l])cint C0,

giidD)x[-l, l])cint/(N),

gid,0) = d    all deD,
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Now let

F = (f(N) - g((8D) x [ - 1, 1])) Ug(Dx{- 1}) U g(D x {1}).

Then /(F) = /(/(JV)) + 2 > /(/(JV)), and we claim that F also separates

M x I. Suppose to the contrary that there is a path « from M x {0} to

M x {1} not meeting P. On the one hand, the intersection number of a with

/(JV) must be odd since a starts in one component of the complement of/(JV)

and ends in the other. On the other hand, a meets f(N) only in points of

g((dD) x [ — 1, 1]) since aOF=0. But a starts and ends outside the cell

g(D x [ — 1, 1]) so a has even intersection number with its boundary, and

meets its boundary only in points of g((dD) x [— 1, 1]). This contradiction

shows that F still separates M x {0} from M x {1}.

Now F may be connected or not, we claim that one of the components of

P separates M x {0} from M x {1}. Suppose then that F has two components

Py and P2, and that F2 does not separate M x {0} from M x {1}. We consider

first the case where dM = 0, and embed M x I in R3 (possible since M is

orientable). Then Py and F2 separate R3 since they are homology cycles, and

hence boundaries. Let £ be the component of R3 — P2 which contains both

M x {0} and M x {1}. Since F separates M x {0} from M x {1}, Py lies in £

and separates M x {0} from M x {1} in £. But then Py separates M x {0} from

M x {1} in R3 and hence in M x 7.

Now suppose 3JV7#0. Since M, N and hence F have homeomorphic bound-

aries, for each boundary component C¡ of M there is a boundary component C\ of P,

so that C[ separates C¡ x {0} from C¡x{l}in C¡x7. We "close" M by attaching a

disk D¡ to each boundary component Ct. We also close F by attaching to each C[ a

disk D[regularly embedded in D¡ x I and separating D¡ x {0} from D¡ x {1}. Using M*

and F* to denote the "closures" of M and P, we have that P* separates M* x {0}

from M* x {1} in M* x 7. By the nonbounded case it follows easily that P*

separates M* x {0} from M* x {1}. If a is an arc in M x I joining M x {0}

to M x {1} then a must meet Py. But P*r\M x I - Py so a meets Py. Thus

Py separates M x {0} from M x {1} in M x 7. In particular dP = dPy.

We claim next that x(Pi) > x(N). For dP2 = 0 and F2 is not a 2-sphere since

SO is not null-homotopic in /(JV). Thus /(P2) £ 0 and /(JV) </(£) = / (F^)

+ x(^2) û x(Pù ■ Thus in any case some component Py of P, having greater

characteristic than that of JV, separates M x {0} from M x {1}. Since the

characteristic has actually gone up, we may argue by induction on /(JV), that

the fundemental group of Py maps monomorphically into the fundamental groups

of each of its complements. Applying (iv) now we conclude that ny(Py) is iso-

morphic to Uy(M) so Py is homeomorphic to M. But /(JV7) = /(JV) < /(Fx)

which is a contradiction. This contradiction finishes the orientable case.

Case IL M is not orientable. In this case we use the same type of argument

that we have used several times already. That is, we pass to an orientable double
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covering of M and of M x I. The points over f(N) form an orientable double

cover of f(N) and also separate. Then the maps of the fundamental groups in

the covering are monomorphisms by Case I, so those of tiy(f(N)) into Tiy(Cf)

are also monomorphisms. This concludes the proof.

(7.2) Theorem. Let M be a compact 2-manifold, f: M -* M x / a regular

embedding such that f(M) separates M x {0} from M x {1}. Then there exists

a homeomorphism h of M x I onto itself such that hf(m) = (m, 1/2) for all

m £ M.

Proof. We note first that M and M x I have the same number of components,

so / maps components of M one-to-one to components of M x /. If M, and Mj

are components of M, and f(M) ezz M} x I, then by (7.1) part (i) we have that

XÍM) — xiMj). Since this is true for every M, we must have xiM) = xiMf),

that is, M, and M¡ are homeomorphic. From this we may, and shall, assume

that M is connected.

Let the closures of the two components of M xI—f(M) be C0 and Cy,C¡ezzMx {i}.

According to (7.1) parts (ii) and (iv) the maps Tty(f(M))-*7ty(Cf) are onto for

j = 0, 1. Moreover /(M) - /(C0) + /(C,) - xifiM)), so either xifiM)) ^ *(C0)

or xifiM)) ^ xiCf). Suppose xifiM)) ^ *(C0). Define a map k:M x {l/2}-><3C0

by kim, 1/2) =/(m). Extend k to a homeomorphism of <3(M) x [0, 1/2] onto

C0 n(((3M) x /) which can be done since each component is an annulus.

Case I. Suppose M is not the projective plane. Since C0 ezz M x I it is a

Poincaré manifold so we may apply (3.4) to extend k to a homeomorphism

of M x [0, 1/2] onto C0.

In particular this shows that xifiM)) = x(C0) so xifiM)) = /(C.) also. We

may apply (3.4) again to extend k to a homeomorphism of M x [1/2, 1] onto

C. so as to carry M x {1} onto M x {1}. The inverse of this total extension

is the homeomorphism h as desired.

Case IL M is the projective plane. Choose a simple loop A on M which

generates the fundamental group and such that A x / is in general position with

respect to /(M). Then (A x I)r,f(M) is a finite number of pairwise disjoint

simple loops. Since (A x I)r,f(M) disconnects A x {0} from A x {1}, by (2.2)

at least one of these loops, say Xy, separates A x {0} from A x {1}. Then Xy

is not null-homotopic in M x I, and hence Xy is not null-homotopic on f(M).

On the other hand, two non-null-homotopic loops in a projective plane must

intersect. Thus if X, is any other loop in/(M)n(A x /), we must have that X,

is null-homotopic on both f(M) and on A x /. Thus each X, ^ Xy bounds disks

D and D' on f(M) and Xx I respectively. Choose X, so that the disk D it bounds

on f(M) contains no other points of A x /. Replace A x / by (A x / — D') U D,

and by a small motion in a neighborhood of D we get a new annulus A' such

that A ' nf(M) = ((XxI) nf(M)) - X, and A ' n M x {j} = X x {j} for j=0,1.



1966] UNKNOTTING IN M* X / 505

Continuing in this way we arrive at an annulus A in M x I such that A r\f(M) = Xy

and AnM x {j} = X x {/} for j = 0, 1. According to (5.2) there is a homeomor-

phism g of M x 7 onto itself such that g(^4) = X x 7.

To prove that k can be extended it is sufficient to prove that C0 and Ct are

homeomorphic to M x 7, equivalently that g(C0) and g(C,) are homeomorphic

to M x 7. But if we cut M x I apart along X x I we get JV x 7, where JV is the

disk that results from cutting M apart along X. Furthermore this cuts gf(M)

apart along g(Xy), the result is a disk regularly embedded in JV x 7 and satisfying

the hypotheses of this theorem. According to Case I, the result of cutting g(C0)

apart along Xx lng(C0) is a cell. Thus if we extend gk over X x [0, 1/2] to

a homeomorphism onto X x I n g(C0), we can further extended it to a homeo-

morphism of M x [0, 1/2] onto g(C0). Similarly g(Cy) is homeomorphic to

M x land the proof is complete.
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