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1. Introduction. Let M be a connected 2-manifold in E3 and let V be one of

the components of E3 — M. We say that M can be locally spanned in V if and

only if for each point peM and for each positive number e there is an e-disk R

in M such that peint R and for each positive number a there is an £-disk D in

V and a homeomorphism of Bd R onto Bd D which moves points no more than

a distance a. Burgess raised the following question when he proved that M is tame

from V if M can be uniformly locally spanned in V [11, Theorem 13].

Question. Is M tame from V if M can be locally spanned in VI

We define M to be tame from V if M + V is a 3-manifold with boundary.

Although we do not answer the above question, it provided the motivation for

most of the results in this paper. An affirmative answer to the question would

remove the uniform condition from the hypothesis of Theorem 13 of [11].

If in addition to the conditions of the above definition we also require that the

boundary of R be tame, then we answer the above question in the affirmative

(Theorem 5). The hypothesis that Bd R is tame seems less restrictive in view of

the fact that for each peM there is a nested sequence of disks in M such that p

is their intersection and each disk has a tame boundary [6, Theorem 1]. Theorem 5

is a special case of Theorem 4. Theorems 2 and 4 depend on Theorems 1 and 3,

respectively. The proofs given for Theorems 1 and 3 are similar, but the proof

for Theorem 1 is less complicated. It is for this reason that Theorems 1 and 2

precede Theorems 3,4, and 5. Although we shall state our definitions and theorems

for surfaces in E3, similar results can be obtained for 2-manifolds in a 3-manifold.

To see how this can be done, see §6 of [11].

Theorems 2, 5, and 7 of this paper and Theorems 8 and 13 of [11] are related

to the above question. Using results in [17], we are able to modify the proofs of

some of these theorems to give sufficient conditions for certain closed subsets

of 2-spheres to lie on tame 2-spheres. An indication of the nature of these modi-

fications is given in §5.
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For each 2-sphere S in E3, for each pe S, and for each positive number e,

there is a 2-sphere 5" of diameter less than e such that p is contained in the interior

of S'. In §6 we give an additional condition on S n S' which implies that S is

tame. Harrold [14] proved that S is tame provided S1 n S' is a simple closed

curve with an additional requirement which, as proved earlier by Harrold, Griffith,

and Posey [15], is equivalent to the requirement that SC, S' be tame. Burgess

[11, Theorem 8] later showed that S is tame without requiring that the simple

closed curve S O S' be tame. Theorem 12 shows that S is tame if we impose the

additional requirement that 5 n 5" is a continuum satisfying Property

(*,Sn S',S), which is defined below. Theorem 12 does not include the result

proved by Burgess because a simple closed curve J must be tame to satisfy Prop-

erty ( * , J, S) [13, Theorem 10]. In fact 5 n 5' must be tame (that is, S O 5"

must lie on a tame 2-sphere) if Property (*, Sn 5", S) is satisfied [17, Theorem 6].

However in view of the result by Harrold, Griffith, and Posey [15] mentioned

above and in view of Gillman's result [13] that a tame simple closed curve J on

S satisfies Property ( * , J, S), Theorem 12 does include Harrold's result, and it

allows S n S" to be more general than a tame simple closed curve. For example

S Ct S' can be a connected tame finite graph, a tame Sierpinski curve, or any

connected finite union of sets G which satisfy either of Properties ( * , G, S) or

( * , G) as defined below. In this connection, see Theorems 16, 17, 19, and 21 of

[17].
Most of the definitions and notation will be the same as in [5], [11], and [17].

We say that a simple closed curve J can be shrunk to a point in a set Y if each

homeomorphism / of the boundary of a disk D onto J can be extended to map

(continuously) all of D into Y. A 2-manifold M in £3 is tame if and only if there is

a homeomorphism h of E3 onto itself such that h(M) is a polyhedron. We define

a closed subset G of a 2-sphere in £3 to be tame if G lies on some tame 2-sphere

in£3.

Consider a closed subset G of a 2-sphere S in E3. Properties ( * , G, S), (A, G, S),

(A', G, S), and ( *, G) are defined in [17], but we repeat the definitions here because

these properties appear frequently in this paper. We use the prefix in "fi-disk,"

"£-subset," etc., to imply that the set in question has diameter less than e. A simple

closed curve is unknotted if it bounds a tame disk in E3.

Property ( * , G, S). It follows from Bing's Side Approximation Theorem

[8, Theorem 16] that for each component V of E3 — S and for each positive

number e there is a polyhedral 2-sphere S' containing a finite collection Dy,D2,-,D„

of disjoint £-disks, and there is a finite collection Ey,E2, --,Er of disjoint £-disks

on S such that

1. there is a homeomorphism of S onto S" that moves no point as much as e,

2. S' - T.D, c V, and

3. S ns' ezz LE¡.
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Property (* , G, S) holds if and only if the Side Approximation Theorem can be

applied in such a way that

4. (LE,) nG = 0.
Property (A,G,S). We define Property (A,G,S) to mean that for each positive

number s there is a positive number ö such that each ¿-simple closed curve in

E3 - S can be shrunk to a point in an £-subset of E3 — G.

Property (A',G,S). Property (A',G, S) holds if and only if for each positive

number e there is a positive number Ô such that each unknotted simple closed

curve of diameter less than ö lying in E3 — S is the boundary of a tame e-disk

in E3 - G.

Property ( * , G). The closed set G satisfies Property (* , G) if and only if each

2-sphere which contains G and is locally tame modulo G, is tame.

Property (* , G, S) insures that G is tame [17, Theorem 6], and each of Proper-

ties (A, G, S) and (A', G, S) is sufficient for G to be tame if the diameters of the

components of G have a positive lower bound [17, Theorems 10, 13, and 6].

We use these results several times in giving sufficient conditions for closed subsets

of spheres to be tame.

In several of the proofs which follow we use the concept of linking, relative

to simple closed curves, as defined by Bing in [2]. A proof for Lemma 1 can

be obtained using the results and definitions in § 9 of that paper. A proof of

Lemma 2 is given in [11, Lemma 1]. When we want to show that Property (A,G,S)

holds, we rely on Lemma 3, which is easily established. A proof for Lemma 4,

which is a generalization of a theorem proved by Bing [5, Theorem 5], can be

found in [11, Theorem 1].

Lemma 1. If J and K are simple closed curves which link in E3, then J

cannot be shrunk to a point in the complement of K.

Lemma 2. IfDy, D2, ■••,DHis a finite collection of disjoint disks in E3 and f is

a map of a disk K into E3 such that /(Bd K) c E3 — HD¡, then there is a map

g of K into E3 such that

1. g\BdK=f\BdK,
2. g(K) czf(K) + LlntD,, and

3. g(K) — LD¡ is connected.

Lemma 3. If G is a closed subset of a 2-sphere S in E3 such that for each

point peG and for each neighborhood N of p there is an open set U such that

peU and each simple closed curve in U — S can be shrunk to a point in N — G,

then Property (A, G, S) holds.

Lemma 4. Suppose M is a connected 2-manifold in E3, p is a point of M,

and V is a component of E3 — M. For each positive number s there is a disk

D in M and a 2-sphere S such that peint D, D c S, diam S < s, and D is on

the boundary of V C\ Int S.
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In this paper we consider connected 2-manifolds in E3 and use the fact that

each such manifold has exactly two complementary domains. If S is a 2-sphere,

we let Int S be the bounded component of £3 — S, and we denote the unbounded

component of E3 — S by Ext S. A connected 2-manifold M is tame if and only if

M is tame from each of its complementary domains [1], [3], [10], [18].

The set Y is locally simply connected at a point p of the closure of Y if for

each neighborhood N of p there is an open set U containing p such that each

map of a simple closed curve into U n Y is homotopic to a constant in N n Y.

Using [4, Theorem 2.1] and [5, Theorem 1], Burgess has established that a con-

nected 2-manifold is tame from a complementary domain V if and only if V is

locally simply connected at each point of the manifold [11, Theorem 4]. Many

of our proofs depend on this result.

If D is a disk, we let Int D = D — Bd D, where Bd D is the boundary of D.

Rather than writing "e is a positive number" we sometimes write "e > 0".

The symbol N(R, e), where P is a point set and c > 0, stands for the set of all

points that are within a distance £ of some point of P.

We use C1(P) to denote the closure of the set R, and we indicate that the dia-

meter of R is less than £ by writing "diamP < e". When we say that / is a map

we mean that / is a continuous function.

2. Local spanning around arcs. We say that a connected 2-manifold M can be

locally spanned in a complementary domain V around arcs if and only if for

each £ > 0 and for each arc A in M there is a disk R in M such that A c Int P,

P ez N(A,s), and for each positive number a there exists a disk D in V so that

D ezz N(A,e) and BdP can be shrunk to a point in JV(BdP,a) + D. If U is an

open set in M, we say U can be locally spanned in V around arcs if the above

conditions hold for each arc A in U.

Theorem l.IfV is a complementary domain of a 2-sphere S in E3, U is an

open subset of S, and U can be locally spanned in V around arcs, then V is

locally simply connected at each point of U.

Proof. Let p be a point of C7, let N be a neighborhood of p such that S — N #0,

and let K be a disk in U such that p e Int K cz K c N. Let O y be an open set

in JV such that peOy and O y n S lies in Int K. It follows from Theorem 4.1 of

[9] that we can find an open set 02 in O y such that pe02 and for each map of

Bd K into 02 C\V there is a Cantor set C on S so that the map can be extended

to map K into Oyt~\V + CC\Oy. Let / be a map of Bd K into 02C\V and extend / to

map K into OyC\V + CC\Oy, where C is some Cantor set on S. We also use /

to denote the extension of /.

There is an arc A in Int K such that A contains O, O C [19]. Let X be an arc

from a point b in /(Bd K) to a point q in S — N so that X — q <= V. Choose

a positive number £ subject to the the following restrictions:
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(1) e<p(K,X).

(2) s < p(Bd N, K).

(3) a < p(/(Bd K), S).
Using the hypothesis, we let R be a disk on S such that A c Int R, Rcz N(A, e),

and for each positive number a there is a disk D in V such that D cz N(A, ¡;) and

Bd R can be shrunk to a point in iV(Bd R, a) + D. Let c be a point of A, and let Z

e an arc from c to q so that

(4) Z-(c + q) czE3 - (S + V).

Choose a positive number a such that

(5) a < p(Bd R,f(K) + Z + X + A).

Let D be a disk in V such that D <zz N(A, s) and Bd R can be shrunk to a point in

N(BdR,ot) + D. Since DczN(A,e), it follows from (3) that /(Bd K) n D =0.

This permits us to use Lemma 2 to obtain a map g of Ji into E3 such that

g\BdK =f\BdK, g(K) cz f(K) + Int I», and g(K) - D is connected.

Itis our contention that g(K) cz N n K First we show g(K) cz JV. From yl cX,

D czATL4,6), and (2), it follows that D czN. Since f(K) cz Oy, we know

f(K) cz N. Then g(K) c N follows from g(X) <=/(K) + Int D.

Now we show that g(K) <= K Since g(X) is connected and intersects V, g(K)

will lie in V provided g(K) does not intersect S. Suppose g(K) does intersect S.

Since O c F it follows that the connected set g(K) — D intersects S. There is an

arc Y from & to a point d in A such that Y cz g(K) — D and Y — d cz V. Let W

be the arc in A from c to d.ln X + Y + Z + W there is a simple closed curve L

which contains W + Z and a subarc of 7 which contains d. Then L links Bd R

[7, Theorem 3.3], so Bd R cannot be shrunk to a point in the complement of L

by Lemma 1. This means that L must intersect either D or N(Bd R, a). It follows

from (1) and (4) thatD does not intersect X + Z. Since W cz S, D does not inter-

sect W; and Y cz g{K) — D. Then D does not intersect L. It follows from (5) that

L n N(BdR,a) = 0, so we have a contradiction. Hence g(K) cz V.

Thus g(K) cz N n F, so that K is locally simply connected at p. It follows that

V is locally simply connected at each point of £7.

Theorem 2. If M is a connected 2-manifold in E3, V is a component ofE3 — M,

and M can be locally spanned in V around arcs, then M is tame from V.

Proof. Let peM. From Lemma 4 we obtain a disk K in M and a 2-sphere S

such that p e Int K cz S and K is on the boundary of V n Int S. We will show

that Int K can be locally spanned in Int S around arcs. For this purpose we let A

be an arc in IntiC and let e > 0. We assume that e < p(A, S — K). From the

hypothesis it follows that there is a diskR in M such that A cz Int R, R cz N(A, e),

and for each a > 0 there is a disk D in V so that D cz N(A, s) and Bd R can be
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shrunk to a point in AT(Bd P, a) + D. From our choice of e, R ezz Int K. We will

choose a > 0 so that if D is chosen as above relative to this a, then D ezz Int S.

This will show that Int K can be locally spanned in Int S around arcs, and it will

follow from Theorem 1 that Int S is locally simply connected at points of Int K.

Then V will be locally simply connected at p, and Theorem 2 will follow from

Theorem 4 of [11].

Since K ezz Bd (V n Int S), we may choose a so Cl(/V(Bd P, a)) n V <zz Int S.

We also choose a so Bd P cannot be shrunk to a point in N (Bd P, a), so that

£> O Cl ((Bd P, a)) # 0. Then D n Int S # 0. Since Z) c JV(¿, e) and Z> e V,

D HS = 0. Then £> <= IntS.

3. Local spanning on tame simple closed curves. Let p be a point of a con-

nected 2-manifold M and let V be a component of £3 — M. Then M can be

locally spanned at p in V on tame simple closed curves if and only if for each

positive number £ there is an E-disk P on M such that pelntP, BdP is tame,

and for each positive number a there is an E-disk D in V so that Bd P can be

shrunk to a point in A/(Bd P, a) + D. If U is a subset of M, we say that U can be

locally spanned in V on tame simple closed curves if the conditions of the above

definition are satisfied for each pel/.

Theorem 3. IfV is a complementary domain of a 2-sphere S in E3 and U is

an open subset of S such that U can be locally spanned in V on tame simple

closed curves, then V is locally simply connected at each point ofU.

Proof. Let peU, and let AT be a neighborhood of p so that S — N / 0.

Let K be a disk in U such that p e Int K and K ezz N. Let O y be an open set such

that Oy nS ezz IntK, peO., and Oy c N.

We apply Theorem 11 of [17] to obtain an open set 02 such thatif / is a map

of Bd K into 02 n V and if F is a closed subset of 5 satisfying Property ( *, F, S),

then / can be extended to map K into Oy - F so that f(K)nSezz L//¡, where

//., H2, ■■-, H, is a finite collection of disjoint disks in (Oy n S) — F.

Let / be a map of Bd K into 02 n K. For convenience we assume V= Ext S.

There is an arc X from a point b in /(Bd X) to a point q in S — N so that

X - q ezz Ext 5. We choose a positive number e so that

(1) 3e< p(K,X),

(2) 3 £ < p(Bd N, K), and

(3) 2E<p(f(BdK),S).
For each point reK, we let Pr be an £-disk on S so that r e Int Pr, Bd Pr is

tame, and for each a > 0 there is an £-disk Dr in Ext S such that Bd Pr can be

shrunk to a point in N(Bd Rr, a) + Dr. Since K is compact and {Int Pr} is an

open cover for K, there is a finite subcollection P,, P2, ••• , P„ of the P^s so

that K ezz Z Int R,.

Corollary 1 of [12] shows that Property ( * , Bd R) is satisfied for each i,
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since Bd R¡ is a tame finite graph. Let F = 1 Bd R¡. It follows from Theorem

17 of [17] (or from Theorem 8.3 of [9]) that Property ( * , F) is satisfied. Then

from Theorem 16 of [17] we have Property ( * , F, S) satisfied.

Using the definition of 02, we extend / to map K into Oy — F such that

f(K) n S czlHi, where Hy, H2 , •■■ , Ht is a finite collection of disjoint disks

in ((Oy r\S) — F). Now we apply Lemma 2 to obtain a map g0 of K into E3

such that g0\Bd K =fi g0(K) czf(K) + l Int Ht, and g0(K)-l H, is connected.

The following conditions are easily verified:

(4) g0\BdK=f.

(5) go(K)nF=0.
(6) g0(K) n S cz Z H¡ cz Oy n S cz Int K .

(7) g0(K) cz O, O (K + Ext S) cz AT n (K + Ext 5).

We will make n successive adjustments on the map g0 to obtain a map gn of

K into N n Ext S such that g„ | Bd K =/. For each i, let R'¿ be a disk in Int

R¡ so that R¡ n g0(X) aes ¡n Ri • Condition (5) allows us to do this. Let c¡ be

a point in R'¡, and let Z, be an arc from c¡ to q so that Z; — (c¡ + g) cz Int S.

Then R\, c¡, and Z¡ are defined for each i such that 1 ^ iÏ :£ n.

Let <xx be a positive number such that

(8) <*! <p(BdR1,g0(X) + Z1 + X + R[)and

(9) <x¡ < e.

Let Dy be an e-disk in Ext S so that Bd Ry can be shrunk to a point in

JV(Bd Ry, uy) + Dy. Ftom (9), (4), and (3) it follows that g0(Bd K)czE3 - Dx;

hence we can apply Lemma 2 to obtain a new map gy of K into £3 so that

gy | Bd K = go | Bd K, f^JQ cz g0(K) + Int D¡, and g^K) - Dy is connected.

Since g0(X) lies in K + Ext 5" it follows that gy(K) cz K + Ext S*.

We continue this procedure inductively, defining a finite collection of positive

numbers txy, <x2, ct3, ■•• , a„; a finite collection of disks jD1s D2, ■■■ ,D„; and a

finite sequence of maps g0, gx, •■• , g„ such that g¡ takes K into K + Ext S and

the following conditions hold for each ¡(1 ^ i ^ n) :

(10) a, < e .

(11) Kj < p(Bd R.^g.-^K) + R¡+ Z; + X).

(12) D.-cExtS.

(13) diamD¡<£.

(14) Bd R¡ can be shrunk to a point in N(Bd R¡, a¡) + Z)¡.

(15) gi\BdK = gi-y\BdK=f.
(16) ft^czft.^iO + Int^.

(17) g¡(K) — D¡ is connected.

It is our contention that for each i (1 < i ^ n), g¡(K) does not intersect R¡.

Suppose gj(K) intersects Rj, where 1 —^ j ^ n. Then g/X) — D¡ must intersect

7?j-, from (12) and the definition of R). Since g¡(K) — Dj is arcwise connected,

we let Y j be an arc in gj(K) — D} from the point b in g0(Bd K) to a point i/,- in

R'j. Since g/X) - Dj cz S + Ext 5, we may choose F) so that
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(18) Yj - dj ezz(S+ Ext S) - (Rj + Df).

It follows from (16) and the fact that Yj ezz gj(K) - D¡ that

(19) Y}ezzgj_y(K).

Let Wj- be an arc in Pj from c} to d¡. Now X + W¡ + Yj + Z¡ contains a simple

closed curve L which links Bd R¡ [7, Theorem 3.3]. From (11) and (19) there can

be no point of L in N (Bd R¡, af). Obviously Z¡ + W¡ + Y¡ does not intersect D»;

and from (10), (14), (13), and (1) we see that X cannot intersect Dj. Then L does

not intersect D¡. From (14), Bd Rj can be shrunk to a point in the complement

of L, but this contradicts Lemma 1. Hence g,(K) does not intersect R, for each i

such that 1 = i i% n.

From (16) and (12) we know that g,(K) n S c g,-yiK) n S. Then it follows

from the preceding paragraph that g„iK) does not intersect LP¡. From (6) and

the fact that K ezz £P¡, we see that g„(K) does not intersect S. Since g„(Bd K)

lies in Ext S, it follows that g„(K) c Ext S.

Each point of R, is within £ of K so it follows from (10), (13) and (14) that each

point of D, is within 3e of K. Then from (2) we have D, <zz N (I = i z% n). From

(16) and (7) we see that g„(K) ezz N. Since we have shown that f = g„\ BdK,

f can be shrunk to a point in Af n Ext S. This shows that Ext 5 is locally simply

connected at p and consequently at each point of U.

Theorem 4. If M is a connected 2-manifold in E3 and V is a component of

E3 — M such that M can be locally spanned in V on tame simple closed curves,

then M is tame from V.

Proof. Let pe M. From Lemma 4 we obtain a disk K in M and a 2-spherc S

such that p e Int K ezz S and K is on the boundary of F O Int S. We will show that

Int K can be locally spanned in Int S on tame simple closed curves. For this

purpose we let q e Int K and let £ be a positive number. We assume that

2e < p (q, S — K). From the hypothesis it follows that there is an E-disk P in M

so that q e Int P, Bd P is tame, and for each a > 0 there is an E-disk D in V so

Bd P can be shrunk to a point in N (Bd P, a) + D. It follows from our choice of

e that R ezz Int K. We will choose a positive number a so that a disk D chosen

as above relative to this a will lie in Int S. As in the proof of Theorem 2, we restrict

a so that D must intersect Int S. We also require that a < e so some point of D is

within £ of P. Then Dis in N (R,2e); hence D ezz Int S. Thus Int K can be locally

spanned in Int S on tame simple closed curves.

It follows from Theorem 3 that Int S is locally simply connected at each point

q eInt K. Then V is locally simply connected at each point pe M, and we apply

Theorem 4 of [11] to see that M is tame from V.

Theorem 5. If M is a connected 2-manifold in E3, V is a component ofE3 — M,

and for each p £ M and for each £>0 there is ans-disk R in M such thatpelntR,

Bd P is tame, and for each positive number a there is an E-diskD in V and a horneo-
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morphism ofBdR onto Bd D which moves no point as much as a distance a,

then M is tame from V.

Proof. Theorem 5 is a corollary of Theorem 4. To see this we observe that if

there is a homeomorphism h of the simple closed curve Bd R onto the simple

closed curve Bd D such that h moves no point as much as a, then Bd R and Bd D

are homotopic in N(BdR, a).Then Bd R can be shrunk to a point in JV (Bd R, oe) +D.

Remark. We state Theorem 5 so that the relation between Theorem 4 and the

question in §1 is more apparent. Theorem 4 falls short of answering that question

only because of the hypothesis that Bd R is tame.

4. Local spanning missing Cantor sets. Let p be a point of the connected

2-manifold M in £3 and let F be a component of E3 — M. We say that M can be

locally spanned at p in V missing Cantor sets if and only if for each s > 0 and

for each Cantor set C in M there is an e-disk R in M such that p e Int jR,

Bd R n C = 0, and for each a > 0 there is an £-disk D in V so that Bd R can be

shrunk to a point in JV (Bd JR, a) + D. If U is a subset of M we say that U can be

locally spanned in V missing Cantor sets if the conditions of the above definition

are satisfied for each peU.

Theorem 6. If V is a complementary domain of a 2-sphere S in E3 and U is

an open subset of S such that U can be locally spanned in V missing Cantor sets,

then V is locally simply connected at each point ofU.

Proof. Let peU. We assume for convenience that V = ExtS; then define JV,

K, Oy, 02, / and C just as in the proof of Theorem 1. We select points b and q

and construct an arc X as in the proof of Theorem 3. Now we choose a positive

number s satisfying Conditions (1), (2), and (3) of the proof of Theorem 3.

For each point r e K, we let Rr be an e-disk in S so that r e Int Rr,

C n Bd Rr = 0, and for each a > 0 there is a disk Dr in V so that Bd Rr can

be shrunk to a point in JV (Bd Rr, a) + Dr. Since K is compact we let Ry, R2, ■■■,R„

be a finite set of such e-disks so that K cz TiR¡.

If we let F = LBd R¡, we may follow the proof of Theorem 3, from the begin-

ning of the paragraph which contains Condition (4) to the end of that proof, to

complete the proof here.

Theorem 7. // M is a connected 2-manifold in E3 and V is a component

of E3 — M such that M can be locally spanned in V missing Cantor sets, then

M is tame from V.

Theorem 7 is established using Theorem 6 and the method given in the proofs

of Theorems 2 and 4.

5. Sufficient conditions for closed sets to be tame.   Let G be a closed subset
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of a 2-sphere S in £3 such that the diameters of the components of G have a

positive lower bound.

Theorem 8. If G can be locally spanned in each complementary domain of S

on tame simple closed curves, then G lies on a tame 2-sphere in E3.

Proof. We will indicate how the proof of Theorem 3 can be modified to show

that for each point peG and each neighborhood N of p there is a neighborhood

U of p so that each simple closed curve in U — S can be shrunk to a point in

N — G. It will then follow from Lemma 3 that Property (A,G,S) is satisfied.

Then we apply Theorems 10 and 6 of [17] to see that G lies on a tame

2-sphere.

Let peG, and let N be a neighborhood of p. Let K be a disk on S such that

peint K and K c N. Let Oy be an open set such that peOy, O y n S er Int K,

and Oy ezz N. Now we apply Theorem 11 of [17] twice, once relative to Ext S and

once relative to Int S, to obtain an open set 02 containing p (02 is the intersection

of the two open sets obtained from the two applications of Theorem 11 of [17])

such that iff is a map of Bd/C into 02 — S and if F is a closed subset of S satis-

fying (* ,F, S), then/can be extended to map K into O y — F.

Let / be a map of Bd K into 02 — S. Then we assume for convenience that

f(BdK) ezz Ext S. We choose b, q, X and e as in the proof of Theorem 3.

For each point reGC\K, we choose an £-disk Pr on S such that r e Int Rr,

Bd Rr is tame, and for each a > 0 there is an E-disk Dr in Ext S such that Bd Rr

can be shrunk to a point in N(BdPr,a) + Dr. We choose a finite subcollection

Ri,R2,--,R„ of these Pr's so that GnKezz I IntP;.

Now we follow the proof of Theorem 3, from the beginning of the fifth para-

graph to the end, to obtain a proof here. Of course the final map g„ of K will not

take K into N n Ext 5, but g„(K) will lie in N - G.

Theorem 9. If G can be locally spanned in each component ofE3 — S missing

Cantor sets, then G lies on a tame 2-sphere in E3.

Remark. The proof of Theorem 9 is a modification o the proof of Theorem 6;

hence we do not present a separate proof here.

Let p be a point of a 2-sphere S in £3, and let F be a component of E3 — S.

If for each £ > 0 there are disks P and D such that p e Int P c S, Int D ezz V,

Bd D = Bd P, and diam(Z) + R) < e, then S can be locally spanned at pfrom V.

Burgess proved that S is tame from V if S can be locally spanned at each point

of S from K [11, Theorem 8]. His proof may be modified to show that under the

hypothesis of the next theorem, Property (A, G, S) is satisfied, so that it follows

from Theorems 10 and 6 of [17] that G lies on a tame sphere. The modification

needed is similar to the modification of the proof of Theorem 3 which we indicated

in the proof of Theorem 8.
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Theorem 10. If S can be locally spanned at each point of G from each comple-

mentary domain of S, then G lies on a tame 2-sphere in E3.

6. A small sphere characterization of tame surfaces. In this section we give

a sufficient condition for a subcontinuum G of a 2-sphere in E3 to lie on a tame

2-sphere in E3. We rely on the result that G lies on a tame 2-sphere if Property

(A',G,S) holds [17]. Although we state our theorems for subcontinua of 2-

spheres, the results are also valid if G is a closed subset of a 2-sphere such that

the diameters of the components of G have a positive lower bound.

In the special case where G is S, we obtain a sufficient condition, which is also

necessary, for a 2-sphere to be tame (Theorem 12). Using the method illustrated

in §6 of [11], one can also characterize tame 2-manifolds in a 3-manifold with

this property.

Theorem 11. If S is a 2-sphere in E3 and G is a subcontinuum of S such that

or each point peG and for each z > 0 there is a 2-sphere S' such that p e Int S',

diam S' < e, and S n S' is a continuum satisfying Property (*,S C\S',S),

then G lies on a tame 2-sphere in E3.

Proof. Let peG and let JV be a neighborhood of p such that S — N # 0-

We will show the existence of an open set U containing p such that if J is an

unknotted simple closed curve in U — S, then J bounds a tame disk in JV — G.

Since G is compact it will follow, in a manner similar to the proof of Lemma 3,

that Property (A', G, S) is satisfied. Then Theorem 11 will follow from Theorems

13 and 6 in [17]. Let K be a disk on S such that p e IntX cz K cz N, and let O be

an open set containing p such that O n S cz Int K and O cz JV. Using O in place

of the "JV" of Theorem 12 in [17], we obtain from Theorem 12 in [17] an open

set U containing p such that if J is an unknotted simple closed curve in U — S

and F is a closed subset of 5 satisfying Property ( * , F, S), then J bounds a tame

disk in O — F. Let J be an unknotted simple closed curve in U — S. For con-

venience we assume J cz Ext S.

Choose a positive number e such that

(1) e<p(BdJV,X) and

(2) e<p(S,J).

For each q e G n K, we let Sq be a 2-sphere such that q e Int Sq, diam Sq < e,

and 5 O Sq is a continuum satisfying Property (* , Sq n S, S), and we let Rq

be the component of S — Sq which contains q. Since the collection {Rq} covers

the compact set K CiG, there is a finite subcollection Ry,R2, ■■■,Rn of the Rqs

such that KC\G cz 2ZR¡. We let SUS2, —,SB be the subcollection of the 5,'s

such that R¡ is defined relative to St. Let F¡ = S¡ n S, and let F = 2ZF¡. Since

Property ( * , F¡, S) is satisfied for each i, it follows from Theorem 21 of [17]

that Property ( * , F, S) also holds.
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Using the restrictions on U assured by Theorem 12 of [17], we let H0 be a tame

disk in O — F such that J = Bd//0. Since O d S ezz Int K we know that

H0 n S ezz IntK. We will define a finite sequence of tame disks H0,Hy,---,H„

so that Bd //„ = J and H„ ezz N — G. For notational convenience we define

S0 = Po = H-i = 0- The Hfs are defined inductively so that for each i,

(3) Bd H, = J,
(4) H, ezz N,

(5) H,ns,= 0,
(6) H, ns c/J,.] C\S, and

(7)//¡nEi=oPm = 0.

Conditions (3), (4), (5), (6), and (7) are satisfied if i = 0.

Now we assume that H, has been defined to satisfy Conditions (3) through (7)

for i =j — 1, where 1 ^ / rg n. With no loss in generality we may assume that

Hj_y is locally polyhedral modulo J, that Sj is locally polyhedral modulo Fj,

and that Sj — Fj and //,_! — J are in general position [2]. Since H0ezz 0 — F

and (6) is true for i á / — 1, it follows that H¡-, does not intersect Fj. Also from

(2), S'y does not intersect J; hence Hj-y n «S,- consists of a finite collection of

disjoint simple closed curves. Let Cj-y be the component of Hj_y — S such that

J cz Cj-y, and let Jy,J2,---,J, be the simple closed curves in CliCj-f) nSj.

No Jm intersects Fj and F} is connected, so Jm bounds a disk D„, on S'y such that

Dmr\Fj = DmnS= 0.

From (2) we see that C,_, cz ExtSj. We can construct a disk H} by properly

filling in the t holes in Cj-y. Each of these í holes is bounded by some J,. We

assume the J,s have been ordered so that if i < j, then D, does not contain Dj.

First we add Dy to Cj-y and then we move Dy slightly into Ext Sj. Next we add

and move D2. We continue this process as it is described in [5, p. 297] until we

obtain a disk H¡ satisfying Conditions (3) through (7), where i = j.

We have inductively defined a sequence of disks H0,Hy,---,H„ so that Con-

ditions (3) through (7) are satisfied for each i. Since //„ <= N, it remains to be

shown that H„ r\G = 0. Suppose //„ intersects G. From Condition (6) we

know that Hn r, S ez: H0 n S c Int X. Then //„ intersects S in £ P¡,

since K nG ezz T¡R¡. But this is impossible from (7), so H„ ezz N — G.

We have Property (/!', G, 5) satisfied, so Theorems 13 and 6 in [17] show that

Gis tame if it is nondegenerate. If G is degenerate, then G obviously lies on a tame

sphere.

Theorem 12. If S is a 2-sphere in E3 such that for each point peS and for

each £ > 0 there is a 2-sphere S"such that peint5", diamS" < e, and S n 5"

is a continuum satisfying Property ( * , S" C\ S, S), then S is tame.

Proof. We apply Theorem 11 where G = S to see that Sis tame.

Remark. The proof of Theorems 11 and 12 can be adjusted to give a sufficient

condition for S to be tame from a complementary domain V of S. In particular
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the following proposition can be established. If Sis a 2-sphere in E3 and F is a

complementary domain of S such that for each peS and for each e > 0 there is

an £-disk D such that D n p = 0, Bd D cz £3 — V, D D S is a continuum satis-

fying ( *, D n S, S), and p is on the boundary of an E-component of V — D,

then S is tame from V.

Corollary 13. A 2-sphere S in E3 is tame if for each peS and for each e > 0

there is a 2-sphere S' such that peint S', diamS"<£, and any one of the fol-

lowing three statements is satisfied:

1. S n 5" is a continuum which lies in a tame Sierpihski curve in S.

2. SCi S' is a 1-dimensional continuum such that S is locally tame at each

point of S n S'.

3. S d S' is a continuum irreducible with respect to separating S and S is

locally tame at S n S'.

Proof. Statement 3 implies 2 [16, p. 98]. If 2 holds then there is an open set N

containing S O S' such that S is locally tame at each point of JV. Then there is a

Sierpifiski curve K in JV such that S O S" cz K. Hence K is tame, and 2 implies 1.

It follows from Theorem 12, that 1 implies S is tame, since a tame Sierpifiski

curve K on a 2-sphere satisfies Property ( * , K,S). (See Theorem 8.2 of [9] and

Theorem 16 of [17], or see Theorems 16 and 19 of [17] together with [20].)
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