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1. introduction.    Given a non-negative set function x on a family sé of sub-

sets of a metric space X, an outer measure v can be generated on X as follows:

For B c X and Ô > 0

vsB = infjS xA,: B c (J A,and,for ieœ,A,e <s/anddiam¿4( ̂  ö
listo ieto

and

vß = lim vaß.
Ä-»0

F. Hausdorff [3] introduced this abstract measure (a generalization of the

linear measure of C. Carathéodory [2]), and proved a few basic results for it.

He considered in some detail the measures obtained when various restrictions

are placed on the set function x, in particular when xB = h (diam B) for some

continuous increasing function h: P+->P+, with h(0) = 0 and h(t) > 0 for

í > 0. The measure generated using this function is called the Hausdorff/i-measure,

and in the case that h(t) = ts, the Hausdorff s-dimensional measure. In these

forms it has been studied extensively. Two recent papers by W. W. Bledsoe and

A. P. Morse [1], and by C. A. Rogers and M. Sion [7], have suggested processes

for defining a measure on a topological space which generalize the Hausdorff

measure process in a metric space. They obtain some (in general, different)

measurability and approximation results for these measures.

In this paper we introduce a process for generating a measure on an arbitrary

space, which abstracts the essential idea behind all of the above Hausdorff meas-

ures and generalizations. Results are obtained which can be specialized to give

many of the known results, and which throw some light on the relation between

measures introduced before.

In Part I we introduce the concept of a measure generated by a gauge and a

filterbase, and with any such filterbase we define an associated topology for the

space, the filterbase topology. We then impose different conditions on the filter-

base and deduce resulting properties of the filterbase topology and of the measure.

Measurability and approximation properties of the measure are first obtained
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in terms of the filterbase. Additional conditions on the filterbase are then applied

to give results, stated in terms of the filterbase topology, on measurability of

closed, closed 2^, and compact (Sà sets, and on approximation by @s, !Fa, open

and closed sets.

In Part II we consider measures generated on a topological space. In particular,

we show that the Hausdorff measure in a metric space and the measures of

Bledsoe and Morse [1], and of Rogers and Sion [7] are encompassed by the

general theory of Part I and that some of the measurability and approximation

results can be specialized to yield existing results for these measures.

2. Preliminaries. In this section we collect definitions, notation, and known

or elementary results in set theory, topology, and measure theory which will

be needed later.

2.1.   Definitions and Notation.

.1.    0 denotes the empty set.

.2.    co denotes the set of natural numbers.

.3.   A~ B = {x: xeA and x$B}.

Let J1 be a family of sets. Then

.4.   n@ = f)ÁemA;

.5.    aa = \JAmaA;

.6.   3S~ = {A : A = a3S ~ B for some Be 38};

.7.   38a = {A:A = \Jn ea)B„ for some sequence B of sets in J1};

.8.   3ñ¡ = {A: A = Ç)ne(ùB„ for some sequence B of sets in 38};

.9.   ¿»„a = (*„),; 38da = (38ö)a;

.10. 38 is a cover of A iff A cz a38 ;

.11. jé refines 38 or sé is a refinement of 38 iff for each Aesé, there exists

Bem such that AcB;

.12. J1 is a CT-field iff 38~ c 38 and 38a <=. &;

.13. BorelûS = n{sé:sé is a <x-field and lei} is the smallest a-field con-

taining 38.

.14. <?f is a filterbase iff ^f is a nonempty family of sets such that for every

Me/ and NeJif, there exists HeJf such that 0¿HcM nN.

yf is a filterbase in X iff J(? is a filterbase and for every H e Jif, H is a family

of subsets of X and 0 e H.

If Jf is a filterbase in X, then JÍ is a subfilterbase of Jf iff -# is a filterbase

in .X" and for some sé',

Jí = {Hr\sé:HeJC}.

.15. If (X,@) is a topological space, then (S of course denotes the family of

open sets. OF will denote the family of closed sets.

.16. Ä or C\A denotes the closure of A.

.17. p is an outer measure on X iff p is a function on the family of subsets of

X such that
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(i)   p0 = 0, and

(ii)   0 zi pA = £„eß,/tß„ whenever A c \Jnsa>B„ el

As all measures discussed in this paper will be outer measures, we will hence-

forth drop the qualifying word "outer."

.18. For p a measure on X, a set A is p-measurable iff A <= X and for every

Bel,

/(B = p(B <~.A) + p(B ~ A).

.19. For p a measure on X,

Jl^ = {A <zz X : A is p-measurable}.

.20. p\A, the restriction of p to A is the function v having the same domain

as p such that for every B in the domain of p,vB = p(B O^4).i

.21. v is a finite submeasure of p iff for some A with pA < m,v = pxA.

.22. If J1 is a family of sets, t is a gauge on 39 iff t is a function on 3S \j {0}

to the extended non-negative real line, such that x0 = 0.

.23. For p a measure on X, p is a regular measure iff for every A <zz X, there

exists B e Jtfi such that A<zzB and pA — pB.

The following theorem is well known. (See, for example, Corollary 12.1.1 in

Munroe [5].)

2.2. Theorem. // p is a regular measure on X and A is an ascending se-

quence of subsets of X, then

•"(U A«) = Iim v-A«-
\ n f to       / n -* oo

The following is a form of the well-known lemma of Carathéodory.

2.3. Lemma. Suppose p is a measure on X, and A ezz X. If for every £ > 0

and every T ezz X such that pT < oo, there exists a sequence D of subsets of

X such that

(1) D„+1 ezz D„ for every neeo;

(2) C[neaDBcA;

(3) pCT O A) z% pCT O D„) + £ for every neco; and

(4) for every P ezz T and neeo,

p((Pnp„+1)u(P~D„)) = p(PnDn+i) + p(P~D„),

then A is p-measurable.

Proof.    Let e>0, TezzX, pT< oo, B=Ç\nri0D„. We show

p(TC\ A) + pCT ~ A) S pT + 2s,

which implies that A is /(-measurable.
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We obtain first

(5)   There exists Neco such that

p(T~B) = p(T~DN) + z.

Setting P = TOD„ we have

p(rnn„) = pP = p((PnDn+2)v(P~Dn+i)) by (l)

= p(P nf>„+2) + p(P ~ D„+1) by (4)

= p(TnD,l+2) + p(TnDn~Dn+1) by (1).

Hence for any Meco,

M M

X p(TnDn~Dn+1)  5S   Z (p(TOD„)-p(TnD„+2))
n=0 n=0

« p(rnD0) + p(rnD1)-p(TnDAi+1)-p(TnoM+2)

^ 2p(TnD0) < oo,

and

oo M

S p(TOD„~Dn+1) = lim    Z pernD,,-/),,^)

= 2p(TOD0)< oo.

Choose Neco so that

00

S p(TOD„~£)„+1)<e.

Since

(TODw~B)   = (J (TnD„~D„+1) by (1),

we have

p(TriDN~B)<s.

But

p(T ~B)= p(T ~ Dw) + p(Tn DN~B)^ p(T~ Dn) + e,

which establishes (5). Now

p(Tr\A) + p(T ~ A) ^ /i(Tni) + p(T ~ B) since B cz A,

= p(Tr>DN+y) + e + p(T~DN) + s     by (3)and (5)

= p((TnDN+y)u(T~ DN)) + 2e by (4)

^ pT+2s.
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Part I.   The measure generated by a gauge and a filterbase

In Part I we start with an abstract space X, a filterbase ■3f in X (see 2.14) and

a gauge x on some family sé of subsets of X such that 0e sé (see 2.22). From

these we generate a measure and a topology on X, and then investigate proper-

ties of the measure and of the topology. In particular we obtain conditions under

which certain topological sets, such as closed, closed ;?ä and compact ^¿ sets,

are measurable (§7), and also results on the approximation of a given set from

above and below by measurable sets or by topological sets (§8). The topology

itself is studied first (§6) and the key result, used repeatedly later, is Theorem

6.1.2, which establishes conditions under which a certain natural family forms

a base for the neighborhood system of a point. From this we determine when

the topology is regular (6.1.4), Hausdorff (6.1.5), or generated by a uniformity

(6.2).

3. The measure v. We now introduce the measure generated on X by the

filterbase Jf in X and the gauge x on sé. We may assume without any loss of

generality that sé c trJf.

3.1. Definition.   For He*   and id, let

1. vjif,Z)A = inf{t:i = 2ZBem T# f°r some countable SftezzHC\sé such that

A ezz (er$) (note: inf0 = oo).

2. v^A = supHe3evir^A.

If no ambiguity can arise as a result, we will drop one or both superscripts on v.

3.2. Theorem,   v is an outer measure on X.

Proof. vH is constructed by Method I of Munroe [5, pp. 90, 91], and so, by

Theorem 11.3 in Munroe, is an outer measure. Since v is the supremum of such

measures, it is again one.

3.3. Remark. Jf is a set directed by inclusion, so (vHA,He3T) is a net

(see Kelley [4, Chapter 2]). It is an increasing net, i.e. H,N e3f and H ezz N

implies vHA ̂  vNA, so we have

vA = sup   vHA = lim vHA.
H eMf a ex?

4. The filterbase topology. We now use the filterbase 2fC in X to introduce

a topology on X, closely related to the measure v.

4.1. Definitions.

1. For HeJi?, xeX,

H[x] = {x} yja{heH:xeh}.

2. For He/, AezzX,

H[A] = \J H[x] = A\jo{heH:h(^A¥=0}.
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3. The .^-topology, &# = [G <zz X: for every xeG, there exists He 3^ such

that H[x] ezz G}. The subscript Jf may be dropped if no ambiguity can result.

4.2. Theorem.    77ie ^-topology is a topology for X.

Proof. Clearly CS'# is closed under arbitrary unions. Suppose B,Ge(â#. and

x e B C\G. Then there exist H,NeJf such that H[x] <= B and N[x] <= G. Since

Jf is a filterbase, there exists Me ¿€ such that M ezz H (~\N. Referring to Defi-

nition 4.1.1 we see

M[x] c (H[x] O Af[x]) ezzBC^G,

so BnGe^jr. Finally, 0,Xe.?r.

We note that if for a point x e X there is H eJif such that x £ aW, i.e. no

element of H covers x, then {x} is both open and closed in the Jf-topology.

Remark. Throughout the remainder of Part I all topological concepts refer

to the ¿4?-topology.

The following lemmas follow directly from the definitions.

4.3. Lemma. If H,If,H2e^t°; for each iel, A,<zz X; and A ezz X, B ezz X,

then

.1.I.   h\\J A,
Li -i

.2.   Hy[H2[A

-JljJïM],
] =\J Hy\_H2[xJ], and

.3.   H[A] r\B = 0 iff An H[B] = 0.

5. Conditions on the filterbase in X. We now introduce conditions on 3tif

which will allow us to draw conclusions about the .Jf-topology and about'prop-

erties of the measure v.

(51)   Given xeX and He3t°, there exist Hy,H2e^C such that

Hy[H2[xJ]czH[x].

(511)   Given Hedf, there exist Hy,H2eJP such that for every xeX,

H{[H2[x]]<zzH[x].

(We note that by 4.1.2 an equivalent statement would be that for every icjf1

Hy[H2[Aj]ezzH[A].)

(5111) If A is closed, B is open and AezzB, then there exists Hedí? such

that H[A] ezzB.

(5IV) There exists a sequence H in ¿t" such that for every NeJP, there

exists neeo such that H„<zz N.

(5V)   Given an open cover of X, there exists HeM' which refines this cover.

5.1.   Remarks.

.1.   If JT satisfies (511), then it satisfies (51).

.2.   If Jf satisfies (5V), then it satisfies (5111).
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Proof. Suppose A is closed, B is open and A c B. Then S = {B, X ~ A}

is an open cover of X. By (5V), there exists He/ which refines S. Now any

element of S, and hence also of H, which intersects A is contained in B so

H[Ä\ <= B.

6. Properties of the /-topology. In this section we deduce properties of the

/-topology which result from imposing conditions on /.

6.1. Theorem.   Suppose / satisfies (51).

.1.   IfHeJf, AczX, then there exists an open G such that AczG c H[A~\.

.2.   For xeX, {H[x~\;He/}  is a base for the neighborhood system of x.

(H[x] itself may not be open. See Example 6.4.)

.3.    For A c X, the closure of A,

à = n hm,

and if for some sequence H in /,

A =  fl Hn[Aj,
new

then A is closed.

A.    The M'-topology is regular.

.5.    The ^-topology is Hausdorff iff

0 r7[x] = {x} for each xeX.
H erf

Proof of 1. Given xeX and He/, we show there exists an open set G

such that x e G c H[x]. Let

G = {yeA::forsomeNe/, N[y] cz H[x\}.

Clearly G<=.H[x~\. Let y eG. Then for some Ne/, N[y~\ cz H[x~]. Choose

Ny,N2e¿e such that

Then for any zeN2[y],

so N2[y] c: G. Hence G is open.

.2 follows immediately from 1. and the definition of the /-topology.

Proof of .3. Äcf)Heje,H[A]: Given He/, suppose x^H[A~]. Then

{x} n H[A~\ = 0, whence by Lemma 4.3.3, H[x~] n A = 0. By 6.1.1 there exists

a neighborhood of x free of points of A and so x£Ä. We conclude that

ÀczH[Aj for every He/.
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Â =>[~\n£3eH[Ä\: Suppose x$Ä. Then since X ~ Ä is open, there exists

He/ such that H[x] C\Â = 0, by Definition 4.1.3. Again using Lemma 4.3.3

we have x$H[Ä\. But

H[Ä\^H[A\z?  fl   H[Ä],

and hence x^Ç\u e-rH[/l].

If for some sequence H in /,

A =  H H ¿A],
n eco

then

Acf|   ffrXJcf)   H„M = ̂ l,
II ejf n e ct)

and A = Ä.

Proof of .4. Let ^4 be closed, x £ A. By definition there exists He/ such

that H[x] r\A = 0. Choose Hy,H2eJe such that

H^H.MjcrHrX].
Then

i/1[fi2[x]]ni = 0,

and so by Lemma 4.3.3,

H2[x]OH1M=0.

By 6.1.1 there exist disjoint open sets G2 and Gy such that

xeG2cz H2[x] and AczGyCz Hy[A~\.

Proof of .5. Suppose the /-topology is Hausdorff and x e X. For any

y¥=x, there exists He/ such that y£H[x~\. Hence y$Ç\ijejeH[x]- (This

does not use condition (51).)

Now suppose p)/ïe.tf>H[X] = {x} for each xeX. Then by .3 and .4, the

/-topology is Ty and regular, and hence Hausdorff.

6.2. Remark. (511) is a uniform condition, and it is not hard to show, by

constructing an appropriate uniformity whose topology is the /-topology, that

with condition (511) the /-topology is completely regular.

6.3. Lemma. /// satisfies (51) and (5IV), and A is closed, then there exists

a sequence H in / such that

A = C[ Hn[A-].
IE   H

Proof. Using (51V) let H be a sequence in / such that for every We/,

there exists neco such that H„ c N. Then since A is closed we have by 6.1.3
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A=Ä= Ç)N[A]z?  fi H„[A]zz,A.
N eX n era

6.4. Example.   LetX = R,Hr = {{x,y}:\x-y\úr} ^{0},^ = {Hr:r>0}.

For Aeerltf let

rdiam A if A # 0
xA = {

(0 if A =0.

Then .?/? is a filterbase in X; the 3/f-topology is the usual topology; for any

x € X, r > 0,

H,M = [x-r,x + f],

a closed neighborhood of x; 2/C satisfies the three conditions (51), (511), and

(5IV) but not (5111) or (5V); x is a gauge on a2f; and for A ezz X,

v<* "*U = |
0 if i is countable

oo if A is uncountable.

7. Measurability theorems. The following definition and lemma are taken

from a paper by Bledsoe and Morse [1].

7.1. Definition. For eb a measure on X, A is eb-compact iff A t= X and given

any e > 0, finite submeasure 6 of eb, and open cover Stt of A, there is a finite

subfamily S of 38 such that

9A-=Q(Ar\aef) + E.

7.2. Lemma.   ^4 closed subset of a eb-compact set is eb-compact.

We first state two theorems and a corollary on v-measurability of sets charac-

terized in terms of the filterbase #?.

7.3. Theorem.   If for some sequence B,

A = (\B*

where for each neeo there exists Mn+1eyf such that

Mn+1[Bn+y]<zzBnczX,

then A is v-measurable.

7.4. Corollary.   If ¿f satisfies (511), A<zzX, and for some sequence H in &f,

A=Ç\ Hn[A],
new

then A is v-measurable.
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7.5. Theorem. // / satisfies (51), A is v-compact and for some sequence

H in /,

a = n W}>
new

then A is v-measurable.

We now relate the restrictions on A in the above theorems to topological prop-

erties of A and, using additional conditions on /, we obtain a number of

theorems on the measurability of purely topological sets.

7.6. Theorem.    7/ / satisfies (51), then compact @s sets are v-measurable.

7.7. Theorem. 7/ / satisfies (511) and (5III), then closed rSà sets are

v-measurable.

7.8. Theorem.    /// satisfies (511) and (5IV), then closed sets are v-measurable.

7.9. Theorem.   If / satisfies (51) and (5V), then closed <36 sets are v-measurable.

7.10. Theorem. // / satisfies (51), (5IV), and (5V), then closed sets are

v-measurable.

7.11. Remarks. We note that if there is any subspace X' cz X which is such

that for any xeX', there is some He/ such that no element of H covers x,

i.e. x$o~H, then for every nonempty AczX',vA— oo; and by the comment at

the end of Theorem 4.2, fSx is discrete on X'. Thus the discrete topology on X'

reflects the fact that all subsets of X' ate v-measurable.

Now it may happen as a result of the nature of the domain sé of x that the

class of measurable sets is larger than that given us by any of the Theorems 7.6

to 7.10, using the filterbase /. (For example, if sé is the family of singletons,

then all subsets of X ate v-measurable, a result which is independent of the filter-

base /.) In this case, it may be of some advantage to consider the subfilterbase

of /,

Jf = {H r\jé: HeJt}.

Evidently the measure v^'1* = v(jr'T), but the JT-topology 9jft may be strictly

larger than '¡S^. If this is the case, and if Jf satisfies the requisite conditions,

we may be able to apply one of the Theorems 7.6 to 7.10 with the filterbase Ji

to obtain a stronger result than that obtained using /. (For example, if in the

case above where jé is the family of singletons, we form the filterbase Jf, then

trivially Jf satisfies (511) and (5IV), and 9^ is the discrete topology. Then by

Theorem 7.8, all subsets of X are v-measurable.) However, Jf may not satisfy

enough conditions to allow us to apply any theorems from Part I (see Example

9.6), so we cannot always automatically use JT to get stronger measurability

results.
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Again, it may happen that although Jf itself does not satisfy enough condi-

tions, another filterbase Jt can be found such that

(i)    jV is a subfilterbase of Jt so that v(Ä) = v(jr) = v(Jf),

(ii)   "gjt is strictly larger than <&#, and

(iii) Jt satisfies conditions allowing application of some theorem giving a

stronger result than that obtained using #f (see Example 9.6). Unfortunately,

we know of no general method in such a case of choosing a filterbase in X, optimum

in the sense that using it we obtain the largest possible class of measurable sets.

We note also that the nature of sé may result in a large class of measurable

sets at the same time that the ./^-topology is no larger than the Jf-topology,

i.e. the v/F-topology may not be large enough to reflect the class of measurable

sets. (For instance, if in Example 6.4 Hr consisted of all sets of diameter ^ r,

while sé consisted of all doubletons, the same measure would be obtained, under

which all subsets of X are measurable, while both the J? and ^"-topologies

would be the usual topology, and the best theorem obtainable would be 7.8,

giving closed sets measurable.)

Proofs

7.12. Lemma. If AezzX, B ezz X, and there exists MeJf such that

M[A~]f\B = 0, then v(A\j B) = vA +vB.

Proof. Suppose Me/, M[A]nB=0, and v(4uß)<oo. Let NeJT,

N ezz M. Then also N[A] OB =0. By Definition 4.1.2 no heN can intersect

both A and B, so any cover of A u B by elements of N O sé can be separated

into disjoint covers of A and B. Checking 3.1.1 we see that

vHiA UB) = vNA + vNB.

Since Vjy is a measure, we have the inequality the other way also, whence

vNL4UB) = vNA + vNB,

for every N e Stf such that N ezz M. Hence by Remark 3.3

v(y4 \j B)   =   lim  vNiA u B) =  lim   ivNA + vNB)

=   lim  vNA + lim   vNB = vA + vB.
N eJf N e M?

Proof of 7.3. We use Lemma 2.3 with D„ = B„ for each neeo. Let £ > 0

and T ezz X such that vT < oo. To check (4) note

Mn+y[Bn+1] niX~Bn) =0 for each neeo,

from which it follows that for each new and P ezz T,

Mn+y[Pr.Ba + y]niP~B„)=0.
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Applying Lemma 7.12 we obtain

v((P OB„ + 1) U(P ~ B„)) = v(P HBn + 1) + v(P ~ B„)

for all neco and P czT.

Proof of 7.4.   We show first that A can be put in the form

a = n ^M'
new

where N is a sequence in / and for each neco

Nn+1[Nn+1[Aj]czNn[A2.

We construct the sequence N by recursion.

Let N0 = H0 and suppose we have N;eZ for i = 1, •■-,n such that

WiMcHiM for i = 0, ••-,«,
and

/V¡+1[A7Í+1M]CJV;M for i-l,...,j|-l.

We choose JV„+1 as follows:

Using (511) choose Me/ such that

M[M[AJ] c=Nn[A-].

Then choose N„ + 1eZ such that N„+1 <= M OH„+1. We have

(i)    N„+1Mc=Hn+1M,and

(ii)   Nn+1[Nn+1[Aj]czNn[A-].

Now (i) and (ii) will be true for all neco. From (i) we have

A cr  p|  iV„M c D  H„[^] = ¿
n e co n e co

and so

¿ = n n¿a].
n e to

Setting B„ = iV„[v4], the conclusion follows by application of Theorem 7.3.

Proof of 7.5. Let T cz X, vT< oo, e > 0, and 0 = v| T. We employ Lem-

ma 2.3 to show that A is v-measurable. Sequences C, D, M, and N ate constructed

by recursion. To start we set C0 = Cy = A; M0 = My = H0; H0 => N0 = N¡ e /;

D0 = X; and Du = My[Cy~\ = H0[AA. Having obtained C„ D;, M;e/ and

7V¡e/ satisfying

(a) C¡ is closed for i = 0, •••, n (C0 = Ais closed by 6.1.3),

(b) Ci+yCzCycz A fot i = 0,---,n-l;

(c) eCi-y^OCi + sß1'1 for i = l,--,n,

(d) D¡ = JlfTCj c H¡_ ![/!] for i = 1, -, n, and

(e) ^[DjcDj+j for i = l,-,n,

we construct Cn+1, I>n+i, M„+1, and 7Vn+1 as follows:
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For each xeC„ choose, using (51), Hxl, Hx2, Hx3, and Hx4eJf such that

Hxl[Hx2[Hx3[Hx4[x]]]] c M„[x] c M„[Cf] ezz Dn.

By (a) and Lemma 7.2, C„ is v-compact. Since Jf satisfies (51), for each x e C„

there is, by 6.1.1, open Gx such that

x s Gx ezz HxA.[x].

Hence {Gx:xeC„} is an open cover of C„ and by Definition 7.1 there is a finite

subset Qezz Cn such that

0Cnik()(cnn\jGx}+~,

and so

OC„z%o(cnn\jHx4[x]) +

Now set

C„+1 = f) f/knyf/l4[.x]l =Cl(c„n|J Hx4[x]\,
H €jf XcQ J \ IfQ /

and choose M„+te.3f, Af„ + 1e^ such that

A-Vm   <=  (f|   Bx2)nHn,

*V„ + 1   =   HH*i>
x so

and set
£>„+i - M„ + i[C„+i].

We now check:

(a) C„+1 is closed.

(b) Cn+yezzC„<zzA since Cn+j c C„= C„ c A.

(c) 9C„ è 0C„+1 + £/2" since C„+1 =. (C„ n (J* 6Qffx4[x]).

(d) D„+1 = M„+1[C„+1]c://rX| since Cn+lezzA, MB+1ci/„.

(e) N„+i[Dn + 1]ezzDn: first,

cÄ+1= n Äiu ffx4wl = un h[-*u>j] «= u »x3[h»4[x]].
»6/      LreS J x eQ H eJt? x eQ

The equality is obtained using Theorem 6.1.3 and the fact that the closure of a

finite union is the union of the individual closures. Now

tf.+ip>.+i] = Jv„+1LX+.[cn+1]]

<= w.+i[m.+1 A) nx3[Hx4[x]]j

= IJ ^«[M.^^i^W]]]

.veQ
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The second to last inclusion follows from the choice of M„+1 and N„+1 ,and the

equality from Lemma 4.3.1.

The completed sequences satisfy (a), (b), (c), (d), and (e) for each neco. We

now check that the sequence D satisfies the hypotheses of Lemma 2.3.

(1) Dn+lczDttby (e).

(2) fl » e t» A, <= fï - - « *MXI = A follows from (d)-
(3) Using A = Cy, (c) and induction, we have

1
QA Í 6Cn + e(l - —) < 9C„ + s

or

for every neco,

for every neco.

for every neco.

viTn A) = v(TnC„) + e

Since C„ cz D„ by (d), we have finally

v(TnA) = v(Tf\Dn) + e

(A)   It follows from (e) that

JV„[POD„] n(P~ £>„_,) =0     for any Pc T and n = l.

Lemma 7.12 then gives us

v((P n D„) U (P ~ Dn_ y)) = v(P n Dn) + v(P -£)„_!)

for every P cz T and n ^ 1.

Proof of 7.6.   We show that for any compact ^Sb set A, there exists a sequence

H in / such that

¿ = n «-M'
n e a

where for each neco,

Hn+l[Hn + y[Aj]czHn[A-].

Then setting B„ = H„[yl], we apply Theorem 7.3 to obtain the conclusion.

Suppose A is compact, and

^ = n g„
n e to

where for each neco, G„ is open.

We assume G0 = X, set H0 = {X} u trZ and construct H„ recursively as

follows:

For each x e A, using (51) choose H„x e / such that

Hnx[Hnx[xJ] cz Gn   and

Hnx[Hnx[H„x[xJ\]czHn.y[xj.
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Now each Hnx[x] contains an open set containing x by Theorem 6.1.1 and since

A is compact, a finite number of these open sets and hence of the sets Hnx[x]

covers A, i.e. there exists finite Qezz A such that

A c   \jHnx[x].
IeQ

Now choose Hn ezz (~\xeQH„x, Hne^. Then

Hn[Aje= Hn [[J Hnx[x]\  =   (J H„[Hnx[xJ]
lx e Q J x eQ

by Lemma 4.3.1. Since H„ c H„x for each xeQ,

Hn[A] cz  \jHnx[Hnx[xJ]ezzGn.
x eQ

Similarly,

Hn[H„[Aj] ezz \J Hnx[Hnx[Hnx[x]]]ezzH„_y[A].
x eQ

Then

Aezz  f] Hn[A] ezz f|  Gn = A,
n e <o new

and so

a = n »-M.
new

Proof of 7.7.   Condition (5III) guarantees that for any closed &ô set A,

there is a sequence Hin ¿tf such that

¿ = n^w-
The result follows by application of Corollary 7.4.

Proof of 7.8.   We know by Lemma 6.3 that for every closed set A, there

exists a sequence H in ^f such that

A=  C\Hn[A].
n 6 íú

The conclusion follows from Corollary 7.4.

Proof of 7.9.   (i) By 5.1.2 ^ satisfies (5III).

(ii)   As in the proof of 7.7, if A is a closed '¡?ô set, then for some sequence H

in ^f

A = H ¿MX!.

(iii)   X is v-compact.

Let TcX,vT<oo,0 = v|T, e>0, and f£ be an open cover of X. Using

(5V) choose NeJ^,N refining S£'. Now choose Me/ such that
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vT^ vMT+|.

Choose He/, H cz N C\M, so by Remark 3.3,

(a) vT^v„T + £/2.

Since v„T < oo, choose countable 3S cz H C\sé,33 = {B,}tmm, such that Tczo38

and

vHTá   Z tB¡< oo.
í e to

Now choose fceco such that

Z tb,<|.
i=k+l z

Since TV is a refinement of fi' and II cz N, for each i g k choose G¡ e .SP such that

B¡ c G¡ and let

/ = {Gf.ièk}.
Now

(T~o£)co{Bl:i>k}

and so

v„(T~<x<f)g|.

Hence

vHT ¿ v«(Tnff¿) + V//(T - »O g v^rno +1 g v(tooS) +1,

and by (a),

vT^ v(Tn«Tif) + i;.

Hence

öx^ö(zntjtf)-i-8

and by Definition 7.1, X is v-compact.

The desired conclusion now follows from (ii), (iii), Lemma 7.2 and Theorem 7.5.

Proof of 7.10. We know from the proof of Theorem 7.9 that if / satisfies

(5V), then closed sets are v-compact, and from Lemma 6.3 that if / satisfies

(51) and (5IV), then for every closed set A, there is a sequence Hin/ such that

a = n h»w-
n e co

The conclusion follows by application of Theorem 7.5.

8. Approximation theorems. We consider first several theorems on ap-

proximation from outside in which the only restriction on the set to be approx-

imated is that its measure be finite. The restriction that elements of sé be v-meas-

urable sets is necessary in all the theorems of this section but the first.

8.1. Theorem. Suppose / satisfies (5IV) and AczX. If for every He/

there is a countable subfamily of H Cue which covers A (in particular if

vA < oo), then there exists Beséai such that B => A and vB = vA.
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8.2. Corollary. If 3/P satisfies (51V) and séezzJtv, then v is a regular

measure.

8.3. Theorem. Suppose sé ezz Jtv, vA < oo, and E ezz A. Then given £ > 0,

there exists B e séa such that E ezz B and v(A C\ B) z% vE + e.

8.4. Corollary. Suppose sé ezz Jtv, vA < oo, and E ezz A. Then there exists

D e séai such that E ezz D and v(A C\D) = vE.

8.5. Corollary. If X = [JnBa An where for each new, AneJtv and vA„<co,

and séezzJtv, then v is a regular measure.

By putting further restrictions on the approximated set, we can get the fol-

lowing results on approximation from inside.

8.6. Theorem. Suppose sé c 38 c Jtv, A e (38a)~ (see 2.1.6), vA < co, E ezz A,

and EeJtv. Then given e>0, there exists Ce(38f)~ such that C ezz E and

v(E~C)<8.

8.7. Theorem. Suppose sé ezz 38 ezz Jtv, A e i38a3)~ , vA < co, E ezz A, and

EeJtv. Then there exists Cei38aS)~ such that C c E and v(£~ C) = 0.

8.8. Theorem. Suppose sé <zz Borel38 c Jtv, AeBoreW isee 2.1.13), and

vA < oo. Then for each E ezz A there exists BeBorel38 such that E ezz B and

vE = vB; and for each v-measurable EezzA, there exists CeBorel38 such that

CezzE and v(£~C) = 0.

If it happens that the sets of sé have some topological properties and are

v-measurable (e.g. the open sets in the classical Hausdorff measure theory), we

obtain in the above theorems approximating sets which also have topological

properties. If in our hypotheses we restrict sé to open sets, require that open

sets be v-measurable and put additional restrictions on 3t? and X, we obtain

some sharper results. (Recall that '¡S and J5" denote respectively the families of

open and closed sets.)

8.9. Theorem. Suppose sé ezz <S c Jt'„, / satisfies (51) and (5IV), EezzX,

\E < co, and Ee Jtv. Then there exist Ae^5 such that A zz> E and v(/l ~ E) = 0,

and Ce3?a   such that CezzE and v(P ~ C) = 0.

8.10. Corollary. Suppose séezz'&ezzjt^âf satisfies (51) and (5IV), EezzX,

EeJtv, and X is er-finite. Then the conclusions of Theorem 8.9 still hold.

It is not the case that the existence of a (rSb set covering E ezz X and having the

same measure implies that given £ > 0, there exists Ge'S such that G zz> E and

vG < vE + s. It may happen that all nonempty open sets have infinite measure

(as, for example, with counting measure on R or on the rationals, and Hausdorff
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^-dimensional measure on R). To obtain this conclusion we need an additional

restriction on the space.

8.11. Theorem. Suppose jé <= ̂ <=•#,,, / satisfies (51) and (5IV), E cz X,

E eJiv, and X = M„ et0An, where for each neco, vAn < co and Ane@. Then

given e > 0, there exist open G z> E such that v(G ~ E) < e and closed F cz E

such that v(E~F)<e.

Proofs

Proof of 8.1. Using (5IV), choose a sequence H in / such that for every

Ne/, there exists neco such that Hncz N. For each neco choose countable

3SnczHnnsé such that A cz a38n and

Let

OO

B   =    fl  (ff«j6j/rf.
n = 0

Then B zs A and

%nB ^ vHn(a3Sn) — vHnA + - for every n e co.

By Remark 3.3, taking the limit as n -» oo gives

vB ^ v^.

Since B z> A, we have vB 5: v^4, and so vB = vA.

Proof of 8.2.   8.2 is a direct consequence of 8.1.

Proof of 8.3.    Choose He /such that

vA ^ vH/l + -.

Suppose B cz X is v-measurable. Then

v(A r\B) + v(.4 ~ B) = vA ^ Vgii- + 5 S vH(A C\B) + vH(A ~ B) + |

â v„(inB) + v(i ~ B) 4-|

Cancelling v(/l «- B) in the first and last expressions gives

(a) v(inB)^vfi(/ln5) + £/2 for v-measurable B. Now given E<=A,

choose countable 38 cz H C\sé such that Eczcs38 = B and
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Z xD < vHE + ^.
Dem ¿

But Besé„ and so is v-measurable, whence by (a),

v(/4 r>B)  ^ vHiA n £) + *- z% vHB + Z-

S     Z xD + - (since á? is a cover of B)
Dei» 2

js vHE + ez^vE + s.

8.4 follows immediately from 8.3, and 8.5 directly from 8.4.

Proof of 8.6.    By Theorem 8.3 there exists Beséa such that A ~ E c B and

viA r\B)z%viA~E) + e.

Now A ~ £ is v-measurable so

H£nB) = vHA C\B)~iA~ £)) = v(AOB) - v(X ~ £) < e.

Setting C = ^ ~ B we have by Definition 2.1.6, C e (J>,)~ and since EnB=E~C,

v(£ ~ C) < £.

Proof of 8.7. The proof is identical to that of 8.6 except that the result

of Corollary 8.4 is used instead of that of 8.3.

Proof of 8.8.    We obtain B from Corollary 8.4 and C from Theorem 8.7.

Proof of 8.9. (i) Use Theorem 8.1 to choose Aeséai ezz <gb such that A zd E

and vA = vE. Since £ is v-measurable and v£ < oo, we have v(^4 ~ £) = 0.

(ii) We show now that if B e 1SS and vB < co, there exists fle^„ such that

D ezzB and v(B~ D) = 0.

By Lemma 6.3 and Theorem 6.1.1 we have ¡F<zz<Sà, so IS c SFa and we may

set, for Be^j,

CO co

ß=nu *■(»»■ 0,
n=l    ¡=1

where for each new and iew, Fin, i) e ÜF. We may assume that £(n, i +1) => £(n, i)

for each iew.

By Corollary 8.2, v is a regular measure, so by Theorem 2.2 we have for each

new,

vB = v(b n Q Fin, i)j = lim v(B Op(n, i)).

Hence for each new there exists a sequence in such that for each kew,
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v(B ~[Bn Fin, ij-]) = vB- v(B O F(n, ij) = ¿

since vB < oo and B n F(n, i„k) is v-measurable.

Let
00

F(k) = P| F(n,iri) for each kern.
n = l

Then F(k)e& and

00

File) cz  (J F(n, i) for every n e eu,
¡ = i

whence F(fc) c B and

vB - vF(k)   m v(B ~ F(k)) = v(b ~ H F(n> U)

= v( Q[B~(B nf(/i,/,,,))]) by de Morgan's law,

oo y y

<  Z — = -.
- „r, M-   /c

Set

D =  Ü F(fc).
fc = l

Then DeíFa,DczB, and

v(ß ~ Z)) = vB — v£> :£ - for every keco.
K

Hence

v(ß~D) = 0.

Now let E e Jty, vE < oo. Using (i), choose B e S^ such that B zo E and vB = vE.

Since v(B ~ E) = 0, we choose <2eS?á sucn tnat Q=> B~ E and vQ = 0. Using

(ii), choose D e J5",, such that D cz B and v(B ~ D) = 0. Now

VE = vB = vD = vD - vQ = v(D ~ g).

Set C = Z>~g.ThenCe^a, CczE, vC = vE and so

v(£~C) = 0.

Proof of 8.10. Let X = \Jn eaA„ where for each neco, vA„ < oo. By Theo-

rem 8.1, choose for each neco, B„e&0 such that B„ id A„ and vB„ = vAn. Let

En = Et~\Bn, so £,£1, and v£„ < oo. By 8.9 choose for each neco, CneSF„

such that C„ cz E„ and v(En ~ C„) = 0. Set
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C. = l(JCn.
n e co

Then Ce&a, CezzE and

£~Ccz   \J(En~Cn),

whence

v(£~C);S   S v(£„~C„) = 0.
n = 0

We now apply this result to X ~ £ to obtain X e ^4 such that ¿4 r> £ and

v(4~£) = 0.

Proof of 8.11.   For each new let £„ = E C\A„ and using 8.9 choose B„e .?.

such that £„ =d £„ and v(ß„ ~ £„) = 0. Let

Bn = n *«.
I eco

where for each / e co, BIU e 5? and Z?„. z> ß„_,. Then

co > v£„ = vB„ ä VÍA n B„) = lim v(¿„ n Bn).

Choose iew such that

v(^„nß„f) < v£„ + ^rr

and set

Gn = AnC\BneV.

Since £„ is v-measurable and v£„ < oo,

v(Gn~En)<^-.

Set

G =   \}GneV.
n e o>

Then EcC,

(G-E)c:  (J (G„~£„),
» e (i>

and

v(G~£) z%   I v(G„ -£„)<£.
new

To obtain Fe.f, F a E, v(E ~ F) < e, apply the above result to X ~ E.
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Part I . measures on topological spaces

In Part II we start with a topological space (X/S) and a gauge t on some

family sé of subsets of X such that 0 e sé. Our aim is to study measures on X

generated by x and 'S through processes which are generalizations of the well-

known Hausdorff process in a metric space (see Method II of Munroe [5, p.

105]).

We first consider the Hausdorff process itself, showing that the standard re-

sults can be obtained by application of the general theory developed in Part I.

Generalizations of the process were introduced by Bledsoe and Morse [1] and

by Rogers and Sion [7]. We show that each of these cases can be obtained as an

application of the theory in Part I. More specifically, in each case we consider

a filterbase / in X and see that the known measure is v(Jif'T). Since properties

of v(je,t) ate stated in terms of the /-topology, it is important to study the re-

lation between the given topology 'S and the /-topology. In particular we de-

termine how conditions on (S affect the /-topology and its relation to S, thereby

throwing some light on the role played by   uch conditions.

Finally, we investigate other approaches to generating a measure on a topo-

logical space using a quasi-uniformity, and relate the measures obtained thereby

to those considered previously.

9. The measure £ in a metric space. In this section we suppose that the

topology 'S is induced by some metric p on X. All metric concepts refer to p.

The standard metric measure £ generated by x (Method II of Munroe [5, p.

105]), is given by

9.1. Definition.   For AczX and <5 > 0

ÇSA = inf I Z xB^.Acz  [J B¡, for each i eco, B¡e sé and diam B¡ ̂  <5 .
I i e co i r to /

ÇA = lim  taA.
£>->0

To see that the theory of Part I applies to I, let

9.2. Definitions.

Hr = {A cz X : diam A ^r},

/ = {Hr:r>0},

JT = {HC\sé;He /}.

Then / and Jf are filterbases in X, ¿V is a subfilterbase of /, and

£ = v(,/K'r) = v(jr'T). The well-known properties of £ will follow from the results

of Part I and the following easily verified lemmas.

9.3. Lemmas.

1. The ^P-topology is the metric topology, i.e. CSX = f¡.

2. / satisfies (511) and (5IV).
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Specifically, we have the following theorems.

9.4. Theorem.   If A is closed in 'S, then A is ^-measurable.

We note that stronger measurability results may be available (see Remarks

7.11 and Example 9.6).

9.5. Theorems.   Suppose séezzIS. Then

.1.   Ç is a regular measure.

.2. If (,E < oo and EeJtr, then there exist De&s such that D zz> E and

£(£> ~ £) = 0, and Ce&a such that CezzE and £(£ ~ C) = 0

.3. If X is 1,-er-finite, EeJt^, then there exist De^s such that D zz> E

and C(D~£) = 0, and Ce&„ such that CezzE and £(£~C) = 0.

.4. IfX = M„ e(0G„, where for each new, G„e^ and ÇG„ < oo, EeJt, and

£>0, then there exist open G => £ such that £(G ~ £) < £ and closed F ezz E

such that £(£ ~ F) < £.

Proofs

Proof of 9.4.   Use 9.3 and Theorem 7.8.

Proof of 9.5. 1.    Use 9.3,9.4 and Corollary 8.2.

Proof of 9.5.2, 9.5.3, and 9.5.4. Use 9.3 and then respectively Theorems

8.9,8.10, and 8.11.
9.6. Example. On obtaining a stronger measurability result by choice of

an appropriate filterbase.

Let X = R2,

sé = M:for some x0eP, yeR, and kew,

A = |(x,y):x = x0 or for some n > k,x = x0 + —!  .

Let ,3f ,J/~ be defined as in 9.2. Then by 7.8, closed sets in the usual topology are

C-measurable. Now^f" does not satisfy (51), so we cannot get any measurability

results using J/~. Let

3S = {A : for some x0 e P and yeR, A ezz {(x, y) : for some s > 0, | x — x01 < s}},

and

Jt = {Hn38:HeJe}.

Then Jf is a subfilterbase of Jt, Ç = v(je\ Jt satisfies (511) and (51V), and

so closed sets in 1SM are ^-measurable. Clearly '¡SM strictly contains IS*.

10. The measures eb, eby, ef>2, in a topological space. The measures eb and

eb2 below were introduced and studied by Bledsoe and Morse [1] and by C. A.

Rogers and M. Sion (unpublished) respectively.
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10.1 Definitions.

1. Families of open covers

© = {38

©! - {38

©2 = {33

cz'S, c33 = X, and 0e 33}.

cz'S, 38 is countable, o3$ = X, and 0e 38}.

' czS, 38 is finite, o33 = X, and 0e38}.

.2. For A cz X, 38 a cover of X,

cb.jfA =inf|Z tB: «fis a countable refinement of 38 ,&'cz sé, and A cz aS\.
Iß eS I

.3.    For AczX,

cbA  =   sup   <^4-
m e©

«Pi-4   =   sup   cbmA.

cp2<4  =   sup   cbMA.

To apply the theory of Part I we set

10.2. Definitions.

Ha = {A:AczB for some Be33}.

/ = {H^e©}.

Jfy = {H^e©,}.

/2 = {Hm:38e®2}.

<S° = /-topology.

<Sl = /rtopology.

<S2 = /2-topology.

Then /, Jtt, /2 are filterbases in X, and cb = v(J™ ^ = v <■**•*{ cb2 = v <*'•'>.

The relations between the given topology 'S and the induced topologies 'S0,91, 'S2

and properties of the filterbases /, /I; Z2 are indicated in the following theorem.

10.3. Theorem.

.1.   02 cz'S1 cz'S0 cz'S.

If 'S is regular, then
.2.   >S2 = <SX = 'S° = S?,

.3. /, Z1; /2 satisfy condition (51), and

A. / satisfies condition (5V).

In general, 'S ^ 'S0 as we show in 10.6. On the other hand, regularity of 'S is
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not needed for (â = 'S2, as we show in the proof. In view of 6.1.4, IS = 3?° and ¿/F

satisfies (51) iff 13 is regular.

Applying the results of Part I we then get the following measurability theorems

(already known for eb and ebf).

10.4. Theorems.

.1. If IS is regular, then closed @s sets are eb-measurable and compact IS ¿sets

are eby,eb2-measurable.

.2. If'IS is normal, then closed rêi sets in rS are eb,ebueb2-measurable.

(Since singletons are not assumed closed, normality does not imply regularity.)

Again, stronger results may be available, as indicated in the discussion in Re-

marks 7.11.

To obtain approximation results we require that sé c Jté or j/c Jt<t¡í or

sé ezz Jtç,. In any of these cases we can apply directly Theorems 8.3 to 8.8.

In general the three measures ep,ef>,,ep2 are distinct, as is shown in 10.7. It fol-

lows immediately from the definitions, however, that we always have

10.5. Theorem. eb2z^eb1zieb.

Proofs and Examples

Proof of 10.3.1. Let G e 0° and let x e G. Then fon some HeJfT, H[x] <= G.

But for some 38 e (5, H = Hm and

H[x] = er{Ge38:xeG}e<2?.

Hence GelS, and &° c &.

Clearly se2 c Jf, c ¿f and so <S2 c 91 c ST°.

Proof of 10.3.2.   We need only show that & c f#2.

Let GelS and xeG. By regularity choose closed C such that xeCezzG, and

set

38 = {G,X~C}e©2.

Then letting H = Hm, we have H[x] = G. Thus, for each x e G, there exists

He3tC2 such that H[x] ezz G, i.e. G is open in the ^f2-toP0logy.

Note that in this proof we need only that Cl{x} c: G. Thus, if IS is a Ty-topology,

then <$ = <S2.

Proof of 10.3.3. Suppose x e X and H e ¿f. Then for some 38 e ©, H = Hm.

Now x e G0 for some G0e38, and

G0 c H[x] = a{Ge38:xeG}.

By regularity choose G., G2e1S such that

xeG2ezzG2ezzGy cC,cG0

and let
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33 y = {G0,X~Üy}e(S2,<

382 = {Gy,X~G2}e(S2,

H y  = HaieJ^2, and

H 2    =   lïa92e'^2-

Then

H2[x]   =   Gy,

#i[Gi] = Go>
and so

H2[Hy[xJ]czH[x].

Proof of 10.3.4. By .2, any cover 38 consisting of sets open in the Z-topology

is a cover of sets open in 'S, i.e. 33et&, and so Hm e Z and Hm refines a?.

Proof of 10.4.1.   Use 10.3. and Theorems 7.6 and 7.9.

Proof of 10.4.2. The result follows from Theorem 7.3 after it has been shown

that if A is a closed 'Sô set in 'S, then there exists a sequence B of subsets of

X such that

A   =   H   Bn,
n e co

and for each neco, there exists Nn+1 eZ2 such that

Nn+y[Bn+1-]czBn.

Suppose A is closed in 'S and

A = H G".
n e m

where for each neco, Gne^S. The sequences N in Z2 and B are defined recur-

sively. To start, set 33c, = {G0,X ~ A}, N0 = Hmo, and B0 = G0. Having ob-

tained By and N¡ such that

(a) N,[B(] c B¡_! for i = 0, • • -,n (take B_y = X),

(b) Bf is open for i = 0, • • -, n, and

(c) AczB¡ czG¡ for i = 0, ••-,«,

we construct B„+1 and JVn+1 as follows: Let

DH+1 = Gn+1nBne$.

Using normality choose open Bn+1 such that

A<=B„+y   CzE„+yCZDn+y.

Let
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and Nn+1 = Hmri+leJ^2. Then the only element of N„ + 1 which intersects Bn+1

is Dn + J, so

N„+¡[Bn + 1] = Dn + 1ezzB„.

For the sequences B and N, (a) and (c) hold for every new. (c) assures us that

a = n Bt.
ne co

10.6. Example. IS0 does not always coincide with IS. Let X = R+,

IS = {[Q,a):a > 0}. Then for any open cover 38 of X, and xeX, HäS[x] = X,

so ^° is the trivial topology.

10.7. Examples.   We can have eb2 =£ eby, ebyj=ep.

.1. A case where eb2 ̂  eby.

Let X = R+; rS = {[0,a):a > 0}, for EezzX,

rO   if £ = X or £ = 0
t£ = ^

(1    otherwise.

Then for any AezzX, 38et32, we have ebmA = 0, since any finite open cover

of X must include X as an element. Hence eb2 is just the zero measure.

On the other hand, for any unbounded AezzX, and 38e(S>{ such that X$38,

we have ebmA = oo and so ebyA = oo.

.2. A case where eby^= eb.

Let X be any uncountable space with the discrete topology and t£ = 0 for

any EezzX. Then for any AezzX and 38e(Sy, A can be covered by a countable

refinement of 38 and so ebmA = 0 and </», is the zero measure. (By 10.5, ep2 is

also the zero measure.)

On the other hand, if A c: X is uncountable and 38 is the open cover consist-

ing of singletons, then ebmA = co and so too ebA = oo.

11. The measure k in a topological space. The measure k of this section was

studied by Rogers and Sion [7].

11.1 Definitions.

35 = [38:38 is a finite disjoint cover of X consisting of differences of open sets}.

For AezzX, 38 a cover of X,

k^A = inf | S xB: S is a countable refinement of 38, S ezz sé, and AezzaS\.
\b eg )

kA = sup kmA.
m e s

It can be shown that the same measure is obtained if the covers of differences

of open sets are taken to be countable rather than finite. The process breaks down,

however, if we attempt to use arbitrary covers. If the topology is Tx, then a cover
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consisting of singletons is of the required kind and the resulting measure would

be infinite on any uncountable set, regardless of what gauge x was used.

To apply the theory of Part I we set

11.2. Definitions.

Hm = {A:AczB for some Be 33}.

Z   = {f/â:Jfeî)}.   <SX = Z-topology.

Then Z is a filterbase in X (the intersection of two sets which are differences of

open sets is again such a set) and l = v(jr,T).

11.3. Theorems.

.1. For any He/, and xeX, H[H[xJ] = H[x], and so .-/tf satisfies (511).

.2. cScz<Sx.

.3. &# is completely regular.

A. If A is closed in 'S, then A is both open and closed in rS #.

.5. If CS is Tx, then fSx is the discrete topology.

Theorem 11.4.2 following was obtained by Rogers and Sion [7].

11.4. Theorems.

.1. Compact ifSx)b sets are X-measurable.

.2. If Ge'S, then G is X-measurable.

Again, as discussed in 7.11, stronger results may be available.

To obtain results on approximation, we require that sé cz Jlx. (For example,

suppose sé consists of differences of open sets. Such sets will be A-measurable

by 11.4.2.) In this case we can apply Theorems 8.3 to 8.8.

Proofs

Proof of 11.3.1. Let xeZ and He/. For some 33el), H = Hm, and for

some Be3t), xeB. Now Be33 implies BeHm so by Definition 4.1.1

B c H[x].

But any element of H containing x must be contained in B, since H refines 38

and the elements of 38 are disjoint, so we have H[x] <=. B. Hence H[x] = B and

fl[H[xTj = H[B].

But H[B~\ = B by Definition 4.1.2 and an argument similar to the one above.

Hence

H[H[xJ] = H[x] for each xeX.

Proof of 11.3.2. Let G e 'S and set 93 = {G, X ~ G}. Then 33 e 35 and Hm e /.

Further, for every x e G, Ha[x] = G. Hence G e 'S^..
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Proof of 11.3.3.   Use 11.3.1 and Theorem 6.2.

Proof of 11.3.4. A is closed in <&x because IS ezz IS x. Let 38 = {A, X ~ A).

Then 38eQ and HmeJt?. For every xeA, Hm[x] =A. Hence AeS*.

Proof of 11.3.5. If IS is Ty, then points are closed in IS and hence by .4 above,

open and closed in <&#.

Proof of 11.4.1.   Use 11.3.1 and Theorem 7.6.

Proof of 11.4.2.    Suppose G e IS and let

38 = {G,X ~ G).

Then 38eT> and H^e^f. As in the argument in the proof of 11.3.1, we show

Hm[G] = G. The conclusion follows from Theorem 7.3, setting B„ = G for

every new.

11.5. Example. <&# may be strictly larger than 'S. Let X = R+,

IS = {[0,a):a > 0}. Then CSx is the half-open interval topology, which is not

only larger than IS', but larger than the usual topology on P+ as well. (Compare

10.6.)

11.6. Example.   Theorem 11.4.1 cannot be strengthened to closed if¡S¿)s sets.

It was shown by Rogers and Sion [7, Theorem 8], that the measure k defined

on the real line, with the gauge x on the subsets of P defined by xA = diam A

is just the measure £, which in this case is known to be the same as Lebesgue

measure. But the .?f-topology in this case is discrete by 11.3.5 and so all subsets

of R are closed (f&x)i sets.

12. Relations between measures. In this section we establish some relations

among some of the measures we have studied.

The following result was obtained by Bledsoe and Morse [1].

12.1. Theorem.   If (X,1S) is a metric space, then eb = Ç.

12.2. Remark. It was shown by Rogers and Sion ([7, Theorem 8], and in

some unpublished work) that if (X/S) is a separable metric space, and x is well

behaved in a certain sense, then k = Ç = eb2. In this case then (which includes

Lebesgue measure and the classical Hausdorff measures) ( = k = ep2 = eby = ebby

Theorems 10.5 and 11.2.

12.3. Remark. In the example in 10.7.2, the space is metric and it is easy

to see that eb = £, as is assured by Theorem 12.1. On the other hand, by 10.5,

02 's tne zero measure, and since 3) = (S2, we have also that k = eb2. We have then

C = 4> ¥= k = eby =eb2.

In this sense, eb is the most successful of these measures in generalizing from the

metric case.

12.4. Remark. We note that in Example 10.7.1, k is counting measure, dif-

ferent from both ebt and eb2.
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13. An approach using quasi-uniformities. A natural extension of the idea

of using covers of sets of smaller and smaller diameter in a metric space is the

idea of using covers of sets defined in terms of the elements of a uniformity in

a uniform space (Kelley, [4, Chapter 6]). Now the idea of "coming down" through

elements of a uniformity is independent of the symmetry requirement for a

uniformity and applies as well to a quasi-uniformity (see Definition 13.1.2 below).

Since for any topological space there is a quasi-uniformity which induces the

topology (see Pervin [6]), in this section we generate a measure on the given

topological space (X, 'S) using a quasi-uniformity. There may be different

quasi-uniformities which induce the same topology on a space and it turns out

that the measure generated depends in general both on the particular quasi-

uniformity chosen and on the way of "coming down" defined in terms of the

quasi-uniformity. The measures J and X of §§9 and 11 can always be obtained

through this approach, whereas an additional condition on the topology is needed

to obtain the measure cp of §10.

We first establish some results on quasi-uniformities (see Pervin [6]).

13.1. Definitions.

.1.   AoB = {(x,z): for some y,(x,y) e B and (y,z)eA}.

°U is a quasi-uniformity for X iff

.2.    °U is a family of subsets oflxl such that for every Ue<% and Ve°li,

(a) UzDÁ = {(x,x):xeX},

(b) Wz^U and W cz X xX^WeW,

(c) V r\Ve%, and

(d) there exists W e°U such that WoW cz U.

.3. If U is an element of a quasi-uniformity,

U[A] = {y : (x, y)elf for some x e A},

l/[x] =  [/[{*}].

13.2. Remark. A quasi-uniformity "11 for X generates a topology ^onX

consisting of all subsets G of X such that for each xeG, there exists U e "?/ such

that l/[x] <= G. For xeX, {i/[x]: Ue°ll} is a neighborhood system for x (see

Pervin [6]).

13.3. Theorem. For any topological space, there is a quasi-uniformity

which induces the topology.

Proof,   (see (Pervin [6]). Let (X,^) be a topological space. For each Ge'S let

SG = (GxG)up~G)xI),

and let sé = {SG;GeS}. Pervin shows that sé is a subbase for a quasi-uniformity

^ for X (hereafter referred to as Pervin's quasi-uniformity), and that ^ = 'S.
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13.4. Remark. For a given topological space (X,1S) there is a largest quasi-

uniformity <% such that 3Tm — IS. We take as a subbase for W the union of

all quasi-uniformities "V such that ^V = •"• Then ^ is a quasi-uniformity and

We now assume that % is a quasi-uniformity for X which induces the topology

IS, and introduce the measures p and pj.

13.5. Definitions.

For U ezzX xX,

.1.  17*   =  {AezzX: Ax Aezz U}.

l/1"   ={/!<= X: for some xeX, A ezz U[x]}.

For Aezz X,

.2.   pvA = inf   Z tB: 38 is countable, 38 ezz U* nsé, and Aezzo38\.

/M = sup p„i4.
(Je*

.3. p£,4 = inf      Z tB: ¿£ is countable, 38 ezz í/t ni, and icr« .
Iß eá8 J

pT/4 = sup p{,^.
líe*

It is clear that the same measures are obtained if the supremum is taken over

any base for °U (see Kelley [4, p. 177].)

13.6. Remark. Pervin [6] points out that two noncomparable quasi-uni-

formities for X may give identical topologies for X. They may at the same time

yield different measures. In the case in 13.7 below, note that 3"^ is just the metric

topology. In the case in 13.8, applied in a metric space, ^^ is by construction

again the metric topology but we have seen that £ and k do not always agree on

a metric space (see Remark 12.3).

13.7. Remark, p is a direct generalization of Ç- Let I be a metric space

with metric d. If we set

Ur = {(x,y):d(x,y)z%r}.

and

m = {Ur:r>0},

then <?/ is clearly a base for a quasi-uniformity for X.    Since A x A ezz Ur iff

diam.4 i£ r, we have (r = pUr for r > 0.

Using Remark 3.3, we conclude Ç = p.

13.8. Theorem.    // <?/ is Pervin's quasi-uniformity,  then p = k (§11).

4-

13.9. Theorem.   // <?/ is Pervin's quasi-uniformity, then p   = ep2 (§10).

The following property of a topological space is needed for a comparison of

p and eb (§10).
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13.10. Definition. A topological space has property g iff for any open cover

sé of X, there exists an open cover 33 refining sé and such that for every x e X,

n{Ge33:xeG} is open.

13.11. Theorem, p' — cb. If útt is the largest quasi-uniformity inducing 'S

on X and (X,*S) has property Q, then p' = cb.

13.12. Remark. We can have p} j= cb in a space having property g. If p*

is obtained using Pervin's quasi-uniformity for the space in Example 10.7.1, then

pî = cb2?icl).

Proofs

Proof of 13.8.   p^X: Suppose 33 e 35,

0- {G,.~G;+,:/ = 1, •••,«}.

Let

v = ñ sGj,

where

S0j = (Gj x Gj) u ((X ~ G,) x X) (see 13.3).

Then i/e* and

AeV*   iïï Ax AczU

iff 4x4cS0. for j = l,..-,2/i

iff AcCj or AC\Gj=0 for j = !,-••,2/i

iff A cz G; ~ Gi+n  for some ¡, 1 ^ i g n.

Hence any family of sets in U* is a refinement of 33 and so

Pv = Xa

and

p ^ A.

A^p: Let UeW. Then there exists Fe-?/, V<=U such that

m

j=i

where G,- e 'S fot j = 1, • • -, m. Let

and

33 = {A ~ B: A = nff for some &cg, £? ¥= 0, and B = a(S ~ JSP)}.
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ThenafeX)andif£)cz^~ß for some (A ~ B)e38, then for/ = l,---,m, DezGj

or D C\Gj = 0, whence D x D <= V, or DeV*. Hence any refinement of 38

is contained in V* and so

km = Hv = Pv

and

k~=p.

Proof of 13.9.   n'^ep-,:   Let   ¡Jae(S2,   38 = {G.,---,G„},   where   G,eV  for

i = 1, • • ■, /i. Let

(J =  fl  SG)6*.¡ = i

Suppose A e (7^. Then for some xeX,/lc(i[r]. Now xe G¡ for some G, e#,

and since U ezzSG], we have

í/[x]c;Süj[x] = G,.

Hence A ezz G j and so <5J c U ' implies ef refines 38. Therefore

l>i ̂  4>m
and

¿  ^   02-

p^ueb2: Suppose l/e#. Choose Ke^, V ezz U,

in

V=  Ç\Sa. where G7 e ^ for / = l,-,m.
j = i

Let

^ = {V[x]:xeX}.

Now for xeA", either l/[x] = X, or

VI*} = n G;,.
i = l

for some k, l — k = m, and some function j on  {1,•;•,!»}  onto  {1,•■•,»■},

for:  Suppose  x^G¡ for i = l,»»»,m. Then

^w = (ns°.)w

= {y : (x, y) e (G, x G) U ((X ~ G) x X) for / = 1, • • -, m)

= X.

On the other hand, suppose xeGj. for i = l,---,k, l<,k = m, and x£Gji

for i = /< + !,»••,m, for some function j on {!,••»,m) onto {!,••■,m}. Then
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(x,y)eV  iff (x,y)eGj-, x GJl for /= l,---,k

iff yeGj-. for i = !,■■■,k

iff yeftGj,
k

1
¡ = 1

i.e. V[x-]=f]) = lGjr
We conclude that each element of 33 is open and 38 is finite. Clearly 33 is a

cover of AT, so 33e®2. Trivially, if A cz B for some Be33, then A c K[x] for

some xeX, so # refines á? implies #c (7' and hence

(pm = P-v = P-v^^4>2=^^-

Proof of 13.11. Let U e°ll. For each xeX, t/[x] is a neighborhood of x

so there exists open Gx such that

xeGx cz t/[x].

Let

33 = {Gx:xeX}.

Then 33e© and if <? refines 33, S czU^, so

and
<t>® = l¿l

<t> = i¿-

Suppose now ^/ is the maximal quasi-uniformity inducing 'S on X, and (A\i^)

has property g. Let if e© and let áíeffi, 38 refining cf and such that

7t{Ge33: xeG} is open for every xeX.

Set

U = p| Sc
GeäS

where again SG = (G x G) u ((X ~ G) x X). Then

(1) for every xeX, l/[x] is a neighborhood of x, and

(2) UoU = U.

(1):   We show U[x] = 7i{GeJ':xeG}.

yel/[x]  iff (x,y)eU

iff (x,y)eSG for every Ge33

iff (x,y)eG x G or (x,y)e(X ~G) x X for every Ge33

iff x,yeG or x^G for every Ge3S

iff y e G for each G e 38 such that x e G

iff yen{Ge33:xeG}.

(2): By definition,

UoU = {(x, y) : for some z, (x, z)eU and (z, y) e U}.
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Now if (x, y) e U, then since (x, x) e U, we have (x, y) e Uo U, and so U ezz UoU.

Suppose now (x,y)e Uo U. Then for some z,(x,z)eU and (z,y)e U. Hence

ix,z)eSG and iz,y)eSG for every Ge38. Let Ge38.,

(a) If (x,z)eG x G and (z,y)eG x G, then (x,y)eG x GezzSG.

(b) If (x,z)e(X~G)xX  and  (z,y)s(X ~ G) x X,

then  (x, y) e (X ~ G) x X c SG.

(c) If (x,z)e(X~G) XX, (z,y)eGxG,   then   (x,y)e(X ~ G) X X <= SG

(d) (x, z) e G X G and (z, y) e (X ~ G) X X is impossible.

Hence (x,y)eSG for every Gef and so (x,y)eU and we have UoU ezz U.

Now (1) implies that Ac[/, and this with (2) implies that {U} is the base for

a quasi-uniformity for X. Hence by Theorem 6.3 of Kelley [4], <% \j{U) is

the subbase for a quasi-uniformity rT for X. But »^V = ^ and so since <% is the

maximal quasi-uniformity inducing IS on X, we have ^ = ^ and Í7 e ^.

Now if ^4 c (7[x] for some x e X (i.e. A e U^), then by the proof of (1), A ezz G

for each Ge38 such that xeG, and hence «S? c 17* implies SC is a refinement

of á?. Therefore

Pu = (Pm ̂ 0,?

and we have

/if^ 0-
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