HAUSDORFF MEASURES ON ABSTRACT SPACES(%)

BY
M. SION AND R. C. WILLMOTT

1. Introduction. Given a non-negative set function t on a family &/ of sub-
sets of a metric space X, an outer measure v can be generated on X as follows:
For Bc X and 6 >0

vsB = inf‘Z 14;: B = | J 4;and, foricw, 4;€ danddiamA‘§5}.
iew icw
and
vB = lim v;B.
-0

F. Hausdorff [3] introduced this abstract measure (a generalization of the
linear measure of C. Carathéodory [2]), and proved a few basic results for it.
He considered in some detail the measures obtained when various restrictions
are placed on the set function 7, in particular when tB = h(diam B) for some
continuous increasing function h: R, —» R,, with h(0)=0 and h(f) > 0 for
t > 0. The measure generated using this function is called the Hausdorff h-measure,
and in the case that h(¢f) =t°, the Hausdorff s-dimensional measure. In these
forms it has been studied extensively. Two recent papers by W. W. Bledsoe and
A. P. Morse [1], and by C. A. Rogers and M. Sion [7], have suggested processes
for defining a measure on a topological space which generalize the Hausdorff
measure process in a metric space. They obtain some (in general, different)
measurability and approximation results for these measures.

In this paper we introduce a process for generating a measure on an arbitrary
space, which abstracts the essential idea behind all of the above Hausdorff meas-
ures and generalizations. Results are obtained which can be specialized to give
many of the known results, and which throw some light on the relation between
measures introduced before.

In Part I we introduce the concept of a measure generated by a gauge and a
filterbase, and with any such filterbase we define an associated topology for the
space, the filterbase topology. We then impose different conditions on the filter-
base and deduce resulting properties of the filterbase topology and of the measure.
Measurability and approximation properties of the measure are first obtained

Received by the editors July 23, 1965.
(1) This work was partially supported by the National Research Council of Canada.

275



276 M. SION AND R. C. WILLMOTT [June

in terms of the filterbase. Additional conditions on the filterbase are then applied
to give results, stated in terms of the filterbase topology, on measurability of
closed, closed ¥;, and compact ¥; sets, and on approximation by ¥;, %, open
and closed sets.

In Part IT we consider measures generated on a topological space. In particular,
we show that the Hausdorff measure in a metric space and the measures of
Bledsoe and Morse [1], and of Rogers and Sion [7] are encompassed by the
general theory of Part I and that some of the measurability and approximation
results can be specialized to yield existing results for these measures.

2. Preliminaries. In this section we collect definitions, notation, and known
or elementary results in set theory, topology, and measure theory which will
be needed later.

2.1. DEFINITIONS AND NOTATION.

1. & denotes the empty set.

.2. o denotes the set of natural numbers.

3. A~B = {x:xeAand x¢B}.

Let # be a family of sets. Then
n# = nA ewA;
6B = UA EQA;

B~ = {A:A=0%B ~ B for some Be %};

B,={A:A= U,, <o B, for some sequence B of sets in %#};
Bs={A:A =ﬂ,,wB,, for some sequence B of sets in %} ;
Bos = (B5)s; Bse = (B3)ss

.10. # is a cover of A iff A= o0%;

1. of refines B or o is a refinement of & iff for each A e .o/, there exists
Be 4 such that A < B;

A2, # is a o-field iff B~ < B and B, < B,

13. Borel B =n{/: o is a o-field and # < o} is the smallest o-field con-
taining 4.

14. 5 is a filterbase iff S is a nonempty family of sets such that for every
Mes# and Nes#, there exists He 5 such that F#Hc M NN.

H is a filterbase in X iff S is a filterbase and for every He 5#, H is a family
of subsets of X and e H.

If 52 is a filterbase in X, then .# is a subfilterbase of # iff A/ is a filterbase
in X and for some &,

LN

M= {HNd:HeH}.

15 If (X,9) is a topological space, then ¢ of course denotes the family of
open sets. # will denote the family of closed sets.

.16. A4 or C1 A4 denotes the closure of 4.

17. p is an outer measure on X iff p is a function on the family of subsets of
X such that
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(i) uF=0, and

(i) 0<pud< X,.,uB, whenever A UrecoB.= X.

As all measures discussed in this paper will be outer measures, we will hence-
forth drop the qualifying word ‘‘outer.”

.18. For u a measure on X, a set 4 is u-measurable iff A = X and for every
Bc X,

uB = (BN A) + u(B ~ A).
.19. For p a measure on X,
M, ={Ac X: A is p-measurable}.

.20. u|A, the restriction of pu to A is the function v having the same domain
as p such that for every B in the domain of u,vB = u(B N A).}

.21. v is a finite submeasure of p iff for some A with yd < oo,v= u'A.

22, If # is a family of sets, 7 is a gauge on £ iff 7 is a function on & U {J}
to the extended non-negative real line, such that 1@ = 0.

.23. For pu a measure on X, u is a regular measure iff for every A c X, there
exists Be.#, such that Ac B and pd = uB.

The following theorem is well known. (See, for example, Corollary 12.1.1 in
Munroe [5].)

2.2. THEOREM. If p is a regular measure on X and A is an ascending se-
quence of subsets of X, then

/,L(U A,,) = lim pAd,.

The following is a form of the well-known lemma of Carathéodory.

2.3. LeMMA. Suppose u is a measure on X, and A< X. If for every ¢ >0
and every T < X such that uT < oo, there exists a sequence D of subsets of
X such that

(1) D,y <D, for every ne w;

@ MneaDsc 4

(B) U(TNA)ZW(TND,)+ ¢ for every new; and

(4) for every Pc T and new,

(PN D,y1) U(P~D,) = (P ND,, )+ u(P~D,,
then A is p-measurable.
Proof. Let £>0, Tc X, pT< ©, B=[),.,D,. We show
wTNA)+ (T~ A) < uT + 2,

which implies that A is y-measurable.
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We obtain first
(5) There exists New such that

WT ~B) = W(T ~ Dy) +¢.
Setting P = TN D, we have

WTND,) = pP 2 p((P NDpy3) U(P ~ Dysy)) by (1)
= WP ND,yz) + (P ~ D,y y) by (4)
= W(TND,2)+w(TND,~ D, y) by (1).

Hence for any Mew,

M M
L WTND,~Dypsy) £ L (WTNDy) = w(TNDys2))

n=0

MTNDo) + (TN D) = (TN Dygy1) = (TN Dy )
and

o M
Z ”’(TnDa'an-l-l) = lim E ﬂ(TﬁD,,N n+l)

n=0 M=o n=0
< 2u(TND,y) < .
Choose New so that

o
z u(TnDn ~ Dn+l) <e.
n=N

Since
(TNDy~B) = ) (TND,~D,yy) by (1),
we have
wTNDy~B)<e.
But

KT ~ B) = (T ~ Dy) + (TN Dy ~ B) £ (T~ Dy) + ¢,
which establishes (5). Now

WMTNA)+ u(T~A) £ (TN A)+ (T ~ B) since Bc A,
S M(TNDyyy)+e+u(T~Dy)+e by(3)and (5)
= p(TNDy+y) U(T ~ Dy)) + 2¢ by (4)

S uT + 2e.
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PARTI. THE MEASURE GENERATED BY A GAUGE AND A FILTERBASE

In Part I we start with an abstract space X, a filterbase 5 in X (see 2.14) and
a gauge 7 on some family &/ of subsets of X such that &J e o (see 2.22). From
these we generate a measure and a topology on X, and then investigate proper-
ties of the measure and of the topology. In particular we obtain conditions under
which certain topological sets, such as closed, closed ¥; and compact ¥; sets,
are measurable (§7), and also results on the approximation of a given set from
above and below by measurable sets or by topological sets (§8). The topology
itself is studied first (§6) and the key result, used repeatedly later, is Theorem
6.1.2, which establishes conditions under which a certain natural family forms
a base for the neighborhood system of a point. From this we determine when
the topology is regular (6.1.4), Hausdorff (6.1.5), or generated by a uniformity
(6.2).

3. The measure v. We now introduce the measure generated on X by the
filterbase ## in X and the gauge 7 on &/. We may assume without any loss of
generality that & < ¢.

3.1. DErINITION. For Heos. and Ac X, let

1. v§¥ P4 =inf{t:t = Xy, tB for some countable # < H N/ such that
A < (02} (note: inf & = ).

2. VU4 =supg Vi A,

If no ambiguity can arise as a result, we will drop one or both superscripts on v.

3.2. THEOREM. V is an outer measure on X.

Proof. vy is constructed by Method I of Munroe [5, pp. 90, 91], and so, by
Theorem 11.3 in Munroe, is an outer measure. Since v is the supremum of such
measures, it is again one.

3.3. REMARK. 2% is a set directed by inclusion, so (vyA4,H e ) is a net
(see Kelley [4, Chapter 2]). It is an increasing net, i.e. HLNes# and H<c N
implies vgA = vyA4, so we have

vA = sup vyd =lim vyA.
Hek HeXx

4. The filterbase topology. We now use the filterbase # in X to introduce
a topology on X, closely related to the measure v.

4.1. DEFINITIONS.

1. For Hes#, xeX,

H[x] = {x} us{he H:xeh}.
2. For He#, AcX,
H[A] = H[x] = Auc{heH:h N A # J}.
xecd
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3. The #-topology, ¥, ={G < X: for every xe G, there exists H € # such
that H[x] = G}. The subscript 5 may be dropped if no ambiguity can result.

4.2. THEOREM. The #-topology is a topology for X.

Proof. Clearly 9, is closed under arbitrary unions. Suppose B,Ge ¥, and
x€B NG. Then there exist H, N € # such that H[x] = B and N[x] = G. Since
H is a filterbase, there exists M € ## such that M = H N N. Referring to Defi-
nition 4.1.1 we see

M[x] < (H[x] "N[x]) =« BNG,

so BNGe9,. Finally, &, Xe€¥%,.

We note that if for a point xe X there is H e J# such that x¢ ¢H, i.e. no
element of H covers x, then {x} is both open and closed in the s#-topology.

REMARK. Throughout the remainder of Part I all topological concepts refer
to the s#-topology.

The following lemmas follow directly from the definitions.

4.3. LemmA. If H,H,,H, e #; for each iel, A, X; and AcX, Bc X,
then

1. H[UI AJ:H H[A]],
2. H,[H,[A]] =yAH1[H2[x]], and
3. H[A]NB= iff AnH[B] =& .

5. Conditions on the filterbase in X. We now introduce conditions on
which will allow us to draw conclusions about the s#-topology and about:prop-
erties of the measure v.

(5I) Given xe X and He 5, there exist H,,H, e s such that

H,[H,[x]] = H[x].
(5II) Given H e s, there exist H,,H, € # such that for every xe X,

H\[H,[x]] = H[x].

(We note that by 4.1.2 an equivalent statement would be that for every 4 < X »
H,[H,[A]] = H[A4])

(SIII) If A is closed, B is open and 4 = B, then there exists He £ such
that H[A] < B.

(5IV) There exists a sequence H in 5 such that for every NeJ#, there
exists ne w such that H,c N.

(5V) Given an open cover of X, there exists H € 5 which refines this cover.

5.1. REMARKS.

1. If o2 satisfies (SII), then it satisfies (51).

2. If 5 satisfies (5V), then it satisfies (5III).
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Proof. Suppose A is closed, B is open and A = B. Then & = {B,X ~ A}
is an open cover of X. By (5V), there exists H € 5 which refines . Now any
element of &, and hence also of H, which intersects A is contained in B so
H[A] < B.

6. Properties of the S#-topology. In this section we deduce propcrties of the
H#-topology which result from imposing conditions on .

6.1. THEOREM. Suppose A satisfies (51).
1. IfHes#, A< X, then there exists an open G such that AcG < H[A].
2. For xeX, {H[x];He#?} is a base for the neighborhood system of x.
(H[x] itself may not be open. See Example 6.4.)
3. For Ac X, the closure of A,
A = () H[A],

HexX

and if for some sequence H in 3,

4= n Hn[A],

new

then A is closed.
4. The #-topology is regular.
5. The #-topology is Hausdorff iff

(N H[x] = {x} for each xeX.
HeX

Proof of 1. Given xe X and Hes#, we show there exists anopen set G
such that xe G < H[x]. Let

G={yeX: for some Nes#, N[y] = H[x]}.

Clearly G < H[x]. Let yeG. Then for some Ne#, N[y]< H[x]. Choose
N,,N,es# such that

N[N,[y]]1= N[y].

Then for any ze N,[y],
Ny[z] = N\[N,[y]] = H[x],

so N,[y] = G. Hence G is open.

.2 follows immediately from 1. and the definition of the s#-topology.

Proof of .3. Ac(\u.»H[A]: Given He#, suppose x¢ H[A]. Then
{x} "H[A] = &, whence by Lemma 4.3.3, H[x] N A = J. By 6.1.1 there exists
a neighborhood of x free of points of A and so x¢ 4. We conclude that
A < H[A] for every He .
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A>(\uexH[A]: Suppose x¢ . Then since X ~ 4 is open, there exists
H e o such that H[x] N4 = (&, by Definition 4.1.3. Again using Lemma 4.3.3
we have x ¢ H[A]. But

H[A] > H[A]> (| H[A],

He X

and hence x¢( \u . H[A].
If for some sequence H in 57,

A = () H[4],

new

then

Ac() H4l<() H[A4] =4,

Hel new

and A=4.
Proof of .4. Let A be closed, x¢ A. By definition there exists He s such
that H[x] N4 = . Choose H,,H, e # such that

H,[H,[x]] = H[x].
Then
H\([H)[x]]nA =0,
and so by Lemma 4.3.3,
H,[x]"H,[4] = &.
By 6.1.1 there exist disjoint open sets G, and G, such that
x€G, < Hy[x] and A = G, = H,[A4].

Proof of .5. Suppose the #-topology is Hausdorff and xeX. For any
y # x, there exists He # such that y¢ H[x]. Hence y¢ﬂ i e H[X]. (This
does not use condition (5I).)

Now suppose ()uc»H[x]={x} for each xeX. Then by .3 and .4, the
S -topology is T; and regular, and hence Hausdorff.

6.2. ReMArk. (SID) is a uniform condition, and it is not hard to show, by
constructing an appropriate uniformity whose topology is the s#-topology, that
with condition (5II) the s#-topology is completely regular.

6.3. LEMMA. If 52 satisfies (51) and (51V), and A is closed, then there exists
a sequence H in 3 such that

A = () H[A].

ne o

Proof. Using (5IV) let H be a sequence in 5# such that for every Ne#,
there exists ne w such that H, = N. Then since 4 is closed we have by 6.1.3
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A=A= ) N4> (| H[A]> 4.

neE®

6.4. ExamPLE. LetX =R, H, = {{x,y}:|x—y| £ r} u{Q},# = {H,:r>0}.
For Aeoi let
diamA if A# &
T4 = {
0if 4 =¢.

Then 2# is a filterbase in X; the S#-topology is the usual topology; for any
xeX, r>0,

H[x] = [x-r,x+7r],
a closed neighborhood of x; S satisfies the three conditions (5I), (5II), and
(5IV) but not (SIIT) or (5V); 7 is a gauge on ¢5#; and for A = X,

0 if A is countable
VY = {
oo if A is uncountable.

7. Measurability theorems. The following definition and lemma are taken
from a paper by Bledsoe and Morse [1].

7.1. DerINITION. For ¢ a measure on X, 4 is ¢-compact iff A = X and given
any ¢ > 0, finite submeasure 6 of ¢, and open cover & of A, there is a finite
subfamily & of # such that

0A £ 6(ANod) +c¢.
7.2. LEMMA. A closed subset of a ¢-compact set is ¢-compact.

We first state two theorems and a corollary on v-measurability of sets charac-
terized in terms of the filterbase 7.

7.3. THEOREM. If for some sequence B,

A=) B,

LN
where for each ne w there exists M, 4, €3 such that
Mn+1[Bn+ l] < B_—x < X,
then A is v-measurable.

7.4. CorROLLARY. If 5% satisfies (SII), A = X, and for some sequence H in 52,
A= n H,,[A] ’

neow

then A is v-measurable.
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7.5. THEOREM. If S# satisfies (5I), A is v-compact and for some sequence
H in #,

4 = () H[A],

new

then A is v-measurable.

We now relate the restrictions on A4 in the above theorems to topological prop-
erties of A and, using additional conditions on 2#, we obtain a number of
theorems on the measurability of purely topological sets.

7.6. THEOREM. If 5 satisfies (SI), then compact %; sets are v-measurable.

7.7. THEOREM. If o satisfies (511) and (SII1), then closed ¥; sets are
v-measurable.

7.8. THEOREM. If ¥ satisfies (5I1) and (51V), then closed sets are v-measurable.
7.9. THEOREM. If S satisfies (SI) and (5V), then closed 9 ;sets are v-measurable.

7.10. THEOREM. If S satisfies (51), (5IV), and (5V), then closed sets are
v-measurable.

7.11. REMARKS. We note that if there is any subspace X' = X which is such
that for any x e X', there is some H € 5# such that no element of H covers x,
i.e. x¢ oH, then for every nonempty 4 = X',vA = o0; and by the comment at
the end of Theorem 4.2, ¥, is discrete on X’. Thus the discrete topology on X’
reflects the fact that all subsets of X' are v-measurable.

Now it may happen as a result of the nature of the domain o/ of 7 that the
class of measurable sets is larger than that given us by any of the Theorems 7.6
to 7.10, using the filterbase s#. (For example, if & is the family of singletons,
then all subsets of X are v-measurable, a result which is independent of the filter-
base 5£.) In this case, it may be of some advantage to consider the subfilterbase
of o,

N ={HNA:HeH}.

Evidently the measure v*? = y*? but the 4 -topology % ,, may be strictly
larger than ¥,.. If this is the case, and if A4~ satisfies the requisite conditions,
we may be able to apply one of the Theorems 7.6 to 7.10 with the filterbase A~
to obtain a stronger result than that obtained using 5#. (For example, if in the
case above where & is the family of singletons, we form the filterbase .#°, then
trivially A~ satisfies (5II) and (5IV), and 4, is the discrete topology. Then by
Theorem 7.8, all subsets of X are v-measurable.) However, 4" may not satisfy
enough conditions to allow us to apply any theorems from Part I (see Example
9.6), so we cannot always automatically use A4 to get stronger measurability
results.
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Again, it may happen that although " itself does not satisfy enough condi-
tions, another filterbase .# can be found such that

(i)  is a subfilterbase of . so that v(#) =y = y(*),

(i) 9 is strictly larger than ¥, and

(iii) # satisfies conditions allowing application of some theorem giving a
stronger result than that obtained using 5 (see Example 9.6). Unfortunately,
we know of no general method in such a case of choosing a filterbase in X, optimum
in the sense that using it we obtain the largest possible class of measurable sets.

We note also that the nature of &/ may result in a large class of measurable
sets at the same time that the A4 -topology is no larger than the s#-topology,
i.e. the A -topology may not be large enough to reflect the class of measurable
sets. (For instance, if in Example 6.4 H, consisted of all sets of diameter < r,
while 7 consisted of all doubletons, the same measure would be obtained, under
which all subsets of X are measurable, while both the s and A4 -topologies
-would be the usual topology, and the best theorem obtainable would be 7.8,
giving closed sets measurable.)

PROOFS

7.12. LeMMA. If A< X, Bc X, and there exists Mes# such that
M[A]NB=(J, then (AU B) =vA + vB.

Proof. Suppose Mes#’', M[A]NB=, and (AU B) < ©. Let Ne i,
N < M. Then also N[4A] "B =¥. By Definition 4.1.2 no he N can intersect
both A and B, so any cover of AU B by elements of N N/ can be separated
into disjoint covers of A and B. Checking 3.1.1 we see that

vw(AUB) = vyA + vyB.

Since vy is a measure, we have the inequality the other way also, whence
(A UB) = vyA + vyB,

for every N es# such that N < M. Hence by Remark 3.3

AU B) = lim vy(Au B) = lim (vy4 + vyB)
Nex Nex

= lim vyA+ lim vyB = v4 + vB.
Nex Nex

Proof of 7.3. We use Lemma 2.3 with D,= B, for each new. Let £¢>0
and T < X such that vT < oo. To check (4) note

M, [Bys1 ]N(X ~B,) =& for each new,

from which it follows that for each new and P T,

Mn+l[Pan+1]n(P~Bn =d.
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Applying Lemma 7.12 we obtain
W(PNB,,)U(P~B,))=vPNB,;;)+ WP ~B,)

for all new and P T.
Proof of 7.4. We show first that A can be put in the form

A= [ N[4],

ne€eo

where N is a sequence in 5# and for each new

N,+1[Na+1[4]] = N,[4].

We construct the sequence N by recursion.
Let N, = H, and suppose we have N;e# for i=1,---,n such that

N[A] = H[A] for i=0,:,n,
and
Ni+l[Ni+1[A]]CN‘*[A] fOI‘ i=1,“',n_‘1.

We choose N,,; as follows:
Using (5II) choose M € 2 such that

M[M[AT] = N,[4].
Then choose N,,,€s# such that N,,, cMNH,,,. We have
(@ Np+:[41<H,44[4], and
() Nu41[Np+1[4]] = N, [4].
Now (i) and (ii) will be true for all new. From (i) we have

Ac () N[4] = H[A] =4

new new

A = () N,[4].

new

and so

Setting B, = N,[4], the conclusion follows by application of Theorem 7.3.

Proof of 7.5. Let Tc X, vT< o, >0, and §=v|T. We employ Lem-
ma 2.3 to show that 4 is v-measurable. Sequences C, D, M, and N are constructed
by recursion. To start weset Co=C, =A;Mq=M,;=Hy; Hy> No=N,e#;
Dy=X; and D, = M,[C,] = H[4]. Having obtained C;, D;, M;e# and
N, e s# satisfying

(a) C;isclosed for i=0,--:,n (Cy = A is closed by 6.1.3),

(b) Ciy1c=CicAfori=0,:-,n—1;

(€) 0C,_,<0C;+¢2"t for i=1,-,n,

(d D;=M|[C]<cH;_[A4] for i=1,---,n, and

(&) N[D]< D, for i=1,-,n,
we construct C, 41, Dy415 Myy1, and N, as follows:
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For each xeC, choose, using (5I), H,,, H,,, H,3, and H,, €5 such that

Hxl[HxZ[HxS[Hx4[x]]]] < Mn[x] < Mn[cn] < Dn°
By (a) and Lemma 7.2, C, is v-compact. Since 5 satisfies (5I), for each xe C,
there is, by 6.1.1, open G, such that

x€G, < Hyy[x].

Hence {G,:xeC,} is an open cover of C, and by Definition 7.1 there is a finite
subset Q = C, such that

&
< i
0C, < O(C,, N xleloG,,) + ik
and so

e
< i
0c, < o(c,,n ygﬂ[x]) o
Now set
Cpiy = H|C,N H [x]| =Cl{C, N H, x),
*t HO)!" [ xlFJQ 4[ ]] ( chJQ 4[ ]

and choose M, ., €, N,, € such that

Mn+l < (nQ sz)nIIn’

Nn+l < n Hxl’
xeQ

Dyyy = Mn+1[Cn+l] .

and set

We now check:
(@) C,4, is closed.
() Cpy1c=C,cAsince C,p;cC,=C,cA.
(© 6C,=6C,.y +¢/2" since Cpyy 2 (C, N Ux co Hualx]).
(d) Dyiy=M,1[Cpss] = H,[A] since Cpyy =4, M,y = H,.
(e) Nn+l[Dn+1] < Dn: ﬁl‘St,

Crne () H[U Habl| = U () HIHLLA] < U ol

X e

The equality is obtained using Theorem 6.1.3 and the fact that the closure of a
finite union is the union of the individual closures. Now

Nn+I[Dn+l} = Nn+l[Mn+l[Cn+1]]
Vs | Moo (J, Bl |
= xLEJQ N, i1 [My 41 [Hos[Hoo[x]11]

< xLeJQ Hxl[HxZ[Hx3[Hx4[x]]]] < Dn'

n



288 M. SION AND R. C. WILLMOTT [Fune

The second to last inclusion follows from the choice of M, ., and N, , and the
equality from Lemma 4.3.1.

The completed sequences satisfy (a), (b), (c), (d), and (e) for each new. We
now check that the sequence D satisfies the hypotheses of Lemma 2.3.

(1) Du4y =D, by (e).

2 ﬂ,, caoDn © ﬂ,, coH,[A] = A follows from (d).

(3) Using A = C,, (c) and induction, we have

0A§0C,,+s(1—%)<0€,,+s for every new,
or
WTNA) = wWTNC)+e¢ for every new.
Since C, = D, by (d), we have finally
WTNA)=vWTND,) +¢ for every new.

(4) It follows from (e) that
NJ[PND NP ~D,_,)=¢ foranyPcTandn=1.
Lemma 7.12 then gives us
v(PND)YUP~D,_))=vPND)+wP~D,_,)
forevery P T and n>1.

Proof of 7.6. We show that for any compact ¥; set 4, there exists a sequence
H in 5# such that

A= () H[4],

new

where for each new,
H,[H,+:[4]] = H,[A4].

Then setting B, = H,[A], we apply Theorem 7.3 to obtain the conclusion.
Suppose A is compact, and

A=) G,

neEw

where for each ne w, G, is open. ‘

We assume Gy =X, set Hy={X}U 65 and construct H, recursively as
follows:

For each xe€ A4, using (5I) choose H,, € 5 such that

H,[H,[x]] =G, and
Hux[Hux[an[x]]] < H, -l[x:"
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Now each H,[x] contains an open set containing x by Theorem 6.1.1 and since
A is compact, a finite number of these open sets and hence of the sets H,,[x]
covers A, i.e. there exists finite Q = 4 such that

Ac xLEJQ H,[x].
Now choose H, < nx coHyux, H e . Then
HLAle H, [ Bolx]] = U HIHL]
by Lemma 4.3.1. Since H, < H,, for each xeQ,
H,[A] = ngnx[an[x]] < G,.

Similarly,
Hn[Hn[A]] < xLJQan[an[an[x]]] < Hn—l[A]’
Then
Ac (H[Al<() G, =4,
and so
4 = () H,[4].

Proof of 7.7. Condition (SIII) guarantees that for any closed ¥, set A,
there is a sequence H in 3¢ such that

4 = () H[A4].

neow

The result follows by application of Corollary 7.4.

Proof of 7.8. We know by Lemma 6.3 that for every closed set A, there
exists a sequence H in 5 such that

A = () H,[A].
neEw

The conclusion follows from Corollary 7.4.

Proof of 7.9. (i) By 5.1.2 5 satisfies (5III).

(ii) As in the proof of 7.7, if A is a closed ¥, set, then for some sequence H

in ¥
A = () H[A].
(iii) X is v-compact.
Let Tc X, vT < ©0, 0=v|T, £¢>0, and £ be an open cover of X. Using
(5V) choose Nes#, N refining #. Now choose M € 5 such that
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&
vT .._<.. VMT + i.

Choose He#, H= NN M, so by Remark 3.3,
(@) vT =T +¢/2.
Since v; T < o0, choose countable Z < H N/ ,%B = {B;}; « > such that Tc ¢4
and
wT< X 1B, < 0.

icw
Now choose k € w such that
o
Y 1B;< c.
i=k+1 2
Since N is a refinement of & and H = N, for each i < k choose G, e Z such that
B; = G; and let

¢ = {G;:i2kj.
Now
(T ~6é) < a{B;:i >k}
and so .
vi(T ~ 66) = 5.
2
Hence

vuT S V(TN GE) + vy(T ~ 6&) < vy(T N 66) +;i <WTNeé) + g

and by (a),
vI = W(TNof)+¢.
Hence
0XZ0(XNodb)+¢

and by Definition 7.1, X is v-compact.
The desired conclusion now follows from (ii), (iii), Lemma 7.2 and Theorem 7.5.
Proof of 7.10. We know from the proof of Theorem 7.9 that if # satisfics
(5V), then closed sets are v-compact, and from Lemma 6.3 that if 5 satisfies
(51) and (51IV), then for every closed set A, there is a sequence H in S such that

A= () H[A].

neow

The conclusion follows by application of Theorem 7.5.

8. Approximation theorems. We consider first several theorems on ap-
proximation from outside in which the only restriction on the set to be approx-
imated is that its measure be finite. The restriction that elements of &/ be v-meas-
urable sets is necessary in all the theorems of this section but the first.

8.1. THEOREM. Suppose # satisfies (5IV) and A< X. If for every He ¥
there is a countable subfamily of H N« which covers A (in particular if
vA < ), then there exists Be s/,; such that B> A and vB=vA.
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8.2. COROLLARY. If 2# satisfies (5IV) and of = M,, then v is a regular
measure.

8.3. THEOREM. Suppose of < M,, vA < 0, and E= A. Then given ¢ > 0,
there exists Be s/, such that Ec B and (A NB)<vE +¢.

8.4. COROLLARY. Suppose & < 4,, vA < ©, and E = A. Then there exists
Desf,, such that Ec D and v(4A N D) =vE.

8.5. CorROLLARY. IfX = U,, cwA, where foreachnew, A, € #,and vA,< ©,
and o/ < M,, then v is a regular measure.

By putting further restrictions on the approximated set, we can get the fol-
lowing results on approximation from inside.

8.6. THEOREM. Suppose o c B < M ,, Ac(%,)~ (see 2.1.6), vA < 0, E c A,
and Ee M ,. Then given ¢>0, there exists Ce(%,)~ such that C< E and
WE~C)<e.

8.7. THEOREM. Suppose A B < M,, Ac(%B,)~, vA< oo, Ec A, and
Ee#,. Then there exists Ce(%#,5)~ such that C< E and v(E~ C)=0.

8.8. THEOREM. Suppose & < Borel# — M,, A€ Borel B (see 2.1.13), and
vA < . Then for each E < A there exists Be Borel # such that E < B and
vE = vB; and for each v-measurable E = A, there exists C € Borel # such that
CcE and v(E~C)=0.

If it happens that the sets of &/ have some topological properties and are
v-measurable (e.g. the open sets in the classical Hausdorff measure theory), we
obtain in the above theorems approximating sets which also have topological
properties. If in our hypotheses we restrict &/ to open sets, require that open
sets be v-measurable and put additional restrictions on # and X, we obtain
some sharper results. (Recall that ¥ and & denote respectively the families of
open and closed sets.)

8.9. THEOREM. Suppose & <G < M,, H satisfies (51) and (51V), Ec X,
vE < 00, and Ee€ M. Then there exist A€ 95 such that A> E and v(A~ E) =0,
and Ce %, such that C<E and (E~ C)=0.

8.10. COROLLARY. Suppose oZ =G < M ,,H# satisfies (SI) and (51V), Ec X,
Ee,, and X is o-finite. Then the conclusions of Theorem 8.9 still hold.

It is not the case that the existence of a %; set covering E = X and having the
same measure implies that given ¢ > 0, there exists Ge ¥ such that G > E and
vG < vE + ¢. It may happen that all nonempty open sets have infinite measure
(as, for example, with counting measure on R or on the rationals, and Hausdorff
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3-dimensional measure on R). To obtain this conclusion we need an additional
restriction on the space.

8.11. THEOREM. Suppose £ =Y < M ,, H satisfies (S5I) and (51V), Ec X,
Eed,, and X = U,,M,A,,, where for each ne w, vA, < © and A,€¥%. Then
given ¢ > 0, there exist open G o E such that WG ~ E) <¢ and closed F c E
such that v(E~ F) <e.

ProoOFs

Proof of 8.1. Using (5IV), choose a sequence H in 5 such that for every
N e i, there exists new such that H, = N. For each new choose countable
B, H,N such that A < 0%, and

an(a‘%n) é 2 D é vH,,A- + l
De®Bn n

Let
B =) (cB)ed,;.
n=0

Then B> A and

vy, B < vy (6%,) < vy, A + '—ll for every n e w.

By Remark 3.3, taking the limit as n — co gives
vB < vA.

Since B o A, we have vB = vA, and so vB=vA.
Proof of 8.2. 8.2 is a direct consequence of 8.1.
Proof of 8.3. Choose He 5 such that

vAgvHA+%.

Suppose B = X is v-measurable. Then

WA N B) + WA ~ B) = v4 < vHA+% < v,,(AnB)+vH(A~B)+%

< va(ANB)+v(4 ~ B) + %
Cancelling v(4 ~ B) in the first and last expressions gives

(a) v(ANB)<vg(ANB)+¢/2 for v-measurable B. Now given Ec A,
choose countable # « H N/ such that Ecoc# =B and
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p 1:D<vHE+£.
De® 2

But Be o/, and so is v-measurable, whence by (a),

&

WANB) £ vf(ANB) + 5

&
iévHB-*-

< X 1D + & (since @ is a cover of B)
De® 2

IIA

vwE+e=vE +e¢.

8.4 follows immediately from 8.3, and 8.5 directly from 8.4.
Proof of 8.6. By Theorem 8.3 there exists Be &/, such that A ~ E = B and

v ANB)Sv(A~E)+e.
Now A ~ E is v-measurable so
WENB)=v(ANB)~(A~E)) =v(ANB)—vA~E)<e.
Setting C = A ~ B we have by Definition 2.1.6, C € (4,)~ and since ENB =E ~C,
VE~C)<e.

Proof of 8.7. The proof is identical to that of 8.6 except that the result
of Corollary 8.4 is used instead of that of 8.3.

Proof of 8.8. We obtain B from Corollary 8.4 and C from Theorem 8.7.

Proof of 8.9. (i) Use Theorem 8.1 to choose A€ o5 = ¥; such that A o E
and vA =vE. Since E is v-measurable and vE < co, we have v(4 ~ E) =0.

(ii) We show now that if Be¥; and vB < o, there exists D € #, such that
D =B and v(B~ D)=0.

By Lemma 6.3 and Theorem 6.1.1 we have & = %;, so ¥ < &, and we may
set, for Be ¥9;,

B = ﬁl CJ Fin,i),

where foreachnewandie w, F(n,i) € ¥ . We may assume that F(n,i+1) = F(n,i)
for each iew.

By Corollary 8.2, v is a regular measure, so by Theorem 2.2 we have for each
new,

VB = v(B N i=U1 F(n, i)) = lirin (B N F(n,i)).

Hence for each new there exists a sequence i, such that for each kew,
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WB ~[BOF(n,i,)]) = vB—wBAF(min) S 73
since vB < o and B NF(n,i, ) is v-measurable.
Let
F(k) = () F(n,i,) for cach kew.
n=1
Then F(k)e & and
F(k) = |J F(n,i) for every ne w,
i=1

whence F(k) = B and

vB — vF(k)

Y(B ~ F(K)) = v(B ~"é F(n, i, )

v( UI[B~(BNF(n, i,,,‘))]) by de Morgan’s law,
i

=1

I\

- 1 1
,,§1 k2" Tk
Set
0
D = | Fk).
k=1
Then De #,, D = B, and

vWB~D)=vB—-vD < for every kew.

i

Hence
vw(B~ D) = 0.

Now let Ee #,, vE < 0. Using (i), choose B e ¥; such that B> E and vB =vE.
Since v(B ~ E) =0, we choose Q€ ¥; such that Q > B~ E and vQ = 0. Using
(ii), choose De %, such that D = B and vw(B~ D) =0. Now
VE = vB = vD = vD —vQ = w(D ~ Q).
Set C=D~Q.Then Ce#,, CcE, vC=vE and so
WE~C)=0.

Proof of 8.10. Let X =| J, ¢ ,4, where for cach ne w, v4, < c. By Theo-
rem 8.1, choose for each new, B,e¥%; such that B,> 4, and vB,=vA,. Let
E,=ENB,, so E,e#, and vE, < . By 8.9 choose for each new, C,e %,
such that C, < E, and W(E,~ C,)=0. Set
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C.=% U.,,C"‘
Then Ce #,, C<E and
E~Cc nLer(E”~ n) s

whence
<]
WE~QC)E X wWE,~C,)=0.
n=0

We now apply this result to X ~ E to obtain Ae%; such that A > E and
vV(A~E)=0.

Proof of 8.11. For each new let E, = EN A, and using 8.9 choose B,e ¥,
such that B, o E, and v(B, ~ E,) =0. Let

B, = n B,,‘,

tLEwW

where for each iew, B,,€¥ and B, > B,,,,. Then

i+1°

o >VE, = vB,2v(4,NB,) = lim v(4,NB,).

i+

Choose iew such that

w4,NB,) < vE, + 287

and set
G,=A4,NB,e¥%.

Since E, is v-measurable and vE, < oo,

WG, ~E,) < 5

2n+l°
Set
G=|JG,e9.
new
Then Ec G,
(G~E) <= U (G, ~ E,),
and

WG~E) £ X vG,~E)<e.

neow

To obtain Fe#, Fc E, WE~ F)<g, apply the above result to X ~ E.
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PART I . MEASURES ON TOPOLOGICAL SPACES

In Part II we start with a topological space (X,%) and a gauge T on some
family &/ of subsets of X such that J e€./. Ouraim is to study measures on X
generated by t and ¢ through processes which are generalizations of the well-
known Hausdorff process in a metric space (see Method 1I of Munroe [5, p.
105]).

We first consider the Hausdorff process itself, showing that the standard re-
sults can be obtained by application of the general theory developed in Part I.
Generalizations of the process were introduced by Bledsoe and Morse [1] and
by Rogers and Sion [7]. We show that each of these cases can be obtained as an
application of the theory in Part I. More specifically, in each case we consider
a filterbase # in X and see that the known measure is v***?. Since properties
of v are stated in terms of the #-topology, it is important to study the re-
lation between the given topology ¢ and the s -topology. In particular we de-
termine how conditions on ¢ affect the 5#-topology and its relation to ¢, thereby
throwing some light on the role played by juch conditions.

Finally, we investigate other approaches to generating a measure on a topo-
logical space using a quasi-uniformity, and relate the measures obtained thereby
to those considered previously.

9. The measure { in a metric space. In this section we suppose that the
topology ¢ is induced by some metric p on X. All metric concepts refer to p.

The standard metric measure { generated by v (Method II of Munroe [5, p.
105]), is given by

9.1. DEFINITION. For A< X and 6>0

(A = inf{z 1B;:A< |J B, for each i €w, B;e o and diam B; < 6}.

(A = lim (A.
6-0

To see that the theory of Part I applies to {, let

9.2. DEFINITIONS.

H, = {Ac X:diamA4 <r},

# = {H,:r>0},

N ={HNn;He H}.

Then # and A are filterbases in X, A is a subfilterbase of 5, and
¢ =y =y The well-known properties of { will follow from the results
of Part I and the following easily verified lemmas.

i

9.3. LEMMAS.
1. The s#-topology is the metric topology, i.e. Yo = 9.
2. 3 satisfies (51I) and (5IV).
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Specifically, we have the following theorems.
9.4. THEOREM. If A is closedin ¥, then A is {-measurable.

We note that stronger measurability results may be available (see Remarks
7.11 and Example 9.6).

9.5. THEOREMS. Suppose o/ =94. Then

1. ( is a regular measure.

2. If (E< o and Ec.#,, then there exist De%; such that D> E and
{D~E)=0, and CeF, such that C<E and {(E~C)=0

3. If X is (-o-finite, E€ .M, then there exist De¥Y; such that D>E
and {(D~E)=0, and Ce F, such that Cc E and {(E ~C)=0.

4. If X = U,,e,,,G,,, where for each ne w, G,€¥% and {G, < ©, E€ #, and
e>0, then there exist open G > E such that {(G~ E)<¢ and closed F c E
such that {(E~F)<e.

PROOFS

Proof of 9.4. Use9.3 and Theorem 7.8.

Proof of 9.5. 1. Use9.3,9.4 and Corollary 8.2.

Proof of 9.5.2, 9.5.3, and 9.54. Use 9.3 and then respectively Theorems
8.9,8.10,and 8.11.

9.6. ExaMPLE. On obtaining a stronger measurability result by choice of
an appropriate filterbase.

Let X =R?,

o = {A:for some xo€R, yeR, and kew,
A= {(x,y):x = X, or for some n>k,x=x0i—;—”}}.

Let 52, 4" be defined as in 9.2. Then by 7.8, closed sets in the usual topology are
{-measurable. Now 4" does not satisfy (5I), so we cannot get any measurability
results using A4”. Let

% = {A: for some x,eRand yeR, A c {(x, y): for some s >0, |x—x0| <s}},

and
M={HNB:HeH}.
Then 4 is a subfilterbase of #, { = v\, A satisfies (5IT) and (5IV), and
so closed sets in ¢, are {-measurable. Clearly ¢, strictly contains %, .

10. The measures ¢, ¢,, ¢,, in a topological space. The measures ¢ and
¢, below were introduced and studied by Bledsoe and Morse [1] and by C. A.
Rogers and M. Sion (unpublished) respectively.
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10.1 DEFINITIONS.
1. Families of open covers

® ={B:BcY,cB=X, and Je%B}.
6, = {#:B<%9, # is countable, 68 =X, and F e B}.
6,= {B:B<Y, B is finite, 6B =X, and Je%}.

2. For AcX, # a cover of X,

$aA = inf ‘ Y tB:&isacountable refinement of #,& < o/ ,and A < aé’} .

Bee&
3. ForAcX,
PA = sup ¢gd.
BEeG
$1A = sup Pgd.
B eG1

¢4 = sup Pud.

B €62

To apply the theory of Part I we set
10.2. DEFINITIONS.

o
Y
[

{A:4 < B for some Be #}.
H = {Hg:BecB}.

#, = {Hg: Be®,}.

H, = {Hy: Be®,}.

S -topology.

Q® K
=~ ©
] ]

H ,-topology.
@2 = s ,-topology.

Then 5, 5#,, 3, are filterbases in X, and ¢ =v %) ¢, = v 7 ¢, = y*F2,
The relations between the given topology ¢ and the induced topologies %°, %!, %2
and properties of the filterbases 5, 5, #, are indicated in the following theorem.

10.3. THEOREM.

1 Pc9'cdcy.

If 9 is regular, then

2. ?=9'=9"=9,

3. H, Ky, H, satisfy condition (51), and
4. A satisfies condition (5V).

In general, & # 9° as we show in 10.6. On the other hand, regularity of % is
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not needed for ¥ = @2, as we show in the proof. In view of 6.1.4, ¥ = ¥° and #
satisfies (51) iff 4 is regular.

Applying the results of Part I we then get the following measurability theorems
(already known for ¢ and ¢,).

10.4. THEOREMS.

1. If 9 is regular, then closed 95 sets are ¢-measurable and compact G sets
are ¢, ¢,-measurable.

2. If 9 is normal, then closed 9; sets in 9 are ¢, ¢, p,-measurable.

(Since singletons are not assumed closed, normality does not imply regularity.)

Again, stronger results may be available, as indicated in the discussion in Re-
marks 7.11.

To obtain approximation results we require that &/ = A4, or &/ <M, or
o = My,. In any of these cases we can apply directly Theorems 8.3 to 8.8.

In general the three measures ¢, ¢,, ¢, are distinct, as is shown in 10.7. It fol-
lows immediately from the definitions, however, that we always have

10.5. THEOREM. ¢, < ¢, < ¢.
PrROOFS AND EXAMPLES

Proof of 10.3.1. Let Ge¥° and let xe G. Then fori some He s, H[x] = G.
But for some Ze®, H= Hg and

H[x] = 6{Ge#B:xeG}eY.

Hence Ge¥9, and 9°c 9.
Clearly #, c #, c # and so 9> c 9! c ¥°.
Proof of 10.3.2. We need only show that ¥ c %2,
Let Ge¥ and xe G. By regularity choose closed C such that xe C = G, and
set
2 ={G,X~C}eB,.

Then letting H = Hg, we have H[x]= G. Thus, for each xeG, there exists
He#, such that H[x] = G, i.e. G is open in the 5 ,-topology.

Note that in this proof we need only that Cl{x} = G. Thus, if ¢ is a T}-topology,
then ¥ = @2,

Proof of 10.3.3. Suppose xe X and H es#. Then for some Z€®, H=Hg.
Now x € G, for some Gye %, and

Goc H[x] = 6{GeB:xeG}.
By regularity choose G,, G, € ¥ such that

xeG,c G, =G, =G, =G,
and let



300 M. SION AND R. €. WILLMOTT [June
gl = {GOaX ~ Gl} 662,!
B, = {G, X~ Gz} €b,,

Hl = Halefz, and
H2 = ngefz.
Then
HZ[x] = GI’
Hl[Gl] = Go,
and so

H,[H\[x]] = H[x].

Proof of 10.3.4. By .2, any cover £ consisting of sets open in the S#-topology
is a cover of sets open in ¥, i.e. Ze®, and so Hge 5 and Hg refines #.

Proof of 10.4.1. Use 10.3. and Theorems 7.6 and 7.9.

Proof of 10.4.2. The result follows from Theorem 7.3 after it has been shown
that if A is a closed %; set in ¥, then there exists a sequence B of subsets of
X such that

A=[)B,

neow

and for each n e w, there exists N, ,, € 5, such that

Nn+ I[Bu+ 1] < Bn'
Suppose A4 is closed in ¢ and

A=()G,

neow

where for each new, G,€¥9. The sequences N in 5, and B are defined recur-
sively. To start, set %y ={Gy,X ~ A}, No=Hyg,, and B, = G,. Having ob-
tained B; and N; such that

(@ NJ[B]cB,_, for i=0,--,n (take B_, = X),

(b) B;is open fori=0,.--,n, and

(¢ A< B;cG, for i=0,:-,n,
we construct B,,; and N,,, as follows: Let

D,y = G,41 NB,e¥.
Using normality choose open B, such that

AcB, By D,y

Let
Boyy = {Dn+1’X~ n+1}€g2,
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and N,;, =Hg_, €3,. Then the only element of N,,,; which intersects B, ,
is D,4q, SO
Nu+1[Bus1] = Dyyy = B,.

For the sequences B and N, (a) and (c) hold for every ne w. (c) assures us that

A=) B.

ne o

10.6. ExAMPLE. %° does not always coincide with %. Let X=R,,
% ={[0,a):a > 0}. Then for any open cover # of X, and xe X, Hy[x] = X,
so 90 is the trivial topology.

10.7. ExamPLES. We can have ¢, # ¢,, ¢, # ¢.

.1. A case where ¢, # ¢;.

Let X=R,; 9={[0,a):a>0}, for Ec X,

{0 fE=XorE=g
1

otherwise.

1E =

Then for any Ac X, #€®,, we have ¢p44 =0, since any finite open cover
of X must include X as an element. Hence ¢, is just the zero measure.

On the other hand, for any unbounded 4 = X, and Z€®, such that X ¢ #,
we have ¢pgd = 0 and so0 ¢, A= o0.

2. A case where ¢, # ¢.

Let X be any uncountable space with the discrete topology and 7E =0 for
any E < X. Then for any A <« X and #€®,, A can be covered by a countable
refinement of # and so ¢4A4 =0 and ¢, is the zero measure. (By 10.5, ¢, is
also the zero measure.)

On the other hand, if 4 = X is uncountable and # is the open cover consist-
ing of singletons, then ¢4 = 0o and so too ¢4 = o0.

11. The measure A in a topological space. The measure A of this section was
studied by Rogers and Sion [7].

11.1 DEFINITIONS.

D = {#:4 is a finite disjoint cover of X consisting of differences of open sets}.

For Ac X, # a cover of X,

AgA = inf { Y tB:&£is a countable refinement of #,£ < o/ ,and A = aé": .
Beé

AA = sup Ag4.
Bed
It can be shown that the same measure is obtained if the covers of differences
of open sets are taken to be countable rather than finite. The process breaks down,
however, if we attempt to use arbitrary covers. If the topology is T}, then a cover
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consisting of singletons is of the required kind and the resulting measure would
be infinite on any uncountable set, regardless of what gauge 7 was used.

To apply the theory of Part I we set

11.2. DEFINITIONS.

Hgy = {A:A c B for some Be %}.
H# = {Hyz: BeD}. Y, = H-topology.
Then & is a filterbase in X (the intersection of two sets which are differences of
open sets is again such a set) and 4 =v*?,

11.3. THEOREMS.

.1. For any He ¥, and xe X, H[H[x]] = H[x], and so 2 satisfies (511).
2. 9cY,.

3. 9, is completely regular.

4. If A is closed in 4, then A is both open and closed in G,

S. If 9 is Ty, then %, is the discrete topology.

Theorem 11.4.2 following was obtained by Rogers and Sion [7].

11.4. THEOREMS.
.1. Compact (%) sets are A-measurable.
2. If Ge¥9, then G is A-measurable.

Again, as discussed in 7.11, stronger results may be available.

To obtain results on approximation, we require that & < ;. (For example,
suppose & consists of differences of open sets. Such sets will be A-measurable
by 11.4.2.) In this case we can apply Theorems 8.3 to 8.8.

Proors

Proof of 11.3.1. Let xe X and He . For some #€®D, H=Hg, and for
some Be B, xeB. Now Be # implies Be Hg so by Definition 4.1.1

B < H[x].

But any element of H containing x must be contained in B, since H refines &
and the elements of & are disjoint, so we have H[x] = B. Hence H[x] = B and

H[H[x]] = H[B].

But H[B] = B by Definition 4.1.2 and an argument similar to the onc above.
Hence

H[H[x]] = H[x] for each xe X.

Proof of 11.3.2. LetGe%andset Z = {G,X ~ G}.Then BeDand Hgye #.
Further, for every xe G, Hg[x] =G. Hence Ge Y.
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Proof of 11.3.3. Use 11.3.1 and Theorem 6.2.

Proof of 11.3.4. A is closed in ¥, because ¥ = Y,. Let # ={4,X ~ A}.
Then #e® and Hze#. For every xe A, Hg[x] = A. Hence A€ Y.

Proof of 11.3.5. If ¢ is T,, then points are closed in ¥ and hence by .4 above,
open and closed in Z,,.

Proof of 11.4.1. Use 11.3.1 and Theorem 7.6.

Proof of 11.4.2. Suppose Ge ¥ and let

& ={G,X ~ G}.

Then €D and Hze . As in the argument in the proof of 11.3.1, we show
Hg[G] = G. The conclusion follows from Theorem 7.3, setting B,=G for
every new.

11.5. EXAMPLE. ¥, may be strictly larger than %. Let X=R,,
% ={[0,a):a >0}. Then ¥, is the half-open interval topology, which is not
only larger than ¢, but larger than the usual topology on R, as well. (Compare
10.6.)

11.6. ExaMPLE. Theorem 11.4.1 cannot be strengthened to closed (%,.); sets.

It was shown by Rogers and Sion [7, Theorem 8], that the measure A defined
on the real line, with the gauge 7 on the subsets of R defined by 74 = diam 4
is just the measure {, which in this case is known to be the same as Lebesgue
measure. But the S#-topology in this case is discrete by 11.3.5 and so all subsets
of R are closed (9 ); sets.

12. Relations between measures. In this section we establish some relations
among some of the measures we have studied.
The following result was obtained by Bledsoe and Morse [1].

12.1. THeoREM. If(X,9) is a metric space, then ¢ = .

12.2. ReMARK. It was shown by Rogers and Sion ([7, Theorem 8], and in
some unpublished work) that if (X, %) is a separable metric space, and 7 is well
behaved in a certain sense, then A ={ = ¢,. In this case then (which includes
Lebesgue measure and the classical Hausdorftf measures) { =1 = ¢, = ¢, = ¢ by
Theorems 10.5 and 11.2.

12.3. REMARK. In the example in 10.7.2, the space is metric and it is easy
to see that ¢ ={, as is assured by Theorem 12.1. On the other hand, by 10.5,
¢, is the zero measure, and since © = ®,, we have also that A = ¢,. We have then

{(=¢#1=¢,=0¢,.

In this sense, ¢ is the most successful of these measures in generalizing from the
metric case.

12.4. REMARK. We note that in Example 10.7.1, 1 is counting measure, dif-
ferent from both ¢, and ¢,.
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13. An approach using quasi-uniformities. A natural extension of the idea
of using covers of sets of smaller and smaller diameter in a metric space is the
idea of using covers of sets defined in terms of the elements of a uniformity in
a uniform space (Kelley, [4, Chapter 6]). Now the idea of “coming down”’ through
elements of a uniformity is independent of the symmetry requirement for a
uniformity and applies as well to a quasi-uniformity (see Definition 13.1.2 below).
Since for any topological space there is a quasi-uniformity which induces the
topology (see Pervin [6]), in this section we generate a measure on the given
topological space (X, ¥) using a quasi-uniformity. There may be different
quasi-uniformities which induce the same topology on a space and it turns out
that the measure generated depends in general both on the particular quasi-
uniformity chosen and on the way of “‘coming down’’ defined in terms of the
quasi-uniformity. The measures { and A of §§9and 11 can always be obtained
through this approach, whereas an additional condition on the topology is needed
to obtain the measure ¢ of §10.

We first establish some results on quasi-uniformities (see Pervin [6]).

13.1. DEFINITIONS.

.1. Ao B={(x,z): forsome y,(x,y) € B and (y,z) € A}.

% is a quasi-uniformity for X iff

2. % is a family of subsets of X x X such that for every Ue % and Ve %,

(@ UosA={xx):xeX},

(b) WoUand WX xX=>We,

) UNnVe#, and

(d) there exists We % such that WoW c U.

3. If U is an element of a quasi-uniformity,

U[A4] = {y:(x,y)e U for some xe A},
Ulx] = U[{x}].

13.2. REMARK. A quasi-uniformity % for X generates a topology Z, on X
consisting of all subsets G of X such that for each x € G, there exists U € % such
that U[x] = G. For xe X, {U[x]:Ue %} is a neighborhood system for x (see

Pervin [6]).

13.3. THEOREM. For any topological space, there is a quasi-uniformity
which induces the topology.

Proof. (see (Pervin [6]). Let (X, %) be a topological space. For each Ge ¥ let
S¢=(GxXG)VU(X~G)xX),

and let of = {Sg; G € ¥}. Pervin shows that & is a subbase for a quasi-uniformity
% for X (hereafter referred to as Pervin’s quasi-uniformity), and that 5 =9 .
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13.4. ReMark. For a given topological space (X,%) there is a largest quasi-
uniformity % such that 7, =9%. We take as a subbase for % the union of
all quasi-uniformities ¥~ such that , = ¢. Then % is a quasi-uniformity and
Tu=9.

We now assume that % is a quasi-uniformity for X which induces the topology
%, and introduce the measures y and pT.

13.5. DEFINITIONS.

For UcX x X,

1. U* = {AcX: AXAcU]}.

Ut = {4 < X: for some xe X, A<= U[x]}.

For Ac X,
2. uyA = inf { Y 1B: & is countable, Z<c U* N/, and A o.@, .
Be®
1A = sup uyA.
Ueu
3. u:r,A = inf { Y tB: & is countable, #< Ul Nno/, and 4 ca.@}.
BeZ®
,uTA = sup yI,A.
Ue¥

It is clear that the same measures are obtained if the supremum is taken over
any base for % (see Kelley [4, p. 177].)

13.6. REMARK. Pervin [6] points out that two noncomparable quasi-uni-
formities for X may give identical topologies for X . They may at the same time
yield different measures. In the case in 13.7 below, note that 7 is just the metric
topology. In the case in 13.8, applied in a metric space, 7 4 is by construction
again the metric topology but we have seen that { and A do not always agree on
a metric space (see Remark 12.3).

13.7. REMARK. p is a direct generalization of {. Let X be a metric space
with metric d. If we set

U, = {(x,»):d(x,y) = r}.
and
* = {U,:r>0},

then % is clearly a base for a quasi-uniformity for X. Since 4 x A < U, iff
diam A4 < r, we have {, =y, for r>0.
Using Remark 3.3, we conclude { = p.

13.8. THEOREM. If % is Pervin’s quasi-uniformity, then u= 21 (§11).
13.9. THEOREM. If % is Pervin’s quasi-uniformity, then p* = ¢, (§10).

The following property of a topological space is needed for a comparison of
u and ¢ (§10).
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13.10. DEFINITION. A topological space has property Q iff for any open cover
o of X, there exists an open cover & refining & and such that for every xe X,

n{Ge B:xe G} is open.

13.11. THEOREM. yT < ¢. If % is the largest quasi-uniformity inducing ¥
on X and (X,9) has property Q, then uf=¢.

13.12. REMARK. We can have ;fr # ¢ in a space having property Q. If ”t
is obtained using Pervin’s quasi-uniformity for the space in Example 10.7.1, then

pl=g,#¢.
PRroOOFS
Proof of 13.8. = A: Suppose ZeD,

.@ = {G"V Gi+il: i= 1,“',"}.
Let

2n
U= n S(;,,
i=1
where
Sg, = (G; x GHU (X ~ G)) X X) (see 13.3).

Then Ue% and
AeU* iff AxAcU
iff AxAcSg, forj=1,-,2n
iff AcG;or ANG;=¢ for j=1,---,2n
iff A<G;~ G;;, for some i,1<iZn.
Hence any family of sets in U* is a refinement of # and so

Hy 2 g
and

v

uw=A.
A= p: Let Ue%. Then there exists Ve, VeU such thai

V = I IS(;,
ji=t
where G;€¥ for j=1,---,m. Let

6 = {Gi}i=1 ms
and

B ={A~B:A=n¥ for some L &, L+ &, and B=o(€ ~ Z)}.
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Then Ze® and if D = A ~ B for some (4 ~ B)e #, thenforj=1,---,m, D <G,
or DNG;=, whence D X D<=V, or DeV*. Hence any refinement of &
is contained in V* and so

and
Azu.

Proof of 139. puf>¢,: Let #¢6,, #= {G,--,G,}, where G,e¥ for

i=1,-,n. Let
U=() S¢e.
i=1
Suppose Ae UT. Then for some xe X, 4 = U[x]. Now x e G; for some G, €A,
and since U = Sg,, we have
U[x] < S(;j[x] = GJ.

Hence A= Gjand so &= U Timplies & refines % . Therefore

I‘IJ Z dg
and
ﬂT Z .

#T§¢z: Suppose Ue#. Choose Ve, V< U,

V= n Sq, where G;e¥ forj=1,---,m.
j=1
Let
B = {V[x]: xe X}.
Now for xe X, either V[x] =X, or
k
V[x]= Dl G]l

for some k, 1 £k <m, and some function j on {l,---, m} onto {1,--,m},
for: Suppose x¢G; for i=1,---,m. Then

v = () 8a) 03
= {(y:(x,»)e(Gx G)U(X ~G) x X) for i=1,-,m}
= X.

On the other hand, suppose xeG;, for i=1,--,k, 1<k<m, and x¢G,
for i=k+1,---,m, for some function j on {1,---,m} onto {1,---,m}. Then
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x,p)eV iff (x,y)eG;, x G, for i=1,---,k
iff yeG;j, fori=1,---,k

k
iff ye Ql G,,

ie. V[x]=()i=1Gj,.

We conclude that each clement of # is open and # is finite. Clearly # is a
cover of X, so #e®,. Trivially, if A = B for some Be #, then A c V[x] for
some x € X, so & refines & implies § = U T and hence

bazuh Zpfand 2z pt.

Proof of 13.11. Let Ue%. For each xe X, U[x] is a neighborhood of x
so there exists open G, such that

xeG, < U[x].
Let
B = {G,: xeX}.

Then Ze€® and if & refines &, & = UT, SO

¢x§ﬂ$

pzut.

Suppose now % is the maximal quasi-uniformity inducing % on X, and (X, %)
has property Q. Let £€® and let Ze®, # refining & and such that

and

n{Ge#: xe G} is open for every xe X.
Set
U= Se
Ge®

where again S =(G X G)U (X ~ G) x X). Then
(1) for every xe X, U[x] is a neighborhood of x, and
2 UoU=1U.
(1): We show U[x]=n{Ge#: xeG}.
yeU[x] iff (x,y)eU
iff (x,y)eS; for every Ge #
iff (x,»)eGxG or (x,y)e(X ~G) x X for every Ge #
iff x,yeG or x¢ G for every Ge #
iff yeG for each Ge# such that xe G
iff yen{Ge®:xeG}.
(2): By definition,

UoU = {(x,y): for some z,(x,z)e U and (z,y)e U}.
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Now if (x, y) e U, then since (x,x) € U, we have (x,y)e UoU,andso U =« Uo U.
Suppose now (x,y)e Uo U. Then for some z,(x,z)eU and (z,y)e U. Hence
(x,z2)eS; and (z,y)e S; for every Ge#. Let Ge % .,
(a) If (x,2)6eG X G and (z,y)eG x G, then (x,y)eG x G S;.
(b) If (x,2)e(X~G) x X and (z,y)e(X~G) x X,
then (x,))e(X~G)x X< S;.
() If (x,2)e(X~G) X X, (z,y)eG X G, then (x,))e(X~G)X X = S;
(d) (x,2)eG X G and (z,y)e(X ~ G) X X is impossible.
Hence (x,y)eS; for every Ge# and so (x,y)e U and we have UoUc U.
Now (1) implies that A = U, and this with (2) implies that {U} is the base for
a quasi-uniformity for X. Hence by Theorem 6.3 of Kelley [4], % u{U} is
the subbase for a quasi-uniformity ¥” for X. But 7, =% and so since % is the
maximal quasi-uniformity inducing % on X, we have ¥ =% and Ue%.
Now if 4 = U[x] for some xe X (i.e. A€ UT), then by the proof of (1), 4 = G
for each Ge # such that xe G, and hence & < U' implies £ is a refinement
of #. Therefore

and we have
ph= 0.
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