
ON THE VALIRON DEFICIENCIES OF MEROMORPHIC

FUNCTIONS OF FINITE ORDER!1)

BY

D. F. SHEA

Introduction. A few years ago, A. Edrei and W. H. J. Fuchs [3] established the

following result about the deficient values of a certain class of entire functions.

Theorem A. Let f(z) be an entire function of finite order A, all of whose zeros

lie on the negative real axis.

Then if A > 1, f(z) has zero as a Nevanlinna deficient value.

This result discloses the remarkable fact that a simple geometrical restriction

on the distribution of the zeros of an entire (function is almost, by itself, enough

to make zero a deficient value.

Since the publication of [3], a number of extensions of Theorem A have been

found (cf. for instance [6], [7], [9]). However, none of these results expresses

"best possible" relations between the order of the function and the size of its

Nevanlinna deficiencies, and to find such relations seems very difficult. It is the

purpose of this note to show that, if we replace Nevanlinna's definition of defi-

ciency by the one introduced by Valiron, sharp bounds on these deficiencies can be

found for certain classes of meromorphic functions. From these bounds it is

possible to deduce, as immediate consequences, several results on the growth

of the functions considered.

1. Terminology and notations. We assume that the reader is familiar with the

fundamental concepts of Nevanlinna's theory of meromorphic functions and

in particular with the most usual of its symbols :

lo+g, m(r,f), n(r,f), N(r,f), T(r,f).

We shall use, whenever this is possible without ambiguity, the simplified no-

tations m(r,c), n(r,c), N(r,c), T(r) in place of m(r,l/(f - c)), n(r,l/(f-c)),

N(r,l/(f-c)),T(r,f).
The letters A and p denote the order and lower order of f(z), respectively:
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.     .. logT(r) . , log T(r)
X = hm sup    ,       - ,   p = hm mf —^——.

r~ + oo      logr n     r^ + 00     logr

Following Valiron, we say that f(z) is of regulargrowthif X = p.

The Nevanlinna deficiency ô(c,f) of the value c for the function f(z) is, by

definition,

(1.1) S(c,f) = 1-lim sup ^j^.

The Valiron deficiency A(c,f) of c is

AT/,c)
(1.2) A(c,/) = 1 - lim inf

T(r,f) •

Avalué c for which A(c,f) > 0 is said to be deficient in the sense of Valiron; if

o(c,f) > 0, then the value c is deficient in Nevanlinna's sense.

It is clear from Nevanlinna's first fundamental theorem that

0 ̂  ô(c,f) = A(c,f) ̂  h

and, further, that A(c,/) is positive if and only if the asymptotic relation

(1.3) N(r,c)~T(r,f) (r-> + oo)

fails to hold. A classical result of Ahlfors-Frostman-Nevanlinna [11, p. 280]

implies that (1.3) holds for all complex values c except those belonging to an

exceptional set of inner capacity zero.

2. Statement and discussion of results. The asymptotic behavior of the following

simple entire function is completely known (cf. [10, p. 18]):

FÁz)=,ñ {l+¿)       (a=1/A' ° <A < !)•

In particular, it is easy to verify that Fx(z) has order X, lower order p == X, and

further that

■"*•    ,"»**'     [sinTtA (±<A<1).

Hence

(2.1) A(0,FA) = l-sin7tA>0

when 1/2 < X < 1, and thus the value 0 is deficient, for these functions Fx(z), in

the sense of either of the definitions (1.1), (1.2).

To what extent is (2.1) typical of arbitrary entire functions having only negative

zeros and order XI One answer to this question is contained in



1966] MEROMORPHIC FUNCTIONS OF FINITE ORDER 203

Theorem 1.   Let f(z) be a meromorphic function of order A, whose zeros lie

onthe negative real axis and whose poles lie on the positive real axis.

Put

(2.2) X = l- A(0,f),       Y = 1 - A(oo,/).

Then necessarily

(2.3) X2 + Y2 - 2XY cos nA < sin2nA

when 1/2 á A z% 1.

When A < 1/2, (2.3) still holds provided

(2.4) X^cosnA and Y = cosnA.

Since for entire functions N(r, oo) = 0 and hence Y = 0, Theorem 1 implies

A(0,/)kl-sin7rA (i<Az%l)

for any entire function f(z) with negative zeros and order A, and this is the desired

generalization of (2.1).

If the quantities X, Yare regarded as the coordinates of a point in an .XT-

plane, then the definitions (2.2) and (1.2) show trivially that the point (X, Y)

is always confined to the unit square

OgJfgl,       0z%Yz^l.

For the functions of Theorem 1, the point (X, Y) is subject to the additional

restriction that it lie inside or on the ellipse

X2 + Y2 - 2X Y cos nA = sin2nA,

at least when A ̂  1/2.

When A < 1/2, it is not hard to see that (X, Y) may lie outside this ellipse if

X < cos nA or Y < cos nA, so that the conditions (2.4) are necessary in this case.

That the inequality (2.3) is best possible follows, for orders A less than 1, from

the examples in [8, pp. 116-119]. When A = 1, Theorem 1 is necessarily sharp

since in this case (2.3) asserts

(2.5) liminf-^ = Hminf-^lf==0.
■•-»too      I in        r-» + oo       T(r)

Combining Theorem 1 with a result of Edrei [1, Theorem 1], we can establish

a sort of tauberian theorem connecting the asymptotic behavior of the ratios

N(r,0)/T(r), N(r, oo)/T(r)with the regularity of growth of a class of functions f(z).

Corollary 1.1. Let f(z) be a meromorphic function of order A^l and lower

order p, with negative zeros and positive poles.

Assume that the limits
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*-S^ '-£**?
exist. If X — 1/2 mafce rfce additional assumption

X < 1 and Y < 1.

T/ien, lim,_00(log T(r)/log r) exists and

(2.7) A:2 + Y2 - 2XYcos7d = sin2?d.

Assume further that 0 < X < 1. T/ien iftere exists a unique number ß, given

explicitly by

(2.8) ¿-jCOS-Hr) (0</?<w),

suc/i that

f oo   i/ 10| gjS-e,
(2.9) lim/(rkew) = \

*-°° (.0     if\n-9\=ß-e

holds, uniformly in 8, for any e>0 and for any sequence {rk} of Pólya peaks

[2,p.U]ofT(r,f).

In particular, it is easy to see from (2.9) that the rays arg z = ± ß ate lines

of Julia for the functions of Corollary 1.1.

The next theorem shows that the extreme behavior indicated in (2.5), for func-

tions of order 1, occurs for entire functions of any positive integral order.

Theorem 2. Let f(z) be an entire function of finite order X (> 1) and lower

order p, all of whose zeros lie on the negative real axis.

Then if X is not an integer, we have

(2.10) [X] Ú P

(where [X] denotes the greatest integer not exceedingX), while

(2.11) X = p + l

holds if X is an integer; in either case,

,.    . „ N(r,0)  .      . Isin7rpI
(2.12) lim inf    ,V     ^   mm    ,   ' .  .     ' r-

r^ + 00      T(r)       „SfiSi  1 + | sin tt/> I

In particular, if either por X is a positive integer, then necessarily

(2.13) liminf^)=0.

Theorem 2 thus completes a result of I. V. Ostrovskii [12], who obtained sharp

bounds for the Valiron deficiencies of entire functions having negative zeros
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and nonintegral order. Taking into account the information provided by (2.13),

the results of Ostrovskii imply

If f(z) is an arbitrary entire function of finite order A, having only negative

zeros, then

(2.14) lim inf «™*A
r- + oo       T(r)

sin nA

q + |sin7tl|

I sin nA I

»7 + 1

iq = A < q + i)

(q+%z%A<q + l),

where q is the greatest integer in A.

The results of this note may be extended to functions having more general

distributions of zeros and poles than those indicated above. For example, (2.14)

implies the following information on the deficiency of the zeros of a particularly

natural class of entire functions.

Corollary 2.1. If /(z) is an entire function with real zeros and finite order

A, then

\sinjnA/2)\

(2.15) lim inf-^¡H
T(r)

q + | sin (n A/2) \

|sin(7d/2)|

4 + 1

C2qz^A<2q + 1)

(2q + 1 ̂  A < 2q + 2).

These bounds are sharp.

If f(z) is a meromorphic function of finite order, it is  always possible in

Nevanlinna's deficiency relation

(2.16) 2 ô(c,f) è 2

to replace one of the ¿'s by the corresponding Valiron deficiency. That is, for func-

tions of finite order (2.16) may be strengthened to

(2.17) A(Cl,/)+   I   6(c,f)ú2,

where c, is an arbitrary complex value, finite or infinite.

To see this, consider the classical estimate

(2.18) Z m(r,cv)^2T(r) + 0(logr)
v = l

(r -> +• oo)

(cf. [11, p. 256]), where the cv are any q (^ 3) distinct complex values. Noticing

that (2.18) implies
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,. m(r,cy)        *     !..    .       m(r,cy)\
hm sup  ——- + 2    hm mf      K    v/    = 2,
r- + co        T(r)        v = 2   (,_ + „ T(r)   J

it follows from the definitions (1.1) and (1.2), together with Nevanlinna's first

fundamental theorem, that

(2.19) A(cy,f) + i S(cv,f) =g 2.
v=2

Since q is arbitrary, (2.19) implies (2.17).

Using this observation with Theorem 2, it is possible to obtain information

on all the deficient values of certain entire functions. In fact, if we choose Cy = 0

and c2 = oo in (2.19), then (2.13) implies

Corollary 2.2. Let f(z) be an entire function with only negative zeros.

If either p or X is a positive integer,

ô(c,f) = 0

for all values c =± 0, oo.

Corollary 2.2 is not new, since it is a special case of a result of Edrei and Fuchs

[5, Theorem 2]. However, my deduction of this result may be of some interest

because of its simplicity.

For orders greater than 1, Theorem 1 may be extended also to meromorphic

functions. The following result, stated without proof, follows readily from the

methods of this note.

Theorem 3. Let f(z) be a meromorphic function of order X with negative

zeros and positive poles. If A ̂  X < + oo, then

(2.20) X2 + Y2 + 2X7 cos

where X and Y are defined by (2.2).

Although there is no reason to believe that this result is best possible, it is not

hard to see that the bound

X + Y < -y (A = absolute constant < 10)
À

implied by (2.20) has the correct order of magnitude for large X.

In [13] Valiron considers "oriented functions," that is, entire functions whose

zeros have arguments tending to a limit; it is possible to suppose, with no loss of

generality, that this limit is n. Valiron's terminology may be extended by defining

oriented functions to be those meromorphic functions having zeros {a„} and

poles {b„} such that

m^Mx-
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lim arg a„ = n,      lim arg bn = 0.
n-» + co »i-» + co

Results such as Gol'dberg's lemma [8, p. 108] suggest that functions with nega-

tive zeros and positive poles have an extremal character, and provide some jus-

tification for the above extension of Valiron's definition to meromorphic functions.

Many of the results of this note may be generalized to oriented functions.

I shall not consider this question here because the arguments involved are rather

lengthy; it might however be interesting to point out that they are not as straight-

forward as one might anticipate.

Suppose now that f(z) is a given nonrational meromorphic function, and let

h(z) (# 0) denote any meromorphic function such that

T(r,h) = o(T(r,f)) (r^ + co).

Then, by elementary inequalities of Nevanlinna's theory,

(2.21) T(r,hf)~T(r,f)

and

(2 22) N(r'hf) - N(rJ) + 0m ^'W) - ^,1//) m . _^ y
(2-22)  -WM) - ñrj) + °(I)'  -flfJfT ~ "TWf + °(1)        (       +    }'

These relations show that the results of this note concerned with the behavior of

A(0,/), (5(0,/), A(co,/), <5( oo,/) remain true even if infinitely many zeros and

poles have unknown arguments, but are sufficiently rare.

In particular, it is clear from (2.21) and (2.22) that we may assume

/(0) Ï 0, oo and even /(0) = 1

without restricting the generality of our statements.

Finally, to show that nontrivial upper bounds for Valiron déficiences do not in

general exist, I prove in §12 that, with each number A (0 Sj A ̂  + oo), it is possible

to associate an entire function of order A having negative zeros and such that

,.    . . TV(r,0)
lim inf    JL .    = 0.
r-*+«      T(r)

Thus, for these functions, A(0) = A(oo) = 1.

3. Lemmas on the growth of a real function. Let G(t) be a real, continuous,

nondecreasing, unbounded function defined for t 2: r0 > 0, and denote by

,     ,. logG(i)
A = hm sup —,——

r- + oo       log*

and

,.    .      log G(t)
p = hm mf —¡-

(- + 00      log'
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the order and lower order of G(t). In order to describe the growth of G(t) in a

manner suitable for applications, it is convenient to introduce the following

Definition. An increasing positive sequence

(3.1) ry,r2, —,rm, •••

is said to be a sequence of Pólya peaks of the second kind, of order p

(0 ^ p < + oo), if it is possible to find a pair of associated sequences {sm}, {Sm}

such that

(3.2) sm-+ + oo,     ^-> + oo,    ^- + 00
sm rm

and such that

(3.3) G(t) = (1 + o(l)) ^ t" (m^ + oD,sm^t^ Sm).
m

The terminology "Pólya peaks of the second kind" seems appropriate because

our sequences (3.1) have the same character as the Pólya peaks defined by Edrei

in [2], differing only in that the inequalities (3.3) run in the opposite sense.

That Pólya peaks of the second kind always exist, for functions of finite lower

order, is shown by

Lemma 1.   Let G(t) be a  real, continuous, nondecreasing and unbounded

function defined for t — t0>0, and having finite lower order p.

Then, corresponding to each finite number p suchthat

PÚPÚX,

there exists a sequence {rm} of Pólya peaks of the second kind, of order p.

The proof of Lemma 1 depends upon the following analogue of a result of

Edrei [1, Lemma 1] on functions of irregular growth.

Lemma 2. Let G(t) be a positive, continuous, nondecreasing function defined

for t=to>0.

Assume that the order X and the lower order p of G(t) satisfy

(3.4) p < X (X = + oo),

and let a, x be given numbers such that

(3.5) p < a < T < X.

Then there exist arbitrarily large values of r such that
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Proof of Lemma 2.    Let B (> 1) be given. Since er > p, the definition of lower

order implies

Um m M = o,•->+«    t«

and hence there exists r, > B and such that, simultaneously,

and

(3.8) 1>-^.

Similarly, the inequality x < A implies that we may choose r2 > r, so that

(3.9) S*zL\ > 1.
1

Using the continuity of G(i)/f, choose r in the interval

(3.10) rx^rz%r2

so that

(3.11) mm    inf   G«
r"

Combining (3.7) with (3.11) we find

(3-12) ^ = ^- ito = t£r2).

When

r2 Ú t Û rl>°,

then t" z% r] and we obtain, in view of (3.9), (3.8), (3.11) and the assumption that

G(t) is not decreasing,

(3.13) m^G^>i>C^A^G(rï (r2<t^rn

Lemma 2 is now an obvious consequence of (3.10), (3.12) and (3.13), and the

fact that B is arbitrarily large.

Proof of Lemma 1. We shall define sequences {rm} of Pólya peaks of the

second kind such that

(3.14) rm >mm (m £ m0).

If we then set
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sm = (l/»i)rm,       Sm = mrm,

it is obvious that the conditions (3.2) will be satisfied, and also that

(3.15) (J^ " = 1 + o(l) (m - + oo, sm á t£ Sm).

Assume first that p < X. For p such that

p.< p < X,

choose numbers a and t to satisfy

a = p < t < X,

and use Lemma 2 to find, for each positive integer m, a number r=rm satisfying

(3.6) and the additional condition (3.14). The inequality (3.3) then follows from

the fact that we have chosen a = p.

When p satisfies

(3.16) p = p<X,

choose

For

(3.17) p<p = X,

take

2 1

m m

Clearly, in both the cases (3.16) and (3.17)

H < °-m < Tm < A (w ^ m0)

if m0 is large enough, and we may use Lemma 2 to find rm satisfying both (3.6)

and (3.14). In view of (3.15), it is obvious that the sequence {rm}thus defined is a

sequence of Pólya peaks of the second kind, of order p.

If G(t) has regular growth, that is, if

p]= p = X,
then we set

1

(3.18) cP(t)   =

(m = I),
m

tp+e

Git)'

m = t2\
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and use an important lemma of Pólya [4, p. 237] to determine rm( > mm) so that

fp + e rP + e

<3"> WS^3 «°s,SrJ

and

.p-c

(3.20) VS<fo ('6'--)'
The verification that the sequence {r,„} has all the properties of Pólya peaks

of the second kind is now a straightforward consequence of (3.19) and (3.20),

together with (3.15) and (3.18).

This completes the proof of Lemma 1.

4. Integrals connected with Weierstrass products of finite genus. Let E(u, q)

be the primary factor of genus q :

E(u,q) = (l-u)exp (u+-u2 + ■•■+-uq) (q>0),

E(u,0)  =  1 -u.

Following Valiron, we start from the elementary formula

(z     \ f+0° z,+ 1

-■7'*)-(-1),J<1       t* + *t + z)dt (a>°'\^z\<n),

and notice that

<«.„   j\*\É(-2Ç..,)\m-(-v»»{<\/"C*4+à-
where T is the arc of | z | = r defined by

r = {rei9:O^0^p\ 0 < ß < n}.

Consider now the Weierstrass product of genus q :

where all the a's are negative, and let n(t,0) be the counting function of its zeros.

After interchanging the order of the integrations in the right-hand side of (4.1),

an obvious summation leads to

where the right-hand side may be transformed by an integration by parts. Putting
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z*

it + z)2(4.2) J{t) = q\r  lTJdz + t fr7

we thus deduce

(4.3)      1 Jo'log| gire»)\ d9 = (-^fl- Re {| J^iM J(í)(jí

The form of J(r) may be simplified by setting z, = re'ß and integrating by parts

the second integral in (4.2); this yields

Jit)
.4+1 r9+l
■ 1 '

f + Z!       t + r

and leads to the introduction of

*V/,r.fl = ¿^ImJ(0
(4.4)

=  (-IT /ry« rsin^-ftsin^l)^ ^

jr.      \t/ í2+2írcosj3 + r2      v^ p      y

It will be noticed that T<g reduces to the Poisson kernel, for the half-plane

Im z > 0, when q = 0.

The properties of the kernel Kq which we shall require for our proofs are sum-

marized in the following lemma.

Lemma 3. Let giz) be a Weierstrass product of genus q, having only negative

zeros. Then

(4.5) -       log|gire")| dB = JV(/,0)K,(f,r,ß)dt     i~n<ß<n),
n   Jo                                  Jo

/» co

(4.6) lim Nit,0)Kqit,r,ß)dt = Nir,0),
(S-»»i-    Jo

(4.7) ( - l)"Kqit,r,9) = 0 when 0 = 9 =
4 + 1'

(4.8) spKl,is,l,ß)ds=S™-^    iq<p<q + l,  -n<ß<n).
smnp

r s"Kqis,i,¡
Jo

Proof. The representation (4.5) is a consequence of (4.3) and (4.4) when

0 ^ ß < n. Its validity when —n<ß<0 then follows from the observation

that log | gire'6) \ is an even function of 9 since giz) is real for real z, and thus

both sides of (4.5) are odd functions of ß defined for the whole interval —n<ß<n.

By (4.5) and Jensen's theorem,
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C°N(t,0)K9it,r,B)dt = -   Í   logiere'"9)! dB
Jo n   Jo

= N(r,0)-~  f*log|*(rew)|</0,
n  Jß

and hence (4.6) follows by letting ß -» n — .

The inequality (4.7) is an immediate consequence of the definition (4.4).

An elementary contour integration yields the formula

,. ~s    1    f°°   „ sinß ,       sinßa ,    , „ „ „
(4.9)— s" -r—^-~—r ds = — — (-1<«<1, a#0; -« <ß<n).

n  J0 s2 + 2scosJ? +1 sin7ta v ' ' ^      '

Using (4.4), and assuming ß ^ 0 because (4.8) is trivial otherwise, (4.9) implies

\/Kq(s,l,ß)ds=^[sinqß l    s + 2scosßTjds

+ sin(q + i)ß jo   —^-—-.ds\
s2 + 2scos/J + 1

sinßp

,smqß sin(p-q-l)ß + sin(q + l)ß sin(p - q)ß\

sin/}  sin(p — q — l)n sin/J       sin(p — q)n)

sinnp

which establishes (4.8) and completes the proof of Lemma 3.

5. A lower bound for the logarithmic mean m(r, f). Let f(z) be an arbitrary

function of finite order X whose zeros and poles of positive modulus are denoted

by {a„} and {»„}, respectively, and let q be the smallest non-negative integer such

that

(5.1) I |-r1— +  £,,    / <  + 00.

Then it is well known that f(z) may be expressed in the form

(5.2) f(z) = zmeQiz)

n e{tA
where Q(z) is a polynomial of degree d g X, and m is an integer.

If all the a„ ate negative and all the b„ are positive, we may apply the results of

Lemma 3 to g(z) =/(z) z~m é~Q(z) to obtain
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■i j  logl| gire* ) | d9 + Nir, oo)

(5.3)
=   f    Nit,0)Kqit,r,ß)dt+ ¡a>Nit,ezo)Kqit,r,n-ß)dt   iO<ß<n).

Jo Jo

As we observed in §4, | gire'9) | is an even function of 9 and hence the definition

of mir, g) implies

(5.4) mir, g) = i- £ log | gire'6) | <f0,

where «^ is any measurable subset of 0 ^ 9 z% n.

This leads to the following inequality, basic for my proofs :

mir,f)  =   I    r Nit,0)iKqit,r,ßf)-Kqit,r,bf)]dt
v = l   JO

(5.5)

+   I    f Nit,ex,)\Kqit,r,n-ßf)-Kqit,r,n-bff\dt-Airi + logr)
v = l   Jo

iO<by<ßy< »•• <bl<ßl<n,r> 1);

it is a consequence of (5.3), (5.4) and the obvious relation

mir, g) < mir,f) + Ai/ + log r) (r è 1),

valid for a suitable constant A. The usefulness of (5.5) is due to the fact that the

intervals (bv,)Sv) are abirtrary disjoint subintervals of (0,tc).

It will be useful to consider one aspect of the relative rates of growth of the

various factors which appear in the decomposition (5.2) of a meromorphic function

/(z) of finite order.

If 7t(z) is an arbitrary convergent Weierstrass product(2) of genus a, then a

classical estimate [8, p. 29] leads immediately to

(5.6) T(r,7i(z)) = oirq+1) (r -> + oo).

Thus (5.6) and Nevanlinna's first fundamental theorem imply that the quotient

of Weierstrass products

^nEfe") _.w
»OO

satisfies

n*&«)   "■

(2) I do not say canonical because the estimate (5.6) is true even if q is larger than its

canonical choice.
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(5.7) Tir, g) é Tir, nf) + Tir, nf) = oirq+1) (r -+ + oo).

It follows trivially that the characteristic of

(5.8) fit» = l/(zmg(z))

also satisfies

(5.9) Tir,h) = oirq+1) (i-> + oo).

In view of the definitions (5.2) and (5.8),

Kz)fiz) = eQ(x)

and hence for a suitable constant a(^ 0)

(5.10) Tir,f) = Tir, eQ) - Tir, h) = (a 4- 0(l))r" - o(r<+ l)       (r -> + oo).

Suppose now that d S: q + 1. Then (5.9) and (5.10) imply

Tir,h) = oCTir,f)) (r->+oo),

so that we may use the relations (2.21), (2.22) to deduce

(5.11) T(r,f) ~ Tir, eQ) ~ a/ (0 < a = const.)

and

The asymptotic relations (5.11) and (5.12) show that the type of behavior we are

investigating in this note is completely determined when d> q, and hence there

will be no loss of generality if, in the sequel, wealways assume dz^q.

6. Proof of Theorem 1 when A<1. Starting from the inequality (5.5), we notice

that necessarily q = d = 0 when A < 1. If we take / = 1 in (5.5), and let by -* 0 +,

then (4.6) implies

Tir)  = mir,f) + Nir,czo)

(6 D

=   f    Nit,0)Koit,r,ß)dt+  f   Nit,ex>)K0it,r,n - ß) dt-Alogr,
Jo Jo

valid for all ß = ßy in 0 < ß < n and for all r > 0.

If X = 1 - A(0,/) > 0, choose X so that 0 < X< X; if X = 0, let JF= 0.

Hence, in any case,

(6.2) TV(i,0)^XT(i)

for all sufficiently large t. Similarly, we have
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(6.3) Nit, oo) = ?T(t)

for all large t, where 7 is any number in

0 < 7 < Y = 1 - A(oo,/)

if Y > 0, and 7 = 0 if Y = 0.

The condition (2.4) shows that (2.3) is trivial when 1 = 0, and thus we may as

well assume that 0 < X < 1.

Choose any positive number p such that p _ PÛX, and let {rm} be a sequence

of Pólya peaks of the second kind, of order p, for the function T(f). In view of

the positivity of K0(t,r,ß) and the inequalities (6.1), (6.2), (6.3), we obtain the

relation

T(rm) > XT(rm)(l + o(l)) j    (tlrm)pK0(t, rm,ß) dt

(6.4)
+   7T(rm) (I + o(l)) j   (tlrm)"K0(t, rm, n - ß) dt - A log r   (m -> oo).

(Here we have used implicitly the fact that sm -* + oo ; this consequence of (3.2)

simplifies the manipulation of asymptotic inequalities such as (6.2) and (6.3).)

Making the change of variable s = t\rm, and dividing by T(rm), (6.4) may be

rewritten as

f S.„/r fS,„/r.„

(6.5) 1 + o(l) = X s"K0(s,l,ß)ds+ 7 \ spK0(s, l,n-ß) ds (m ->■ oo).

The properties (3.2) of Pólya peaks of the second kind thus lead to

J.00 /» 00
s"K0(s, 1,ß) ds + 7        s"K0(s, l,n-ß)ds.

o Jo

Evaluating these integrals explicitly by means of (4.8), and letting X->X, F-» Y,

we obtain

(6.6) sin np = X sin ßp + Y sin (n - ß)p (p^p^X).

We have established (6.6) for any ß in 0 < ß < %, but since the right-hand side

is continuous (6.6) continues to hold when ß = Oor ß = n.

In order to obtain the strongest possible bounds on the quantities X and Y, set

(6.7) p = X

and

,,0. 1        !    IX-YcosnX\
(6.8) j5 = —tan1     -    .      —   ,

X \      Ysin7d    /

the branch of the inverse tangent being that one for which tan- x (0) = 0.
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We must verify that this choice of ß implies

(6.9) Oz^ßz^n,

since otherwise its use in (6.6) would  be meaningless. This is obvious when

1/2 _ A = 1, since then (6.8) implies

For orders A in the interval 0 < A < 1/2, the hypothesis (2.4) leads to

X — YcosnA _ Xsin2nA — cosnA(Y — XcosnA)      sin7rA

TsinTtA Y sin nA = cos nA'

and hence to

n..    _,  IX-YcosnA\
O^tan        ——--—    £nA.

\     YsmnA   J

In view of the definition (6.8), these inequalities imply (6.9).

From (6.6) we deduce

(6.10) sin27d = {iX - ycos7tA)sin/?/l 4- TshiTdcos/U}2,

and from (6.8)

0 = {iX — Y cos nA) cos ßA — Ysin7rAsin/U}2,

each side of which we may add to the corresponding side of (6.10). After some

obvious reductions we obtain

X2 + Y2 - 2XYcosnA *g sin2nA,

which proves Theorem 1 for orders A < 1.

7. Proof of Theorem 1 when /(z) has order 1 and genus 0. The definition of

genus implies q = 0 and d = 0, and by assumption A = 1. Then /(z) has the

representation (5.2) and the inequality (6.5) is still valid, with p = 1 and, say,

ß = if/1
Recalling the definition (4.4) of K0(s,l,n/2) and the property (3.2) of Pólya

peaks of the second kind, it is clear that asm^oo the integrals in (6.5) each tend

to + oo. Thus we have necessarily X= 7=0; but this implies X=Y = 0,

which is the assertion of Theorem 1 when 1 = 1.

8. Proof of Theorem 1 when/(z) has genus 1. A function/(z) of genus 1 can

always be represented in the form (5.2), where q = 0 and d = 1 or q = 1 and

d = l.
We may dismiss at once the case characterized by q = 0 and d = 1, as the

discussion at the end of §5 explains, and assume from this point on that q = l.
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Thus the proof of Theorem 1 will be complete if we can establish that

(8.1) x=Y = 0

when A = q = l. This information is contained in the following extension of

Theorem 1, which we prove in order to indicate how the methods of this note

may be used to obtain bounds on the deficiencies of meromorphic functions of

orders greater than 1.

Theorem la.   Let f(z) be a meromorphic function of order X (1 ^ X < 2) and

lower order p.

If f(z) has negative zeros a„ and positive poles bn such that

(8.2) £_L+li=+oo,
K | K

then necessarily

(8.3) X + Y=liminfN(r'°l+N(r^l<,    inf 'sin7r^

>S1sin(f) + | sin KP | '

where X and Y are the quantities defined by (2.2).

lfX = q = l, (8.2) is satisfied. Hence (8.3) yields X +Y = 0, which implies (8.1).

To establish Theorem la, we return to the inequality (5.5) and choose / = 1,

by = n/2. Letting ßy-*n—,vte thus obtain

(8.4) T(r) = N(r,0) + N(r,cx>)- j    [N(t,0) + N(t, co)]KJt,r,~) dt - Ar.

For convenience, set

(8.5) N(t) = N(t, 0) + N(t, oo).

Using the definition (4.4) ofKy(t,r,n¡2), (8.4) becomes

(8.6) Tir) = N(r) + L JJ" ™ ^   dt - Ar,

and hence

In view of the condition (8.2), the integral in (8.7) tends to + oo with r (cf. for

instance [8, p. 25]), so that

T(r)
(8.8) lim —^ = + oo.
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In particular, the lower order p of f(z) satisfies

(8.9) p = 1.

Denote by py and Ay the lower order and order, respectively, of the function N(t).

Then the inequality

Nit) Ú 2T(i) + 0(1) (i -> + oo)

(an obvious consequence of Nevanlinna's first fundamental theorem) shows that

Py <¡ p and Ay = A. Using another well-known result of Nevanlinna (cf. [10, p. 51]

or [8, p. 101]), we find also that Ay = A when A is not a positive integer. Combining

these observations with (8.9), we see that the quantities pt and Ay satisfy

(8.10) py = p and 1 = p = Ay = A < 2

for the functions of Theorem la.

Select any number p such that pú PÚA, and let {rm} be a sequence of Pólya

peaks of the second kind, of order p, for the function TV(i). Such a sequence

always exists, by virtue of Lemma 1 and the relations (8.10).

Now the inequality (4.7) shows that the kernel — Kyit,r,n/2) is positive; thus

we may use (8.4), (8.5) and (3.3) to deduce

Tirm) = TV(rJ - (1+ o(l))TV(rm)  J   it/rm)pKy (t, rm, ̂ j dt - Arm   (m - + oo).

Making the change of variable s = t/rm, dividing by Tirm), and using (8.8),

we obtain

If p > 1, we may use (4.8) to evaluate the integral in (8.11); this leads to

(8.12) limsup-f^ J^'Pl- (1<pgA).
m-»+ 00     1\rm) „•

sin (2) +lsin7rH

If p = 1, the integral in (8.11) is divergent. But then, in view of the positivity

of — Kyis, l,in/2)), we must have

limsupT7?T = 0

in this case, and hence (8.12) remains valid even when p = 1.

This shows that (8.3) is true in general, and completes the proof of Theorem la.

9. Proof of Theorem 2. The functions/(z) of Theorem 2 are of the form

/(z) = e^giz),
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where Q(z) is a polynomial of degree d and g(z) is a canonical product of genus q

having only negative zeros. As noted in §5, we may as well assume that d Sq.

(If d> q, then p = X = d and hence (2.11) holds in this case.)

By hypothesis, the order X of f(z) is greater than 1, so that the genus q of g(z)

must satisfy

3 = 1.

A result of Edrei and Fuchs [3, pp. 308, 309] on the growth of entire functions

with negative zeros shows that the functions f(z) of Theorem 2 satisfy

(9.1) lim ^2Î1= + 00.
r-oo     ri

In particular, the lower order p of f(z) satisfies

(9.2) p = q.

As in §8, denote by px and Xy the lower order and order, respectively, of N(t,0).

Using again the arguments of §8 that led to the inequalities (8.10), we deduce

from (9.2) and (5.7) that

(9.3) py^p and q^p^Xy = X^q + l.

This proves the assertions (2.10) and (2.11). It follows from the relations (9.3)

and Lemma 1 of §3 that the function N(t,0) has Pólya peaks, of the second kind,

of all orders p such that

(9.4) PÚPÚX.

Let p denote a fixed number satisfying (9.4). When q is an odd integer, we

return to (5.5) and choose I = 1, by = n\2p. Letting ßy -» n —, (4.6) implies

(9.5) T(r,f) = N(r,0)- J°°  N(t,0)Kq(t,r,~j   dt - A(rd + log r)    (r^l).

When q is even, choose / = 2 in (5.5) and put by = 0, ßy = n¡2p and b2 = njq

Letting ß2 -* n —, we obtain

T(r,f) = N(r, 0) + j °JV(i, 0) ¡K^t, r, ~j - Kq(t, r, -| j j dt - A(rd + log r)

(9-6) (r£l).

The definition (4.4) shows that Kq(t, r, n/q) is negative when q ( > 0) is even,

and hence (9.6), (9.5) and the inequality d ^ q imply

(9.7)    T(r,f) = JV(r,0) + ( - 1)« J" °° N(t,0)Kq(t,r,£j dt - Ar" (r = 1)

for all q j= 1, odd or even.
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It is important to notice that ( — l)qKqit, r,n/2p) is a positive kernel; this

follows at once from (4.7), (9.4) and (9.3).

Since p satisfies (9.4), we may choose a sequence {rm} of Pólya peaks of the

second kind, of order p, for TV(r,0). Using (9.7) and the definition of the peaks

rm, we deduce

Tirm,f) = Nirm,0) + ( - 1)« |   AT(r,0)X,(t, rm £) dt - Arqm

(9.8)

= Nirm,0) {l + (1 + o(l))( -l)qj       (t/rmYKq(t, rm,£j df) - Arq

(m -* oo).

Dividing by T(rm,f), and taking into account (9.1), (9.8) implies

(9.9) lim sup   (l + ( - 1)q f '   '" s'kJs, 1, ~) ds) ̂ f^ = 1.
m-» + 00      I Jsmlrm \ ¿P 1        )     1\'miJ)

If q < p < q + 1, the integral in (9.9) tends to a limit which we may evaluate

by means of (4.8). Thus we obtain

(9.10) HmsuP^4=     |sin7vl
m-, + 00 T(rm,f)     1 + \sinnp\

In view of (9.2), p = q or p = q + 1 are possible if f(z) has lower order p = q

of if A = q + 1. In these cases, the integral in (9.9) tends to 4- oo when m -> + oo,

and hence (9.10) remains valid even when p = q or q + 1.

Since (9.10) implies (2.12), the proof of Theorem 2 is complete.

We remark that, by a rather more careful analysis of the set of 9 for which

( — l)qKq(t, r, 9) remains positive as t varies from 0 to + oo, it is possible to deduce

,~..y ,■    -  * TV(r,0) ̂   „       . Isin7rpI
(9.11) lim inf „;   ,<A   min       '   . / '   ,■,

r-» + oo    T(r,f) „á,,g;t   <î + |sin7rp|

where q is the greatest integer in p and A < 2. Further, when

1
q+2~P =   2q

the constant A may be replaced by 1, thus making (9.11) a best possible inequality

for at least some values of A and p.

10. Proof of Corollary 1.1. Since the limits (2.6) exist, a result [1, Theorem 3]

on the Nevanlinna deficient values of functions of lower order p < 1 implies
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X2 + Y2 - 2XY cos np = sin2np,

(10.1) X = 1 if F < cos np,

Y =1 if X < cos np.

Since (10.1) and (2.3) are incompatible when p < X and X ̂  1, in view of the

hypothesis

X < 1 and y < 1,

we have p = A and

(10.2) X2 + Y2 --2X Y cos nX = sin2nX.

To establish (2.8), we refer to a result of Edrei [2, p. 87] on meromorphic

functions of lower order p (0 < p < 1). This result implies, for the functions of

Corollary 1.1, that

(10.3) sin nX ̂  X sin ßX + y sin (n - ß)X,

where ß is any limit point of either of the two sequences

(10.4) {measejrj}^!, {n-measz0(rk)}™=y.

Here {rk} is an arbitrary sequence of Pólya peaks [2, p. 81] of T(r,f), while

s0(r) is the set of 0 in 0 = 0 < n for which f(reie) is "close to 0," i.e.

(10.5) e.0(r) = [0: |/(re''9) I < \, 0 = 0 = tt) ,

and s^r) is the corresponding set of 0 for which f(re'e) is "close to 00":

(10.6) Soo(r) = {9: \f(rew) \ > r, 0 ^ 9 = n}.

Comparing (10.3) with (6.6), and recalling that p = A, we obtain

(10.7) sinrtA = XsinßA + ysin(?t - ß)X,

valid for any limit point ß of either of the sequences (10.4).

Making the substitution

*-.- (£)

in (10.7), we obtain the quadratic equation

k2(l + y)sin7cA - 2k(X - ycosrcA) + (1 - Y)sin7rA = 0,

which determines k. The relation (10.2) expresses the fact that the discriminant

of this equation vanishes; hence its two roots are equal and their product is given by
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K   i + y

from which it follows that

(10.8) cos/?A = j^J-=y.

Since cosjßA decreases as ß varies from 0 to n, the equation (10.8) determines ß

uniquely in the range 0 ^ ß ^ n.

When 0 < A = 1/2, (10.2) and (10.8) imply

costcA < y = cos/?A < 1,

so that in fact

(10.9) 0<ß<n.

For orders A in 1/2 < A < 1, (10.2) implies

0=: y^sinTtA.

Combining this information with (10.8) yields

(10.10) *-2l^2T

which shows that ß is subject to a more stringent condition than (10.9) when

A > 1/2.
The inequalitiies (10.9) and (10.10), together with (10.8), prove (2.8).

The assertion (2.9) follows from the fact that ß is the limit of each of the two

sequences (10.4), together with the observation that |/(re'9) | is an even function

of 0, which decreases as 0 increases from 0 to n.

This completes the proof of Corollary 1.1.

11. Proof of Corollary 2.1.    Let the entire function

(11.1) /(z) = zmec(*fc(z)

have only real zeros and order A. As in §9, g(z) denotes a canonical product of

genus q and Q(z) has degree d.

We assume as usual that d^q. Further, the remarks at the end of §2 show

that there is no loss of generality in assuming that/(0) = 1, so that the exponent

m in (11.1) vanishes.

Then the auxiliary function F(z) defined by

F(z2)=f(z)f(-z)

is an entire function of order A/2, having only positive zeros. Hence we may

apply the inequality (2.14) to F(z), to deduce
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TV

(11.2) liminf-f-i/ <g
r^ + 00   Tir,F)

cJsinjnA/2)\ (PS*<P+l),
(r,y) p + |sin(^/2)I \P=2<P+2)'

sin(7tA/2)| /       l^A .\

where p denotes the greatest integer in A/2.

Since, by the elements of the theory,

(11.3) Nir2,1/F(z)) = JVTr, 1/F(z2)) = 2TV(r, l//(z))

and

(11.4) mir2, Fiz)) = mir, Fiz2)) = 2m(r,/(z)),

we obtain

m« ,.    . f Nir,llf)    . ,.    . .  TV(r,l/F)

(1L5) 5i? -wr = !r+? -iw-
Corollary 2.1 now follows on comparing (11.5) with (11.2).

To see that (2.15) is sharp, we observe first that when A is a positive even integer

(2.15) implies

hminf -~~ = 0,
r- + co       F(r)

and hence equality is always attained in (2.15) for these orders.

In view of a well-known result [14, p. 133], the function

/.«= n (.+£).

n(r, 0) ~ log r (r —> + oo),

TV(r,0) ~ logM(f,/0) ~ log2r (r -► + oo).

for which

must satisfy

Thus

TV(r,0)~T(r,/o) (r^ + co),

so that (2.15) cannot be improved when A = 0.

Assume now that A (0 < A < + oo) is not an even integer, and define

m = ñ * (~ *i) • n *(» (y = J-, .1 = w) ■
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Then the function

(11.6) Fa(0 = ñ£(¿> 0i/2]) = Fa(z2) =fx(z) C = Re»= z2)

is entire and of order a = A/2 as a function of £, and has positive zeros. Th« for-

mulas of [10, pp. 18, 19] show that F„(0 satisfies

(11.7) N(r'^>)

Kll',} T(r,Fa(0)

Using the relation

sin na\ ,
{q < 9 < q + i),

q + [ sin no

I sin no I

3 + 1

NjrMMz))        N(r2,l¡Fa(0)

T(r,fx(z))     -    T(r2,Fa(0)   '

(q+i<cr<q + l).

an immediate consequence of the definition (11.6), it is clear from (11.7) that

equality may hold in (2.15) for all nonintegral values of a = A/2.

12. Functions of arbitrary order having two maximal Valiron deficiencies. It is

well known that the order of a meromorphic function f(z) places many stringent

restrictions on the size of the Nevanlinna deficiencies 5(c,f) (cf. for example [2]

and [8, Theorems 4.7, 4.10, 4.11, 4.15]). To indicate that such upper bounds

do not exist for Valiron deficiencies, I prove

Theorem 4.   Let X be given (0 ^ A ̂  4- oo).  Then there exists an entire

function of order X, with negative zeros, such that

(12.1) Hminf %°> = 0
r-> + co        J V)

and hence

A(0) = A(oo) = 1.

Proof.   Let q be a given nonnegative integer, and denote by

(12.2) f(z) -ÛAÏ-*)
any canonical product of genus q having only negative zeros. Then since f(z)

is entire, (5.5) implies

T(r) = m(r,f) =  ¡ "jV(f, 0) [Kq(t, r, ß) - Kq(t,r,b)] dt
(12.3) Jo

(0<b<ß<n; r>T)
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If q is an even integer, choose b = 0 and ß = n¡2(q + 1). Then (12.3) and

the definition (4.4) of Kq yield

(12.4) Tir) = i Jo" N(t,0)[-L f^ dt (r > 0).

If q is odd, put b = 7r/2(g + 1) in (12.3) and let ß^n- . This leads to

T(r)  = N(r,0) - ^N(t,0)Kq[t,r, -j^TTj) dt

(12.5)
v?+l

>

Thus (12.4) and (12.5) imply, for any integer q (^0),

(i + r)2

where

i«(l~T i/)

T(r) ̂ N(crr,0)  1 J°°/-lJ

*-**■«>-s J.V
is a positive constant.

Hence the zeros of f(z) satisfy

(12.6) K>%V =   N™T(r)    - N(ar,0)'

Let A be a given non-negative number, and choose the sequence {a,,} to have

exponent of convergence A and so that the counting function n(r,0) satisfies

(12.7) liminf    <r'°>1°f  = 0.
r^ + oo n(2r,0)

This is readily done by choosing the zeros a„ so that n(r,0) is constant over suf-

ficiently large intervals fv ̂  r ¿L Tv.

Then the function/(z) defined by (12.2) has order A (cf. [8, p. 27]), and in view

of the obvious inequalities

N(r,0)  g n(r,0) (log r + const.) (r^r0),

N(2er,0)  ^ n(2r,0) (»- = 1),

(12.7) implies, if o- = 2e,

(12.8) liminf Ä»   = 0.
p^ + 00   AT(o-r,0)

Comparing (12.8) with (12.6), we obtain (12.1).
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In particular, it follows from (12.7) that there exist entire functions /(z)  of

very slow growths which satisfy (12.1), provided only that

(12.9) limsup !^£ =+oo
r^ + 00      (logr)2

holds. That the growth condition (12.9) is necessary for (12.1) is well known

(cf. [14, p. 133]).

Examples of functions of infinite order for which (12.1) holds are provided by

functions of the form ee *, where g(z) is transcendental and entire.
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