ON THE VALIRON DEFICIENCIES OF MEROMORPHIC
FUNCTIONS OF FINITE ORDER(")

BY
D. F. SHEA

Introduction. A few years ago, A. Edrei and W. H. J. Fuchs [3] established the
following result about the deficient values of a certain class of entire functions.

THEOREM A. Let f(z) be an entire function of finite order A, all of whose zeros
lie on the negative real axis.
Thenif A > 1, f(2) has zero as a Nevanlinna deficient value.

This result discloses the remarkable fact that a simple geometrical restriction
on the distribution of the zeros of an entire ifunction is almost, by itself, enough
to make zero a deficient value.

Since the publication of [3], a number of extensions of Theorem A have been
found (cf. for instance [6], [7], [9]). However, none of these results expresses
‘“‘best possible’’ relations between the order of the function and the size of its
Nevanlinna deficiencies, and to find such relations seems very difficult. It is the
purpose of this note to show that, if we replace Nevanlinna’s definition of defi-
ciency by the one introduced by Valiron, sharp bounds on these deficiencies can be
found for certain classes of meromorphic functions. From these bounds it is
possible to deduce, as immediate consequences, several results on the growth
of the functions considered.

1. Terminology and notations. We assume that the reader is familiar with the
fundamental concepts of Nevanlinna’s theory of meromorphic functions and
in particular with the most usual of its symbols:

10g, m(r,f), n(r,f), N(r, ), T(r,f)-

We shall use, whenever this is possible without ambiguity, the simplified no-
tations m(r,c), n(r,c), N(r,c), T(r) in place of m(r,1/(f — ¢)), n(r,1/(f — ¢)),

N(@r,1/(f = ), T(r.f).
The letters A and u denote the order and lower order of f(z), respectively:
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2= lim sup 28T®) ) i ing 08T

s .
r=++o 1 r=*+o0 lOgr

Following Valiron, we say that f(z) is of regular growthif A = u.
The Nevanlinna deficiency d(c,f) of the value ¢ for the function f(z)is, by
definition,

PREET N(r,0)
(1.1) e, f)=1 h:ffgp T

The Valiron deficiency A(c, f) of c is
. . N(@ro
1.2 Ale,f) =1 —lim inf .
( ) ( f) r-+o T(r ’f )

A value ¢ for which A(c,f) > 0 is said to be deficient in the sense of Vahron if
&(c,f) > 0, then the value c is deficient in Nevanlinna’s sense.
It is clear from Nevanlinna’s first fundamental theorem that

0=sd(cf)=ASN)=1,
and, further, that A(c,f) is positive if and only if the asymptotic relation
(1.3) N(r,e) ~ T(r.f) (r— + )

fails to hold. A classical result of Ahlfors-Frostman-Nevanlinna [11, p. 280]
implies that (1.3) holds for all complex values c¢ except those belonging to an
exceptional set of inner capacity zero.

2. Statement and discussion of results. The asymptotic behavior of the following
simple entire function is completely known (cf. [10, p. 18]):

0
Fi2) =1 (1 +ni) (@=1/4, 0<Ai<1).
n=1
In particular, it is easy to verify that F,(z) has order A, lower order p = 4, and
further that
N [ ©0<is¥h,
lim TG, F )=
re® A sinmA G<i<l).
Hence

2.1 A(O,F))=1—sinal>0

when 1/2 < 1 < 1, and thus the value 0 is deficient, for these functions F,(z), in
the sense of either of the definitions (1.1), (1.2).

Towhat extent is (2.1) typical of arbitrary entire functions having only negative
zeros and order A? One answer to this question is contained in
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THEOREM 1. Let f(z) be a meromorphic function of order A, whose zeros lie
onthe negative real axis and whose poles lie on the positive real axis.
Put

2.2) X =1-A(0,f), Y =1— A(oo,f).
Then necessarily
.3) X% + Y2 —2XY cos nl < sin’nd

when 1/2< 1= 1.
When A < 1/2, (2.3) still holds provided

2.4) X =cosnd and Y = cosnd.
Since for entire functions N(r,0) =0 and hence Y =0, Theorem 1 implies
AQO,f) =1 —sinzd G<izg))

for any entire function f(z) with negative zeros and order A, and this is the desired
generalization of (2.1).

If the quantities X, Y are regarded as the coordinates of a point in an XY-
plane, then the definitions (2.2) and (1.2) show trivially that the point (X,Y)
is always confined to the unit square

0=X=1, O=Y=l

For the functions of Theorem 1, the point (X, Y) is subject to the additional
restriction that it lie inside or on the ellipse

X2 4+ Y% - 2XYcosmld = sin?z,

at least when 4 = 1/2.
When 4 < 1/2, it is not hard to see that (X, Y) may lie outside this ellipse if
X <cosmAor Y < cosmi, so that the conditions (2.4) are necessary in this case.
That the inequality (2.3) is best possible follows, for orders A less than 1, from
the examples in [8, pp. 116-119]. When A =1, Theorem 1 is necessarily sharp
since in this case (2.3) asserts

N(r, ) _

@.5) fim inf N _ fim in 0.

r-+*+o T(r) r-=*+o T(r)
Combining Theorem 1 with a result of Edrei [1, Theorem 1], we can establish
a sort of tauberian theorem connecting the asymptotic behavior of the ratios
N(r,0)/T(r), N(r, c0)/ T(r)with the regularity of growth of a class of functions f(z).

CoROLLARY 1.1. Let f(z) be a meromorphic function of order A<1 and lower
order p, with negative zeros and positive poles.
Assume that the limits
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_ .. N(r,0) _ 1. N(r,00)
2) X=lm =% Y=Im =

exist. If A £ 1/2 make the additional assumption
X<land Y<L1.
Then, lim,, (log T(r)/log r) exists and
2.7 X? 4+ Y? —2XYcosnid = sin’zA.

Assume further that 0 < A < 1. Then there exists a unique number B, given
explicitly by

8 B = 7 cos”i(¥) ©<p<n,
such that
if |0|<B—e,
2.9 lim f(r,e®) = { o) lfl I-—ﬂ €
k- 0 if|ln—0|<p-c¢

holds, uniformly in 0, for any & > 0 and for any sequence {r,} of Pélya peaks
[2, p. 81] of T(r,f).

In particular, it is easy to see from (2.9) that the rays argz = 4 B are lines
of Julia for the functions of Corollary 1.1.

The next theorem shows that the extreme behavior indicated in (2.5), for func-
tions of order 1, occurs for entire functions of any positive integral order.

THEOREM 2. Let f(z) be an entire function of finite order A (> 1) and lower
order u, all of whose zeros lie on the negative real axis.
Then if A is not an integer, we have

(2.10 YL

(where[A] denotes the greatest integer not exceeding ), while
.11) ASpu+1

holds if A is an integer; in either case,

(2.12) timint YOO oy |sinm|

retw  T() = uspsa 14|sinmp|’

In particular, if either y or A is a positive integer, then necessarily

. . «N(,0)
2.13 lim inf =
@13) —te T(D)

Theorem 2 thus completes a result of I. V. Ostrovskii [12], who obtained sharp
bounds for the Valiron deficiencies of entire functions having negative zeros

0.
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and nonintegral order. Taking into account the information provided by (2.13),
the results of Ostrovskii imply

If f(2) is an arbitrary entire function of finite order A, having only negative
zeros, then

|sinzA|

_Jsinma] <i<g+
. NGO) q +|sinmd] (4 q+13)
(2.14) lim inf <
rmto T |sinzd | (@+1si<q+1)
q+1 - ’

where q is the greatest integer in A.

The results of this note may be extended to functions having more general
distributions of zeros and poles than those indicated above. For example, (2.14)
implies the following information on the deficiency of the zeros of a particularly
natural class of entire functions.

COROLLARY 2.1. If f(2) is an entire function with real zeros and finite order
A, then

| sin(n4/2)|
.. . N(r,0) q + |sin(n/2)|

2.15 lim inf <
@13 o TO) =) [sin(i2)|
a+1

Qgsi<2q+1)

Qg+1=<i<2q+2).

These bounds are sharp.
If f(z) is a meromorphic function of finite order, it is always possible in
Nevanlinna’s deficiency relation

(2.16) T 8c.f) 2

to replace one of the §’s by the corresponding Valiron deficiency. That is, for func-
tions of finite order (2.16) may be strengthened to

(2.17) Aep,f/) + X d(e.f) =2,

c#cy

where ¢, is an arbitrary complex value, finite or infinite.
To see this, consider the classical estimate

(2.18) > m(r,c,) < 2T(r) + O(logr) (r— + )
v=1

(cf. [11, p. 256]), where the c, are any g (= 3) distinct complex values. Noticing
that (2.18) implies
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. m(r,c,) K { ... m(rc) }

limsup —=>22 + X {liminf 1 <2,
r—'+oop T(r) v=2 r-+o T(r)

it follows from the definitions (1.1) and (1.2), together with Nevanlinna’s first

fundamental theorem, that

(2.19) Menf) + T 8cnf) < 2.
v=2

Since q is arbitrary, (2.19) implies (2.17).

Using this observation with Theorem 2, it is possible to obtain information
on all the deficient values of certain entire functions. In fact, if we choose ¢, =0
and ¢, = 0 in (2.19), then (2.13) implies

COROLLARY 2.2. Let f(z) be an entire function with only negative zeros.
If either u or A is a positive integer,

(S(C,f) =0
for all values ¢ # 0, .

Corollary 2.2 is not new, since it is a special case of a result of Edrei and Fuchs
[5, Theorem 2]. However, my deduction of this result may be of some interest
because of its simplicity.

For orders greater than 1, Theorem 1 may be extended also to meromorphic
functions. The following result, stated without proof, follows readily from the
methods of this note.

THEOREM 3. Let f(z) be a meromorphic function of order A with negative
zeros and positive poles. If 4 £ A < + oo, then

(2.20) X* + Y? + 2XY cos (27”) < sin? (31) ,

where X and Y are defined by (2.2).

Although there is no reason to believe that this result is best possible, it is not
hard to see that the bound
A
X+Y< T (A4 = absolute constant < 10)
implied by (2.20) has the correct order of magnitude for large A.

In [13] Valiron considers ‘‘oriented functions,’” that is, entire functions whose
zeros have arguments tending to a limit; it is possible to suppose, with no loss of
generality, that this limit is . Valiron’s terminology may be extended by defining
oriented functions to be those meromorphic functions having zeros {a,} and
poles {b,} such that
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lim arga, ==, limargh,=0.
n=>+ o0 n=+ o0

Results such as Gol’dberg’s lemma [8, p. 108] suggest that functions with nega-
tive zeros and positive poles have an extremal character, and provide some jus-
tification for the above extension of Valiron’s definition to meromorphic functions.

Many of the results of this note may be generalized to oriented functions.
I shall not consider this question here because the arguments involved are rather
lengthy; it might however be interesting to point out that they are not as straight-
forward as one might anticipate.

Suppose now that f(z) is a given nonrational meromorphic function, and let
h(z) (£ 0) denote any meromorphic function such that

T(r,h) = o(T(r.f)) (r— + ).
Then, by elementary inequalities of Nevanlinna’s theory,
2.21) T(r,hf) ~ T(r.f)

and
22z NOhD NG NG 1/hf) _ NG 1/)
) T(r,hf)  T(.f) T(r,hf)  T(.f)

These relations show that the results of this note concerned with the behavior of
A0, f), 8(0,f), A(oo,f), 8(c0,f) remain true even if infinitely many zeros and
poles have unknown arguments, but are sufficiently rare.

In particular, it is clear from (2.21) and (2.22) that we may assume

J(©0)#0, o and even f(0)=1

+ o(1), + o(1) (r— + o).

without restricting the generality of our statements.

Finally, to show that nontrivial upper bounds for Valiron deficiences do not in
general exist, I prove in §12 that, with each number A (0 £ A < + o0), it is possible
to associate an entire function of order A having negative zeros and such that

. . o N(,0
lim inf =
r++o T(r)

Thus, for these functions, A(0) = A(e0) = 1.

0.

3. Lemmas on the growth of a real function. Let G(¢) be a real, continuous,
nondecreasing, unbounded function defined for ¢t = ¢, > 0, and denote by

2 = lim sup 2850
t=+ IOg t
and

4 = lim inf 128 6®)

i+ 108t
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the order and lower order of G(t). In order to describe the growth of G(f) in a
manner suitable for applications, it is convenient to introduce the following
DEFINITION. An increasing positive sequence

(3°1) LETITRAMTY S Rl

is said to be a sequence of Pélya peaks of the second kind, of order p
(0= p < + o0), if it is possible to find a pair of associated sequences {s,}, {Sm}
such that

G.2) s+, Mo tw, 4o
Sm rm

and such that

(3.3) 6z +o1) e (mo tw,s, <155,

n

The terminology ‘‘Pélya peaks of the second kind’’ seems appropriate because
our sequences (3.1) have the same character as the Pélya peaks defined by Edrei
in [2], differing only in that the inequalities (3.3) run in the opposite sense.

That Pélya peaks of the second kind always exist, for functions of finite lower
order, is shown by

LeMMA 1. Let G(t) be a real, continuous, nondecreasing and unbounded
Junction defined for t > t, > 0, and having finitelower order p.
Then, corresponding to each finite number p such that

LSpSA,
there exists a sequence {r,,} of Pélya peaks of thesecond kind, of order p.

The proof of Lemma 1 depends upon the following analogue of a result of
Edrei [1, Lemma 1] on functions of irregular growth.

LeEMMA 2. Let G(f) be a positive, continuous, nondecreasing function defined
Jort=1ty>0.
Assume that the order A and the lower order u of G(t) satisfy

(3.9 u<a (A= + ),
and let 6, t be given numbers such that
3.5 n<o<t<Aa

Then there exist arbitrarily large values of r such that

3.6 o0 < 50 (to St < %),
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Proof of Lemma 2. Let B (> 1) be given. Since o > p, the definition of lower
order implies

tim inf & — o,
t—+ o0

and hence there exists r; > B and such that, simultaneously,

3.7 Glry = 6@ tostsr))
rg to
and
(3.8) 1580
r{

Similarly, the inequality T < A implies that we may choose r, > r, so that

3.9 L:'Z) > 1.
r;

Using the continuity of G(#)/t’, choose r in the interval

(3.10) rysr=r,

so that

(3.11) M) jpr SO
re riStsra t

Combining (3.7) with (3.11) we find
G(r) < G(1)

(3.12) e S (to=t=r,).
When
rpStsrs,

then ¢° < r; and we obtain, in view of (3.9), (3.8), (3.11) and the assumption that
G(?) is not decreasing,

(313) -G—(Qg&)_>1> %g_G_(Q (r2§t§r2'/").
te ry r{ re

Lemma 2 is now an obvious consequence of (3.10), (3.12) and (3.13), and the
fact that B is arbitrarily large.

Proof of Lemma 1. We shall define sequences {r,} of Pélya peaks of the
second kind such that

(3.14) r,>m" (m = my).

If we then set
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Sm=(1/m)ry,  S,=mr,,
it is obvious that the conditions (3.2) will be satisfied, and also that

1/m
(.15) (;‘—) =1+ o0(1) (m— + o0, 5, <t <S,).

Assume first that u < A. For p such that
w<p<a,
choose numbers ¢ and 7 to satisfy
c=p<t<i,
and use Lemma 2 to find, for each positive integer m, a number r=r,, satisfying
(3.6) and the additional condition (3.14). The inequality (3.3) then follows from

the fact that we have chosen ¢ = p.
When p satisfies

(3.16) u=p<1y,
choose
6=0,=p+ T=1T,= +—-2—
= Uy = p m’ - 'm— p m M
For
(3.17) u<p=2a,
take
N S 3
C=0p=p m > =Ty =p m .
Clearly, in both the cases (3.16) and (3.17)
UL Oy <Tp <A (m = myg)

if my is large enough, and we may use Lemma 2 to find r,, satisfying both (3.6)
and (3.14). In view of (3.15), it is obvious that the sequence {r,,} thus defined is a
sequence of Pdlya peaks of the second kind, of order p.

If G(¢) has regular growth, that is, if

w=p=4,
then we set
1
& = 7n— (m g 1)’
3.18 Ll
. N = s
(3.18) 40 = oo

v = %,
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and use an important lemma of Pélya [4, p. 237] to determine r,,( > m™) so that

tp+ e r:;+ 3
(3.19) O CN (toStsry)
and

e rooe
(3.20) —G—(Y)— = G(rm) (t = rm).

The verification that the sequence {r,} has all the properties of Pélya peaks
of the second kind is now a straightforward consequence of (3.19) and (3.20),
together with (3.15) and (3.18).

This completes the proof of Lemma 1.

4. Integrals connected with Weierstrass products of finite genus. Let E(u, q)
be the primary factor of genus g:

E(u,q) = (1 —u)exp (u+%u2+--~+%u“) (g >0),
Ew,0) = 1—u.
Following Valiron, we start from the elementary formula
z . + o0 Zq+ 1
lOgE (—-7,q) =(—1) J; m (a>0,largzl<n),

and notice that

B e

where T is the arc of | z| = r defined by
F={re®:050<8, 0<p<nl}
Consider now the Weierstrass product of genus q:
had z
g@)=1] E(a—, q) ,
v=1 v

whereall the a’s are negative, and let n(z,0) be the counting function of its zeros.
After interchanging the order of the integrations in the right-hand side of (4.1),
an obvious summation leads to

_71{ f: log| g(re)| d0=(_——11:t)q+—lRe { j+°°nt(‘1t+(1)) dt j }

where the right-hand side may be transformed by an integration by parts. Putting
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(4.2) W=a] 5 +tf (t+ T

we thus deduce

B . _1yt+1 + oo
4.3) -nl- L log| g(re®)| d0=(_1lt—)—Re {; L NGO J(t)dt’

Tt

The form of J(f) may be simplified by setting z, = re' and integrating by parts
the second integral in (4.2); this yields

zlq+1 rq+l
J(t) = -
t+z, t+r

and leads to the introduction of

K(t,r.p) = ( tq+11)4 Im J(?)

4.4)

(= 1) (L)q“ rsingf+tsin(@+ DB o0 o pen
1 - |

n t2 4+ 2trcos B + r?

It will be noticed that K, reduces to the Poisson kernel, for the half-plane
Imz >0, when g =0.

The properties of the kernel K, which we shall require for our proofs are sum-
marized in the following lemma.

LEMMA 3. Let g(z) be a Weierstrass product of genus q, having only negative
zeros. Then

1 (* ®
(4.5) — J log| g(re)| d6 = f N(t,OK (t,r,p)dt (—m<B<m),
[ o
(4.6) im | NG, 0K (t,7,B) dt = N(r,0),
pon— 0
(4'7) ( - l)qKq(t, r, = q+ 1’
(4.8) Lw sPK (s,1,B) ds SSH:I—BI; (q<p<q+l, —m<p<n).

Proof. The representation (4.5) is a consequence of (4.3) and (4.4) when
0 £ B <. Its validity when — < B <O then follows from the observation
that log] g(re”)’ is an even function of 0 since g(z) is real for real z, and thus
both sides of (4.5) are odd functions of B defined for the whole interval —n<f<m.

By (4.5) and Jensen’s theorem,
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© B .
j N(t, 0K (t,r, ) dt % f log| g(re”)| d6
] (1]

N(r,0) — 1 log| g(re)| 40,
T Js

and hence (4.6) follows by letting f— = — .
The inequality (4.7) is an immediate consequence of the definition (4.4).
An elementary contour integration yields the formula

1 [* ., sin _ sinfa .
4.9 ?J; s sz+2scos[i+1ds_ sinna( l<a<l, a#0; —n<f<n).

Using (4.4), and assuming 8 # 0 because (4.8) is trivial otherwise, (4.9) implies

sPa-1
f s”Kq(s,lﬂ)ds—(—')zis'“qﬁf P Ty I R

+ sm(q+1)ﬁj s2+ZScos,B+1 ds }
— (= 1) {sinqﬁ sin(p—q — 1B _ sin(g + DB sin(p — )8
sinff sin(p—q—1)=n sin 8 sin(p — q)n
_sinfp
"~ sinzp’

which establishes (4.8) and completes the proof of Lemma 3.

5. A lower bound for the logarithmic mean m(r, f). Let f(z) be an arbitrary
function of finite order A whose zeros and poles of positive modulus are denoted

by {a,} and {b,}, respectively, and let g be the smallest non-negative integer such
that

1 1
.1 Z Gt I <t

Then it is well known that f(z) may be expressed in the form

1= ()
(5.2 f(z) = z"e2® z"

I £(j;.0)
where Q(z) is a polynomial of degree d < 4, and m is an integer.

If all the a, are negative and all the b, are positive, we may apply the results of
Lemma 3to g(z) = f(z) z™™ ¢ 2® to obtain
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8 )
% .fo logl| g(re”®)| 6 + N(r, )
(5.3) ® ®
= f N(t,0)K (t,r,B) dt + f N(t, o)K (t,r,n — B)dt (0<p<m).
V] (V]

As we observed in §4, | g(re”)| is an even function of 6 and hence the definition
of m(r, g) implies

54 m(rg) 2 7 [ log|etre)| ds,

where & is any measurable subset of 0 < 6 < 7.
This leads to the following inequality, basic for my proofs:

m(r.f) 2 El i N(@t,0)[K (1,1, B,) — K (t,1,D,)] dt
v=1 JO
(5.5
1l )
+ X | N(t, ©)[K(tr,n—B)—K/(t,r,n—b,)] dt—AGF* +logr)
v=1 JO

O<b,<By<-<b<BP<mr1);
it is a consequence of (5.3), (5.4) and the obvious relation
m(r,g) < m(r,f) + A(r* + logr) (rz1),

valid for a suitable constant A. The usefulness of (5.5) is due to the fact that the
intervals (b,, B,) are abirtrary disjoint subintervals of (0, ).

It will be useful to consider one aspect of the relative rates of growth of the
various factors which appear in the decomposition (5.2) of a meromorphic function

f(2) of finite order.
If =(z) is an arbitrary convergent Weierstrass product(?) of genus g, then a
classical estimate [8, p. 29] leads immediately to

(5.6) T(r,n(2)) = o(r**?) (r - + ).

Thus (5.6) and Nevanlinna’s first fundamental theorem imply that the quotient
of Weierstrass products

ME(=.q

satisfies

() I do not say canonical because the estimate (5.6) is true even if ¢ is larger than its
canonical choice.
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6.7 T(r,g) < T(r,m;) + T(r,m,) = o(r**?) (r = + ).
It follows trivially that the characteristic of

(5.8 h(z) = 1/(z"¢(2))

also satisfies

(5.9) T(r,h) = o(**1) (r— + ).

In view of the definitions (5.2) and (5.8),
h(2)f(2) = 2

and hence for a suitable constant a (= 0)

(5.10) T(r,f) = T(r, €2 — T(r,h) = (@ + o())r* — o(r**!)  (r— + ).
Suppose now that d = g + 1. Then (5.9) and (5.10) imply
T(r,h) = o(T(r,f)) (r - + ),
so that we may use the relations (2.21), (2.22) to deduce
(5.11) T(r,f) ~ T(r,e% ~ ar (0 < a = const.)
and
(5.12) NN NG gy, NOUD oy (ot )

T(r./) T(r,e?) T(r.f)

The asymptotic relations (5.11) and (5.12) show that the type of behavior we are
investigating in this note is completely determined when d > g, and hence there
will be no loss of generality if, in the sequel, wealways assume d < q.

6. Proof of Theorem 1 when A<1. Starting from the inequality (5.5), we notice
that necessarily ¢ = d = Owhen 4 < 1. If we take [ = 1in (5.5), and let b; -0+,
then (4.6) implies

T(r) = m(r,f) + N(r, )
(6.1) 0 o0
= f N(t,0)K(t,r,B) dt + J‘ N(t, 0)Ky(t,r,m — ) dt—Alogr,
0 0

valid for all f=;in 0 < <m and for all r > 0.
If X=1-A(0,f)>0, choose X so that 0< X< X;if X=0, let X=0.
Hence, in any case,

6.2 N(t,0) = XT(o)

for all sufficiently large ¢. Similarly, we have
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6.3) N(t,0) = PT(t)
for all large ¢, where ¥ is any number in

0<¥P<Y=1- A(x,f)

ifY>0,and P=0if Y =0.

The condition (2.4) shows that (2.3) is trivial when A =0, and thus we may as
well assume that 0 < A < 1.

Choose any positive number p suchthat p < p < 4, and let {r,} be a sequence
of Pdlya peaks of the second kind, of order p, for the function T(¢). In view of
the positivity of K(¢,r, ) and the inequalities (6.1), (6.2), (6.3), we obtain the
relation

T(r,) 2 XT(r)(1 + o(1)) f ) (t/raY Ko(t, 1, B) dt

6.9 s
+ PT(r) (L + o1) f (r) Kolt, s — B) dt — Alogr (m— o0).

(Here we have used implicitly the fact that s,, = + oo this consequence of (3.2)
simplifies the manipulation of asymptotic inequalities such as (6.2) and (6.3).)

Making the change of variable s = t/r,,, and dividing by T(r,,), (6.4) may be
rewritten as

Saalr S /P
6.5 1+o(1)= X $Ko(s,1,p) ds+ ¥ s’Ko(s, 1,1 — B) ds (m — o).

Smlr... SmlP...

The properties (3.2) of PSlya peaks of the second kind thus lead to
o0 o0
1= Xf s’Ko(s,1,B)ds + ¥ j sPKo(s, 1,7 — B) ds.
(V] o
Evaluating these integrals explicitly by means of (4.8), and letting X - X, ¥ -,
we obtain
(6.6) sinmp 2 Xsinfp + Ysin(z — f)p wspsH.

We have established (6.6) for any f in 0 < < =, but since the right-hand side
is continuous (6.6) continues to hold when f =0or = =.
Inorder to obtain the strongest possible bounds on the quantities X and Y, set

6.7) p=2A
and

1, 4 (X—Ycosnl
6.8) =7 tan (—YW) ;

the branch of the inverse tangent being that one for which tan™*(0) = 0.
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We must verify that this choice of § implies
(6.9 O=p=m,

since otherwise its use in (6.6) would be meaningless. This is obvious when
1/2 £ 2 £ 1, since then (6.8) implies

T
< i
0SBS 7.

For orders A in the interval 0 < A < 1/2, the hypothesis (2.4) leads to

X — Ycosnd _ Xsin?nd — cosnA(Y — X cosnA) < sinmh

0= - = - <
= Ysinmd Ysinnd = cosmA’
and hence to
—1 (X —Ycosni
< t <
0 <tan ( Ysinnd ) < nh.
In view of the definition (6.8), these inequalities imply (6.9).
From (6.6) we deduce

(6.10) sin’md = {(X — Y cosnd)sin A + YsinndcosfA}?,
and from (6.8)

0 ={(X — YcosnA)cos fA — YsinnAsin f1}?,

each side of which we may add to the corresponding side of (6.10). After some
obvious reductions we obtain

X2+ Y%2—2XYcosnd <sin?ni,
which proves Theorem 1 for orders 1 < 1.

7. Proof of Theorem 1 when f(z) has order 1 and genus 0. The definition of
genus implies ¢ =0 and d =0, and by assumption A =1. Then f(z) has the
representation (5.2) and the inequality (6.5) is still valid, with p =1 and, say,
B=m/2.

Recalling the definition (4.4) of K(s,1,7/2) and the property (3.2) of Pélya
peaks of the second kind, it is clear that as m — co the integrals in (6.5) each tend
to + oo. Thus we have necessarily X= ¥ =0; but this implies X =Y =0,
which is the assertion of Theorem 1 when A =1.

8. Proof of Theorem 1 when f(z) has genus 1. A function f(z) of genus 1 can
always be represented in the form (5.2), where g =0and d=1 or ¢ =1 and
d=1.

We may dismiss at once the case characterized by ¢ =0 and d =1, as the
discussion at the end of §5 explains, and assume from this point on that g = 1.
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Thus the proof of Theorem 1 will be complete if we can establish that
(CRY) X=Y=0

when 4 =g = 1. This information is contained in the following extension of
Theorem 1, which we prove in order to indicate how the methods of this note
may be used to obtain bounds on the deficiencies of meromorphic functions of
orders greater than 1.

THEOREM la. Let f(z) be a meromorphic function of order A (1 £ 1 <2) and

lower order p.
If f(2) has negative zeros a, and positive poles b, such that

1 1
8.2) )3 m 3 5= + o,
then necessarily
83) X +YZ liminf N(r’(;),(:-)N(r’ 0) < inf 7tlsm7tp| ’
o #E0=hsin (7”) + [sinmp|

where X and Y are the quantities defined by (2.2).
If 1 = g = 1, (8.2) is satisfied. Hence (8.3) yields X + Y = 0, which implies (8.1).
To establish Theorem la, we return to the inequality (5.5) and choose [ =1,
b, = n/2. Letting f; - = —, we thus obtain

(8.4) T(r) = N(r,0) + N(r, ) — J‘w [N(2,0) + N(t, 0)] K, (t, r,—g-) dt — Ar.
0

For convenience, set

(8.5) N(f) = N(t,0) + N(t, o).
Using the definition (4.4) of K,(t,r,n[2), (8.4) becomes
r [*N@® r*
> il oA 7 A -
(8.6) T(r) = N(r) + T Jo 12 12 4 p2 dt Ar’
and hence
T(r) S 1 "N(@®) . o
@.7 - 2w )P dt— A (rz1).

Inview of the condition (8.2), the integral in (8.7) tends to + oo with r (cf. for
instance [8, p. 25]), so that

88) T

r—o
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Inparticular, the lower order u of f(z) satisfies
8.9) 1.

Denote by p, and A, the lower order and order, respectively, of the function N(z).
Then the inequality
N(1) £2T() + 0(1) (t—> + o)

(an obvious consequence of Nevanlinna’s first fundamental theorem) shows that
p1 < u and 4, < A. Using another well-known result of Nevanlinna (cf. [10, p. 51]
or [8, p. 101]), we find also that 4, = A when A is not a positive integer. Combining
these observations with (8.9), we see that the quantities y, and 4, satisfy

(8.10) mSpand 1Spusii=4<2

for the functions of Theorem 1a.

Select any number p such that u < p < 4, and let {r,} be a sequence of Pélya
peaks of the second kind, of order p, for the function N(f). Such a sequence
always exists, by virtue of Lemma 1 and the relations (8.10).

Now the inequality (4.7) shows that the kernel — K,(t,r,#/2) is positive; thus
wemay use (8.4), (8.5) and (3.3) to deduce

T2 NG ~ (1 + NG [ WrarKi(rE) di= ar, most o)

Making the change of variable s = t/r,, dividing by T(r,), and using (8.8),
we obtain

0
> — P l I N(rm)
(8.11) 1= [1 J; s Kl(s,l, 2)ds] hmn-l-il:op T

If p > 1, we may use (4.8) to evaluate the integral in (8.11); this leads to

(8.12) fim sup U < |sin7p |

motao T(m) ™~ (np

(I<p=A.
sin —2—) + |sinmp|

If p =1, the integral in (8.11) is divergent. But then, in view of the positivity
of — K (s,1,(n/2)), we must have

lim su N(r) =
oty ()

in this case, and hence (8.12) remains valid even when p = 1.
This shows that (8.3) is true in general, and completes the proof of Theorem 1a.

0

9. Proof of Theorem 2. The functions f(z) of Theorem 2 are of the form
f(2) = e27%(2),
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where Q(z) is a polynomial of degree d and g(z) is a canonical product of genus g
having only negative zeros. As noted in §5, we may as well assume that d < q.
(If d > g, then y = A = d and hence (2.11) holds in this case.)
By hypothesis, the order A of f(z) is greater than 1, so that the genus g of g(z)
must satisfy
g=1.

A result of Edrei and Fuchs [3, pp. 308, 309] on the growth of entire functions
with negative zeros shows that the functions f(z) of Theorem 2 satisfy

©.1) jim LN o
roo0 1

In particular, the lower order u of f(z) satisfies

-2 rzq.

As in §8, denote by y; and A, the lower order and order, respectively, of N(t,0).
Using again the arguments of §8 that led to the inequalities (8.10), we deduce
from (9.2) and (5.7) that

9.3) pEpand gspsiy=1sq+1.

This proves the assertions (2.10) and (2.11). It follows from the relations (9.3)
and Lemma 1 of §3 that the function N(#,0) has Pélya peaks, of the second kind,
of all orders p such that

9.4 HEp <A

Let p denote a fixed number satisfying (9.4). When q is an odd integer, we
return to (5.5) and choose I =1, b, = 7/2p. Letting f; - = —, (4.6) implies

T

©.5  T(rf)= N(r,0) — fow N(t,O)Kq(t,r,zp

) dt— A +logr) (r=1).

When q is even, choose / =2 in (5.5) and put b; =0, f, =n/2p and b, = n/q
Letting 8, —» 7 —, we obtain

T(r,f) = N(r,0) + f:;\l(t, 0) [Kq(t, r, %) - Kq(t, r,—:—;-)]dt — A(* + logr)

(9.6) 21,

The definition (4.4) shows that K (t,r,7/q) is negative when g(> 0) is even,
and hence (9.6), (9.5) and the inequality d < q imply

9.7 T(r,f) 2 N@r,0) + (— 1) f Ow N(t,O)Kq(t, r,2—7-;-) dt — Art (r=1)

for all ¢ = 1, odd or even.
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It is important to notice that (— 1)K, (t,r,n/2p) is a positive kernel; this
follows at once from (4.7), (9.4) and (9.3).

Since p satisfies (9.4), we may choose a sequence {r,} of Pélya peaks of the
second kind, of order p, for N(t,0). Using (9.7) and the definition of the peaks
r., we deduce

T(rmf) Z N(ry, 0) + (- 1)* f ’ N(t,O)Kq(t, Pns ﬁ) dt — Ard
(9.8) )

N

> N(r,0) {1 £ (0 +o()(=1) f

(t/r,,,)"Kq(t, r,,,,2—n/;) dt} — Art
(m — o0).

Dividing by T(r,.f), and taking into account (9.1), (9.8) implies

Senfrm N(r,,,0)
9.9 limsup {14+(—=1)1 j s’K (5,1, L) ds} m) <1,
(©.9)  lim sup : (=% A\ 25) B T 5

If g < p < g + 1, the integral in (9.9) tends to a limit which we may evaluate
by means of (4.8). Thus we obtain

m/Pm

. N(r,,,0) [sinmp|
9.10 lim < - .
10 o S Tt f) = 1+ [sinmp]

In view of (9.2), p =g or p=gq + 1 are possible if f(z) has lower order u =g
of if A = g + 1. In these cases, the integral in (9.9) tends to + co when m — + oo,
and hence (9.10) remains valid even when p =g or q + 1.

Since (9.10) implies (2.12), the proof of Theorem 2 is complete.

We remark that, by a rather more careful analysis of the set of 0 for which
(= 1)K ,(t,r,0) remains positive as ¢ varies from 0 to 4 oo, it is possible to deduce

9.11) lim inf N(r’o)gA min __|_S"‘_?£’_|__,
r->+o0w T(raf) n<p<i q+|sm7rp|

where q is the greatest integer in p and 4 < 2. Further, when
1 1
——pl < —
Iq + 2 pI = 2q

the constant A may be replaced by 1, thus making (9.11) a best possible inequality
for at least some values of A and p.

10. Proof of Corollary 1.1. Since the limits (2.6) exist, aresult [1, Theorem 3]
on the Nevanlinna deficient values of functions of lower order x4 < 1 implies
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X? + Y? —2XYcosnu = sin’ny,
(10.1) X=1if Y <cosny,
Y =1 if X <cosnpu.

Since (10.1) and (2.3) are incompatible when p < 4 and A <1, in view of the
hypothesis

X<land Y<1,
we have y = A and
(10.2) X2 4+ Y% - 2XYcosnd = sin’zd.

To establish (2.8), we refer to a result of Edrei [2, p. 87] on meromorphic
functions of lower order u (0 < u < 1). This result implies, for the functions of
Corollary 1.1, that

(10.3) sinnd < Xsin A + Ysin(n — f)A,
where f is any limit point of either of the two sequences
(10.9) {mease(r)}iz 1, {n-measey(r)}i=1-
Here {r,} is an arbitrary sequence of Pdlya peaks [2, p. 81] of T(r,f), while
&o(r) is the set of 0 in 0 < 0 < = for which f(re®) is ““close to 0,”” i.e.

(10.5) go(r) = {0: |f(re®)| < ; 0<0= n} ,

and g,(r) is the corresponding set of 0 for which f(re®) is ““close to 00”’:
(10.6) eo(r) ={0:|f(ré”)|>r, 00 < n}.

Comparing (10.3) with (6.6), and recalling that u = A, we obtain
(10.7) sinnd = Xsin A + Ysin(n — )4,

valid for any limit point B of either of the sequences (10.4).
Making the substitution
- BA
k =tan (—2—

in (10.7), we obtain the quadratic equation
k(1 + Y)sinmd — 2k(X — Ycosnd) + (1 — Y)sinnd =0,

which determines k. The relation (10.2) expresses the fact that the discriminant
of this equation vanishes; hence its two roots are equal and their product is given by
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1-Y
2 -
k 1+Y
from which it follows that
1-—k?
(10.8) COSﬂA = i—+-k—2 =Y.

Since cos BA decreases as B varies from O to 7, the equation (10.8) determines f
uniquely in the range 0 < f < 7.
When 0 < 4 £ 1/2, (10.2) and (10.8) imply

cosmA<Y=cosfi<],
so that in fact

(10.9) O<f<m
For orders Ain 1/2 < 4 <1, (10.2) implies
0 <Y <sinnd.

Combining this information with (10.8) yields
7 n
——<B<
(10.10) T 2}.=ﬁ=21’

which shows that B is subject to a more stringent condition than (10.9) when
A>1)2.

The inequalitiies (10.9) and (10.10), together with (10.8), prove (2.8).

The assertion (2.9) follows from the fact that B is the limit of each of the two
sequences (10.4), together with the observation that | f(re"®) | is an even function
of 6, which decreases as 8 increases from 0 to .

This completes the proof of Corollary 1.1.

11. Proof of Corollary 2.1, Let the entire function
(11.1) f(2) = 2"e%%(2)

have only real zeros and order 1. As in §9, g(z) denotes a canonical product of
genus g and Q(z) has degree d.

We assume as usual that d < q. Further, the remarks at the end of §2 show
that there is no loss of generality in assuming that f(0) = 1, so that the exponent
m in (11.1) vanishes.

Then the auxiliary function F(z) defined by

F(z%) = f(2)f(~2)

is an entire function of order 1/2, having only positive zeros. Hence we may
apply the inequality (2.14) to F(z), to deduce
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| sin(n/2)] ( A 1_)
wy fN(r,;—) < P+ [sin(iA2)] PSy<pPtgy),
. imin <
reteo T(F) lsin(4/2)| 1_4
S+l pzsz<ptl),

where p denotes the greatest integer in 4/2.
Since, by the elements of the theory,

(11.3) N(rz, 1/F(z)) = N(r, l/F(zz)) = 2N(r,1/£(2))
and

(11.4) m(r?, F(2)) = m(r, F(z%)) < 2m(r,/(2)),

we obtain

(11.5) iminf YD < pinine NOUF)

r=+ oo T(r9f) r—+ o T(r’F) '

Corollary 2.1 now follows on comparing (11.5) with (11.2).
To see that (2.15) is sharp, we observe first that when A is a positive even integer
(2.15) implies
. . o N(r,0)
liminf —=>—~ = 0,
ot T()
and hence equality is always attained in (2.15) for these orders.
In view of a well-known result [14, p. 133], the function

fod) =TI (1 +ei)

n=1
for which
n(r,0) ~ logr (r— + ),
must satisfy
N(r,0) ~ log M(r, f,) ~ log?r (r— + 00).
Thus
N(r,0) ~ T(r,fy) (r— + ),

so that (2.15) cannot be improved when 1=0.
Assume now that 1 (0 < A1 < + 00) is not an even integer, and define

fi@) = jle (—;i—,,ql) °nlg__°[1 E(;g,ql) (v =11;, 41 = [/1])-
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Then the function

) ¢ s
a1 F© = [LE( [02) = RE=£@  (=Re*=2)

is entire and of order o = /2 as a function of {, and has positive zeros. The for-
mulas of [10, pp. 18, 19] show that F,({) satisfies

L _|sinne] _
(11.7) N(r’Fa(C)) g+ |[sinno| @<o<qg+13),
| T RO |sinna|
g+l (@+iso<q+1).

q+1
Using the relation

N(@,1/f(2)) _ N2, 1/F )
T(r,./i(2)) T(r,Fo(0) °

an immediate consequence of the definition (11.6), it is clear from (11.7) that
equality may hold in (2.15) for all nonintegral values of ¢ = /2.

12. Functions of arbitrary order having two maximal Valiron deficiencies. It is
well known that the order of a meromorphic function f(z) places many stringent
restrictions on the size of the Nevanlinna deficiencies (c, f) (cf. for example [2]
and [8, Theorems 4.7, 4.10, 4.11, 4.15]). To indicate that such upper bounds
do not exist for Valiron deficiencies, I prove

THEOREM 4. Let A be given (0 <A< + ). Then there exists an entire
Sfunction of order A, with negative zeros, such that

(12.1) liminf N9 _

0
r-++ o T(r)

and hence
A(0) = A() = 1.

Proof. Let g be a given nonnegative integer, and denote by

(122) @ =11 B(Z.q)

any canonical product of genus g having only negative zeros. Then since f(z)
is entire, (5.5) implies

1) = m)) 2 | “NOOIK (1, B) - K (t,r,b)] dt
(12.3) 0
O=s=b<f<m;rzl)
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If g is an even integer, choose b =0 and f = rn/2(q + 1). Then (12.3) and
the definition (4.4) of K, yield

12.4 > 1 (" A RN 0
(124) 10z [ Neo(F) e r>0).
If g is odd, put b =n/2(g + 1) in (12.3) and let f > n— . This leads to
> (" .—”)
T(r) = N(r,0) fo N(t,O)Kq(t,r, G+ D dt
1 r® r\?*tt ot
- J; N(t,O)(—t-) T e dt.

Thus (12.4) and (12.5) imply, for any integer q (= 0),

(12.5)

1%

@ q+1
T(r) = N(or,0) 71: j (-:-) (—H—‘r)—zdt = K N(or,0),

where

1 (® du
K = K(O',q)=7—t f

s ui(l + u)? >

is a positive constant.
Hence the zeros of f(z) satisfy

N(r,0) < N(r,0)

(12.6) K T(r) = N(or,0)"

Let A be a given non-negative number, and choose the sequence {a,} to have
exponent of convergence A and so that the counting function n(r,0) satisfies

.. n(r,0)logr
127 imint o)~

This is readily done by choosing the zeros a, so that n(r,0) is constant over suf-
ficiently large intervals t,<r=<T,.

Then the function f(z) defined by (12.2) has order A (cf. [8, p. 27]), and in view
of the obvious inequalities

N(r,0) =< n(r,0) (logr + const.) (r=ry),
N(2er,0) n(2r,0) rz1,
(12.7) implies, if o = 2e,

v

.. N(r,0)
12.8 liminf ———= =
( ) r-++o0 N(ar, 0)

Comparing (12.8) with (12.6), we obtain (12.1).
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In particular, it follows from (12.7) that there exist entire functions f(z) of
very slow growths which satisfy (12.1), provided only that

(12.9) limsup BMEN _ 4 o

rto  (logr)?

holds. That the growth condition (12.9) is necessary for (12.1) is well known
(cf. [14, p. 133]).

Examples of functions of infinite order for which (12.1) holds are provided by
functions of the form ef”’, where g(2) is transcendental and entire.
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