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The purpose of this paper is to point out the relevance of martingale theory

in the study of some classical problems concerning the pointwise convergence

of orthogonal series. Particular attention is given to the Haar and the Walsh

systems. The special character of their convergence properties has been the focus

of some recent investigations, (see for example [13], [14], [15]) but the use-

fulness of ideas from martingale theory does not seem to have been recognized.

We take advantage of the structure of these systems together with standard

martingale techniques to obtain some new convergence theorems for a class of

orthonormal systems which include the Haar and the Walsh functions as special

cases.

In the first section, the connection between the Haar and Walsh systems is

described, and the martingale properties of these systems are isolated. This leads

to the definition of a class of orthonormal systems, called //-systems, that are

generalizations of the Haar system. Our interest in //-systems stems from two

facts: (a) it is shown that every complete orthonormal system of martingale

differences is an //-system; and (b) optional stopping and skipping transform-

ations are especially simple when the martingales in question come from

//-systems.

The construction of the Haar system from the Rademacher functions suggests

a specialization of the notion of an //-system: an //*-system is an //-system

constructed from a sequence of independent binomial functions in the manner

the Rademacher functions generate the Haar system. Consequently, any //*-

system has an associated parameter sequence {pk}t=i, the sequence of pro-

babilities associated with the independent binomial functions. (In this way,

the Haar system is associated with the sequence pk = \, fc = l,2, •••)■ The in-

fluence of the parameter sequence on the convergence properties of //*-systems

is studied in the second and third sections.

In the second section of the paper, we consider //-systems in relation to the

following question: Given a complete orthonormal system {u^^y and a

measurable function /, does there exist a series  XÜ°= i akuk that converges to /
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almost everywhere (a.e.)? If such a series exists, we will say that the function /

has a series representation with respect to the system {uk}¡?= y.

For the trigonometric system, this question has been answered affirmatively

by Menchov [9] when / is finite a.e. It is not known whether a trigonometric

series may converge to infinity on a set of positive measure. For the Haar system,

N. K. Bari [7, p. 527] (see also [13]) has given an affirmative answer when /

is finite a.e., and more recently, Talalyan and Arutyunyan [12] have given a

negative answer for both the Haar and Walsh systems when / is infinite on a set

of positive measure.

The first theorem of the section states that (a) given any complete //-system,

series representations exist for every measurable function that is finite a.e., and

(b) there exist complete //-systems such that every measurable function (whether

finite a.e. or infinite on a set of positive measure) has a series representation.

The second theorem of the section gives a more specific result related to the

theorems of Bari and Talalyan-Arutyunyan. Given a complete //*-system

{uk;pk}/fLy the following dichotomy holds: (1) if l¡minfí._00p,¡ > 0, then every

measurable function that is finite a.e. has a series representation, but no function

that is infinite on a set of positive measure has a series representation ; and (2) if

liminff._00pk = 0, then every measurable function has a series representation.

The proofs make use of martingale convergence theorems, and especially, a

submartingale convergence theorem of Chow [2]. (Also see [3]). This theorem

also gives the following result for Z/*-systems where liminf4_00 > pk0: in such

//*-systems, it is impossible to find divergent series that oscillate boundedly a.e..

In particular, this statement is true for the Haar system, in contrast to the example

given by Marcinkiewicz for the trigonometric system.

The third section of the paper presents a necessary and sufficient condition

for pointwise convergence a.e. of arbitrary series from //-systems satisfying a

certain regularity condition. The theorem applies to ZZ*-systems when

lim inf..-, „j pt > 0. In particular, an arbitrary Haar series 2Zt=yakxk converges

a.e. on a set of positive measure E if and only if the series S™= yiakxk)2 is

finite a.e. on E. A version of the theorem for Walsh series follows immediately

from the Haar series result.

Some of the consequences of the theorem for ZZ*-systems where liminff._00p/, > 0

are : (a) arbitrary optional skipping transformations on convergent series preserve

convergence a.e.; and (b) convergence a.e. implies unconditional convergence in

measure.

1. Complete orthonormal systems and martingales. Let {r„}"=0 be the

system of Rademacher functions:

r0(x) = sgnsin27rx,

r„ix) - r0(2"x).
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Both the Haar system and the Walsh system may be constructed from the

Rademacher system. The Haar system is defined as follows:

ZÁX)   =. x00)(x) = 1,

X2OO   = Xo\x) = r0(x).

If N = 2" + k with 1 è k g 2"

XÁx) m xf\x) = 2B/2r„(x) if (k - l)/2" = x < fc/2",

= 0 otherwise.

The Walsh functions are defined as follows:

•AoW  = 1,

^n(x) = rni(x)-rn2(x)-r„k(x),

if N = 2ni + ••• +2"" where nj > n2 > ••• >nt.

Both the Haar and Walsh systems are known to be complete orthonormal

in L2[0,1] [11].

Let {//„}"= 1 = { 2Z"k = yakXk}^=i designate the sequence of partial sums of the

Haar Fourier series of a function/, and {W„}"=1 = { 2*^0 2>*<M™= 1 the sequence

of partial sums of the Walsh Fourier series for the same function. It is pointed

out in [11] that H2„ = W2„ for all n = 0,1, ••■. It is clear from the verification

of this relation for Fourier series that the relation holds for general Walsh and

Haar series. That is, given the sequence of partial sums H„ of any Haar series,

there is a unique Walsh series such that H2n = W2„ for all n, and conversely.

One of the consequences of this identity is that the sequence W2n is a martingale.

This fact has also been pointed out by Burkholder [1](2). The relation also means

that, in many cases, theorems on Haar series may be applied to Walsh series.

The relation between Haar series and Rademacher series should also be noted.

Since any series of Rademacher functions may be considered as a Walsh lacunary

series (the coefficients are zero except for integers N = 2"; n = 0,1, •••), the

above remarks show that any Rademacher series may also be considered as a

Haar series.

From the standpoint of harmonic analysis on groups, the interest in the

Walsh functions steme from the fact that they are the continuous characters

of a compact abelian group, the so-called dyadic group. (For the definitions

and an extensive study of harmonic analysis on this group, see Fine [5].)

The Haar system is interesting, from the standpoint of martingale theory,

in that the sequence of partial sums of an arbitrary Haar series forms a martingale.

Verification of this fact is a straightforward application of the definition of a

(2) Also, see M. Jerison and G. Robinson, Convergence theorems obtained from inducted

homomorphisms of a group algebra, Ann. of Math. 63 (1956), 176-190.
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martingale. (For the definitions and an extensive study of martingales, see Doob

[4, Chapter 7].)

The martingale property of Haar series suggests the following definition.

Definition 1.1. An orthonormal system (o.n.s.) {m*}™=i defined on an ar-

bitrary probability space is called an //-system if:

(1) Each uk assumes at most two nonzero values with positive probability.

(2) The (7-field generated by {uk}k = 1 denoted by o(uy,---,uN), consists of

exactly TV atoms.

(3) E(uk+l \\uy,---,uk) = 0; fcäjL (That is, the functions uk are martingale

differences.)

The following alternative definition is sometimes useful.

Definition 1.2. The o.n.s. {«*}"=! is called an //-system if and only if for

any/eL2[0,l]
n

E(f\\uy,—,u„) = S akuk,
k = 1

where {ak}k = y   are  the  Fourier  coefficients  of / with  respect  to   {uk}f= y.

Definition 1.1 is equivalent to Definition 1.2. To prove this, suppose {u^^y

is an //-system according to Definition 1.1 and let ep [= E(f\\uy,•••,u„)] be a

function measurable on o(uy,---,u„). Definition 1.1 implies that ep may be written

as the sum of n linearly independent functions, {Ik}k = y, the n indicator functions

of the atoms of er(uy,---,u„). From this fact, and the definition of conditional

expectation, it follows that the range of the orthogonal projection E(-\\uy,---,u„)

is n-dimensional. On the other hand, the linear manifold generated by {uk}"k = y is

an n-dimensional manifold of functions measurable with respect to o(uy,---,u„).

Therefore, E(-\\uy,---,un) must coincide with the orthogonal projection onto

the span of {uk}k = 1. This is exactly the condition required in Definition 2.2.

Now suppose {«(J-T^i is an //-system relative to the Definition 1.2. We show

by induction that the system {uk}0°=y satisfies the conditions (1), (2), and (3) of

Definition 1.1.

Consider the first member, Uy, of the given system. Let 1 designate the constant

function identically equal to 1. The condition of Definition 1.2 and the proper-

ties of conditional expectation together imply that

1 = Eilf«!) = ayUy.

In other words, wt is equal almost everywhere to the constant 1/ay. Therefore,

conditions (1) and (2) are satisfied for the function iiy. Condition (3) imposes

no restriction on the function Uy.

Suppose that we have shown that the partial collection {uk}k = 1 satisfies con-

ditions (1), (2), and (3). Consider the augmented collection {uk}k=y. Let ~Lk = y bkuk

be the TVth partial sum of the Fourier series of the function uN+l with respect

to the system {ut}£Ly. Since uN+1 is orthogonal to the other members of the
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family, the coefficients bk, k = l,2, •••,TV are all equal to zero. If we apply this

fact in conjunction with the condition of Definition 1.2, we obtain

iï

E(uN+y\\uy,--,uN) =  2 bkuk = 0,
k = l

so that condition (3) of Definition 1.1 is satisfied for the collection {uk}kll.

The function uN+1 cannot be constant almost everywhere since it is normalized

and orthogonal to the constant function ux. Therefore, uN+1 must assume at

least two nonzero values with positive probability. In fact, uN+1 assumes exactly

two nonzero values with positive probability, and it does this by splitting one

of the N atoms of a(uy,---,uN). The argument for this is quite similar to one

used previously. Notice that the linear manifold generated by the functions

{uk}k = i i» an 7Y + 1-dimensional manifold of functions measurable with respect

to cr(uy,---,uN+y). By Definition 1.2, the orthogonal projection £(• | Uy,---,uN+1)

must coincide with the orthogonal projection onto the span of {u^^y1. There-

fore, the range of E(-\\uy,---,uN+1) must also be N + 1-dimensional. In other

words, a(uy,---,uN+1) consists of exactly N + 1 atoms of positive measure. Since

a(uy,---,uN) consists of exactly N atoms, the function uN+1 augments

a(uy, ■■•,uN) by splitting a single atom. Therefore, conditions (1), (2), and (3)

of Definition 1.1 are satisfied for the partial collection {uk}kt{ and the in-

duction is complete.

The Haar system is the most immediate example of a complete o.n.s. that is

a'' //-system. In fact, the following proposition is also true:

Proposition 1.1. Any complete orthonormal system of martingale dif-

ferences is an H-system.

Proof of Proposition 1.1. Let {«*}"=! be the system in question and T,kx=1akuk

be the Fourier series of an arbitrary function / belonging to L2. Fix n and define

the function
n

dn = E(f\\uy,— ,«„)-    2 akuk.

Because the functions {wt}£°=1 are martingale differences, the Fourier coef-

ficients of d„ vanish identically. Since the system {«*}"= y is complete, this implies

that the function d„ vanishes almost everywhere, or

n

E(f\\uy,—,un) = 2 akuk

almost everywhere. Since n is arbitrary, the condition of Definition 1.2 is satis-

fied, so that {«*}"=! is an //-system.

Optional stopping and skipping transformations [4, p. 310] are especially

simple when the martingales under consideration arise from //-systems.
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Proposition 1.2. Let the sequence of partial sums S„= 2Zl = yakuk be a

martingale formed from the H-system {uk}f=y. Then, every system of optional

stopping and or skipping on Sn is generated by a "multiplier" transformation

of the form   2Zk = yôkakuk where ôk = 1 or 0.

Proof of Proposition 1.2. The martingale from any optional stopping or

skipping scheme on S„ may be written as Hk = ylkakuk where Ik is the charac-

teristic function of a set measurable with respect to er(uy,---,uk^f). In order

to prove Proposition 1.2, it must be shown that the functions Ik may be replaced

by constants ök so that
n it

-»»■ hakuk =   £ <5*a*w*
t=i *=i

holds almost everywhere for each n. This can be done as follows. If uk is a member

of an //-system, then \uk\ >0 on a single atom of o(uy,---,uk_f). Since the

function Ik is measurable on this rr-field, Ik is either identically one or identi-

cally zero almost everywhere on the set where | uk | > 0. Therefore,

¿Zk = ylkakuk = 2Z"ySkakuk almost everywhere, where ök is constant, equal to the

value assumed by Ik on the support of uk. The proposition is proved.

The Haar system is constructed from a sequence of independent two-valued

functions, the Rademacher functions. This suggests that we may achieve a sharper

comparison of the Haar system with other //-systems if we limit the comparison

to systems generated by a sequence of independent two-valued functions in the

same way the Haar system is defined in terms of the Rademacher system.

Definition 1.3. An //*-system is a //-system {uk}f=1 generated by a sequence

of two-valued independent orthogonal functions {pt}r= i as follows :

"i  = 1,

»2  = 0(pi),

[O(pf)   on the set where u2>0,

3 10 otherwise,

iO(pf)   on the set where u2 <0,

4 10 otherwise,

where 0(pk) indicates multiplication of the function pk by a constant defined so

that || uk || 2 = 1 ■ The remaining functions are defined recursively as follows :

Having defined Uy,u2,---,u2n, we define

(0(pn+y) on the set where u2„-i+k>0,

«2-+(2*-d - (0 otherwise,

fO(pn+y) on the set where u2»-i+t<0,

«2-+(2*) - J0 otherwise.



234 R. F. GUNDY [August

Associated with each //*-system, there is a sequence of probabilities

{Pk}i?= i > 0 = Pk = i » the parameters of the independent functions generating

//*-system. That is,

pk = min(P{pk>0}, P{pt<0})

where P{ } is the probability of the set in brackets.

The influence of the parameter sequence {pft}^°= i on pointwise convergence of

H*-seties will be studied in the next two sections.

2. //-systems and the representation of functions by series. Let {uk}k = 1 be

a complete //-system defined on the unit interval. The theorems of this section

relate to the following question. Given a measurable function / defined on the

unit interval, does there exist a series 2£°= y akuk that converges to / a.e.? If such

a series exists, we say that/has a series representation with respect to the system

in question.

Theorem 2.1. (a) Every measurable function that is finite a.e. has a series

representation with respect to any complete H-system.

(b) There exist complete H-systems such that every measurable function

has a series representation.

A more specific result holds for complete Z/*-systems.

Theorem 2.2. Given a complete H*-system with parameter sequence {p*}™=1,

the following dichotomy holds:

(a) If liminfk^,copk = 0, then every measurable function, whether finite a.e.

or infinite on a set of positve measure, has a series representation with respect

to the system in question.

(b) If liminfk-,aopk>0, then a measurable function has a series repres-

entation if and only if it is finite a.e.

Remark. It can be shown that there are complete Z/*-systems such that

limk^œpk = 0. In fact, part of the following result will be needed for the proof

of Theorems 2.1 and 2.2 but may also be of independent interest in this context.

Theorem 2.3. // {p¡J£°=1 is the parameter sequence of a complete H*-system,

then ¿Zkx=yPk = oo. Conversely, given any sequence {pt}™=i such that

O ÚPk = i and 2/t"Li pk = co there is a complete H*-system with the prescribed

parameter sequence {pj"=i-

This theorem is a direct consequence of Theorem 2 of [6]. In fact, it is not

difficult to see that a given //*-system is complete if and only if the associated

orthogonal system, composed of the constant function and all finite products

nr=iPn,> "t = l,2, ■•• of the independent functions generating the //*-system,

is complete. In other words the statement of Theorem 2.3 is equivalent to the

assertion of Theorem 2 of [6].
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The proof of the first part of Theorem 2.1 depends on a series of lemmas.

Lemma 2.1.  Let {ut}^°=i be an H-system, and f a function measurable on

a(uy,u2,---). Then there is a sequence of functions fk such that

(i) fk is measurable with respect to er(uy,u2,---,uk),

(ii) limk_œfk=f  a.e.,

The proof of this lemma is an application of standard approximation argu-

ments, and will be omitted.

The problem posed by part (a) of Theorem 2.1 is to show that the sequence

fk, whose existence is assured by the preceding lemma, may be chosen so that

/„ is the nth partial sum of fixed series Z™= y ak uk. When / is integrable, the

Fourier series of/ with respect to the system in question converges to/a.e. by

the martingale convergence theorem [4]. Recall that in this case, the coefficients

are defined as

a*=J fix)uk(x)dx.

However, when/is not integrable, it can happen that none of the above integrals

exist.

When the //-system in question is the Haar system, the assertion of part (a) of

Theorem 2.1 is due to N. K. Bari [7, p. 527], as mentioned in the introduction.

Her proof makes use of a theorem of Luzin [7, p. 77] to the effect that every

function / which is finite a.e. has a continuous primitive F; that is, F'(x) =f(x)

a.e. The following lemma is a martingale generalization of Bari's theorem, and

is proved along the lines suggested by Luzin's theorem, but without topological

considerations.

Lemma 2.2. Let {wjJ^Li be an H-system such that o(uy,u2,---) is nonatomic.

If fis finite a.e. and measurable with respect to a(uy,u2,---), then f has a series

representation with respect to {uk}k = l.

Proof. We construct a sequence of mutually singular measures {p„}™=i such

that (a) each p„ is the sum of an absolutely continuous and a purely discrete

measure, and (b) ¿Z™=1dpn/dx =/ a.e. The coefficients of the proposed series

representation of / are then defined by the (convergent) series

00 /»

«*= 2     uk(x)dpn(x).
11 = 1   J

We may assume, without loss of generality, that/5; 0. By Lemma 2.1, there

is a sequence of functions {fk}¡fLy ; fk ^ 0 converging to / a.e., such that each

fk is measurable on a(uy,u2,---,uk). Let
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A„ = {x:supkfk(x)>n};   n = 0,l,—

and

Bn=A\„-y-An,    n = l,2,—.

Then the sets Bn are disjoint, on each B„ we have /< n, and 2„" yP(B„) = 1.

(Here, as before, P(E) means the measure of E.) Furthermore, from the construction

of the sets B„, it is not difficult to see that each set may be covered by a countable

collection of atoms or null sets GÍ"\ r-l,2,—, so that, if Dln) =\J?=1G?\

then P(B„) = P(DW) ̂  2P(B„).

Now let

on Bn,

otherwise,
fW = ¡f
J \0

and p(/(n)) be the absolutely continuous measure whose derivative is /(n).

Now define a discrete measure 5W as a sum of point masses 2,<5r(B) = <5(n) where

each ôln) is determined by setting

áín)(*) =

Finally let

(n)f{n\x)dx if x = x„>r where x„>P e G*n) such that

jGr" oík\x„¡r) = 0fotk<n,

0   otherwise.

pn = p(fw)-ôM

and
00

p= 2 p„.
n = l

Then
CO

dpjdx = 2 fw =/ a.e.
n = l

where the exceptional set consists of the countable set supporting the discrete

measures <5(n), n = 1,2, ••■.

Define coefficients

00        /•

a* = 2     m*(x
n = lJ

)dpn
lJ

For n sufficiently large, the sets G*"' are all subsets of the sets of constancy of

uk. Since

I(,,rfP» = °

for all r and n, it follows that J u* áp„ = 0 for all n = 7Vt. Therefore, the series

defining ak converges for each fixed k > 0.
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Now it must be shown that the series S*= y akuk converges to/almost everywhere.

To this end, observe that for each fixed m,

lim E(/(")|«i,«2,-,«B)=/(M)
n-+co

except on a set Am of measure zero. Since er(tiy,u2, •••) is nonatomic, the discrete

measure <5(m) vanishes almost everywhere. This implies that

lim E(ô(m)I uy,u2, •••,«„) = 0
n-»co

except on a set Bm of measure zero. Let Em = Am\jBm. The exceptional set for

the convergence of the series Hf=yakuk is to consist of (i) {J„ = yEm, (ii) the

countable set supporting the discrete measure Emco=1<5im), and (iii) the set

limsupD(m). The set (i) is a countable union of sets of measure zero. The count-

able set (ii) has measure zero since the measure space in question is nonatomic.

The set (iii) has measure zero by the Borel-Cantelli lemma, [4, p. 104] since

CO CO

I P(D(m)) -g 2 2 P(Bm) < + oo.
m = 1 m = 1

Let x be a point in complement of the exceptional set. Then we may show

that

(1) 2 akuk(x) = —y-  £      dpm
k = l •r(in)m = l Jl„

where /„ is the atom of a(uy,u2,---,uf) that contains the point x. Equation (1)

is formally correct: The left side of (1) is the Fourier series of the "measure"

2^„ = yPm and the right-hand side is the conditional expectation of the same

measure relative to c(m.,-■■,!/„). The equality in (1) holds because {uk}k = 1 is

an //-system. We now show that this formalism may be justified.

Since x is not contained in the exceptional set, there is an mx, depending on

x, such that

x$D{m)       for all m = mx.

Consider the partial sum (1) for a fixed n, and the atom /„ appearing on the

right-hand side of (1). For m~mx let G*m) be one of the atoms supporting pm,

as constructed above. Since /„ and Grm) are both atoms, they satisfy one and

only one of the following conditions: (1) /„ = Gr(m); (2) /„ <= Gr(m); (3) /„ =3 Gjm);

(4)/„nGim)=0.

Conditions 1 and 2 are impossible for m = mx since /„ s G,m) and x e G„

together imply xeGrm) which contradicts the assumptions that m — mx.

The above remarks may be used to compute the integral J"/n dpm. Recall that



238 R. F. GUNDY [August

the measure  pm is supported in the set D(m) = [J?L iG,"0 and defined so that

f      dpm = 0 for r = 1,2, •••. Therefore
Gr

\     dpm =  \ dpm + I dpm = I + II
J/„ J/„nD<l> J/„nD<»>)

where £>(m) denotes the complement of D(m). The integral I consists of a sum

of integrals )Gy>dpm where the sum may be restricted to those indices for which

condition 3 holds. Condition 3 and the definition of pm imply that

dpn = dpm = 0
Jl.nG<»» Jg<-">

for each r = 1,2, ••• so that the integral I vanishes. The integral II vanishes be-

cause the measure pm vanishes on the set /3(m). Therefore, the expression (1)

may be written

n y m y»

2 akuk(x) = ——   2 dpm
fc = 1 ^fn) m = l   Ji

<5(m)(/„)

Then

and

2F(/(m)|Ml,M2,-,w„)(x)- 2
m = l m = l     * t'n^

lim   2 E(fm)\\uy,u2,-,un)(x)= 2/(m)(x)
n->co   m = 1 m = 1

lim   2   ^f = lim   S ^C^"* || «i» "a. -■-,«-)(*) = 0
n-+co  m = l    ■* v'n/ n-+co m = l

since the point x belongs to the complement of the exceptional set. Notice also that,

m..

2 /(m)(x) = f(x)
m = l

since/(m)(x) = 0 except possibly for that value m such that /(m)(x) =/(x).

We may now conclude that

lim   2 akuk(x)
n-»oo lfc-1

lim  [2 E(f^\\uy,u2,-,un)(x)- 2   Ç^l
n-*co   Lm = l m = 1     *\*n)   J

= lim   2 F(/(m)||Ml,u2,-,u„)(x)-lim   2 E(«5(m) || Uy,u2,-,u„)(x)
rt-*co  m = l n-*-co  m = 1

m

=  2 /(m)(x) = /(x)
m = l
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for all x in the complement of the exceptional set. This concludes the proof of

the lemma.

Remark. It is clear that the measure p = Z^°= y p„, constructed in the proof

of Lemma 2.2 is not uniquely determined by/. For example, for any fixed integer

TV, we may choose the sets G*n) to be atoms of <t(mi,u2, ■■-,ukn) where

k„ = N + n. Then, if the measures [p„}™= y are constructed as indicated in the

lemma, we have

\   dpn = 0, n = l,2,-
Je,

where Ej, j = 1,2,—,N are the atoms of oiuy,u2,---,uN). In other words, we

may find a series representation for / such that ak = 0 for k = TV. This remark

will be useful in proving part (b) of Theorem 2.1. (See Lemma 2.3 below.)

Proof of Part (a) of Theorem 2.1. Let {uk}k°= y be a complete //-system. It

follows from Definition 1.2 that <7(«,,m2,---) is equivalent to the Borel sets of

[0,1], so that, in particular, eriuy,u2,---) is nonatomic. Therefore, any Lebesgue

measurable function that is finite a.e. is equal a.e. to a function measurable on

oiuy,u2,---). Part (a) of Theorem 2.1 is, therefore, a consequence of Lemma 2.2.

The following strengthened version of Lemma 2.2 facilitates the proof of Part

(b) of Theorem 2.1.

Lemma 2.3. Let {uk}¡?=y be any complete H-system and EN any set meas-

urable with respect to eriuy,u2,---,u„) where TV is an arbitrary fixed integer.

Let f be finite a.e., and suppose f= 0 on the complement of EN. Then f has a

series representation  'EkLyakuk such that:

ii)   ak=0for kz^N,

(ii)   the summands akuk vanish identically on the complement of EN.

Proof. The proof of assertion (i) follows from Lemma 2.2 and the remark

following it. To prove Part (ii), consider any series representation 2Zf=yakuk

such that ak = 0 for k ^ TV. Since the set EN belongs to (r(u1,t/2, -•■,uN), the set

where ^».+,.«^+^1 > 0 is either contained in EN or disjoint from it. There-

fore, we may modify the coefficients aN+k, if necessary, by setting aN+k = 0 if

{\aN+kuN+k\>0} CiEN = 0. This modification of the series meets the require-

ment (ii) without damaging the representation off on EN. The proof of the lemma

is complete.

The assertion of Part (b) of Theorem 2.1 follows from Part (a) of Theorem 2.2.

Proof of Part (a) of Theorem 2.2. Let {u,¡}™=1 be a complete ZZ*-system

such that liminfj^aoPfc = 0. Such a system exists by Theorem 2.3. Let / be any

measurable function, written as a sum /= ayfy + a2/2 4- a3/3 where fy is finite

a.e., f2 is + oo on a set of positive measure, zero otherwise and /3 is — oo on a

set of positive measure, zero otherwise. Each coefficient a¡ is either one or zero.

A series representation for fy in terms of {w4}£°= i follows from Lemma 2.2.
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The theorem will be proved if we can show that f2 and f3 have series representa-

tions. It clearly suffices to show that f2 has a representation.

First, we construct a series converging to + oo a.e.. Let {p }kaLi be the se-

quence of independent binomjal functions from which the //*-system is con-

structed. Select a subsequence {pkl}¡%y such that the associated parameter se-

quence {pujj^i has the property 2¡ = ipti< + oo. Define a sequence of co-

efficients {ck.}^Ly such that

P{cktPkl = l} = 1-1V

An application of the Borel-Cantelli lemma shows that 2Z™yCk¡-pk. = oo a.e.,

since 2i"1p/ki<oo implies that P{cktpk. ̂  1 infinitely often} =0. It follows

from the definition of f/*-system {uk}k = i that the series 2Z™=yCk.pk. may be ex-

pressed as a series   2™= i akuk, and that   2£ « y akuk = Sn converges to + oo a.e.

Now let/be a function that is + oo a.e. on E and vanishes on E. (Henceforth

the complement of a set will be denoted with a bar.) We will modify the tails of

the above series 2ZkaLlakuk so that the modified series 2£°=iatufc converges to

+ oo a.e. on E and to zero a.e. on E.

Let {fk}kœ= x be a sequence of nonnegative functions such that each fk is mea-

surable with respect to o(uy,---,uk) and limk^aofk = x£, the characteristic function

of E, almost everywhere. Lemma 2.1 insures the existence of such a sequence.

The collection of sets En = {x:sup„^kfk(x) = |} is monotone decreasing with

iim„_ œ P(En) = P(E), and each set E„ is a countable union of disjoint atoms.

We first sketch the proof. The series 2™= y akuk is to undergo a succession of

modifications such that (i) after the nth modification the series 2^= y ak uk con-

verges to 4- oo a.e. on E„ and to zero a.e. on E„, (ii) ak>)sajin~i\ k = 1,2, •••,N„

where {N„}™=i increases with n. (iii) T.kaLyakn)uk= T,kaL1ak:n~1)uk on En_y.

Requirement (ii) insures that äk =lim„^makí) exists for each k. Since

Ey czE2 <= ■■■ cz E and lim)1_0OP(E) = P(E), requirement (iii) implies that

2£<L15jfciifc converges to zero a.e. on E. The requirement (i) will be fulfilled by

the construction.

Let {e*}^ y be a sequence of positive numbers such that   2*™ y ek < P(E)/2.

Let Ey1 <= Ey be a set measurable with respect to a(uy,u2,■■■,uNi) such that

P(Ey — El1) < Ey. Such a set certainly exists since Ey is the countable union of

disjoint atoms. Optionally stop the series 2™=1fl*Mfc with a stopping time ty,

«o that

2 akuk
fc = i

2 akuk   on ENyl
k = l

2 akuk   on Ey1.
u = i

The series 1ZlLyakuk is finite on Ey1. Therefore, by Lemma 2.3 we may define
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another series H,k>Nibkuk that vanishes identically on Ey1 and converges to

— 2ZkLyakuk on Ej1. Since bk = 0 for k :£ Ny and for all k such that uk is sup-

ported on Ei1, the two series 2Z"akuk and ¿Zk>Nibkuk may be combined in-

to a single series Hckuk that converges to + oo a.e. on E?1 and to zero a.e.

on Eyl. The series 2Zckuk may be further modified on the remaining collection

of disjoint atoms U"=i-^*1) of £t contained in the set Ey — Ey1: the tails of the

original series £..> N akuk may be substituted for the tails 2lk > N ckuk on the sets

Ak   , k = 1,2, ■••.

The series irLi^'k obtained in this way has the following properties: (i)

on Ey, it agrees with the original series ¿Zakuk for k~Ny, then is defined so that

TlN>a(k)uk + 2Zk>nla[i)uk = 0 a.e.; (ii) on Ey — E*ll, it agrees with 2Zakuk for

k^Ny, then agrees with T,bkuk as defined above, for a single, finite block of

terms beginning with the index Ny + 1, then agrees with the tail of the original

series; (iii) on E*1, it agrees entirely with the original series. Thus, E^i ak{X)uk

fails to agree with the original series only on a subset of Ey of measure less than

By, and on this subset, it fails to agree only in a single, finite block of terms. There-

fore   Z^! a^Uf, converges to + oo  a.e. on Ey and by (i) to zero a.e. on Ey.

The second modification of the series is made entirely on the set Ey so that

2^'k = iakl)uk= Z(°°= yak2htk   on   Ë,.   We   find   a   set   E22ezzE2,    measurable

with    respect    to    eriuy, ■■-, uN2)   such   that   PiE2 n Ef ' n E22) < Sy/2 and

F(E2n(E1-£Î'')n£^)<E2.

Since the series Tékx=ya(k)uk converges to + oo a.e. on Ey, we may proceed

as before, with the exception that all considerations will be restricted to the set

Ey.

Define a stopping time x2 that is finite on the set Ey — £22 and infinite on £22.

Using Lemma 2.3 again, we may continue the series   2Zl2=1akl)uk on £2 — E22

so that it converges to zero a.e. on this set. Finally, the tails of the original series

E*°= i akuk may be replaced on the set £2 — E22 so that the resulting series

Ztœ= y a¿2\ik converges to + oo a.e. on £2 and to zero a.e. on Ex — £2. Since the

series   T,k°=ya(2)uk is obtained from   'Lkx=ya[1)uk by modification only on the set

Ei, 2Zk™ya(k2)uk = ¿ZfZy aj¡1)uk = 0   a.e.   on   Ey.   It   follows   that   the    series

XfL y ak(2)uk = 0   a.e.   on   £2 = £t u (£i — £2).   Furthermore   (i)   the    series

11kx=y ak2)uk coincides with the original series on Eilr\E22; (ii) coincides   with

the  original  series  except for  a  single  finite  block   of terms  on   the   sets

(£i — E'í^riE'Z2 and EylC\E22,   of measure less than By + ex/2, (iii) coincides

with original series except for two finite blocks of terms on (£t — £f') n(£2 — £22)

of measure less than e2.

The third series S^i ak3)uk is obtained by the modification procedure out-

lined above, restricted to the set £2. That is, the series 2Zk"L y ak(3)uk has the fol-

lowing properties (i) Ek°°=iai3V= •£"=i«*2)HftOn£2,(ii) Zt°°=i«t3)"t converges

to + oo a.e. on £3 and to zero a.e. on Ë3. As before, we choose a set £3 3 c E3

so that  Xj°= y ak3)uk = E£°= i a*2'»,, on E33. The set £33 is chosen large enough
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so that the series 2^= i ak3\tk agrees with the original series (i) except for a single

finite block of terms on a set of measure less than sL + Sy/2 + Sy/22, (ii) except

for two finite blocks of terms on a set of measure less than s2 + e2/2, (iii) except

for three finite blocks of terms on a set of measure less than £3.

The nth modification is carried out similarly so that (i) 2t°L yakn)uk = 2*™ i a*"- ^u*

on E„_y, (ii) 2¿"L i a^Ujt tends to zero a.e. on En and to + œ a.e. on En. The

series ~L™=iak>)uk agrees with the original series except for K finite blocks of

terms on a set of measure less than

n

eK +  2 eK¡2J < 2eK.
j=i

Finally, the series 2*™ i <?*«*, with ak = lim„_00a^"), converges to + oo a.e. on

E and zero a.e. on E. In fact, the series 2t™ i äkuk agrees entirely with the original

series 2¿"L1 akuk on E except possibly on a subset of E of measure less than

2- 2Zkc=yEk <P(E). More generally, the series lZk = yäkuk agrees with the ori-

ginal series except for at most K finite blocks of terms everywhere on E except

possibly on a subset of E of measure less than 2 2™=K + iej- It follows that the

series 2™=ifltMft converges to + oo a.e. on E. The series 2¿*L i oit«* con-

verges to zero on E since 2t™ i äkuk = 2t°L y akn)uk = 0 a.e. on Ë„ c E where

the sequence of sets En increases to E.

This completes the proof of Part (a) of Theorem 2.2, and consequently, Part (b)

of Theorem 2.1.

We turn now to a proof of Part (b) of Theorem 2.2.

Definition 2.1. An increasing sequence of atomic a-fields a(n) is called regular

if for any two atoms En belonging to a(n) and F„+1 belonging to a(n + 1) with

E„2£„+i we have 0 <5 ^ P(En+y)IP(E„) for some 5>0 and all n = l,2,---.

Part (b) of Theorem 2.2 follows from a submartingale convergence theorem

due to Chow [2, Corollary 3]. (See also Doob [3].) The martingale version of

Chow's theorem is as follows:

Theorem 2.4 (Chow). Let S„ be a martingale with respect to a regular

sequence of a-fields {<r(n)}"=1, such that E(\Sn\) < + oo for each n. (That is,

E(Sn+y ||ff(n)) = Snfor each n.) Then, limS",, exists a.e. and is finite a.e. on the

union of the sets where liminf £■„ > — oo and lim sup £„ < + oo.

If {uk}k% y is an //*-system such that liminf^^oop^ > 0 then the sequence of

partial sums of any series 2t°L i akuk is a martingale with respect to the regular

sequence of c-fields a(uy,u2, ■■•,u„). Assume that there is a series 2Zkaiyakuk con-

verging to + oo on a set of positive measure E. Then certainly lim inf 2"= yakuk

> — oo a.e. on E. Applying Theorem 2.4, we conclude that lim,,-.«, Yfk = yakuk

exists and is finite a.e. on E, contradicting our previous assumption. This proves

Part (b) of Theorem 2.2.
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Corollary 2.1 (Bari-Talalyan-Arutyunyan). There is a Haar series

representation for f if and only if f is finite a.e.

Corollary 2.2 (Talalyan-Arutyunyan [12].) There is no Walsh series

converging to + oo  on a set of positive measure.

Proof. Suppose such a series could be defined. Then, the sequence of partial

sums 2Zk = yakxk is a martingale with respect to the regular sequence of a-fields

°~iXi>%2t'"tXn) where %k are the Haar functions. An application of Theorem 2.4

as indicated above concludes the proof.

Corollary 2.3. There is no divergent series Z£°= y akuk that oscillates bounded-

ly a.e. when {uk}™=y is an H*-system with liminfp.. > 0.

Proof.   This is a direct application of Theorem 2.4.

Corollary 2.3 contrasts with the example of Marcinkiewicz which shows that

divergent trigonometric series may oscillate boundedly a.e. [17, p. 308].

3. A necessary and sufficient condition for pointwise convergence of series. In this

section, we consider //-systems such that the er-fields <r(u1,u2, ■•-,«„) are regular

in the sense of Definition 2.1. The Haar system qualifies as a regular system, as

does any //*-system such that liminf,;_00pt > 0. For these systems, we have the

following theorem.

Theorem 3.1. Let {uk}¡fly be an H-system such that {<t(«i,m2,•••,«„)}"= i

is a regular sequence of a-fields in the sense of Definition 2.1. Then any series

~L¡¡°=yakuk converges a.e. on a set £ if and only if H'k = yiakuk)2 < + oo a.e. on E.

The following preliminary lemma is required.

Lemma 3.1. Let {uk}/fLy be an H-system satisfying the conditions of Theorem

3.1. If \akuk\> A on a set of positive measure, then \akuk\> Aiô/Cl— à)) on the set

{\akuk\ > 0} where ô is the lower bound of all ratios P(En + i)/P(£„) such that

EB+i£E„, and En,E„+1 are atoms,

Ensoiuy,u2,---,un)

and

E„ + yeeriuy,u2,---,u„ + y).

Proof. If | akuk | > A almost everywhere on the set {| akuk | > 0} there is nothing

to prove. Therefore, assume that | akuk | takes two positive values, a, ß with

0 < a g A < ß. Let Ek = {\ akuk | = ß} and Ek-y «■ {| akuk \ > 0}. Notice that

£*_! is measurable with respect to eriuy,u2,•••,uk-1) since {"*}"=! is an

//-system. The conditions of Theorem 3.1 taken together with the fact that akuk

is a martingale difference, implies
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X-ô   = ß-P{\akuk\=ß\\ \akuk\>0},

=   ßP(Ek)IP(Ek-y),

= a(l -P(Ek)IP(Ek_y)),

Ú a(l - ô)

or X(ö(l — Ö)) g a ^ | flfciifc | when | akuk | > 0. The proof of the lemma is complete.

In the proof of the theorem, we will use the notion of a  minimal stopping

time: Given a stopping time x, define f as

x =
m\n(k:{x = n}eo(uy,u2,---,uk) on {t = n} for n < oo),

+ 00 on {t = + oo}.

Notice that f is a stopping time such that o(x) = a(x) and is the smallest such

stopping time with this property on the set where x < + oo.

Proof of Theorem 3.1. Sufficiency. Suppose 2Zkx=y(akuk)2 < + oo a.e. on E.

Let x = min(n: 2fc"= i (ukak)2 S: N) and x be the minimal stopping time associated

with x. Then, if

fS„ if n = x,
SI =

Uj if n>x
it can be shown that

/» /»min    (n,t)

\\S~;\2  = 2   (afcM,)2

(1) j       j   *=1

^ N + NIÔ2     for all »»1,2, — .

Suppose for the moment that (1) has been established. Inequality (1) implies

that {^„"Li is a uniformly integrable martingale and, therefore, converges by

the standard martingale convergence theorem. Since S¿ = Sn for all n on the set

EN where 2¿°= i (akuk)2 < N, lim Sn exists almost everywhere on EN. The sets

Fjv increase, with increasing N, to the set £OT = { T%=y(akuk)2 < + co}. Con-

sequently, limSn exists almost everywhere on Eœ.

To prove inequality (1), notice that the left-hand equality is a consequence

of the orthogonality of the functions uk. For the right-hand inequality, estimate

the sum E™Lni"'r) (akuk)2 as follows. If min(n,f) = n < x ^ x then

n t

2 (akuk)2 < N =:  2 (akuk)2
k=í k=i

so that inequality (1) is certainly satisfied. If min(n,x) = n = x, consider two

cases :

(i)   Suppose that on the set (t = m}, Iamum\<N1!2/S where m = t _ f. Then
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î m m-1 l» Kr

E iakuk)2 ^ E («,«,)2 á E (a,u4)2 + g ^ TV + £.
t = i jt = i * = i ö °

Therefore, inequality (1) is satisfied under condition (i).

(ii) Now, suppose that somewhere on the set [x = m}, |amwm| > TV1/2/ö.

Then the condition of Lemma 3.1 is satisfied for A = TV1/2/<5; it follows that

|am"m| = TV1/2/(l— 5) ^ TV1/2 (or (amum)2 = N) everywhere on the set where

|amum|>0. This imples that

{x = m} = ¡1, (akuf)2 < TV; |amum| > OÍ.

This, in turn, implies that the set {x = m} is measurable on er(uy,u2,---,um-f)

which means x z^m — l. Therefore we have

x m—1

E (akuk)2 ^ E (akuk)2 < TV
*=i t=i

so that (1) is certainly satisfied in this case.

Cases (i) and (ii) exhaust the possible alternatives so that inequality (1) is es-

tablished.

Necessity. Suppose that Sn is convergent on a set of positive measure. The

limit is necessarily finite by Theorem 2.4 of the previous section. Let t be the

stopping time x = min(n : | S„ \ ^ TV) and x the minimal stopping time associated

with T. Arguing as before, we observe that x ^ n — 1 on the set where x = n and

| anun | > 2TV/<5 somewhere on {x = n}. Therefore,

|Sj| áN + 2TV/á and   í \S¿\2dP =   f lrin(n-l)(akuk)2dP,

^ (TV + 2TV/5)2 for every n

so that  E£°= y(akuk)2 < oo a.e. on the set where sup | Sn | < TV. Since TV is ar-

bitrary,  E ™= y (akuk)2 < + oo a.e. on the set where lim S„ exists.

Corollary 3.1. A series Et"L i akukfrom an H*-system such that liminft_ixpk

> 0 converges a.e. on a set E if and only if Hfk = y(akuk)2 < co a.e. on E.

Proof. The a-fields o-(mi,u2,"»,u„) form a regular sequence since

0<<5 = liminfi:_o0pfc z%P(En+f)/P(Ef) for any two sets, £„+i belonging to

o(uy,u2,---,un+y), E„ belonging to o(uy,u2,---,u„) such that £„+1 ££„. There-

fore, Theorem 3.1 applies, and the corollary is proved.

In particular, Corollary 3.1 applies to the Haar series, since pk = \ for

fc = l,2, ••». From the result for Haar series, we may deduce the following

result for Walsh series.

Corollary 3.2. Let{W2n}^Ly be the sequence of the 2"th partial sums of a
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Walsh series. Then, lim W2n exists a.e. if and only if 2Z™=y(W2n — rV2„-t)2 < + oo

a.e.

Proof. It is pointed out in the first section that for every Walsh series, there

is a Haar series such that H2„ = W2„. Then H2„ — //2„-i = W2» — W2n-i for

every n. However, H2„ — H2„-i= 2Zkl2n-i + y(akxk) has the property that the

summands akxk,2"~l < k ¿2" ate supported on disjoint sets. This permits us

to conclude that (a) lim//„ exists a.e. on E if and only if lim//2„ exists a.e. on E;

and (b) ( T,kl2n-i + yakxk)2 = 2^k=2"-'+i(akXk)2 • Therefore, if limWz» exists a.e.

on a set E, then lim W2„ = limH2„ = lim//„ exists a.e. (and is finite by Theorem

2.4). This implies that

oo oo 2n

2 (akXk)2 =2 2     (akxk)2
k = l n = l   * = 2»-1 +1

oo

=   2 (W^-W^-i)2 < oo a.e.
n = l

on E, so that one half of Corollary 3.2 is proved. The other half is proved simi-

larly.

When the sequence W2„ is the sequence of partial sums of a Walsh-Fourier

series, Corollary 3.2 may be sharpened. The fundamental inequality of Walsh-

Fourier series, proved by R. E. A. C. Paley [11] states that if fe Lp, 1 < p < oo

and {Wn}™=1 is the sequence of partial sums of Walsh-Fourier series, then the

function F= 2Z^Ly(W2„ — W2n-¡)2 is related to / by the inequality

Ap[ FPl2dx=   [fpdx = Bp    f Fp,2dx.
Jo Jo Jo

For functions feL1, a "weak type" bound on the function / has been ob-

tained by Yano [16]. The observation that the above inequality holds for the

Haar-Fourier series has been made by Marcinkiewicz [8].

The following two corollaries are of some interest in the study of divergent

Fourier series [14].

Corollary 3.3. Let H^Ly akuk be any a.e. convergent series from an H-sys-

tem satisfying the condition of Theorem 3.1. Then, any series 2^k = i^kakuk con-

verges a.e. when | <5„ | g B < oo uniformly for n = 1,2, •••.

Proof. The convergence of 2"= y akuk implies that 2™= i(akuk)2 < oo a.e. by

Theorem 3.1, so that 2fc°°= i (°kakuù2 = B2 2Zk = y (akuk)2 < oo a.e. Another ap-

plication of Theorem 3.1 shows that 2llka>=y0kakuk converges a.e.

A series of functions is said to be unconditionally convergent in measure if

the series converges in measure for every rearrangement of its terms.
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Corollary 3.4. Every a.e. convergent Haar series is unconditionally con-

vergent in measure.

Proof. A result of Orlicz [10] states that a series "Lf^yf is unconditionally

convergent in measure if and only if HkLySk-fk converges in measure

for every sequence of unit factors {ôk}kœ= y. This theorem, in conjunction with

Corollary 3.3, gives Corollary 3.4.

Remark. Actually, we have proved more than unconditional convergence in

measure. In the terminology of Ul'yanov [14] we have shown that every con-

vergent Haar series is weakly unconditionally convergent a.e.

Corollary 3.3 also has some interest for martingale theory.

Corollary 3.5. Lei Yfk = yakuk be an almost everywhere convergent series

from an H-system satisfying the condition of Theorem 3.1. Then, any optional

skipping scheme defined on the martingale of partial sums of the series gives

an a.e. convergent martingale.

Proof. Optional skipping does not, in general, preserve a.e. convergence of

a martingale. In the case at hand, however, we note that any optional skipping

scheme is generated by a multiplier transformation EÜ°= y ôkakuk, by Proposition

1.2 of the first section. An appeal to Corollary 3.3 finishes the proof.
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