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Introduction. In the present papers (I and II) we prove existence theorems for
weak and usual optimal solutions of nonparametric Lagrange problems with
(or without) unilateral constraints.

We consider arbitrary pairs x(f), u(t) of vector functions, u(f) measurable with
values in E,, x(t) absolutely continuous with values in E,, and we discuss the
existence of the absolute minimum of a functional

I[x’ u] = Jttzfo(t’ X(t), u(t))dt,
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370 LAMBERTO CESARI [September
with side conditions represented by a differential system
dxldt=f(t,x(),u(t)), 1, Sty
constraints
(t,x(2)) € A, u(t) e U(t, x(t)), t,St=st,,
and boundary conditions
(21, %(t1), 12, %(15)) € B,

where A is a given closed subset of the tx-space E, X E,, where B is a given closed
subset of the ¢,x;t,x,-space E,,,,, and where U(t,x) denotes a given closed
variable subset of the u-space E,,, depending on time ¢ and space x. Here A may
coincide with the whole space E, X E,, and U may be fixed and coincide with
the whole space E,,.

In the particular situation, where the space U is compact for every (t, x), these
problems reduce to Pontryagin’s problems; in the particular situation where the
space U is fixed and coincides with the whole space E,, then these problems
have essentially the same generality of usual Lagrange problems. Throughout
these papers we shall assume U(¢,x) to be any closed subset of E,,.

In §§1-5 we prove closure theorems for usual solutions. In §§6-12 we prove
existence theorems for usual solutions. These contain as particular cases the
Filippov existence theorem for Pontryagin’s problems (U(#, x) compact), existence
theorems for usual Lagrange problems (U = E,,), and the Nagumo-Tonelli existence
theorem for free problems (m = n, f = u). In Part II we prove existence theorems
for weak (or generalized) solutions introduced as measurable probability distri-
butions of usual solutions (Gamkrelidze chattering states).

In subsequent papers we shall extend some of the present results to multidimen-
sional Lagrange problems involving partial differential equations in Sobolev
spaces with unilateral constraints.

We begin with an analysis of the concept of upper semicontinuity of variable
subsets in E,. The usual concept of upper semicontinuity is replaced by two
others (properties (U) and (Q), §4), which are essentially more general than
upper semicontinuity, in the sense that closed sets U(t,x), for which upper semi-
continuity property holds, certainly satisfy property (U), and closed and convex
sets Q(t, x), for which upper semicontinuity property holds, certainly satisfy property
(Q). In(§5) we then extend the closure theorem of A. F. Filippov in various ways,
so as to include, among other things, the use of pointwise and not necessarily
uniform convergence of some components of a sequence of trajectories. In §§7,9 we
prove existence theorems for optimal usual solutions by a new analysis of a mini-
mizing sequence, and by using the above extensions of Filippov’s closure theorem.
In §§11, 13 we then deduce existence theorems for the case where f is linear in u,
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and for free problems of the calculus of variations (m = n, f = u). Finally, in
Part 1I, §16, we prove existence theorems for weak solutions in the general case
above, as well as for the case in which f is linear, and for free problems.

1. The problem. We denote by x a variable n-vector x =(x',--,x")€E,,
by u a variable m-vector u=(u’,---,u™ € E,, and by teE, the independent
variable. We denote by A an arbitrary subset of the (t,x)-space, A < E, X E,,
and, for any (¢, x) € A, we denote by U = U(t,x) a variable subset of the u-space,
U(t,x) < E,,. In the terminology of control problems, u is the control variable
and U(t,x) the control space. We denote by fi(t,x,u), i =0,1,---,n, given real
functions defined for all (¢, x) € 4, and all u € U(¢, x), and by f the n-vector function
f=(f1,".f,)- We denote by B a given subset of the (2n + 2)-space (t,,x;,2,X3)-
We are interested in the determination of a measurable vector function
u(t), t; £t < t,, (control function, or steering function, or strategy), and a cor-
responding absolute continuous vector function x(t),t, <t <t,, (trajectory),
satisfying almost everywhere the differential system

dx[dt =f(t,x(t),u(?)), t;St<ty,
satisfying the boundary conditions
(t1,%(t1), 12, %(2)) € B,
satisfying the constraints
(Lx(M)ed, t=t=t,
u() e U(t,x(t)), a.e.in [ty,1,],

and for which the integral (cost functional)

t2
1x,] = [ 4o, 50, w00
ty
has its minimum value (see §§2, 3 for details). We shall assume that U(t,x) is
closed for every (t,x)e A.

2. The space of continuous vector functions. Let X be the collection of all contin-
uous n-dim vector functions x(¢) defined on arbitrary finite intervals of the ¢-axis:

x(t)=(xl""9x")9 a été b’ X(t)GE,,,

If x(f),a <t = b, and y(f), c <t £ d, are any two elements of X, we shall define
a distance p(x, y). First, let us extend x(f) and y(t) outside their intervals of def-
inition by constancy and continuity in ( — oo, + 00), and then let

p(x,y) =|a —c| +|b— d| + max|x(t) - y(9)|,

where max is taken in (— oo, 4+ 00). It is known that X is a complete metric
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space when equipped with the metric p. Ascoli’s theorem can now be expressed
by saying that any sequence of equicontinuous vector functions x, of X, whose
graphs in the tx-space are equibounded, possesses at least one subsequence which
is convergent in the p-metric toward an element x of X.

3. Admissible pairs u(t), x(f). Let A be a closed subset of the (t,x)-space
E, X E,. For every (t,x) € A let U(t, x), or control space, be a subset of the u-space
E,.. Let M be the set of all (¢, x, u) with (¢, x) € A,u € U(t, x). Let f(t,x,u) = (f1,**,f,)
be a continuous vector function defined on M. We shall denote by Q(t,x) the
set of all values in E, taken by f(¢,x,u) when u describes U(t,x), or Q(t,x)
= f(t,x, U(t,x)). A vector function u(t) = (u*,---,u™), t; < t £ t, (control function)
and a vector function x(f) = (x!,---,x"), t, < t £ t, (trajectory) are said to be an
admissible pair provided (a) u(f) is measurable in [¢,1,]; (b) x(¢) is absolutely
continuous (AC) in [t,,2,]; (c) (t,x(t)) € A for every te[t,t,]; (d)u(t) e U(t, x(t))
a.e. in [ty,1,]; (e) dx/dt = f(t,x(¥), u(t)) a.e. in [t,,t,]. By the expression the
vector function x(t),t; £t <t,, is a trajectory, we shall mean below that there
exists a vector function u(f), t; £t =<t,, such that the pair u(z),x(t) satisfies
(a)-(e). We say also that x(t) is generated by u(?).

4. Upper semicontinuity of variable sets. In view of using sets U(t, x), Q(t, x)
which are closed but not necessarily compact, we need a concept of upper semi-
continuity which is essentially more general than the usual one. We shall introduce
two modifications of the usual definition of upper semicontinuity, and we shall
denote them as “property (U)* and “‘property (Q)”’, since we shall usually use
them for the sets U(¢, x) and Q(¢, x) above, respectively.

We shall discuss properties (U) and (Q) first in relation to arbitrary variable
sets U(t,x), Q(t, x) which are functions of (¢,x) in A. Then we shall discuss their
relations when Q(¢,x) is assumed to be the image of U(t,x) as mentioned in §3.
Properties proved for U(t,x) under conditions (U) or (Q), will be used for Q(t, x)
when this set satisfies conditions (U) or (Q).

(A) The property (U). Given any set F in a linear space E we shall denote
by clF, coF, bd F, intF respectively the closure of F, the convex hull of F, the
boundary of F, the set of all interior points of F. Thus, clco F denotes the closure of
the convex hull of F. Weknow that F,clF, co F, coclF are all contained inclcoF.

For every (t,x)e A and 6 > 0 let Ny(t,x) denote the closed d-neighborhood
of (,x) in A, that is, the set of all (¢',x’) € A at a distance < J from (¢, x).

‘A variable subset U(t,x), (t,x)e A, is said to be an upper semicontinuous
function of (¢,x) at the point (7, %) € 4 provided, given ¢ > 0, there is a number
6 = (7, %,&) > 0 such that (t,x) € Ny(7,%) implies U(t,x) = [U(7, %)],, where [U],
denotes the closed e-neighborhood of U in E,,.

Again, let U(t,x), (t,x)e A, U(t,x) < E,,, be a variable subset of E,, which is a
function of (¢,x) in A. For every 6 >0 let U(t,x,0) = UU(t’,x’), where the
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union is taken for all (¢',x") e N4(t,x). We shall say that U(t, x) has property (U)
at (f,X) in A4, if
UG = () clUG,%,96).
>0
We shall say that U(t,x) has property (U) in A, if U(t,x) has property (U) at
every (t,x) of A.

(i) If U(t,x) has property (U) at (7, %), then U(7, X), being the intersection of
closed sets, is closed.

(ii) If A is closed, and U(t, x) is any variable set M which is a function of (¢, x) in
A and has property (U) in A4, then the set M of all (¢,x,u) € A X E,, with u € U(t, x),
(t,x)e A, is closed.

Proof. If (7,x,i#)ecl M and ¢ > 0, then there are co-many points (¢t,x,u)e M
with |t—7|<e, |x—%|<e, |u—ii|<e Thus, (;,X)eA since A is closed,
(t,x)e N, (f,%), ueU(t,x), ueU(i,%,2¢), and @€ ﬂecl U(f, %, 2¢) = U(F, %),
#e U(f,%), since U has property (U) at (7,x). This proves that (7, %, #) e M, that
is, M is closed.

Note that the sets U(7, X,0) are not necessarily closed even if A4 is closed, all
sets U(t,x) are closed, and we take for N,(7,%) the closed d-neighborhood if
(i,x) is in A as stated. This can be seen by the following example. Let
A=[0=2t<1,0=<x<1] a subset of E,, and

U, x)=[z= (szz)lzz =tz,— 0 <z, <+ ©]

=z =(zl,22)|zz =06z, for — o<z, <0, and z,>0 for 0 <z, < 0] for
any 6 > 0. The sets U(0, x, d) are not closed. Here U(t, x) does not satisfy property
(U) at the points (0,x). Nevertheless, the statement holds:

(iii) If A is closed, and U(t,x) satisfies property (U) in A, then the sets
U(t,x,9), (t,x)e A, 6 >0, are all closed.

Proof. Let M;denote the set of all points (¢, x, u) with (¢, x) € N4(7, X), u € U(t,x).
Obviously Ny(i,X) c A< E,,,; MscE,,, xE,, and N4(i,%) is compact and M,
is closed by force of (ii) above. Let # be a point of accumulation of U(t,x,d),
and for any n >0 let V(&) denote the n-neighborhood of # in E,. Then
M;N(V(#)XE,.,) © Ni(i,X) xV,(@t), hence M;N(V,(#)XE,.;) is bounded.
Since both M; and V,(#) X E, ., are closed sets, the set M; N (V, (&) X E, . ,) is closed
and bounded, and therefore a compact subset of E,.; X E,. Now the set
U(i, x,6) N V() is the projection of M, N (V,(i@) X E, ) on the u-space E,, and
therefore U(7,%,0) NV, (i) is compact. Thus @€ U(#,%,6) NV, (@), and finally
ue U(i, %,6). Thus, U(i,%,6) is closed, or clU(F, %,6) = U(§, %,8), and U(F, %)
=()s UG %,6) = )sU(,%,9).

(iv) If A4 is closed and Ugt,x),(t,x)e A, j=1,---,v, v finite, are variable

for 0<t =<1, and U(0,x) = [z, = 0,2z, = 0] for ¢t = 0. Then U(O, x, d)
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subsets of E,, all satisfying property (U) in A, then their union and their inter-
section V(t,x) = U Uit,x), W(t,x)= n jUi(t,x),(t,x)e A, are subsets of E,
satisfying property (U) in A. The same holds for their product V(t,x)=U, x--- x U,.

The proof is straightforward.

Under the hypotheses of (ii) the set M is closed but not necessarily compact
as the trivial example U(t,x) = E,,, M = A XE,,, shows. The set M is closed but
not necessarily compact even if we assume that 4 is compact, and that every
U(t,x) is compact. This is proved by the following example. Let m=n=1,
A=[(t,x)eE,|0<t<1, 0Sx<1], UQx)=[uecE,|0=sus<1], and, if
t#0, U(t,x)=[ueckE, |0 Su=1,and u=1t""]. Then M is the set of all (t,x,u)
with 0 <t <1,0<x=<1,and 0Zu=<1, or u=t"'if t#0. Obviously, M
is closed but not compact. Nevertheless, the statement holds:

(v) If Ais compact, if the variable set U(t, x) is compact and convex for every
(t,x)e A and possess property (U) in A, if for every (t,x)e A there is some
0 =0(t,x) > 0 such that U(t,x) "NU(',x") # & for every (¢',x') e Ny(t,x), then
M is compact.

Proof. If M is not compact, then there is some sequence of elements
(toxou)eM, k=1,2,---, with (&, x) € A, |t| + | x| + |ue| > + c0. Since 4
is compact and hence bounded, we have |uk — + 00. On the other hand, there
is some subsequence, say still (#,x,), with t, > 7, x, > %, (f,X)e A. Given ¢ >0,
we have u, € U(f, %, ¢) for all k sufficiently large, as well as U(#,%) N U(t;, %) # .
Since U(f, %) is compact, there is a solid sphere S containing all of U(7, X) in its
interior, say U(f,%) cintS < E,,. On the other hand, if #,e U, %) NU(4, x;),
we have i, €int S, and u, € E,, — S, again for k large. Since both #, and u, belong
to the convex set U(t,, x,), the segment #Z,u, is contained in U(t,, x;). In particular,
if uy, is the point where the segment #,u, intersects bd S, we have u; € U(t, x;),
u,e U(f,%,¢), and u,ebdS. If u’ is any point of accumulation of [u;], then
u'ebdS, and u’ eclU(f, %, ¢) for every ¢ > 0. Hence, u’ en,cl Ui, %,e) = U(i, %),
a contradiction, since U(#,X) —intS. We have proved that M is compact.

(vi) Ifthe set U(t, x) is closed for every (¢, x) € A and is an upper semicontinuous
function of (¢,x) in A, then U(t,x) has property (U) in 4.

Proof. By hypothesis U(t,x,8) = [U(t,x)]., where U, is closed. Hence
clU(t, x,0) = [U(t,x)], for 6 =6(t,x,¢) and any &€ > 0. Since U(t,x) is closed,
then [U(t,x)],—> U(t,x) as €0 +. Thus ();clU(t,x,8) = U(t,x). Since the
opposite inclusion is trivial, we have n,,cl U(t,x,0) = U(t,x). Statement (vi)
is thereby proved.

The upper semicontinuity property implies property (U), but the converse is
not true, that is, the upper semicontinuity property for closed sets is more re-
strictive than property (U). This is shown by the example after statement (iv)
above in which all sets are closed. Another example is as follows. Take n = 2 and

Ut,x) = [(u",u*)eE,|0 S u' < + o0, 0 u? S tu']
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for every (t,x)eA=[(t,x)€E,|0<t<1, 0<x<1]. Then, for §>0, we
have

U(t,x,0) = [(u',u?)eE,|0Su' <+ 0, 0Su? S(t+8u'],

hence U(t,x) = [)sclU(t,x,8) and U(t,x) has property (U) in A. On the other
hand,

(U] =[u',u?)eE, |0 u' < + o0, —eSu?> Stu' + (1 + ) *JUN,,
where N, = N,(0,0) = [(u*,u?)|(u")* + (u?)* < €?] if £ =0, and, if t5£0,
N;i=N,0,0) U[(u",u>)eE;|u'<0,u’2 —t7'u', —tu' + u® S (1 + 13)"/?].

Obviously U(t',x") — [U(t,x)], # & for t' > t, hence U(t,x) is not an upper
semicontinuous function of (t,x).

(vii) If A is compact, if U(t,x) is compact for every (¢,x)€ A and is an upper
semicontinuous function of (¢,x) in A, then M is compact.

(viii) If A is closed and Ugt,x), (t,x)€A, j=1,---,v, v finite, are variable
subsets of E,, all upper semicontinuous functions of (¢,x) in 4, then their union
V(t,x) and their intersection W(t,x) are semicontinuous functions of (¢,x) in 4.
The same holds for their product V(t,x) = U, X :-- X U,, as well as for their
convex hull Z(t,x), that is, for the set Z(t,x) of all u = p,u, + --- + p,u, with
u;eUft,x), pj20, j=1,,v,p +-+p,=1.

The proof is straightforward.

(B) The property (Q). Let U(t,x), (t,x)e A, U(t,x)< E,,, be any variable
subset of E,,, which is a function of (¢,x) in A. By using the same notations as
in (A), we shall say that U(t, x) has property (Q) at (7/,%) in 4, if

U(t,x) = [ cleoU(, %,6).
>0

We shall say that U(t, x) has property (Q) in A if U(t, x) has property (Q) at
every (t,x) of A.

(ix) Property (Q) at some (7,%) implies property (U) at the same (4, %), and

U(i,%) = f;] clco U(4, %,0) = O clU(#,x,0) = O U(,x,9).
Analogously, if U(t,x) has property (U) at (7, X) then
U@#,x) = Q clU(#,%,0) = O U(i,x,9).
Indeed
UG %) < U@, %,6) =) UG %,6) < () cleoU(, %,6),

>0 >0 >0

where first and last sets coincide by property (Q) at (7, %), and hence the inclusion
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signs < can be replaced by = signs. An analogous argument holds for the second
part of the statement.

(x) If A is closed, and U(t,x) is any variable set which is a function of (¢,x)
in A and has property (Q) in A, then the set M of all (t,x,u)e AXE,, with
ueU(t,x), (t,x)e A, is closed.

Under the hypothesis of (i) the set M is closed but not necessarily compact
as the trivial example U(t,x) = E,,, M = A X E,, shows. Nevertheless, the state-
ment holds:

(xi) If A is compact, if the set U(t,x) is compact for every (¢,x)e A and
possesses property (Q) in A, then the set M is compact.

Proof. If M is not compact, then there is some sequence, (f;,X,u,)€EM,
k=1,2,.--, with (t;,x,)€ A, |tk| + |xk| + luk| —- 4+ o0 as k— 0. Since A is
compact and hence bounded, we have |uk|—> + oo. On the other hand, there
is some subsequence, say still (,x,), with t, > 7, X, > %, ({,X)e A. Given £ >0,
we have then u, e U(F, %,¢) for all k sufficiently large. Since U(f,X) is compact,
there is a solid sphere S containing all of U(,X) in its interior, say U(f,%) <
int S < E,,. On the other hand, if u € U(f,X), we have ueintS, and uy,€E, — S
again for k large. Since both u and u, belong to the convex set clco U(t, x,¢),
we have ugeclco U(t, x, ) where uy, is the point of intersection of the segment uu,
with the boundary bd S of S. If u’ is any point of accumulation of [u;], then
u'ebd S, and u’e clco U(7, %, &) for every ¢ >0. Hence u’e ﬂsc]co U(f, %,¢)
= U(%, X), a contradiction, since U(7, X) < int S. We have proved that M is compact.

(xii) If for every (t,x) € A the set U(t,x) is closed and convex, and U(t,x) is an
upper semicontinuous function of (¢,x) in A4, then U(t,x) has property (Q) in A.

Proof. By hypothesis U(t,x,6) = [U(t,x)],, where U, is closed and convex
as the closed ¢-neighborhood of a closed convex set. Hence, na clco U(t, x,9)
< [U(t,x)], for every & > 0. Since U(t,x) is closed, then [U(t,x)],— U(t,x) as
e¢—>0+. Thus n&clco U(t,x,6) = U(t,x). Since the opposite inclusion relation
D is trivial, we have n‘,clco U(t,x,6) = U(t, x).

(C) Relations between properties of U(t,x) and of Q(t,x). Let us now consider
sets Q(t,x) = f(t,x, U(t,x)), (t,x) e 4, Q(t,x) = E,, which are the images of sets
U(t,x) c E,, for every (t,x)eA.

The hypothesis that 4 is compact, that f is continuous on M, that U(t, x) has
property (Q) [or (U)] in A4, and that Q(t, x) is convex for every (¢, x) € A, does not
imply that Q(t,x) has property (Q) [or (U)] in A. This can be proved by a simple
example. Let m=n=1, A=[—-151t<1, 0=<x =1], let U(t,x) be the fixed
interval U =[uekE, |0 Su< + 0], and f=(u+1) ' —t. Then

O(t,x)=[zeE,|—t<z<1—1],
and, if —1+d<t<1-5,
clcoQ(t,x,0)=[—t—0<z=1—-t+4]
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The intersection of all these sets for § > 0 is the closed set
[zeE|—-tsz21—1]

which is larger than Q(t, x), and thus Q has not property (Q) in 4. Actually, Q(, x)
is not closed, and hence Q(t,x) has neither property (Q), nor property (U).

Even the stronger hypothesis that A is compact, that f is continuous on M,
that U(t,x) has property (Q) in A, and that Q(¢,x) is compact and convex for
every (t,x) € 4, does not imply that Q(t,x) has property (Q) in A. This can be
proved by the following example. Let m=1, n=1, A=[(t,x)€E,, 05t <1,
0sx<1], U=U(t,x) = [ueE|0Su < + ], and f(t,x,u) = [sintu]?
(t,x,u)e Ax U. For t =0 we have f=0, hence Q(0,x)=[z=0]. For 0 <t <1,
we have Q(t,x) = [0 = z < 1]. All sets Q(t, x) are compact and convex, but Q(t, x)
does not satisfy property (Q) nor property (U) in A.

(xiii) If A is closed and f continuous on M, if U(t,x) is compact for every
(t,x)e A and U(t,x) is an upper semicontinuous function of (t,x), then Q(t,x)
possesses the same property, and also has property (U). If we know that Q(z, x)
is convex, then Q(f,x) has also property (Q).

Proof. Each set Q(¢,x) is a compact subset of E, as the continuous image of
the compact set U(t,x). The set U(t,x) satisfies property (U) because of (vi),
and hence M is closed because of (ii).

Let us prove that Q(¢,x) is an upper semicontinuous function of (¢,x). Given
(t,x)e A and ¢ >0, let 6 = d(¢,x,€) > 0 be the number relative to the definition
of upper semicontinuity of U(t,x), and let M’ be the set of all (¢',x',u’) with
(t',x")eNy(t,x), u'eU(t’,x"), and M" be the set of all (¢',x’,u’) with
(t',x") € N5 (t,x), u’ € [U(t,x)].. Since U(t, x) is compact, also [U(t,x)], is compact.
Let M"=N,(t,x) x[U(t,x)]., and we have M'=M N M". The set M’ is compact as
the intersection of the closed set M with the compact cylinder M”. The function f is
continuous on M’ and hence bounded and uniformly continuous. Hence, there
is some 7, 0<n<=min[d,e], such that (#,x")eN,(t',x’), |u' - u”l <,
',x"u’), (t",x",u")eM’ implies l f@,x",u")— f(t",x",u”)| <e& Also, let ¢
= min [#, (¢, x,1)]. Then, for every (t',x") € N,(t, x), we have U(t',x") e [U(¢,x)],,
hence, if u'e U(t’,x’), there is some u” e U(t,x) with lu’ - u"| =1, and finally
| f@,x',u")y— f(t,x, u”)| <& Thus, Q(t',x") <[Q (¢, x)], for every (¢',x") € N,(¢,x).
This proves that Q(t,x) is an upper semicontinuous function of (¢,x). The last
part of statement (xiii) is now a consequence of statements (vi) and (xii).

RemMARK. The statements and examples above show that properties (U) and
(Q) are generalizations of the concept of upper semicontinuity for closed, or
closed and convex sets, respectively.

(xiv) If 4 is a closed subset of the tx-space E; X E,, if U(t,x), (t,x) € A, U(t, x)
< E,, is a variable subset of E,, satisfying property (U) in A4, if M denotes the
set of all (¢,x,u) with (¢,x)€ A4, ue U(t,x), if f, is a continuous scalar function



378 LAMBERTO CESARI [September

from M into the reals, if 0(t,x) denotes the variable subset of E,,, defined
by O(t,x) = [ii = % u) € Epy | u® Z fot, X, 4), ue U(t,x)], then U(t,x) satisfies
property (U).

Proof. First, let us prove that each set U(ty,x,,8) is closed. Indeed, if
#i = (u%u) is a point of accumulation of U(t,,x,,6), then there is a sequence
i, = (u?,u,) with u? — u°, u, - u, i e U(ty, xo,6). Hence, there is a corresponding
sequence of points (t,X) € Ny(to, Xo) With ug = fo(t, Xi, ), ux€ U(ty,%,). Thus
u, € U(ty, X, 0). Since Ny(to, %) is a compact part of the closed set A, there is a
subsequence, say still (,x,), with t, =7, x,— X, (,X)€ Ny(ty,xo) = A. Thus
(tes Xpo i) € M, (ty, Xp, ) = (F,%,u), and M is a closed set by force of (ii). By the
continuity of f, we have then (7,%X,u)eM, ue U({,%), u® = fo(f,%,u). Thus
i =wou)e U@ %), and de O(ty, xo, ).

Now let @ = (u° u) be a point de n,,cl O(to,%0,8). Thus, there is a sequence
of numbers 8, >0, 8, -0, with #ecl J(ty,xo,0,), and hence iie U(ty,x,,5,)
because these last sets are closed. Thus, there is also a sequence of points
(te %) € N3 (to,Xo) With e U(t,, %), or u®Z fo(ty, xi4), ue U(t,x;). Hence,
for every n >0, we have ue U(ty, xo,n) for every k sufficiently large (so that
6, <1, and, by property (U) of U(t,x) at (ty,%,), also uen,,clU(to,xo,rl)
= U(tg,xo). Thus, ue U(ty,Xo), (to,*0,4) € M, and by u® = f(t;, x;,u) and the
continuity of £y, also u® = fo(to, Xo, #). We have proved that & = (u° u) € O(t,, x,),
hence

n clU(to, %0, 8) = U(to, Xo)-
s

Since the opposite inclusion relation is trivial, equality sign holds, and Uf(t,x)
has property (U) at (¢, x,), and, thus, everywhere in 4. Statement (xiv) is thereby
proved.

The set 0(t,x) of statement (xiv) has not necessarily property (Q) even if we
assume that U(¢, x) has property (Q) and f(¢, x, u) is convex in u for every (¢,x) € A.
This can be seen by a simple example. Let A=[—-1=<t<1,0=<x<1] and let
U = U(t, x) be the fixed set U(t,x) = E,, thatis, U = [— o <u' < + «]. Then,
each set U(t, x) is closed and convex, and obviously U(t, x) possesses property (Q),
and M is the cylinder of all (t,x,u) wi. (t,x)eA, uekE,. Finally, let
fo(t,x,u) = tu', so that f, is continuous in M and, for every (t,x)€ 4, f, = tu’
is linear in u!, hence certainly convex in u!. Now we have, for 6 < 1,

O(t, %) = [(u®,u') € E,| — 0 <u' < + o0, tu' Su® < + 0],
0(0,x,8) = [(u%u') e E,| — o0 <u' < + o0, — §|u'| Su® < + o].
Consequently, co (0,x,8) = E,, and hence
() clco U(0,x,8) = E,,
while ’
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0(0,x) = [(u%,u') e E,| — 0 <u' < + o0,u® 2 0].

This shows that U(t,x) does not have property (Q) at the points (0, x) of 4.
A scalar function fy(t,x,u), (t,x,u) € M, is said to be convex in u at (¢4, X,) € A
if

N
Jo(to, X0, o) = ;1 Aifo(to, X0, 43),

whenever

N
uo = X Au,
i=1

where u;€e U(tg,xo), 4,20, i=1,--,N, A, + - +Ay=1.

A scalar function fy(t,x,u), (t,x,u)e M, is said to be quasi-normally convex
in u at (¢y,xq,uo) € M provided, given € > 0, there are a number 6 = (ty, xo, Ug, &)
>0, and a linear scalar function z(u)=r+b-u, b=(b,-,b,), r by, ", b,
real, such that

@) fo(t,x,u) = z(u) for all (t,x) € Ny(ty,%,),u € U(t,x),

(b) folt,x,u) < z(u) + & for all (t,x)€ Ny(to,Xo)u € U(t,x), |u—uo| <6.

The scalar function fy(¢, x,u) is said to be normally convex in u at (to,xq,u,)
if, given & > 0, there are numbers & = 6(y,Xq,Ug,€) > 0, v = ¥(ty, Xo, Ug,€) > 0, and
a linear scalar function z(u) =r + b-u as above such that (b) holds and

@) fot,x,u) = z(u) + vlu - “ol for all (¢, x) € Ny(to, xo),u € U(t, x).

The scalar function fy(t,x,u) is said to be quasi-normally convex in u, or
normally convex in u, if it has these properties at every (to,Xq,4g) M.

For the case where U = U(t,x) is the fixed set U = E,,, the following statement
gives a useful characterization of the functions f, which are normally convex in u.

(xv) If A is closed, and fy(t,x,u) is continuous on M = A4 X E,,, then f, is
normally convex in u if and only if f, is convex in u at every (,,x,)€ 4, and
for no points (¢y,xo)€ A, ug,u; €E,, u; #0, the relation holds fy(t, xo, tg)
=27 [ fo(tos Xo» o + Atty) + fotos Xos o — Au,)] for all 12 0.

This statement was proved in [9a] and [10]. In particular, if for every
(t,x)€ A, fot,x,u) is convex in u and fo(t,x,u)/|u|—> + o, as |u|—> + o,
then certainly fy(t,x,u) is normally convex in u.

(xvi) If A is a closed subset of the tx-space E; X E,, if U(t,x), (t,x)e A,
U(t,x) < E,,, is a variable subset of E,, satisfying property (Q) in A4, if M denotes
the set of all (¢,x,u) with (t,x)e A, ueU(,x), if f, is a continuous function
from M into the reals, which is convex in u for every (t,x) € A, if either (a) the
sets U(t,x) are all contained in a fixed solid sphere S of E,, or () the function
fo(t,x,u) is quasi-normally convex in u at every (¢y,Xo, o) of M, then the set
0(t,x) of statement (xiv) has property (Q) in A.

Proof. Let ii=(u%u) be a point i = [")sclco U(ty,x,,0). Then there is a
sequence [J,] of numbers & >0, §,—0, with @eclco U(ty,x,,8,). Hence,
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there is a sequence of pairs of points &, % € E,,+, and of points v, of the seg-
ment (&, #,)€E,,+,, such that

D> i, g, Ba € O(to, X0, 61)
O = Ol + (1 — )iz 0<o =1, k=1,2,-.
We shall use the notation 9, = (v, v;), # = (u°,u), ih;= (u,?j, u,;),j=1,2. Then
we have
v0-u°, vy u, Ug1, Uz € U(to, X0, 0 »
ve=cagugy + (1 —adupy, U= oty + (1 — )y
Consequently, there are points such that
(te1>Xk1) > (tkzs Xik2) € N (to, Xo) = 4,
Ut € Utirs X)) Uiz € Ui, Xi2) -

The sequence [o;] is bounded, hence there is a convergent subsequence, say
still o, so that o — o for some 0 <a < 1.

For every n>0 and k sufficiently large (so that 6, <#), we have
Ug1s Uz € U(tg, xg,1), hence

Uy, Uz €€l co U(to, xo,1)-
As a consequence
| U = oty + (1 — ouyz € clco Uto, Xo,1)
for all k sufficiently large. As k— oo, we obtain ueclcoU(ty,xo,n). By the
property (Q), finally
¢)) ue(),clco U(to, xo,m) = Ulto, Xo)-

Assume first that condition («) holds. Then both sequences [u;;], [u:2] are
bounded, and hence there is a subsequence, say still [u;,], [#,], for which both
u,, and u,, are convergent in E,,, say ty — Uy, U~ Uy, Uy, U, € E,. For such
a subsequence, we have

vp = oy + (1 — g ups = 0 foltrs Xurs thea) + (1 = ) foltizs Xazs thea) s
U = gy + (1 — 0wz,
(ters Xirs Upr) s (Bezs Xu2s Ui2) €M,
where M is closed. By taking limits as k — co, we have
u® 2 afo(to, Xo, 1) + (1 — @) fo(tos Xo, 42)
u=ouy +(1-—0ou,,

(to, Xos ul) ’ (th X0s “2) eEM.
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By the convexity of f, in u at (¢y,x,) we have now

u® 2 fo(tos Xo» ottty + (1 = @)ut2) = foltos X0, )«
This proves that & = (u°,u)e U(ty,x,), hence
#)) () cleo T(to,x,8) = U(to, Xo)-

o
Since the opposite inclusion is trivial, = sign holds in this relation, and 0(t, x)
has property (Q) at (t,x,). Since (to,Xxo)€ A4 is arbitrary, U(t,x) has property
Q) in A4.

Assume now that condition (f) holds. As stated by relation (1) above,
ue U(ty, xo), hence (ty,xo,u) € M. By the quasi-normal convexity of f, in u at
(to, X9, u) we deduce the existence of a number § > 0 and of a linear scalar func-
tion z(v) = r + b- v such that (a) fy(, x,v) = z(v) for all (¢, x) € Ny(to, %), ve U(t,x)
and (b) fo(t,x,0) < z(v) + & for all (t,x)€ Nyto,xo), ve U(t,x), |u — v| < 6.
By combining (a) and (b) we have then (c)z(u) < fo(tg, X0, 1) = z(u) + ¢.

Now we have v, = oy + (1 —o)u, for some 0o =1, and v,—>u,
(tej» Xi;) = (to,%0), j=1,2. Thus, for k sufficiently large, (f;,X;;) € No(to,Xo),
j=1,2, and, by property (a),

v 2 o foltins Xars i) + (1 = ) foltazs Xuzs Ua2)

= oy z(ugy) + (1 — a)z(uyz)

v

z(oger + (1 = auyz) = z(vy)-

As k— + o, we have then u® = z(u), and finally by (b) above, u° = f(to, X0, u)
—¢, where £¢>0 is arbitrary. We conclude that u®>=fo(to,xo,u), with
ue U(ty,Xo). Thus & = (u®u)e U(ty,x,), and again we have proved inclusion
(2). The same reasoning above yields that U(t,x) has property (Q) in 4.
(xvii) If A is a closed subset of the tx-space E; X E,, if U(t,x), (t,x)e A,
is a variable subset of E,, satisfying property (U) in 4, if M denotes the set of all
(t,x,u) with (t,x)e A, ue U(t,x), if F=Uof)isa continuous function from M
into the Z-space E,.;, £ =(z%2), if Q(t,x) <E,, Q(t,x) < E,,, are the sets

0(t,x) = f(t,x,U(t,x)) = [z€E,|z =f(t,x,u), ueU(t,x)],
5(t,x) =[£=(z%2)€E,+, [z° = folt,x,u),z =f(t,x,u),ue U(t,x)],

and (a) for every (t,x)€ A, Q(t,x) is a convex subset of E,; (b) Q(t,x) has prop-
erty (Q) in A; (c) for every (t,x)e 4, z = f(t,x,u) is a 1-1 map from U(t,x)
onto Q(t,x) with a continuous inverse u = f “(t,x,z), ze Q(t,x); (d) the real
valued function Fot,x,2) = fo(t, x,f~(t,x,2)), (,x)e 4, ze Q(t,x), is continu-
ous in the set M’ of all (¢,x,z) with (t,x)e 4, z€e QN(t, x), and F(t,x, z) is convex
in z and also quasi-normally convex, then the set Q(t,x) is convex and has prop-

erty (Q) in A4.
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Proof. Indeed, under the specific hypotheses above, the set é(t,x) can be
represented as

é(t,x) = [£=(2%2)€E,4,|2° 2 Fo(t,x,2), z€Q(t,%)],

and thus Q is generated from Q(t,x) exactly as U is generated from U(1,x).
By statement (xvi) above we conclude that Q(t,x) has property (Q) in 4.

REMARK. The condition that f is a homeomorphism between U and Q is
certainly verified in all free problems, where m =n, f=u, that is, f;=u;,
i=1,2,---,n (see §11 below). In this situation then we have F(t, x, u) = fo(t, x, 1),
and the convexity of f, in u implies the convexity of F, in u. We shall need this
remark, and the more general statement (xvi) in §11.

5. Closure theorems. We shall use here the notations of §§2 and 3. In particular,
a trajectory x(t) is defined as in §3.

CLOSURE THEOREM 1. Let A be a closed subset of E; X E,, let U(t,x) be a closed
subset of E,, for every (t,x)€ A, let f(t,x,u)=(f,---,f,) be a continuous vector
function on M into E,, and let Q(t,x) = f(t,x, U(t,x)) be a closed convex subset of
E, for every (t,x) € A. Assume that U(t,x) has property (U) in A, and that Q(t,x)
has property (Q) in A. Let x,(1), t,;; S t < ty, k= 1,2, -+, be a sequence of trajec-
tories, which is convergent in the metric p toward an absolutely continuous
function x(t), t;, <t < t,. Then x(t) is a trajectory.

ReMARK. If we assume that U(t,x) is compact for every (t,x)€ A, and that
U(t,x) is an upper semicontinuous function of (¢,x) in 4, then by statement (xiii),
the set Q(t,x) has the same property, U(t,x) has property (U), Q(t, x) has prop-
erty (@), and Closure Theorem I reduces to one of A. F. Filippov [2] (not ex-
plicitly stated in [2] but contained in the proof of his existence theorem for the
Pontryagin problem with U(t,x) always compact).

Proof of Closure Theorem 1. The vector functions

oM =x'(H), t;St=t,,
&(t) = xi(t) = ft, (D, ui (1)), tpSt=<ty, k=12,

are defined almost everywhere and are L-integrable. We have to prove that
(t,x()) e A for every t, <t < t,, and that there is a measurable control function
u(t), t; =t=<t,, such that

@ o) =x'(1) =f(t,x(1),u(®),  w(®)eUQx(),

for almost all te[t,,t,].

First, p(x;,x) >0as k— co; hence, t,;, — 1, t, > t,. Ifte(ty,t,),0rt, <t <t,,
then t,, <t <ty for all k sufficiently large and (¢,x,(t)) € A. Since x,(¢t) — x(t)
as k— o and A is closed, we conclude that (t,x(f))e 4 for every t, <t <t,.

(1)
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Since x(#) is continuous, and hence continuous at ¢, and t,, we conclude that
(t,x(1))e A for every t; <t=<t,.

For almost all te[t,,t,] the derivative x'(f) exists and is finite. Let ¢, be such
a point with #;, <t, <t,. Then there isa ¢ >0 with t; <ty —0o<ty+o0<t,,
and, for some kg and all k = ko, also t;, <ty — 6 <ty + 0 < ty. Let xo = x(t,).

We have x,(f) = x(¢f) uniformly in [t, — o, t, + o] and all functions x(z), x,(?)
are continuous in the same interval. Thus, they are equicontinuous in
[to — 0,20 + 0]. Given ¢ > 0, there is a 6 >0 such that t,t'€[t, — 0,1, + 0],
|t— t’| <6, k= ky, implies

|x() - x| 2 €2, %) = %0@)| S o2,

We can assume 0<d <o, 6 Z¢e. For any h, 0 <h <6, let us consider the
averages

R [x(to + B) — x(2o)],

h
m, = h_IJ‘ ¢(to + S)ds
V]
3
h™[x(to + h) — xx(t,)].

My = h™! f: di(to + 5)ds
Given 5 > 0 arbitrary, we can fix h, 0 < h £ < g, so small that
@ | my— d(t)| <.
Having so fixed h, let us take k, = k, so large that
® Imhk - mhl =n, |xk(t0) - x(to)| Sef2

for all k = k,. This is possible since x,(t) — x(f) as k— co both at t =t, and
t=1ty+ h. Finally, for 0<s<h,

|xk(t0 +5)— x(to)l = ka(to +s)— xk(to)l + ka(to) - x(to)’
S e2+¢2=c¢,
[(to+5)~to| ShSO<e,
f(to + s, x,(to + 8), u(to + s)) € Q(to + s, X (to + 5)).
Hence, by the definition of Q(to,x¢,2¢), also
Oi(to + 5) = f(to + s, x:(to + 5), w(to + 5)) € O(ty, X0,26).
The second integral relation (3) shows that we have also

my,ecl co Q(ty, Xo,2¢),
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since the latter is a closed convex set. Finally, by relations (4) and (5), we deduce

|¢(to)—mhk| = |¢(t0)_mh| + Imh_mhkl =2,

and hence

#(to) € [clco Q(to, X0, 26)] 2y -

Here n > 0 is an arbitrary number, and the set in brackets is closed. Hence,

¢(t0) € CI Cco Q(tO, X0 28) >
and this relation holds for every ¢ > 0. By property (Q) we have

¢(to)‘5 n clco Q(thxmzs) = Q(tO’xO)a
where xo = x(to), and Q(ty,xo) = f(to, Xg, U(tg, Xo)). This relation implies that
there are points @ = #(ty) € U(ty,xo) such that

(6) B(to) = f(to, x(20) , #(to)).

This holds for almost all t,€[t,,t,], that is, for all ¢ of a measurable set I
< [ty,t,] withmeas I =t, — t,. If we take I, =[t;,¢,] — I, then meas I, =0.
Hence, there is at least one function #(f), defined almost everywhere in [#,,1,],
for which relation (6) holds a.e. in [#,,,]. We have to prove that there is at
least one such function which is measurable. For every tel, let P(t) denote
the set

P(1) = [u|ue U(t,x()), §(1) = £(t,x(1),u)] = U@t, x(1)) < E,,.

We have proved that P(t) is not empty.

Forevery integer 4 =1,2,--, there is a closed subset C, of I, C; = I = [t,,1,],
with measC; > max[0,¢, — ¢, — 1/A], such that ¢(¢) is continuous on A. Let
W, be the set

W, = [(t,u)lteC,l, ueP(t)] cE, X E,,.

Let us prove that the set W, is closed. Indeed, if () is a point of accumula-
tion of W,, then there is a sequence (f,uy), s=1,2,---, with (t,u)eW,,
t,—i, ug—> . Then t,eC, and ieC, since C, is closed. Also x(t,) — x(f),
o(t)— (), and since (t,x(t))ed, @) =f(t,x(t),u), (t,x(t),u)e M,
we have also (,x())e A, (t,x(7),a)e M, because A and M are closed, and
¢(f) = f(f,x(7), @) because f is continuous. Thus, @€ P(f), and (7,x) e W,.

For every integer I let W,;,, P,(t), be the sets

Wy = [(t,w)|(t,u)eW,,|u| <1] < W, <E, X E,,
P(0) = [u|ueP(),|u| 1] = P(t) = Ut x(1)) < E,,

Cu = [t|(t,u)e Wy for some u] = C, =1 <[t,,1,].
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Obviously, W,, is compact, and so is C,, as its projection on the t-axis. Also,
U,CA,=C,1, and W, is the set of all (t,u) with teC,;, ueP(t). Thus, for
te C,;, Py(t) is a compact subset of U(t,x()).

For te C,;, the set P/(t) is the nonempty compact subset of all

u= (“15 '"’um) € U(t’ x(t))

with f(t,x(t),u) = ¢(¢), and |u| < 1. As in Filippov’s argument let P; be the
subset of 2,(t) with u* minimum, let P, be the subset of P, with u*> minimum, ---,
let P, be the subset of P,_; with u™ minimum. Then P, is a single point
u = u(t) e U(t,x(t)) with u(t) = ', u™), teCy, |u(t)| =<1, and f(t,x(2),u(?)
= ¢(1). Let us prove that u(t), te C,,, is measurable. We shall prove this by in-
duction on the coordinates. Let us assume that u'(f), ---,u*~!(f) have been proved
to be measurable on C,; and let us prove that u°(¢) is measurable. For s = 1 nothing
is assumed, and the argument below proves that u'(¢) is measurable. For every
integer j there are closed subsets C,; of C; with C;; = Cy, Cyj = Cyyjrns
meas C;;;0 >max [0, meas C;;— 1/j], such that u'(),---,u*~'(t) are continuous
on C;;;. The function ¢(?) is already continuous on C; and hence ¢(¢) is continuous
on every set C;; and Cy;;. Let us prove that u’(t) is measurable on C;,;. We have
only to prove that, for every real a, the set of all t e C;;; with u°(t) < a is closed.
Suppose that this is not the case. Then there is a sequence of points ¢, € C;;; with
w(t) £a, t,>ieCyj, u'(f)>a. Then ¢(t)— ¢(@), w'(t)—>u*(F) as k- oo,
ao=1,---,5s — 1. Since |u”(tk)| <lIforall kand g =s,s+1,---,m, we can select a
subsequence, say still [t,] such that u’(t)— @ as k—> oo, B=s,s+1,---,m,
for some real numbers @#. Then t, -, x(t)— x(7), u(t)— @, where

= ('@, u’ @), @, a7

Then, given any number # > 0, we have
u(t) € U(t, x(t,)) < clU(F, x(F),n)
for all k sufficiently large, and, as k — oo, also
i eclU(, x(f),n).

By property (U) we have

ie ﬂ,,cl U(i, x(7),n) = U({f, x(£)).

On the other hand ¢(t,) = f(, x(t), u(ty), u’(t,) < a, yield as k— oo,

@) ¢ =fEx(@),7), #°'Za,
while 7e C;; implies

® (@0 =fEx(D,u@),  w(@)>a.
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Relations (7) and (8) are contradictory because of the property of minimum
with which u*(f) has been chosen. Thus u’(f) is measurable on C,;; for every j,
and then u’(¢) is also measurable on C,;. By induction argument, all components
ul(f), -, u™(f) of u(f) are measurable on C,;,, hence u(t) is measurable on C,,.
Since U,C = Ci,meas C;>measI—1/4, we conclude that there exists a function
u(t) which is measurable on every set C, and hence on I, with meas I =1t, — ¢,.
Thus, u(t) is defined a.e. on [t,,t,], u(t) € U(t, x(1)), and f (¢, x(t), u(t)) = ¢(t) a.e. on
[#;,t,]. Closure Theorem I is thereby proved.

Let us denote by y = (x!,---,x°) the s-vector made up of certain components,
say x!,---,x% 0 <s < n, of x = (x!,---,x"), and by z the complementary (n — s)-
vectors z = (x**%,--,x") of x, so that x =(y,z). Let us assume that f(t,y,u)
depends only on the coordinates x?,---,x*of x. If x(f), t; £t <t,, is any vector
function, we shall denote by x(f) = [y(t), z(t)] the corresponding decomposition
of x(t) in its coordinates y(f) = (x!,---,x) and z(¢) = (x**7, -, x").

We shall denote by A, a closed subset of points (t,x?, -, x°), that is, a closed
subset of the ty-space E; X E,, and let A = A, X E,_,. Thus, A is a closed subset
of the tx-space E, X E,.

CLoSURE THEOREM II. Let A, be a closed subset of the ty-space E, X E,, and
then A= Ay X E,_, is a closed subset of the tx-space E; X E,. Let U(t,y) denote
a closed subset of E,, for every (t,y) € Ay, let M, be the set of all (t,y,u)€E, ;4
with (t,y) € Ay, uc U(t,y), and let f(t,y,u) = (f,---.f,) be a continuous; vector
function from M, into E,. Let Q(t,y) = f(t,y, U(t, y)) be a closed convex subset
of E, for every (t,y)€ Ay. Assume that U(t,y) has property (U) in Ay, and that
Q(t, y) has property (Q) in Agy. Let x,(1), t;, <t < ty, k=1,2,-.., be a sequence
of trajectories, x,(t)= (y, (1), z,(1)), for which we assume that the s-vector y(f)
converges in the p-metric toward an AC vector function y(t), t;, <t =<t,, and
that the (n — s)-vector z,(t) converges pointwise for almost all t; <t < t,, toward
avector z(t) which admits of a decomposition z(t) = Z(t) + S(tf) where Z(t) is an
AC vector function in [t,t,], and S'(f) =0 a.e. in [ty,1,] (that is, S(1) is a sin-
gular function). Then, the AC vector X(t) = [y(1), Z(1)],t; Lt =<t,,is a trajec-
tory.

REMARK. For s = n, this theorem reduces to Closure Theorem 1.
Proof of Closure Theorem II. The vector functions

dO=XO=0'",Z®), t=t<t,

®
&) = () = (D, 2)) =fL, D, (1), tu Sty k=12,

are defined almost everywhere and are L-integrable. We have to prove that
[t,y(),Z(1)]e A for every t; <t<t,, and that there is a measurable control
function u(?), t; <t =<t,, such that
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¢ = X’(t) = ('), Z,(t)) =f(t’ y(t)’ u(t)),

(10
u() e U(t, y(0)),

for almost all te[t,,t,].

First, p(yx,y) = 0 as k— 0; hence ¢, > ty, tyy > t,. If te(ty,t,), or t; <t <ty
then t,, <t <ty for all k sufficiently large, and (¢, y,(t)) € A,. Since y,(t) = y(t)
as k— oo and A, is closed, we conclude that (¢, y(f)) € A, for every t; <t <t,,
and finally (¢, y(t),Z(t))e Ag X E,_, or (t,X())€e A, t, St t,.

For almost all te[t,,t,] the derivative X'(t) = [y'(¥), Z’(t)] exists and is finite,
S’'(¢) exists and S'(f) = 0, and z(t) — z(t). Let ¢, be such a point with t; <ty <t?,.
Then there is a ¢ > 0 with t; <t,— o <ty + 0 <t,, and, for some k, and all
k= kg, also t,, <ty— 06 <ty+ o <ty Let xo=X(ty) = (Vo,Zo), OF Yo = ¥(to)s
Zo = Z(t,). Let zy = z(ty), So = S(t,). We have S'(t,) = 0, hence z’(t,) exists and
z'(ty) = Z'(ty). Also, we have z,(ty) — z(t,).

We have y,(1) - y(t) uniformly in [ty — 6,5 + o], and all functions y(t), y,(t)
are continuous in the same interval. Thus, they are equicontinuous in
[to— 0,to + 6]. Given & > 0, there is a 6 >0 such that t,t’ e[ty — 0,1, + 7],
|t—1| <6, k= ko, implies

|y@® =) S22, [ n® = pt)| S ef2.

We can assume 0 < d < ,0 < &. Forany h,0 < h < 6, let us consider the averages

Il

ht J:¢(ro +s)ds = h™'[X(to + ) — X(t,)],

m,

(11)
h

S f Bulto + 9)ds = K™ [xlto + ) = xy(to)],
(4]

where X = (y’ Z)9xk = (yka Zk)'
Given 5 > 0 arbitrary, we can fix h, 0 <h £ <o, so small that

[m,— o(t)| <,
| SCto + B) — S(to)| < nh/4.

This is possible since h™' [§d(to + s)ds— P(t,) and [S(to + h) — N

—0as h—0+.Also, we can choose k in such a way that z,(t, + h) > z(tc + h)

as k— + oo. This is possible since z,(f) — z(t) for almost all t, <t <1t,.
Having so fixed h, let us take k; = k, so large that

IJ’k(to) — ¥(to) | ) |.Vk(to + h) — y(to + h)l < min[nh/4,¢/2],
| z(to) — z(to) |, | 2u(to + B) — 2(to + k)| <nh/8.

This is possible since y,(f) = y(t), zi(f)— z(t) both at t=1¢, and t=1,+ h.
Then we have
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| A Dlto + B) = yilto)] = B [y(to + ) = y(10)]|
< |h7 Dndto + B) = ¥(to + M| + | A7 [nilt) = ¥(10) ]|
< BT nh/4) + Bk 4) = n/2.
Analogously, since z=Z + S, we have
[ B~ [z4lto + 1) — zilte)] — ™ [Z(to + B) — Z(10)]|
= |h™[zto + h) — z(to)] — ™ [2(to + k) — z(to)] + h™'[S(to + h) — S (o)) ]|
< | B zto + B) = z(to + W)]| + | k7 [2ite) — 2(20)]| + | B [S(to + 1) — S(1o)]]
< h7'(nh/8) + h(nh[8) + BT (nh/4) = n/2.
Finally, we have
| R~ [xi(to + h) — xi(to)] — B [X(to + B) — X(10)] |
|h ™ [to + B) = yi(to)] = h™ " [¥(to + h) = ¥(10)] |
+ | B [zilto + h) — z4(te)] — B~ [Z(to + ) — Z(t0)] |

‘mhk_mhl

IIA

S n2+n22 = 1.

We conclude that, for the chosen value of h, 0 <h < <o, and every k = k,,
we have

(12) [y — ¢(to)| S 1, [y — my| S0, | pilto) = ¥(t0)| S ¢/2.
For 0 <s < h we have now
| milto + 8) — y(to)| £ | milto + 8) — yilto)| + | yulto) — ¥(to) | S &2 + 62 =2,
[(to+5)—to| ShS6=e,
F(to + 8, yi(to + 8), ui(to + 5)) € Q2o + 5, ilto + 9)).
Hence, by definition of Q(to,yo,2¢), also
ilto +5) = f(to + 5, yilto + 5), i(to + ) € Q(to, Yo, 26).
The second integral relation (11) shows that we have also
My, € clco Q(ty, Yo, 2¢)
since the latter is a closed convex set. Finally, by relations (12), we deduce
Id’(to)“ mhkl = |¢(to)_ mhl + |mh - mhkl =2,

and hence
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@(to) € [clco Q(to, Yo, 28) ]2, -

Here > 0 is an arbitrary number, and the set in brackets is closed. Hence

o(to) ecl co Q(ty,¥o,2¢),
and this relation holds for every ¢ > 0. By property (Q) we have
#(to) e n clco Q(tos o, 28) = Q(t05 Vo)

where yo = y(t,), and Q(to, yo) = f(te, Yo, U(to, ¥o)). This relation implies that
there are points & = #(ty) € U(ty,y,) such that

d(t0) = f(to, ¥(to), u(to))-

This holds for almost all t,€[#,,t,]. Hence, there is at least one function a(t),
defined a.e. in [#,,t,], for which relation (10) holds a.e. in [¢,,1,]. We have to
prove that there is at least one such function which is measurable. The proof
is exactly as the one for Closure Theorem I, where we write y, y, instead of x,x;,
and will not be repeated here. Closure Theorem II is thereby proved.

6. Notations for Lagrange problems with unilateral constraints. Let 4 be a closed
set of the (t,x)-space E, x E,, and, for every (t,x)e A, let U(t,x) be a given
subset of E,,. Let fi(t,x,u), i=0,1,---,n, be real-valued continuous functions in
the set M c E, X E, X E,, of all (t,x,u) with ue U(t,x), (t,x)e A. Let f and f
be the n-dim and (n + 1)-dim vector functions

f=(f1""afn)a f: (fosfl""’fn)'

As usual we say that u(f) = (u', -, u™),x() = (x',--,x"), t; <t <t,, is an ad-
missible pair provided (a) u(t) is measurable in [¢,,¢,]; (b) x(¢) is AC in [#,¢,],
(©) [t,x()]eA for every te[t,t,]; (d) u(®)eU(t,x(1) ae. in [t,t,];
(@) fi(t, x(?), u(t))is L-integrable in [t,,1,],i = 0,1, ---,n, and dx’ /dt =£(t, x(t), u(?),
i=1,--,n, ae. in [#;,1,]. Thus, by introducing the auxiliary variable x°, the
differential equation dx°/dt = fy(t, x(t),u(t)), the boundary condition x°(¢,) =0,
the vector %= (x%x",---,x"), and the set (4=A4 xE, cE,,,), the pair
[u(?), x(1)] is admissible if and only if the pair [u(t),X(f)] is admissible according
to the definitions of no. 2 for the set 4 of the tX-space E; X E,,, the sets
U(t,x)  E,,, and the vector function f(t,x,u).

If [u(?), x(t)] is admissible, then u(f) is said to be an admissible control func-
tion, x(f) a trajectory, and

M (1) = I[xu] = ot X u()dt

the cost functional.
A class Q of admissible pairs x(¢), u(t) is said to be complete if for every sequence
X (), (1), t1 St Sty k=1,2, -+, of admissible pairs all in Q, with the sequence
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[x«(t)] converging in the metric p toward a vector function x(f) which is known
to be a trajectory generated by some admissible control function u(t), then [ x(¢),u(?)]
belongs to Q.

Complete classes Q are often defined in terms of boundary conditions. For
instance, if B is a given closed set of points (f;,x,,t,,x,) of the (2n + 2)-dim
Euclidean space E,,,,, we may define Q as the class of all admissible pairs x(t),
u(t) satisfying

2 (81, x(t,), 5, x(t5)) € B.

Then Q is a complete class in the sense mentioned above, since B is, by hypothesis,
a closed set.

We shall denote by B, the projection of B on the (t,x,)-space E,,, that is,
B, is the set of all points (t,,x,)€E,,, for (¢,,x,t,,%,) € B. Analogously, we
denote by B, the projection of B on the (t,,x,)-space E,, . Obviously, B < B,
X B,, and B, X B, may be larger than B.

It is often requested that each trajectory x(f) of a class Q as above possesses at
least one point (t*, x(t*)) on a given compact subset P of A. Such a condition is
certainly satisfied if B is compact, or at least if Bis closed and B,, or B,, is compact.

For the analysis of problems of Lagrange with unilateral constraints certain
variable sets have to be taken into consideration, namely, the set U(t,x) above
and the sets

0t,x) = [z|z =f(t,x,u), ue U(t,x)] = f[t,x,U(t,x)] < E,,
O@t,x) = [2|Z=f(t,x,u), ue U(t,x)] = f[t,x, U(t,x)]

= [£=(2%2)|2° =fo(t,x,u), z = f(t,x,u), ue U(t, x)] < E,+ 1,
é(t, x) = [£=(2°%2)|2° 2 fo(t,x,u), z =f(t,x,u), u€ U(t,x)] CEp4 .

The sets Q and J are well known and have been considered by a number of authors
(for instance, A. F. Filippov [2]). The set Q(t, x) is being considered here and in
[1c] for the first time. By considering this set, instead of Q or 0, we prove
in §§ 7, 9 Theorems I rand II which include a number of existence theorems
for both problems of optimal control and the calculus of variations.

7. An existence theorem for Lagrange problems with unilateral constraints.

EXISTENCE THEOREM 1. Let A be a compact subset of the tx-space E; X E,,
and for every (t,x) € A let U(t, x) be a closed subset of the u-space E,,. Let f(t,x,u)
=fosf15 " f) = (fo.f) be a continuous vector function on the set M of all (t,x,u)
with (t,x)e A, ue U(t,x). Assume that, for every (t,x)€ A the set

0(t,%) = [Z = (2°,2)| 2° 2 fot %, ), z = f(t, %, ), u € U(t,)] < Eps,y

is convex. Assume that U(t,x) satisfies property (U) in A, and 5(t, X) satisfies
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property (Q) in A. Assume that there is a continuous scalar function ®(), 0 <¢
< + oo, with ®()/{—> + © as { - + oo, such that fy(t,x,u) = <I>(lu|) for all
(t,x,u) € M, and that there are constants C,D = O such that If(t, X, u)] £C+D | u |
for all (t,x,u)e M. Then the cost functional I[x,u] = [/fo(t,x,u)dt has an
absolute minimum in any nonempty complete class Q of admissible pairs x(t), u(t).

If A is not compact, but closed and contained inaslab[t, <t < T, x€E,], t,, T
finite, then Theorem I still holds if, in addition, we know that (a)

XUy + o+ X, S F[x|? +1]

for all (¢, x,u) € M and some constant F = 0, and (b) every trajectory in Q contains
at least one point (t*,x(t*)) on a given compact subset P of A (t* may depend
on x(1)). If A is not compact, nor contained in a slab as above, but 4 is closed,
then Theorem 1 still holds if hypotheses (a), (b) are satisfied, and (c) fo(t, x,u)
= p> 0 for all (¢t,x,u)e M with |t| = R, for convenient constants u >0, R = 0.
Finally condition (a) can be replaced in either case by the hypotheses: (a’) There
are constants G > 0, H = 0 such that f(¢t,x,u) = G| f@,x, u)| for all (t,x,u)e M
with |x| = H. Furthermore, when A is not compact but closed, both conditions
fo= <I)(|u|), |f| =C+ D| u| can be replaced by the following condition: (y) for
every compact subset A, of A there is a function ®, as above and constants
Co, Dy =0 such that f, = q)o([ul), |f| =Co+ D0|u| for all (¢t,x,u)e M with
(t,x)e Ay (where @y, Cy, D, may depend on A).

Proof of Existence Theorem I. We have ®() = — M, for some number
My =0, hence ®()+ Mo=0 for all {=0, and fy(t,x,u) + My =0 for all
(t,x,u)e M. LetD be the diameter of A. Then for every pair x(t), u(t), t; <t < t,,
of Q we have

12 t2

@ I[x,u] = f fodt = f O(|u|)dt 2 — DMy > — .

ty ty

Let i = InfI[x,u], where Inf is taken for all pairs (x, u)e Q. Then i is finite.

Let x,(8), w (), t,, St=t,, k=1,2, -, be a sequence of admissible pairs all
in Q, such that I[x;,u;,] —>i as k— co. We may assume

2k
iél[xk’uk] = J fO(t’xk(t)’uk(t))dtéi+k—1§i+13 k=]32""
t1k

Since A4 is compact, the sequence [x,(f)] is equibounded.

Let us prove that the AC vector functions x,(t), t,, <t <ty, k=1,2,--,
are equiabsolutely continuous. Let ¢ >0 be any given number, and let
o=2""¢(DM, + |1| +1)7'. Let N>0 be a number such that ®(z)/z > 1/o
for z = N. Let E be any measurable subset of [#,,,t,,] with meas E < n = ¢/2N.
Let E, be the subset of all te E where u,(f) is finite and |u ()| < N, and let
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E,=E—E,. Then |uy(f)| S N in E,, and ®(|u, |)/|ux| = 1/0, or u, < o®(|u,|),

a.c. 1n Ez. HenCC
Eq E.

f |u()| dt
E
NmeasE, + o f (| uy (1) |)dt

Il

IIA

IIA

NmeasE + ¢ f [(D(| uk(t)l) + M, ]dt
E>
)

IIA

Nn+ao f, “[o(|ut)]) + Mldt

IIA

Nn+o j " Lot 04(0) s 1(0) + Mo ]

IIA

Ny + o(DM, + |i| + 1)
< e24+¢2=c¢.

This proves that the vector functions u(t), ¢, St <t,, k=1,2,---, are equi-
absolutely integrable. From here we deduce

f (| xin)| dt
E

1

f |Gt 3 () | it < f [A + B|uy0) |1t
E E

IIA

AmeasE + B f |u(t)| at,
E

and this proves the equiabsolute continuity of the vector functions x(?),
tlk é t é t2k3 k = 1,2,"' .
Now let us consider the sequence of AC scalar functions xp(f) defined by

t
3 xo(f) = f So(t, x,(7), u(v))dt, L Sttty
tik
with
xp(t) =0, xX(t) = I[xu]—>i as k- + oo,

iSxqt)Si+ k' Zi+1.

If ul)() = folt,%(D), (), tu <t<ty, then we define the functions
ur(f), ui(t) as follows:
u()=—M,, up() =u®) +M,, t,St<ty.

Then u; () S0, uf (1) =0 ae. in [t4,15], and we define
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t

t
ye () = f u (Ndt,  yi@) = f ut(Bdt, tSt=<ty,k=12,...
tik ti1k

Since — My =u, (t) £0, we have — M(t — t,,) = y; (£) £0, and the func-
tions y, () are monotone nonincreasing and uniformly Lipschitzian with constant
M,. On the other hand, the functions y; (f) are nonnegative, monotone nonde-
creasing, and uniformly bounded since

0=y (1) = O (t20) + ¥ (020)) — Vi (t20) = ¢ (t21) — Y (t0)
S i+ 1+ M(ty — 1) S DM+ |i| + 1.

By Ascoli’s theorem we first extract a sequence for which x, (), y; (1), t;, <t
< t,;, converges in the metric p toward a continuous vector function x(z), Y (¢),
t; £t <t,. Here x(t) is AC because of the equiabsolute continuity of the vector
functions x,(t), and Y (f).= — My(t —t,), Y (t;) =0. Then we apply Helly’s
theorem to the sequence y,"(t) and we perform a successive extraction so that the
corresponding sequence of the y, () converges for every t; <t <t, toward a
function Yy (f),t; <t<t,, which is nonnegative, monotone nondecreasing,
but not necessarily continuous. We define Y, (f) at t, by taking Y4 (¢,) = 0,and at ¢,
by continuity at t,, because of its monotoneity. Thus 0 < Yo (1) £ DMy +i + 1,¢,
St=t,.

Finally, Yg(f) admits of a unique decomposition Y¢(f)=Y*(?)+ Z(1),
t; St <t,, with Y¥(t,) =0, where both Y*(f),Z(f) are nonnegative monotone,
nondecreasing, where Y *(¢) is AC, and Z’(t) =0 a.e. in [¢,,t,]. Finally, if Y(z)
=Y (t)+ Y*(t), we see that x(t), t; <t <t,, converges for all t, <t<t,
toward Y(f) + Z(t), where Y(¢) is a (scalar) AC function,— DM, < Y(t) < DM,
+ |1| +1, Y(t;) =0. Let us prove that Y(¢,) < i. For the subsequence [k] we
have extracted last, we have ty —t,, X2(tz) =i, X2(ta) = ¥i (tz) + yi& (t20).
If 7, is any point, t; < 7, <t,, {, as close as we want to t,, then i, < t,, for all k
sufficiently large (of the extracted sequence), since t,; — t,. We can assume k so
large that 7, < t,, |t'2 - t2k| < 2lt'2 — 1, | Then

ly; (52) — v (t2k)l = Molfz - t2k| = 21"-’0"-2 - tzl-
Since y, (¢)*is nondecreasing, we have y; (f,) < y; (t5,), and finally
Ve @)+ yi () £ yi (B2) + v (120
S Y (t0) + i (02 + | i (B) — yi (23|

Xe() 2 + 2M, l B—t |,

I\

where x°(ty)—i as k— + oo, and x2(ty) <i+ k~!. Hence

Vi () 4y (B2) < i+ 2Mo| 5, — t,| + k71
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As k — + « (along the extracted sequence), we have

Y () +Yo(B) i+ 2Mo| =t I,
or
Y™ (i) + Y (i) + Z(7,) S i + 2My| 5, — 15,

where the third term in the first member is = 0. Thus
YE) =Y () + Y (()Si+ 2Mo| L—1t, |

As i, - t, — 0, we obtain Y(t,) < i, since Y is continuous at f,.

We will apply below Closure Theorem II to an auxiliary problem we shall
now define. Let & = (u° u) = (u° ut,---,u™), let U(t,x) be the set of all #€E,,,,
with u = (u', -, u™) e U(t,x), u® 2 fo(t,x,u), let &= (x%x) = (x%x',---,x"), let
F=Ftx,u) =fo.f) = Forf1»++»f,) with fo = u®. Thus f depends only on t,x, &
(instead of ¢, %, &), and U depends only on ¢, x, (instead of ¢, X). Finally we consider
the differential system

dx[dt =f(t,x,u),
or
dx® /dt = uo(t), dx'/dt = ft,x,u), i=1,--,n,

with constraints
() e U(t, x(1)),
or

u®()) 2 fo(t, x(0),u(®),  u(@®) e U, x®),

a.e. in [t;,t,], besides x°(t,) =0, and [x,u]eQ. We have here the situation
discussed in Closure Theorem II where % replaces x, x replaces y, x° replaces
z, n+ 1 replaces n, n replaces s, hence (n + 1) — n =1 replaces n —s. For the
new auxiliary problem the cost functional is

t2 t2
J[% ] = ft Fodu = J: ul(t)dt = x°(t,).

Note that the set é(t,x) = fz(t, x, U(t,x)) of the new problem is the set of all
#=(2%2)€E,,, such that z° =u°, since fo =u°, z =f(t,x,u), u® = fo(t,x,u),
u € U(t, x). Thus, the sets &, Q for this auxiliary problem are the sets {,Q considered
at the beginning of this proof.

We consider now the sequence of trajectories %9(f) = [x2(f), x\(D], t <t
< t,,, for the problem J[#, ii] corresponding to the control function #(t) = [ug(f),
uk(t)] with “I(c) (t) =f O(t’ xk(t)a uk(t))’ uk(t) € U(t’ xk(t))’ and hence ﬁk(t) € U(ts xk(t))’
ti St < ty, k=1,2,---. The sequence [x,(f)] converges in the metric p toward
the AC vector function x(f), while x2(t) - x°(f) as k — + oo for all te(t,,t,), and
x°(f) = Y(t) + Z(t), where Y(t) is AC in [t,,t,] and Z'(t) =0 a.e. in [¢,,¢,].
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By Closure Theorem II we conclude that X(¢) = [Y(#),x(t)] is a trajectory
for the problem. In other words, there is a control function #(t), t; <t < t,,
i#(t) = (u°(), u(1), with

dy[dt = u’(t) 2 fo(t, x(0,u(®)),  u(®) e Ut x(1)),
@
dx [dt = f(t, x(1), (1)),

a.e. in [t,,t,], and

t2
o) P2 Y(t,)=J[%id] = f u®(t)dt.

t1
First of all [x(t),u(#)] is admissible for the original problem and hence belongs
to Q, since by hypothesis Q is complete. From this remark, and relations (4)
and (5) we deduce

12 12
i<I[x,u] = f Sfot, x(D),u(t))dt < f u’(Hdt £ i,
t1 t1
and hence all < signs can be replaced by = signs, u°(t) = fo(t, x(¢), u(f)) a.e. in
[t1,t2], and I[x,u] = i. This proves that i is attained in Q. Existence Theorem I
is proved in the case A is compact.

Let us assume now that A4 is not compact but closed, that A4 is contained in a
slab [to <t<T,— 0 <x'<+ o0, i =1,-,n, to, T finite], and that the addi-
tional hypotheses (a) and (b) hold. If Z(¢f) denotes the scalar function Z(f)
=|x(®)|*+1, then condition x'f; + -+ + x"f, £ C(|x|? + 1) implies 2’ < 2CZ,
and hence, by integration from * to ¢, also

1 < Z(t) S Z(t*)exp2C|t — t*|.

Since [t*,x(t*)] € P where P is a compact subset of A4, then there is a constant
N, such that |x| < N, for every xe P, hence 1 £ Z(t**) < N¢+ 1, and 1 £ Z(¥)
< (N2 4+ 1) exp 2C(T—t;). Thus, for to <t < T, Z(t) remains bounded, and
hence |x(t)| = D for some constant D. We can now restrict ourselves to the
consideration of the compact part 4, ofall points (f,x) of 4 with t, <t =< T,
|x| <D.

Thus, Theorem I is proved for A4 closed and contained in a slab as above and
under the additional hypotheses (a), (b).

Let us assume that A4 is not compact, nor contained in any slab as above but
closed, and that hypotheses (a), (b), (c) hold. First, let us take an arbitrary ele-
ment %(t), #(t) of Q and let j = I[X,#]. Then we consider an interval (a,b) of
the t-axis containing the entire projection P, of P on the t-axis, as well as the
interval [—R,R]. Now let I = p"‘[]j] + 1+ (b—a)M,], and let [a’,b’] denote
the interval [a — I, b+ I]. Then for any admissible pair (if any) x(¢), u(f),
t; St =<t,, of the class Q, whose interval [¢,,¢,] is not contained in [a’,b'],
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there is at least one point t*e [¢,,1,] with (t*,x*(t))e P, a < t* < b, and a point
fe[t,,t,] outside [a’,b"]. Hence [t,,t,] contains at least one subinterval, say E,
outside [a, b], of measure = I. Then I[x,u] = Ip— (b — a)M, = |]| +1zi+1.
Obviously, we may disregard all pairs x(¢), u(t), t; < t < t,, whose interval [¢,,¢,]
is not contained in [a’,b"]. In other words, we can limit ourselves to the closed
part A’ of all (t,x)e A with a’ =t < b’. We are now in the situation above, and
Theorem I is proved for any closed set 4 under the additional hypotheses (a),
(b), (c). Finally, we have to show that condition (a) can be replaced by condition
(a’). There are numbers C,D >0 such that fo(t,x,u)=C | f(t,x, u)] for all
(t,x,u) € M with le = D. 1t is enough to prove Theorem I under the hypotheses
that A4 is closed and contained in aslabt, <t < T,t,, T as above, and hypotheses
(a’) and (b). First let us take D so large that the projection P* of P on the x-space
is completely in the interior of the solid sphere |x| < D, and also so large that
D = T—t,. Let u(t),%(¢) be any arbitrary admissible pair contained in Q, and
let j denote the corresponding value of the cost functional. Let
L=C7'[DMy+|j|+1], and let us take Do =D + L. If any admissible pair
u(?), x(1), t, St t,, of Q possesses a point (to,X(to)) with | x(to)| = Dy, then
x(t) possesses also a point (t*,x(t*)) € P, with |x(t*)| < D. Thus, there is at least
a subarc [ix=x(f), t' St<1t" of x(f) along which |x(f)| 2D and |x(1)]
passes from the value D to the value Dy = D + L. Such an arc I' has a length
= L. If E=[t,,t,]—[t,t"], then

t2 t” t”
I[x,u] = j, fodt = (L+‘[ )fodtg—DM0+L C|f|dt
1
o
=—DM0+Cf |dx/dt|dt = —DMo+ CL=|j|+12i+1.
v

As before we can restrict ourselves to the compact part 4, of all points (¢, x) of
A with o <t < T, | x| £ D. The case where 4 is closed, 4 is not contained in
any slab as above, but conditions (a’), (b), (c) hold, can be treated as before.
The case where A is not compact and the condition () holds, also can be
treated as before. Theorem I is thereby completely proved.

Remark 1. If the set

a@t,%) = f[t, x, U(t,x)] = [£ = (z° 2) | £ = f(t, x,u),u € U(, )]
= [2=(2°%2)|z° = folt,x,w), z=f(t,x,u), ue U(t,x)] € E,;
is convex, then certainly the set é(t, x) of Theorem I is convex also. On the
other hand, trivial examples show that Q(t,x) may be convex, when Q(t,x) is
not. This is actually the usual case in free problems of the calculus of variations

(see Remark 3 below). Thus, the requirement in Theorem I that Q~(t, Xx) be convex
for every (t,x) is a wide generalization of the analogous hypothesis concerning
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O(t,x) which is familiar in Pontryagin’s problems. For these problems,
Filippov’s existence theorem is a particular case of Theorem I.

THE THEOREM OF A. F. FiLippov [2]. As in Theorem 1, if A=E; X E,, if
Ft,x,u) = (forf) = (forf1» *+*»f) is continuous in M, if U(t,x) is compact for
every (t,x) in A, if U(t,x) is an upper semicontinuous function of (t,x) in A, if
a(t,x) = f(t,x, U(t,x)) is a convex subset of E,., for every (t,x) in A, if con-
ditions (a) and (c) are satisfied, and the class Q of all admissible pairs for which
x(t) = xy, x(t)=X,, t;,X,X, fixed, t, undetermined, is not empty, then I[x,u]
has absolute minimum in Q.

This statement is a corollary of Theorem I. Indeed, under hypothesis (c) we
can restrict A to the closed part A, of all (t,x)e A witha’ <t < b’, and [x| S N
for some large N. If M, is the part of all (¢, x,u) of M with (¢,x) €A,, then the
hypothesis that U(#,x) is compact and an upper semicontinuous function of
(t,x) in A, certainly implies that U(t,x) satisfies condition (U) in A, and that
M, is compact (§4, (vi) and (vii)). Also, since O(t,x) is convex for every (t,x)
by hypothesis, we deduce that Q(t,x) is an uppersemicontinuous function of (¢, x)
and satisfies property (Q) (84, (xii) and (xiii)). Also, Q(t,x) is closed, convex,
and satisfies condition (Q) by force of Lemma (xvi) of §4. Finally, since M, is
compact, the growth condition f, = ® and the remaining condition | f [ =C+ Dl u [
are trivially satisfied. Thus, all conditions of Theorem I are satisfied, and Filippov’s
theorem is proved to be a particular case of Theorem I.

ReEMARK 2. The analogous existence theorems of E. Roxin [8] and of L.
Markus and E. B. Lee [14] are also essentially contained in Theorem I. For a detail
on Roxin’s statement see Remark 4 below.

REMARK 3. For free problems of the calculus of variations (§11 below) we
have m=n, U=E,, f=u, hence

Q(tax) = f[thx, U(t,X)] = [i = (Zoau)lzo = fo(t,x,u), u EEn] cE; iy,

Q(t,X) = [i = (to, u)lzo éfo(ts X, u)s u EEn] < En+ 1

The set J is convex if and only if f, is linear in u, while é is convex if and only if f,
is convex in u. Thus condition Q convex on Theorem I reduces to the requirement
fo convex in u which is familiar for free problems in the calculus of variations.
We shall prove in §11 that the Nagumo-Tonelli existence theorem for free problem
is also a particular case of Theorem I.

ReMARK 4. The condition f, = CI)(Iu|) with ®(z)/z > + oo of the theorems
above is said to be a growth condition on f. As it is well known such a condition
(for f, convex inu, A compact, and U = E,) is equivalent to the condition that,
for every (t,x)€ A, we have fy(t,x, u)/|u l — + o0 as Iul — + oo (L. Tonelli,
[9a]). On the other hand, it is known already for free problems, that if such a
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condition is not satisfied at the points (¢,x)e A of even only one hyperplane
t =17, then the absolute minimum need not exist (see [9b], and §10 below,
example 2). For free problems, other additional conditions have been devised
in such cases [9a].

Condition (a) x'f; +--- +xf, < C(|x|2 + 1) of Theorem Ican be replaced by
X'y + -+ xS (0 (| x| + 1), where ¢(r) 2 0 is a fixed function of ¢ which
is L-integrable in any finite interval. The remark was made by E. O. Roxin [8] in
connection with Pontryagin’s problems.

Condition (a) could also be replaced by the following general assumption
from differential equations theory: there exists a (Lyapunov-like) positive,
continuously differentiable function V(x,f) and a positive constant ¢ such that

|grad, V(x,1) - f(t,x,u) + 0V/ot| S ¢ V(x, 1)
for all (t,x,u)e M, and the set
{x| V(x,t) < a, (t,x) € A}

is compact for every o.

REMARK 5. For problems of optimal control where U(t, x) is always compact
we have given in [1bc] an existence theorem, say I*, similar to the Filippov’s
theorem above, where the condition ‘0 convex’’ is replaced by the following
requirement: Q(t,x) is a convex subset of E,, fo(t,x,u), u € U(t, x), is convex in
u, and “‘the curvature of f is always small with respect to the convexity of f;,”’
(see [1b], or [1c] for a precise statement). Whenever this requirement implies
the convexity of the set Q~, then the theorem given in [1bc] becomes a corollary
of Theorem I above. Also it should be pointed out that, whenever the relation
z = f(t,x,u) between Q(t,x) and U(t,x) can be inverted and u = f “t,x,z) is a
continuous function of z in Q(t,x), then the set Q~(t,x) can be represented by

0t,x) = [£ = (2%2)| 2° 2 F(t,x,2), € Q(t, )],
where

F(t,x,2) = fo(t, x.f~ l(t’ X, z)),

and thus the requirement of the convexity of the set 5, reduces to the requirement
of the convexity of the function F(¢,x,z) in z. Then the further requirement that
Q(t, x) satisfies property (Q) is certainly satisfied if, besides, F is quasi normally
convex as proved in [§4, (xvii)]. We discussed in [1c] a case where the requi-
rement of Theorem I* implies the convexity of F in u, and correspondingly I*
becomes a corollary of 1. The simpler requirement: Q(¢,x) a convex subset of E,
and fy(t, x,u) convex in u, does not suffice for existence, as we prove in the following
number.

8. Example of a problem with no absolute minimum. The condition “é(t, x)
convex for every (t,x)e A”’ of Theorem I cannot be replaced by the simpler
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condition “‘Q(t,x) convex for every (t,x)e A and fy(t,x,u) convex in u,”” not
even when A and all sets U(#,x) are compact (that is, for Pontryagin problems).
This is shown by the following example.

Let us consider the differential system:

x' =u(l —v)+[2-2""(u—1)*],
y' =[2-2""u -1 - 0) + uo,

with ¢, =0, initial point (0,0), fixed target (0,1), and fixed control space
U=[-12u=<1,0=5v=1] If

zy=fi=ul—-v)+[2- 27w — 1)*],
zy=f,=[2-2"1u—-1)2] (1 —v) + up,

we see that the segment [v=1, — 1 < u < 1] is mapped by f=(f;,f,) onto the
arc of parabola ABC=[z;=2-2"'(u—1)? z,=u, —1=<u=1], whose
points A =(0,—1), B=(3/2,0), C=(2,1) correspond to u=—1,0,1 re-
spectively. The segment [v=0,—1=<u <1] is mapped by f onto the arc
DEF =[z,=u,z,=2—2 "Yu—1)?,— 1 <u £ 1], whose points D = (—1,0),
E=(0,3/2), F=(1,2) correspond to u= —1,0,1 respectively. Each segment
[u=¢,0<v=1] is mapped by f onto the segment joining the points corre-
sponding to (c,1) and (¢,0) on the two parabolas. Thus, the image Q=/(U) of U
is the convex body Q = (ABCFED) of the z,z,-plane. Let us consider the cost
functional

12
I =f [x* + (y — )% +v?] dt.
ty

For k=1,2,---, let uys), v(t), 0=t <1, be defined by taking ut)= —1,
u(H)=0, or u(t)=+ 1, v(t)=0, according as t belongs to the inter-
vals k7' — 1) <t <k Ni—-1D+Qk) Lork™'(i—-D+Qk) <t<k™l,
i=1,2,---,k. Then the functions x,(f), y(t), 0=t =<1, satisfy the differential
equations dx; /dt = + 1, dy,[dt =2, or dx, [dt = — 1, dy,[dt =0, according as ¢
belongs to one or the other of the two sets of intervals above. Then x,(f) — x,() = 0,
y(8) = yo(t) = t uniformly in 0 < t < 1as k — oo. If Cy, C, denote these trajectories
we say that C, — C,.

The question as to whether C, is actually a trajectory, that is, whether there
are admissible control functions u(t), vo(f), 0 <t =<1, whose corresponding
trajectory is C, can be answered in the affirmative because of the convexity of Q.
Actually, the point (%o, Bo) € U, ag =2 — 5/2= —0.23607, B, =(11) '(4—5'?)
=0.16036, is mapped by f into (z; =0,z,=1), and thus zy(f) = ag,vy(t)
=B, 0=Zt<1, generate C,. Now we have x,(t)—0, y, ()¢, uniformly in
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[0,1] as k— oo, and v(t) =0, hence I[C;] >0 as k— . On the other hand
I[Co] = [3(0? + 0% + B3) dt=P3 > 0.

Let us prove that I has no absolute minimum in the class Q of all trajectories
satisfying the differential equations, boundary conditions, and constraints above.
Indeed, I[C,] — 0 shows that the infimum of I[C] in Q is zero, but this value
cannot be attained in Q by I. Indeed, I[C] =0 implies x =0, y=¢, v=0, and
the first two relations alone imply u = oy, v = By # 0 a.e. in [0,1], a contradic-
tion. Thus I cannot attain the value zero in Q.

In this example Q is a convex set, f, is convex in (u,v), and even satisfies trivially
the growth condition f, = ®, since here U is a bounded set. Now let us prove
that Q is not convex. It is enough to verify this for t =0, x =0, y = 0. Then
Q is simply the set of all z =(zo,2y,2,) With (z,,2,) € Q satisfying the relation
zo 2 fo =v*, when z,,z,,u,v are related by z, =f,, z, =f,,(u,v)e U. Now
the segment = [v =0, —1 < u < 1] is mapped by f onto the arcI" = (DEF) = Q ,
and we have f,>0in Q — T, fo=0in I', and hence é convex would imply
that T is a segment, and this is not the case. This proves that Q is not a con-
vex set.

9. Another existence theorem for Lagrange problems with unilateral constraints.

ExISTENCE THEOREM II. Let A be a compact subset of the tx-space E; X E,,
and, for every (t,x)e A, let U(t,x) be a closed subset of the u-space E,,. Let
F(t,x,u) = (fosf1s -5 fa) = (fo.f) be a continuous vector function on the set M
of all (t,x,u) with (t,x)e A, ue U(t,x). Assume that, for every (t,x)e A, the set

6(t’ x) = [2 = (ZO,Z)GE,H.I | z° 2 fo(t,x,u), z =f(t’x’u)a ue U(t9x)]

is convex, and that U(t,x) satisfies property (U) and Q (t,x) satisfies property
(Q) in A. Let ¢(t) be a given function which is L-integrable in any finite interval
such that fo(t,x,u) = ¢(t) for all (t,x,u)e M. Let Q be a nonempty complete
class of admissible pairs x(t),u(t) such that

t2
(2)) f |dx'jdt]Pdt < N, i=1,,n,
ty

for some constants N; 20, p> 1. Then the cost functional I[x,u] has an ab-
solute minimum in Q.

If A is not compact, but closed and contained in a slab [t, < t< T, — ©
<x'< 4 o, i=1,-,n,ty, T finite], then Theorem II still holds under the
additional hypothesis (b) after Theorem I. If 4 is not compact, nor contained
in a slab as above, but A is closed, then Theorem II still holds under the
additional hypotheses (b) and (c*): fo(t,x,u) = ¢(¢) for all (¢t,x,u)e M where
¢(t) is a given function which is L-integrable in any finite interval and
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fo ¢®)dt = + o, [°, §()dt = + co. Finally, if for some i=1,---,n, and
any N >0, there is some N;>0 such that (x,u)eQ, I[x,u] £ N implies
{2| dx/dt|?dt < N, then the corresponding requirement (24) can be disregarded.
Proof of Existence Theorem II. We suppose A compact, hence necessarily
contained in a slab [t, <t < T, t,, T finite, — 00 <xi< 4+ 0,i=1, - ,n],
and then I[x,u] = [/*fodt = — f,ﬂl(ﬁ(t)ldt. This proves that the infimum i of
I[x,u] in Q is necessarily finite. Let u,(t), x,(t), t, St <ty, k=1,2,---, be a
sequence of admissible pairs all in Q with I[x,,u,] - i. We may assume

t25

(25) i < I[xw] = Solt, xi (D, u()dt i+ 1/k i+ 1.
tik
Then
t2k
(26) f |dxi/dt|Pdt < N;,  i=1,-,n, k=12,
tik

By the weak compactness of L, we conclude that there is some subsequence and
some AC vector function x()=(x",--,x"), t, St <t,, such that t;; > t,, t,, > t,,
dx,}/dt — dx'|dt weakly in L,, x,(f)— x(¢) in the p-metric. The proof is now
exactly the same as for Existence Theorem 1.

If A is not compact, but closed and contained in a slab as above, and condition
(b) holds, then for every admissible pair u(f), x(t) of Q we have

t t t
|f(dx/dt)dt‘§| J dt f
t* " t*

< |t—t*|"(Ny + -+ N,),
where (t*, x(t*)) belongs to a fixed compact subset P of 4. Then [x(t*)| <N’,
|t —t*| < T—t,, and | x(t)| < N” for some constants N’, N" > 0. Thus, we can
limit ourselves to the compact part 4, of all points (t,x) of A with t, <t < T,
|x| < N”".If A is not compact, nor contained in a slab as above, but A is closed
and conditions (b), (c) hold, then we can use the same argument as for Existence
Theorem 1.

Finally, we see that assumption (24) has been used only in (26) for a minimizing
sequence u,,X,. Since for a minimizing sequence we see already in (25) that
I[u,x, ] Si+1, it is obvious that any relation (24) which is a consequence of
a relation of the form I £ N need not be required among the assumptions of
Theorem II. Theorem II is thereby proved.

1/q 1/p

dx/dt |*dt

| x(5) = x(1%) ]

10. Examples.
1. Let us consider the (free) problem

t2
I[x] = f (1 +|x'|?)dt = minimum,
t1
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with x = (x',---,x"), in the class Q of all absolutely continuous functions
x(t) = (x',-,x"), 0 <t <t,, whose graphs (¢,x(t)) join the point (¢, =0,x(t,)
=(0,---,0)) to a nonempty closed set B of the half-space ¢, =20, x€E,. This
problem can be written as a Lagrange problem:

t2
J[x,u] = f (1 + |u(®)|?dt = minimum,
t1

dx [dt = ut, i=1,-,n,

where x(f) = (x',,x"), u(® =", u"), m=n, fo=1+|ul?, fi=d,
i=1,-,n, and the control space U(t,x) is fixed and coincides with the whole
space E,. Here Q(t,x)=[(z,u)|z21+|u|?, ueE,] is a fixed and convex
subset of E, .. The conditions of Theorem 1 are satisfied with <D(|u |) = qu | , or
®(z)=z%, 0 Sz < + o, A isthehalf-space 4 =[(t,x)|t20, x€E,]<E,,.
Thus the problem above has an optimal solution.

2. The free problem

1
I[x] = J tx'2dt = minimum, x(0) =1, x(1)=0,
o

is known to have no optimal solution [9b]. The same problem can be written
as a Lagrange problem with m=n=1 in the form

1
J[x,u] = J; tu?dt = minimum,  x(0) =1, x(1) = 0.

dx/dt =u, ueE,,
as well as in the form

1
Jo[x,u] = L t*u’dt = minimum,  x(0)=1, x(1) =0,

dx/dt = tu, ueE,.

The relative sets O(t,x) are here subsets of the z%z-plane E,. For the problem
J, the sets Q satisfy condition (Q), but f, = tu? does not satisfy the growth
condition of Theorem I. For the problem J, the sets Q do not satisfy condition
(Q). (We shall take into consideration the same sets under examples 4 and 5 of
§12 below.)

The same free problem with an additional constraint

1
f x'%dt £ N,
V]

where Ny =1 is any constant, has an optimal solution by force of Theorem 11
and subsequent remark. The optimal solution will depend on N,." Note that
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Ny = 1 assures that the class Q relative to the problem is not empty. Indeed for
x()=1—1t, we have [ox'%dt=1.

11. The free problems. If we assume m = n,f; = u;,i = 1,...,n, U(t, x) = E,,
then the differential system reduces to dx/dt = u, and the cost functional to

I[x,u] = ) zf(,(t, x(t), u(t))dt = J 2f(,(t, x(t), x'(t))dt .

Then the problem under consideration (no. 6) reduces to a free problem (no
differential system) where the integral is written in the form

(1) Ix] = | folt,x(0), x@)dt,

and the only constraint is now (¢,x(tf))e A for all t, <t <t,. Again, complete
classes Q of vector functions x(#) can be defined by means of boundary conditions
of the type (t,,x(t,),t,,x(t,)) € B, where B is a closed subset of E,,,, as in §6.

THE NAGUMO-TONELLI THEOREM [9 ac, 5. If 4 is a compact subset of the tx-space
E, X E,, if fo(t,x,u) is a continuous function on the set M = A X E,, if for
every (t,x)€ A, fo(t, x,u) is convex as a function of u in E,, if there is a continuous
scalar function ®(), 0={ < + oo, with ®()/{ + - © as { + — oo, such that
folt,x,u) = (I)(| u I)for all (t,x,u) e M, then the cost functional (1) has an absolute
minimum in any nonempty complete class Q of absolutely continuous vector
functions x(t), t; £t <t,, for which fu(t,x(t),x'(t)) is L-integrable in [t,,t,].

If A is not compact, but closed and contained in a slab [t, <t < T,x€E,],
ty, T finite, then the statement still holds under the additional hypotheses
(t)fo = C[ ul for all (t,x,u)eM with lxl =D and convenient constants
C >0, D = 0; (z,) every trajectory x(f) of Q possesses at least one point (¢*, x(t*))
on a given compact subset P of A. If 4 is not compact, nor contained in a slab
as above, but A is closed, then the statement still holds under the additional
hypotheses (t,), (t,), and (t3)fo(t, x,u) = > 0 for all (¢t,x,u) e M with ltl =R,
and convenient constants u>0 and R=0. N

Proof. First assume A to be compact. Then the set Q(t, x) reduces here to
the set of all Z=(z%2)€E,,, with z° > fi(t,x,z), z€E,, where f, is convex
in z, and satisfies the growth condition f,= <I>([ u I) with ®(0)/{ - + oo as
{ > 4+ oo. By the remark after Lemma (xv) of §4, f, is normally convex in u,
hence quasi normally convex, and, by Lemma (xvi), part (f), of §4, O satisfies
condition (Q) in 4. Thus, all hypotheses of Theorem I of §7 are satisfied. If 4
is closed but contained in a slab as above then the condition (a) of Theorem I
reduces to u-x < C(|x|* + 1) which cannot be satisfied since we have no bound
on u. On the other hand, the condition (a") f, 2 C|f| for some C >0 reduces
here to requirement (z,) and condition (b) to requirement (t,). Finally, if A4 is
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not compact, nor contained in a slab as above, but A is closed, then requirement
(c) of Theorem I reduces to requirement (z3). All conditions of Theorem I are
satisfied, and the cost functional (1) has an absolute minimum in Q.

12. Lagrange problems with f linear in . We shall consider now the case where
all functions fy(t,x,u), i =1,---,n, are linear in u, and the control space U(t, x)
is fixed and coincides with the total space E,,. Precisely, we shall consider the
Lagrange problem

W Mxu] = [ " Le(t, %) $(u) + go(t, x)]dt = minimum,

(2) dxi/dt = gij(t,x)uj'l'gi(t’x)a i= 1"";”3
1

ji=

where x = (x',-+,x" €E,, and ¢(u), uec U=E,, is a convex function of u satis-
fying a growth condition as in Nagumo-Tonelli Theorem. If H(t,x) denotes the
n X m matrix (g;(t,x)), and h(t,x) the n-vector (gi(t,x)), then the differential
system (2) takes the form dx/dt = H(t,x)u + h(t,x).

The sets Q(t,x), O(t,x) relative to the problem above are

3 Q(t,x) = [z|z = H(t,x)u + h(t,x),u € E,] < E,,

6(t’x) = [2 = (ZO,Z) lZO g g(tsx)¢(u) + go(t,X),Z = H(tax)u + h(t,x),ueE,,] CEn+1-

Obviously, Q(t,x) is a r-dimensional linear manifold in E, where r is the rank

of H(t,x). We shall need a few lemmas concerning the sets Q(t,x).

(i) If g is nonnegative, and ¢ is nonnegative and convex, then both sets
o(t,x), Q(t, x) defined in (3) are convex for every (t,x)e 4.

Proof. We give the proof for Q(t,x). Let & =(£%¢), 1 =(n%n) be any
two points of Q~(t, x), let 0<a<1, and #=(z%z)=a+ (1 —a)ij. Then
for some vectors u, ve E, we have

£ zgpu)+ 8, E=Hu+h,
n°z gp() + g, n=Ho+h,
F=al+(1—-wi, z2°=af’+1—-a)n’, z=af+1—oa)n.
If weE,, denotes the vector w = au + (1 — a)v, we have
z = af+(1—o)yp = a(Hu + h) + (1 — a)(Hv + h)
Hlu+(1—-op)+h =Hw+h,
2% = af® + (1 - a)n° Z a(gd(u) + go) + (1 — @) (g(v) + £o)
gad(u) + (1 — 0)p(v)) + go
Z gplou + (1 —a)v) + go = gd(W) + go-
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Thus, % =(z°2)e Q(t,x) and O(t,x) is convex.

(ii) 1If all functions ¢, g, go, &, & are continuous, if ¢(u) is nonnegative
and convex, and there is a function ®(¢), 0 £ { < + oo, such that @) — + oo
as { - + o0, and ¢(u) 2 (| u) for all u e E,,, if there is a neighborhood N(F, %)
of (7,x) where g = u for some constant u > 0, then the set Q (t,x) defined in (3)
satisfies property (Q) at (7,%).

Proof. We have to prove that Q(t X) = ﬂ,,cl co Q(t %,0). It is enough
to prove that ﬂa clco Q(t Xx,0) < Q(t %) since the opposite inclusion is trivial.
Let us assume that a given point Z = (2°,2) en sclco Q(t X,6) and let us prove
that # = (z° z)eQ(t Xx). For every 6 >0 we have 7 = (z ,Z)ecl co Q(t x,0),
and thus, for every 6 > 0, there are points Z = (z°,z)eco Q(7,%,8) at a distance
as small as we want from 7= (Z%2Z). Thus, there is a sequence of points
% = (zp,z) €co Q(#, %,8,) and a sequence of numbers &, >0 such that &, — 0,
2y — Z. In other words, for every integer k, there are some pair (t;,xz), (t, Xk),
corresponding  points % = (zp',z;) € Qu(ts, x0), 2r = (2Y",2z}) €Qu(t},x}), points
uy,u € E,, and numbers o, 0 < o, < 1, such that

an

o=+ (1 — o)z,

on

Zl?_‘ azy + (1 — %) Z, zp = oz + (1 — o)zy,

= g(tks xk)¢(uk) + go(tka xlé) Zl’c = H(tl'v x;‘)ul: + h(tI:’ xl:),
Zo” Z gt x)d(uy) + gotisxi),  zi = H(ti, xp)uy + h(t, x5),
and such that t, > 7, x; > %, ty>7, x{ > %, 7, %, 20> 2° z,»Z as k- .
Obviously gy(t,x) is bounded in Ny(t,x), say go(t,x) = — G for G=0.

The second relation (4) shows that of the two numbers z{',z>" one must be
< z?. It is not restrictive to assume that zy' < z2 for all k. Then the fourth re-
lation (4) yields

z = 7y 2 gt X)) + ot XD Z pd(uy) —

where z{ —z° and hence [z{ ] is a bounded sequence. This shows that ¢(u;)
< 1 Y(G + z), hence [$(u;)] is a bounded sequence, and finally [u,] is a bounded
sequence because of the property of growth of ¢. We can select a subsequence,
say still [u;], which is convergent, say u; — &’ € E,, as k — oo. The sequence [a,]
is also bounded, hence we can further select a subsequence, say still [«,], for
which [«,] is also convergent. Thus u; — u’, o, —a as k — co. Let u, € E,, be the
point u;, = auy + (1 — oy )ui. Then

4

z = a2+ (1 — o)z

o[ H(ty, xJuy, + h(te, x)] + (1 — o) [H(H, xpuy, + h(t, x7)]
Gy = H(t},xp) [oup + (1 — aul] + h(t, x2)

+ o {[H(t, xi) — H(ty, x)Jux, + [h(ts, xz) — h(t;, x)1}
H(t, xp)uy, + h(ty, xp) + Ay,
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0 0 )
zp 2 uz +(1—a)z”

o[ 8tk Xi)P(ui) + golths X)] + (1 — o) [8(tk: Xi)b(uk) + go(ti xi)]
8(ti> i) [ () + (1 — 0 )p(ui)] + golti, xi)

+ o {lg(t, ) — g(ti x)1d(ue) + [go(ti, x4) — goltis x)1}

8t x)P(uy) + go(tis i) + AL

Obviously A, —0, A} -0, h(t,x}) = h(f,%), go(t,x})— go(f, %). Since g(ty,x})
= u, we conclude as before that [¢(u,)] is a bounded sequence, and so is [u,],
hence we can further select a convergent subsequence, say still [u,], with u, — a.
Relations (5) yield now as k— oo,

i=H@E %)+ h(i, 7, z°= g, Do) + goF, %).

)

I

v

Thus, #=(z%2)e Q(f %), and statement (ii) is proved.

RemARK. Here are afew examples of linear problems and corresponding sets
0(t,x) and Q(t,x).

1. Take m=1, n=2, U=E,, let ueE, be the control variable, and take
dpu)y=1,g=1,g,=0,g,,=1,g,=g,=0, g, =t Then the sets Q and Q
depend on t, —1<t< +1, and

Q1) = [a=(z",2})|z" =u, 22 =tu, — 00 <u < + 0]

= [z=(z’,zz)|zz=tzl, —w<z! <+ w]cE,,

o)

Each set Q(t) is a straight line in E, of slope t, and for each é > 0, the set Q(0, )
contains both lines z2 = + §z!, and the convex hull of Q(0, §) coincides with the
whole plane E,. Thus Q(0) is the z'-axis and [");clco Q(0, ) is the whole z'z2-
Plane. The set Q(t) does not satisfy property (Q) at ¢ =0, and the same holds for
0(t). Here ® = 1 does not satisfy the growth condition requested in (ii).

2. Take m=1, n=2, U=E,, let ueE,, be the control variable, and take
¢@)=|u|, g=|t], 20=0, g1 =1, g,=2,=0, g,y =t. Then again the
sets Q and @ depend on ¢ only, gp = |tu| =|z2|,—1=t=1.

[2=(2%2"2%)|z°2 1, 22 = tz!, — 0 <z! < + 0]  E,.

o) =[z=(z! zz)lz =tz!, — 0 < z! <+oo]<:E2,
o) = [2=(z°2"2%)|2° 2|2?|, 2° ,— < z'< + o] cE,.

As before, the set Q(t) does not satisfy property (Q) at ¢t = 0. Analogously, for
any 6 >0, and — 6 £t < 6, we see that

7 = (2%, 2",22") = (1,6™1,1) € 0(5),
2” — (20”’ Zl”, z2/l) — (1, _ 6-1, l)e é( _ 5),
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and, for a =1/2, also
F=a7 + (1 — w2 = (2% 2%,2%) = (1,0, 1) e co 00, 9).
Hence,
7=(1,0,1)e N,clcoQ(0,8), Z=(1,0,1)¢ Q(0),

and Q(t) does not satisfy property (Q) at ¢ = 0. Here g does not satisfy the condition
g = p> 0 requested in (ii).

3. Take m=1, n=2, U=E,, let ue E, be the control variable, and take
o(u) = |g|, g=1,g,=0,g,=1,¢g,=¢g,=0, g,, =t. Then again the sets
Q and Q depend on t only, —1=t<1, and

0 =[z=("2)|z>=tz', - 0 <z! < + 0] cE,,
é(t): [E=(z°,z‘,zz)|z° = lzl|, z2=1tz!, —o0<z! < + 0] cEj.

As before, Q(t) does not satisfy property (Q), while Q(t) does satisfy property (Q)
at every t because of statement (ii).

4. Take m=n=1, U=E,, let ueE, be the control variable, and take
du)=u?, g=t, g,=0, g, =1, g,=0, 0<t=<1. Then

Q) =[z|z=u, —w<u< + o] <E,
é(t)=[2=(z°,z)|z°gtu2,z=u, —o<u<+ o] cE,.

Here Q(1) = U = E, for every t, 0 <t < 1, and obviously Q(¢) satisfies property
(Q). On the other hand Q(O) is the half plane, z° =0, — 00 <z < + oo, while
Q(t) for t > 0 is the set Q(f) = [2z° = tz%, — 00 < z < + o ]. Obviously, Q satisfies
property (Q) at t =0 (and at every ¢ as well).

5. Take m=n=1, U=E,, let ueE, be the control variable, and take
duw)=u,g=1,8,=0,9,,=1,8,=0,0<t < 1. Then

oW = [z|z=tu, — 0 <u< + 0] cE,,

~

Q) =[2=(%2)|2° 2t z=1tu, — 0 <u < + o] cE,.

Here Q(0) is reduced to the single point z = 0, while Q(¢) for every t > 0 coincides
with E;. Thus Q(f) does not satisfy property (Q) at t=0. Also Q(O)
=[2°2 0,z = 0] while Q(#) for t 5 Ois the set Q(f) = [z° = 1z, — w0 < z < + 0],
and clco Q(0,6) is the entire half plane [z° =0, — 00 < z < + co]. Thus, neither
Q nor 6 satisfy property (Q) at ¢t =0.

We shall denote by r(t,x) the rank of the n X m matrix (g;(¢,x)). Then
0 < r(t,x) <min[m,n].

(iii) If all functions g;(t,x) are continuous and U=E,, then r(f,%)=<
liminfr(t,x) as (t,x) - (Z,%).
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The proof is a straightforward consequence of the continuity hypotheses.
The statement below shows that a necessary condition for Q(t,x) to satisfy (Q)
at (7, %) is that r(¢,x) is constant in a neighborhood of (7, %), and this explains
why the set Q of Example 4 does not satisfy property (Q). On the other hand,
the condition is not sufficient, as the sets Q of Examples 1, 2, 3 show since in
these examples r = 1 is constant.

(iv) If all functions g;;, g; are continuousin 4 and U =E,,, then a necessary condi-
tion in order that the set Q(¢, x) satisfies condition (Q)at (7, X) is that r(7, X) =lim (¢, x)
as (¢, x) — (f, X) (thus, there is a neighborhood N,(7, %) of (7, X) with r(t,x) = r(f, %)
for every (t,x) € Ny(7, %). If Q(t, x) satisfies condition (Q) in 4 and A is connected
then r(t,x) is a constant.

Proof. Suppose that r(f,x) =r is not the limit of the (integral-valued) func-
tion r(t,x) as (¢,x)—(f,x). Since r(f,x¥)=r <lim inf r(t,x) we must have
r(f,x)=r <r+1=<limsup r(t,x). There is, therefore, a sequence (#,x;),
k=1,2,---, with g7, x, > %, and r+ 1= r,=r(t,x) S min[m,n]. The
image of U = E,, under the mappings H(t, x)u + h(t,,x,) and H(#,X)u + h(f,X)
are, therefore, linear manifolds of E,, say Q(,x;) of dimensions r,=r+1,
and Q(7, %) of dimension r. The images of u =0 on Q(t,x,) and Q(7, X) are the
points z, = h(t,x,), Z= h(f,x). Let 5, -+, n, be r orthonormal vectors in E,
such that

0@, %) = [ZEE,,lZ =Z4+&m+ -+ EMes fl""’ér real],

and let us complete #,,---,n, into a system of n orthonormal vectors n,,---,n,,
Ny+15° " »Ma- FOI every k, there are systems of r, orthonormal vectors 1, -+, 7y, &
of E, such that

Ot xi) = [ZGEIZ =z +Emu+ -+ E g E0n G, teal]l
Since h(t,, x) = h(f, %), H(t,,x,)— H(f,X), we can select ny, .1, SO that,
together with z, — Z, we have also
N M= 1, i=1,r,
N M =0, j#Ei,j=1,-+,1, as k> 0.

If we take &, =+ =¢&.=0, &4 =1, &ypp=--=¢,=0, then the point
Ze =2 + M4 1 1 € Q(t, x;) . It is not restrictive to assume that for all k we have

|z — 2| <1/4, |np-m| <1/an,  j#i, i=1,r, j=1,r.
Then

r n
Mes1p = 2 (psg eI = (2 + X )(ﬂr+1,k°’7i)’7t=ﬂ,+'1”:
= i=1 i=r+1

1
‘ i_l("r+l,k‘ﬂi)m' §'§1 I’lr+1,k-11i| <r(1/4n) < 1/4,

"] = |tesra—1"] 2 |fesan] = [0 Z21-1/4 = 3/4.

=
I
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Finally,

|Z;c"5l = I(Zk+'lr+1,k)—5| = |’1r+1,k| + Izk"f| S1+1/2=3/2,
and, for every z e Q(7,%), also

|(Zk + ) —E+Em + -+ érnr)l

|2k — 2|
n r
= l ;1 (Mrs 16 MOM; — igl 51’1:+(Zk—5)|

= I ‘gl (et 1,671 — i +._23r1 ('Tr+1,k"h)'h| - Izk"fl

v

n
l 21 (’1r+1.k”1i)'11| - Izk_z-l = |'1”| —Izk“fl

i=r+

v

3/4—-1/4=1]2.
Thus,

|zi—2| <32,  dist(z,Q(F %) 2 1/2.

The sequence [z;] is bounded, hence, it contains a convergent sequence, say
still [z;], with z; —» z' € E,, and

|z —z| =32, dist(z', QG %) 2 1/2.

Finally, for every k there is a u,€ U = E,, such that z; = H(t, x,)u; + h(ti, %),
or z; € Q(t,, ), With zz—z’. Then z’ecl co Q(f,%,6) for every 6 >0, and
hence

z’eﬂ,clcoQ(t',f,é), z' ¢ 0(F, %).

We have proved that Q(t, x) does not satisfy property (Q) at (7, %), a contradiction.
This proves that, if Q(t,x) satisfies property (Q) at (7, %), then r(7, %) = lim r(t, x)
as (t,x) = (f,X). The necessity of the condition is thereby proved.

13. Existence theorems for Lagrange problems with f linear in u. We give
here a few examples of statements which can be deduced from Existence Theorems
I and II when f is linear in u.

ExiSTENCE THEOREM I11. Let us consider the Lagrange problem

) I[x,u] = fz [g(t, x)¢(u) + go(t, x)]dt = minimum,
@ it = T g 60w tgt®),  i=1en,
=1

where x = (x,+-,x"€E,, u=(u!,---,u™e€E,, and ¢(u) is a continuous
nonnegative convex function of u. Assume that there is some continuous function
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@), 0= < + o0, with ®() [{ > + o0 as { > + 0 and ¢(u) Z ®(|u|) for every
u€E,. Assume that all functions g(t, x), go(t,x), g, x), g{t,x) are continuous in
A=E, XE,, and that

g2p>0,g2pu>0, E Igij|§Cga iE I&'jl"‘z‘: Igi|§Cg0a
ij j

for some constants u >0, C > 0, and all (t,x)€ A. Let Q be the class of all pairs
x(1), u(t), t; <t < t,, x(t) absolutely continuous, u(t) measurable, satisfying (2)
a.e., such that g + g, is L-integrable in [t,,1,], and such that the graph (t,x(t))
joins the fixed point (t; =0,x(¢t;) = (0,---,0))e 4 to a given closed subset B of
the half-space t 20, xe E, in A. If Q is not empty, then the Lagrange problem

(1), (2) has an optimal solution in Q.

The functions ®(u) = ¢(|u|) = |u|’, u€E,, p>1, as well as @ (u) = (|u)
=0 for Iul =C, o (u)= ¢(|ul) = | u I"— C? for |u| = C, certainly satisfy the
requirement for ¢. 5

Proof. By Lemmas (i) and (ii) of §12 the set Q(t, x) is convex for every (2, x)
and satisfies condition (Q) in A. The set U = E,, is fixed, closed, and obviously
satisfies condition (U). Also fy(t, x,u) = g(t,x)®(u) + go(t,x) and hence

foz np(u) Z u®(|u), fozgo2u

where u > 0, and hence both the growth condition for f, and condition (c),
of Existence Theorem I of §7 is satisfied. Now if A, is any compact subset
of A = E, X E,, then the continuous functions g;;, g; are bounded in A4,, say
| 5] < Co» | &:| £ Co (Where C, depends on Ay) and

|f| =|Hu+h| < |H||u|+|h| = n*Co|u| +nC,

for all (t,x) € Ay. Thus condition (y) of Theorem I is also satisfied. Condition (b)
is satisfied since the initial point (¢,,x(t,)) is fixed. Let us prove that condition (a’)
is satisfied. Indeed ®({)/{ —» + o as { — + oo, hence ®({)/{ =1 for all |C| =D
and some constant D 2 0. Then for |u| 2 D we have |u| < ®(|u|), and hence
|u| <D+ <I>(|u|) for all ueE,. Now for all (t,x)eA=E; XE, and uekE,
we have
|Hu +h| < |H| |u]|+ k]| < |H|(D + ®(|u]) + | 4]
|H|®(u])+ D[H| + k]

= Cgé(u) + (D +1)Cg

S C(D + 1)(gp(u) + go) = C(D + fo.
Thus fo = C™'(D + 1)'1|f| for all (t,x,u)eE, X E, X E,. All conditions of
Theorem I are satisfied, and the Lagrange problem (1), (2) has an optimal
solution.

/1



1966] EXISTENCE THEOREMS. I 411

EXISTENCE THEOREM 1V. Let us consider the Lagrange problem

® 136 = [ et + go(t 0t = minimum

with differential equations

dx'jdt = X g(t,x)u’ + g(t,x), i=1,--n,
©) -

or
dx [dt = H(t,x)u + h(t,x),

where x=(x',--,x")eE,, u=(u',---,u"eU=E,, where H is the nXm
matrix (g;;), where h is the n-vector (g;), and where ¢(u) is a continuous nonnega-
tive convex function of u. Assume that all functions g(t,x), go(t,x), g;(t,x),
g{t,x) are continuous in A=E, X E,, and that

g(t,x) g 09 go(t,X) g - GOfor all (t,X)EA = El X Em

)
go(t,x) = u>0 for all (t,x)e A=E, X E, with |t| = D,,

for some constants u >0, Gy =0, Dy = 0. Assume that the (convex) set
609") = [E = (zo3z)|zo g g¢(u) + 80 2= Hu + h’ uelU = Em] < En+l

satisfies condition (Q) in A. Let Q be the class of all pairs x(1), u(t),
t, £t<t,, x(t) absolutely continuous, u(t) measurable, satisfying (4) a.e.,
such that g¢ + g, is L-integrable in [t,t,], and such that the graph (t,x(t))
joins the fixed point (t, = 0,x(t,) = (0,---,0)) € E; X E, to a given closed subset B
of the half-space t 20,x€ E, in E, X E, and such that

t2
©) j|dxf/dt|»dt§N,., N
ty

for some constants p> 1, N; 2 0. If Q is not empty then the Lagrange problem
above has an optimal solution in Q.

The functions ¢(u) =|u|?, p21, as well as ¢ (u)=0 for |u|=<c, ¢(u)
=|ul]? —c?for |u|2¢c,p21, all satisfy the requirements above for ¢.
The requirement g, = u > 0 can be disregarded if B is contained in a slab
[0<t<T xeE,), T finite. Any requirement (6) which is a consequence of
a relation [;(g® + go)dt < N, can be disregarded.

Proof. By (i) of §12 the set Q(t, x) is convex for every (t,x) in A. All conditions
of Theorem II of §9 are satisfied, and thus IV is a corollary of II.

ReEMARK. The requirement concerning 5(t, x) of Theorem IV is certainly
satisfied if we assume that

() g(t,x) >0 for all (t,x)eA=E; X E,,
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(B) there exists a nonnegative convex function ®(), 0=<{ < + oo, with
D) > + 0 as {— + o and $(u) 2 ®(u|) for all ue U =E,,

Indeed, by statements, (i), (i) of §12, the convex set Q(t,x) satisfies property
(Q) in A.

ReMArk. Theorems III and IV can be stated in an analogous form when the
special integrand g¢+g, is replaced by the more general integrand
So(t, x,u) of §§ 7and 9.
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