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Introduction. In the present papers (I and II) we prove existence theorems for

weak and usual optimal solutions of nonparametric Lagrange problems with

(or without) unilateral constraints.

We consider arbitrary pairs x(i), u(f) of vector functions, w(i) measurable with

values in Em, x(t) absolutely continuous with values in E„, and we discuss the

existence of the absolute minimum of a functional

7[x,u] = i f0(t,x(t),u(t))dt,
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with side conditions represented by a differential system

dx/dt =f(t,x(t),u(t)),       ty^tS t2,

constraints

(t, x(t)) e A, u(t) e U(t, x(t)),       t1 = t^t2,

and boundary conditions

(ty,x(ty),t2,x(t2))eB,

where A is a given closed subset of the ix-space Ey x E„, where B is a given closed

subset of the i1x1t2x2-space E2n+2, and where U(t,x) denotes a given closed

variable subset of the u-space Em, depending on time t and space x. Here A may

coincide with the whole space Ey x En, and U may be fixed and coincide with

the whole space Em.

In the particular situation, where the space U is compact for every (t, x), these

problems reduce to Pontryagin's problems; in the particular situation where the

space U is fixed and coincides with the whole space Em, then these problems

have essentially the same generality of usual Lagrange problems. Throughout

these papers we shall assume U(t, x) to be any closed subset of Em.

In §§1-5 we prove closure theorems for usual solutions. In §§6-12 we prove

existence theorems for usual solutions. These contain as particular cases the

Filippov existence theorem for Pontryagin's problems (U(t,x) compact), existence

theorems for usual Lagrange problems (17 = Em), and the Nagumo-Tonelli existence

theorem for free problems (m = n, f= u). In Part II we prove existence theorems

for weak (or generalized) solutions introduced as measurable probability distri-

butions of usual solutions (Gamkrelidze chattering states).

In subsequent papers we shall extend some of the present results to multidimen-

sional Lagrange problems involving partial differential equations in Sobolev

spaces with unilateral constraints.

We begin with an analysis of the concept of upper semicontinuity of variable

subsets in Em. The usual concept of upper semicontinuity is replaced by two

others (properties (U) and (Q), §4), which are essentially more general than

upper semicontinuity, in the sense that closed sets U(t,x), for which upper semi-

continuity property holds, certainly satisfy property (U), and closed and convex

sets Q(t, x),fot which upper semicontinuity property holds, certainly satisfy property

(0). In (§5) we then extend the closure theorem of A. F. Filippov in various ways,

so as to include, among other things, the use of pointwise and not necessarily

uniform convergence of some components of a sequence of trajectories. In § §7,9 we

prove existence theorems for optimal usual solutions by a new analysis of a mini-

mizing sequence, and by using the above extensions of Filippov's closure theorem.

In §§11,13 we then deduce existence theorems for the case where/is linear in u,
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and for free problems of the calculus of variations (m = n,f= u). Finally, in

Part II, §16, we prove existence theorems for weak solutions in the general case

above, as well as for the case in which / is linear, and for free problems.

1. The problem. We denote by x a variable »-vector x = (x1, •■-,x'')eEH,

by u a variable m-vector u = (u1, •■-,um)eEm, and by re£i the independent

variable. We denote by A an arbitrary subset of the (i,x)-space, AczEyX E„,

and, for any it,x)eA, we denote by U = t/(i,x) a variable subset of the «-space,

l/(i, x) ezz Em. In the terminology of control problems, u is the control variable

and i/(?,x) the control space. We denote by fit,x,u), i = 0,1,•••,«, given real

functions defined for all (r, x) e A, and all u e U(i, x), and by / the n-vector function

/= (/., •••,/„). We denote by B a given subset of the (2m + 2)-space (ty,x1,t2,x1).

We are interested in the determination of a measurable vector function

w(r), /, = t S t2, (control function, or steering function, or strategy), and a cor-

responding absolute continuous vector function x(r), ty zi t S t2, (trajectory),

satisfying almost everywhere the differential system

dxldt=fit,xit),uit)),       ty£tz%t2,

satisfying the boundary conditions

ity,xity),t2,xit2))eB,

satisfying the constraints

0,xit))eA,       ty^tz^t^

u(i)el/(f,x(0),       a.e. in [*t,f2].

and for which the integral (cost functional)

/[x,u] = f 2f0it,xit),uit))dt

has its minimum value (see §§2, 3 for details). We shall assume that t7(i,x) is

closed for every it,x)eA.

2. The space of continuous vector functions. Let Xbe the collection of all contin-

uous «-dim vector functions x(r) defined on arbitrary finite intervals of the r-axis:

x(f) = (x1,...,x"),       a^í^b,       x(r)e£n,

If x(r), a St z%b, and yit), c S t = d, are any two elements of X, we shall define

a distance p(x, v). First, let us extend x(f) and j>(i) outside their intervals of def-

inition by constancy and continuity in ( — oo, + oo), and then let

pix,y) = \a - c\ + \b - d\ + max\xit) - yit)\,

where max is taken in ( — oo, -l- oo). It is known that X is a complete metric
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space when equipped with the metric p. Ascoli's theorem can now be expressed

by saying that any sequence of equicontinuous vector functions x„ of X, whose

graphs in the ix-space are equibounded, possesses at least one subsequence which

is convergent in the p-metric toward an element x of X.

3. Admissible pairs u(t), x(i). Let A be a closed subset of the (i, x)-space

Ey x E„. For every (t, x)eA let U(t, x), or control space, be a subset of the «-space

Em. Let M be the set of all (i, x, u) with (r, x) e A, u e U(t, x). Let f(t,x,u) = C/i, • ••,/„)

be a continuous vector function defined on M. We shall denote by Q(t, x) the

set of all values in En taken by f(t, x, u) when u describes U(t, x), or Q(t, x)

=f(t,x, U(t,x)). A vector function u(t) = (u1,---,um), ty^tfL t2 (control function)

and a vector function x(r) = (x1,••■,x"), t¡ —^t — t2 (trajectory) are said to be an

admissible pair provided (a) u(t) is measurable in [íi,í2]; (°) x(t) is absolutely

continuous (AC) in [f lf i2] ; (c) (r, x(r)) e A for every t e [f y, t2] ; (d) u(t) e U(t, x(t))

a.e. in [t1;i2]; (e) dx/dt =f(t,x(t), u(t)) a.e. in [ii,r2]- % tne expression the

vector function x(t),ty ^ t f= f2, is a trajectory, we shall mean below that there

exists a vector function u(t), i, ^t^t2, such that the pair u(t),x(t) satisfies

(a)-(e). We say also that x(r) is generated by u(t).

4. Upper semicontinuity of variable sets. In view of using sets U(t, x), Q(t,x)

which are closed but not necessarily compact, we need a concept of upper semi-

continuity which is essentially more general than the usual one. We shall introduce

two modifications of the usual definition of upper semicontinuity, and we shall

denote them as "property (£/)" and "property (0", since we shall usually use

them for the sets U(t, x) and Q(t, x) above, respectively.

We shall discuss properties (If) and (Q) first in relation to arbitrary variable

sets U(t, x), Q(t, x) which are functions of (i, x) in A. Then we shall discuss their

relations when Q(f,x) is assumed to be the image of U(t,x) as mentioned in §3.

Properties proved for U(t,x) under conditions (U) or (Q), will be used for Q(t, x)

when this set satisfies conditions (U) or (Q).

(A) The property (U). Given any set F in a linear space E we shall denote

by clF, coF, bdF, intF respectively the closure of F, the convex hull of F, the

boundary of F, the set of all interior points of F. Thus, cl co F denotes the closure of

the convex hull of F. We know that F, cl F, co F, co cl F are all contained in cl co F.

For every (t, x) e A and <5 > 0 let A^i, x) denote the closed ¿-neighborhood

of (t, x) in A, that is, the set of all (t', x') e A at a distance ^ Ô from (t, x).

A variable subset U(t,x), (t,x)eA, is said to be an upper semicontinuous

function of (r, x) at the point (I, x)eA provided, given e > 0, there is a number

<5 = ô(ï,x,e) > 0 such that (t,x) eNô(i,x) implies U(t,x) a [U(i,x)]e, where [l/]£

denotes the closed e-neighborhood of If in Em.

Again, let U(t,x), (t,x) e A, U(t,x) cz Em, be a variable subset of Em, which is a

function of (r,x) in A. For every ô>0 let U(t,x,S) = \\lf(t',x'), where the
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union is taken for all (t',x')eA/a(f,x). We shall say that I/(i,x) has property(fJ)

at (f,x) in A, if

Uit,x) = p|  cl Vit, x,ô).
ô>0

We shall say that l/(r,x) has property ((7) in A, if t/(i,x) has property (Í7) at

every (i,x) of A.

(i) If l/(r,x) has property ([/) at (f,x), then l/(f,x), being the intersection of

closed sets, is closed.

(ii) If A is closed, and t/(f, x) is any variable set M which is a function of (r, x) in

A and has property (fj) in A, then the set M of all (f, x,u)eAxEm with u e i/(r, x),

(r,x)e/l, is closed.

Proof. If it, x, u) e cl M and £ > 0, then there are oo-many points (r, x,u)eM

with |f — /1 < £, |x —x|<£, |m —«|<£. Thus, if,x)eA since A is closed,

(r, x) e N2Jf, x), u e Vit, x), u e Vit, x, 2s), and ü e Ç\e cl t/(f, x, 2e) = Vit, x),

He l/(í,x), since V has property (£/) at (f,x). This proves that (f,x,ÏÏ)eM, that

is, M is closed.

Note that the sets V(l, x, 5) are not necessarily closed even if A is closed, all

sets C/(r,x) are closed, and we take for Nsi¡,x) the closed ¿¡-neighborhood if

(/,x) is in A as stated. This can be seen by the following example. Let

A - [0á t z% 1, 0£ x <; 1] a subset of F2, and

t/(r,x) = [z = (z1,z2)|z2 ^ rz,, — oo < z, < + oo]

for 0 < t S I, and ¡7(0, x) = [z2 ^ 0,z, = 0] for t = 0. Then t/(0, x, ¿)

= \_z = (zy,zf)\z2 = bzx for — co < z, S 0, and z2 > 0 for 0<z,<co] for

any <5 > 0. The sets V(0,x,5) are not closed. Here V(t,x) does not satisfy property

(V) at the points (0,x). Nevertheless, the statement holds:

(iii) If A is closed, and V(t,x) satisfies property (V) in A, then the sets

V(t,x,ô), (t,x)eA, 8>0, are all closed.

Proof. Let Md denote the set of all points (t, x, u) with (r, x) e Nd(i, x), u e V(t,x).

Obviously Nö(i,x) ezz A ezz En+i; M6 ezz E„+1 x Em, and Ns(t,x) is compact and Md

is closed by force of (ii) above. Let m be a point of accumulation of V(t, x, <5),

and for any n > 0 let Vn(u) denote the «-neighborhood of ü in Em. Then

M,n(F,(ii)x£,tl)c)Vi(í,í) xVq(iï), hence Môr\(V^(iï)xEn+f) is bounded.

Since both M5 and Vn(u) xE„+l are closed sets, the set Ms n (Vn(ü) x E„+,) is closed

and bounded, and therefore a compact subset of F„+] x Em. Now the set

V(i,x,b) n F,(m) is the projection of Ms r\(Vffu) x E„+f) on the «-space Em, and

therefore V(t,x,8) (~,Vn(u) is compact. Thus ñ e U(í, x, á) n Vn(u), and finally

« e V(t, x, §). Thus, t/(i, x, ¿) is closed, or cl V(t, x, ö) = V(i, x, 5), and V(i, x)

= f)s clV(i,x,ô) = f]aV(i,x,ô).
(iv)   If A is closed and C/.(r, x), (r, x) e A, j = l,---,v,  v finite, are variable
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subsets of Em all satisfying property (U) in A, then their union and their inter-

section V(t,x) = \^JjUj(t,x), W(t,x) = f},Uj(t,x),(t,x)eA, ate subsets of Em

satisfying property (U) in A. The same holds for their product V(t, x) = (71 x • • • x Uy.

The proof is straightforward.

Under the hypotheses of (ii) the set M is closed but not necessarily compact

as the trivial example U(t,x) = Em, M = AxEm, shows.The set M is closed but

not necessarily compact even if we assume that A is compact, and that every

U(t, x) is compact. This is proved by the following example. Let m = n = 1,

A = [(t,x)eE2\0 = tg,l, O^x^l], U(0,x) = [ueEy\0 = u^l], and, if

r=¿0, U(t,x) = [«e£,|0^«^ l,and w = i-1]. Then M is the set of all (r, x, u)

with 0 ^i = l, O^x^l, and O^u^l, or w = i_1 if i#0. Obviously, M

is closed but not compact. Nevertheless, the statement holds:

(v) If A is compact, if the variable set U(t, x) is compact and convex for every

(t,x)eA and possess property (U) in A, if for every (t,x)eA there is some

<5 = <5(f,x)>0 such that U(t,x) O U(t',x') ^0 fot every (t',x')eNd(t,x), then

M is compact.

Proof. If M is not compact, then there is some sequence of elements

(tk,xk,uk)eM, fc = 1,2,• • •, with (tk,xk)e A, tk| + |xk| + |uk| -> + oo. Since A

is compact and hence bounded, we have \uk -» + oo. On the other hand, there

is some subsequence, say still (tk, xk), with tk->t, xk-*x, (i, x) e A. Given e > 0,

we have uk e U(i, x, e) for all fc sufficiently large, as well as U(i, x) n U(tk, xk) ̂  0.

Since U(t,x) is compact, there is a solid sphere S containing all of U(t,x) in its

interior, say U(t,x) cintS c Em. On the other hand, if ük e U(i,x) r\ U(tk,xk),

we have iikeintS, and ukeEm — S, again for fc large. Since both Uk and uk belong

to the convex set U(tk, xk), the segment ükuk is contained in U(tk, xk). In particular,

if u'k is the point where the segment ûkuk intersects bdS, we have u'ke U(tk,xk),

u'ke U(i,x,e), and u'kebdS. If u' is any point of accumulation of [u'k], then

u' ebdS, and «' e cl C7(f, x, e) fot every s > 0. Hence, u' e [~)z cl U(i, x, e) = U(i, x),

a contradiction, since U(i,x) c intS. We have proved that M is compact.

(vi) If the set U(t, x) is closed for every (r, x) e A and is an upper semicontinuous

function of (t,x) in A, then U(t,x) has property (U) in A.

Proof. By hypothesis U(t,x,5) c[U(t,x)]t, where Uc is closed. Hence

cl U(t,x,ô) cz[U(t,x)]E for ô = S(t,x,e) and any e>0. Since U(t,x) is closed,

then [l/(f,x)]e^U(i,x) as e->0 + . Thus f]5clU(t,x,ô) e= U(t,x). Since the

opposite inclusion is trivial, we have Qacll/(r,x,<5) = U(t,x). Statement (vi)

is thereby proved.

The upper semicontinuity property implies property (U), but the converse is

not true, that is, the upper semicontinuity property for closed sets is more re-

strictive than property (U). This is shown by the example after statement (iv)

above in which all sets are closed. Another example is as follows. Take n = 2 and

U(t,x) = [(uKu^eE^O^u1 < + oo, Ogu^iu1]
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for every (í,x)e¿ = [(f,x)eF2|0 S t S 1, Ogx^l]. Then, for <5>0,   we

have

U(t,x,S) = [iul,u2)eE2\0Sul < + ex>,0 Su2 Sit+ ô)ux],

hence V(t,x) = p|sclV(t,x,ô) and V(t,x) has property (if) in A. On the other

hand,

[ü(í,x)],»[(ii1,tt2)6£2|0á«1 < + oo,-iá«aá*"1+«(l + ¿a)1/,]uNlf

where -V,, = iV£(0,0) = [(ul,u2)\(u1)2 + (u2)2 S e2] if t = 0, and, if t * 0,

Ny = Ne(0,0)yj[(u\u2)eE2\ulS0,u2= -f lul, -tu ' + u2 S e(l + t2)1'2].

Obviously V(t',x') — [V(t,x)~\E ̂  0 for t' > t, hence V(t,x) is not an upper

semicontinuous function of (r, x).

(vii) If A is compact, if V(t, x) is compact for every (i, x) e A and is an upper

semicontinuous function of (i,x) in A, then M is compact.

(viii) If A is closed and Vj(t,x), (t,x)eA,j = l,---,v,v finite, are variable

subsets of Fm all upper semicontinuous functions of (i,x) in A, then their union

V(t,x) and their intersection W(t,x) are semicontinuous functions of (i,x) in A.

The same holds for their product V(t,x)= Vy x ■■• x Vv, as well as for their

convex hull Z(t,x), that is, for the set Z(r,x) of all « = p,«, + ■•• + pv«v with

UjeVj(t,x), pj = 0, j = l,-..,v, py + ••• +pv = 1.

The proof is straightforward.

(B) The property (Q). Let U(t,x), (t,x)eA, V(t,x) ezz Em, be any variable

subset of Em, which is a function of (t, x) in A. By using the same notations as

in (A), we shall say that V(t, x) has property (Q) at (I, x) in A, if

V(t,x) = P| clcoV(i,x,ô).
ó>0

We shall say that V(t,x) has property (Q) in A if V(t,x) has property (Q) at

every (i, x) of A.

(ix)   Property (Q) at some (i,x) implies property (V) at the same (f,x), and

t/(f,x) = p| clcoC7(f,x,¿) = p| cirj(i,x,<5) = p|  UYf,x,<5).
s öd

Analogously, if l/(f,x) has property ((7) at (i,x) then

1/(7, x) = p| cltj(i,x,<5) = p| Vii,x,5).
a à

Indeed

Vit, X) ezz P|    Vit, X, á) <= P|   Cl C/(f, X,ô)ezz  f]   cl CO t/(f, X, ¿),
á>0 á>0 Ä>0

where first and last sets coincide by property (0 at (i, x), and hence the inclusion
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signs c can be replaced by = signs. An analogous argument holds for the second

part of the statement.

(x) If A is closed, and U(t,x) is any variable set which is a function of (r,x)

in A and has property (Q) in A, then the set M of all (t, x, u) e A X Em with

ueU(t,x), (t,x)eA, is closed.

Under the hypothesis of (i) the set M is closed but not necessarily compact

as the trivial example U(t,x) = Em, M = AxEm shows. Nevertheless, the state-

ment holds:

(xi) If A is compact, if the set U(t,x) is compact for every (t,x)eA and

possesses property (Q) in A, then the set M is compact.

Proof. If M is not compact, then there is some sequence, (tk,xk,uk)eM,

fc = l,2,---, with (tk,xk)eA, \tk\ + \xk\ + \uk\-*+ao as fc->oo. Since A is

compact and hence bounded, we have | uk \ -* + oo. On the other hand, there

is some subsequence, say still (tk,xk), with rft->i, xk-*x, (t,x)eA. Given e > 0,

we have then uke U(i,x,s) for all fc sufficiently large. Since U(i,x) is compact,

there is a solid sphere S containing all of U(f,x) in its interior, say U(i,x) <=

int S c Em. On the other hand, if u e U(i,x), we have u eintS, and ukeEm — S

again for fc large. Since both u and uk belong to the convex set cl co U(t, x, e),

we have u^eclco U(t,x,e) where u'k is the point of intersection of the segment uuk

with the boundary bdS of S. If u' is any point of accumulation of [u'k], then

u'ebdS, and u'e clco U(t, x, e) for every e > 0. Hence u's p|eclco U(t,x,e)

= U(t, x), a contradiction, since U(t, x) <= int S. We have proved that M is compact.

(xii) If for every (f, x) e A the set U(t, x) is closed and convex, and U(t, x) is an

upper semicontinuous function of (i,x) in A, then U(t,x) has property (Q) in A.

Proof. By hypothesis U(t,x, 5) cz [U(t,x)]s, where l/£ is closed and convex

as the closed e-neighborhood of a closed convex set. Hence, f~]á clco U(t,x,ô)

cz[U(t,x)]E fot every e > 0. Since U(t,x) is closed, then [U(t, x)]e->- U(t,x) as

e->0+. Thus p)dclco U(t,x,<5) c: U(t,x). Since the opposite inclusion relation

=>   is trivial, we have Q^clco V(t,x,5) = U(t,x).

(C) Relations between properties of U(t,x) and ofQ(t,x). Let us now consider

sets Q(t,x) =f(t,x, U(t, x)), (t,x)eA, Q(t,x) c E„, which are the images of sets

U(t, x) <= Em for every (i, x) e A.

The hypothesis that A is compact, that / is continuous on M, that U(t, x) has

property (Q) [or ([/)] in A, and that Q(t,x) is convex for every (t,x)eA, does not

imply that ß(r,x) has property (Q) [or (U)] in A. This can be proved by a simple

example. Let m = n = 1, A — [ — 1 á t£ 1, 0 ^ x = 1], let U(t,x) be the fixed

interval U = [ueEy\0 z%u < + oo], and /= (u + l)~1 - t. Then

g(i,x) = [ze£1| -t<z^l-t],

and, if - 1 4- ô < t < 1 - Ô,

clcoQ(t,x,ô) = [- t.- ô á z g 1 - t + àl.
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The intersection of all these sets for ô > 0 is the closed set

[z 6 Ey | - t á Z S 1 - t]

which is larger than Q(t,x), and thus Q has not property (Q) in A. Actually, Q(t,x)

is not closed, and hence Q(t,x) has neither property (Q), nor property (17).

Even the stronger hypothesis that A is compact, that / is continuous on M,

that U(t,x) has property (Q) in A, and that Q(t,x) is compact and convex for

every (t,x)eA, does not imply that Q(t,x) has property (Q) in A. This can be

proved by the following example. Let m = 1, n = 1, A = [(í,x)e£2, 0 ^ í ^ 1,

O^x^l], t/=L/(t,x) = [«eF^O^u < + oo], and f(t,x,u) = [sinfu]2,

(t,x,u)eAxU. For í = 0 we have/sO, hence Q(0,x) = [z = 0]. For 0 < í ^ 1,

we have ß(i,x) = [0 ^ z ^ 1]. All sets Q(t,x) ate compact and convex, but ß(i,x)

does not satisfy property (Q) nor property (U) in A.

(xiii) If A is closed and / continuous on M, if U(t, x) is compact for every

(t, x)eA and U(t, x) is an upper semicontinuous function of (i, x), then Q(t, x)

possesses the same property, and also has property (U). If we know that Q(t,x)

is convex, then Q(t,x) has also property (Q).

Proof. Each set Q(t, x) is a compact subset of E„ as the continuous image of

the compact set (7(1, x). The set U(t,x) satisfies property (U) because of (vi),

and hence M is closed because of (ii).

Let us prove that Q(t,x) is an upper semicontinuous function of (f,x). Given

(i, x) e A and e > 0, let <5 = ô(t, x,e)>0 be the number relative to the definition

of upper semicontinuity of U(t,x), and let M' be the set of all (t',x',u') with

(t',x')eNô(t,x), u'elf(t',x'), and M" be the set of all (t',x',u') with

(i',x') e Nd (t,x), u' e [U(t,x)]e. Since fJ(i,x) is compact, also [U(t,x)]E is compact.

Let M" = Nô(t,x) x[U(t,x)]„ and we have M' = MC\M". The set M ' is compact as

the intersection of the closed set M with the compact cylinder M". The function / is

continuous on M' and hence bounded and uniformly continuous. Hence, there

is some n, 0 <n S min[<5,e], such that (t",x")eNq(t',x'), \u' — u"\^n,

(t',x',u'), (t",x",u")eM' implies |/(i',x',u') — /(í",x",m")| ;£ £. Also, let o

= min[r\,è(t,x,n)]. Then, for every (t',x')eNa(t,x), we have U(t',x')e[U(t,x)]v,

hence, if u'e U(t',x'), there is some u"e U(t,x) with \u' — u"\ ^ n, and finally

\f(t',x',u') - /(i,x,«")| = e. Thus, Q(t',x') e[ß(f,x)], for every (t',x')eN„(t,x).

This proves that Q(t,x) is an upper semicontinuous function of (t,x). The last

part of statement (xiii) is now a consequence of statements (vi) and (xii).

Remark. The statements and examples above show that properties (U) and

(Q) ate generalizations of the concept of upper semicontinuity for closed, or

closed and convex sets, respectively.

(xiv) If A is a closed subset of the ix-space Ey x E„, if U(t, x), (t, x) e A, U(t, x)

cz Em, is a variable subset of Em satisfying property (U) in A, if M denotes the

set of all (t, x, u) with (t, x)eA,ue U(t, x), if /0 is a continuous scalar function
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from M into the reals, if V(t,x) denotes the variable subset of Em+1 defined

by Oit,x) = [« = (w°, w) € Em+y | u° ^f0(t, x, u), u e Vit, x)], then Ü(t,x) satisfies

property (17).

Proof. First, let us prove that each set 0(t0,x0,o) is closed. Indeed, if

« = («0,«) is a point of accumulation of 17(r0,x0,£>), then there is a sequence

"t = ("*>"*) with uk -*u°,uk-*u, üke Oit0,x0,ô). Hence, there is a corresponding

sequence of points (i*,xk)eNs(t0,x0) with uk^f0(tk,xk,uk), ukeVitk,xk). Thus

uk e V(t0, x0,5). Since Na(t0, x0) is a compact part of the closed set A, there is a

subsequence, say still itk,xk), with rt->f, xt->x, (f, x) e JV¿(í0, x0) czA. Thus

ih, xk, uk) e M, itk, xk, uk) -* it, x, «), and M is a closed set by force of (ii). By the

continuity of f0 we have then (i,x,«)eM, «e [/(i,x), «° ^/0(f,x,«). Thus

ü = («°, u) e Oit, x), and ü e Cit0, x0,<5).

Now let « = («°,«) be a point He Ç\ »cl í7(r0, x0, <5). Thus, there is a sequence

of numbers ôk>0, ôk-*0, with «6cl Ü(t0,x0,<5t), and hence He Oit0,x0,ôk)

because these last sets are closed. Thus, there is also a sequence of points

itk,xk)eNikit0,x0)  with ueV(tk,xk), or u°^f0itk,xk,u), u e [/(it,xk). Hence,

for every w>0, we have « e t/(f0,x0,«) for every fe sufficiently large (so that

ôkSn), and, by property (C/) of f7(i,x) at it0,x0), also « 6p|,clL/(f0,x0,w)

= i/(f0,x0). Thus, «e[7(r0,x0), (t0,x0,«)eM, and by w° ̂ /0(ft,xt)«) and the

continuity off0, also «° ^/oi'o^O)")- We have proved that « = («°,u)e ¿7(i0,x0),

hence

p| cl ¿7(/0, x0, ¿) c c7(r0, x0).
a

Since the opposite inclusion relation is trivial, equality sign holds, and £7(r,x)

has property (Í7) at (i0>*o)> anc-> thus, everywhere in A. Statement (xiv) is thereby

proved.

The set £7(i, x) of statement (xiv) has not necessarily property (ß) even if we

assume that Vit, x) has property (ß) and/0(r, x, «) is convex in « for every (i, x) e A.

This can be seen by a simple example. Let A = \_—l^t^l.O^xgl] and let

V = Vit, x) be the fixed set l/(r, x) = Ey, that is, U = [- oo < u1 < -I- oo]. Then,

each set [/((, x) is closed and convex, and obviously Vit, x) possesses property (ß),

and M is the cylinder of all (f,x,«) wü (í,x)e^4, ueEy. Finally, let

/0(i,x,u) = tu1, so that/0 is continuous in M and, for every it,x)eA,f0 = tu1

is linear in u1, hence certainly convex in m1 . Now we have, for ô S 1,

¿7(í,x) = [(«0,M1)e£2| - co<u1 < + oo, tu1 Su0 < + oo],

Ü(0,x,S) = [(u°,u1)eE2\- co<u1< 4- oo,-(5|u1|gu°< 4- oo].

Consequently, co £7(0, x, §) = E2, and hence

p| clcoí7(0,x,<5) = £2,
j

while
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Ü(0,x) = [(u°,u1)eE2\ - oo<u1< + oo,u°^0].

This shows that 0(t, x) does not have property (Q) at the points (0, x) of A.

A scalar function f0(t, x, u), (t, x, u) e M, is said to be convex in u at (r0, x0) e A

if

iV

/()(*(» *0>"o)á   Z X¡f0(t0,x0,u¡),
¿ = 1

whenever
N

m0=2 X¡u¡,
i = l

where   u¡e U(t0,x0), Xi = 0, i = l,---,N, Xy + ---+XN = 1.

A scalar function f0(t,x,u), (t,x,u)eM, is said to be quasi-normally convex

in u at (i0, x0, m0) e M provided, given e > 0, there are a number 3 = ô(t0, x0, u0, e)

> 0, and a linear scalar function z(u) = r + b-u, b = (b¡,---,bm), r,by,---,bm

teal, such that

(a) /o(f, x, u) = z(u) for all (r, x) e Nô(t0, x0), u e U(t, x),

(b) fo(t,x,u) = z(u) + e for all (t,x)eNs(t0,x0),ueU(t,x), \u-u0\^S.

The scalar function f0(t, x, u) is said to be normally convex in u at (f0>xo>uo)

if, given e > 0, there are numbers <5 = ô(t0,x0,u0,s) > 0, v = v(í0,x0,u0,e) > 0, and

a linear scalar function z(u) = r + b-u as above such that (b) holds and

(a')  /o(i, x, u) = z(u) + v | « - m0 | for all (i, x) e N¡(t0, x0), u e U(t, x).

The scalar function f0(t, x, u) is said to be quasi-normally convex in u, or

normally convex in u, if it has these properties at every (r0, x0, w0) e M.

For the case where U = U(t, x) is the fixed set U = Em, the following statement

gives a useful characterization of the functions f0 which are normally convex in «.

(xv) If A is closed, and f0(t,x,u) is continuous on M = A x Em, then f0 is

normally convex in u if and only if /0 is convex in « at every (r0, x0) e A, and

for no points (t0,x0)eA, u0,UyeEm, «!#0, the relation holds/0(i0,x0,u0)

= 2~1[f0(t0,x0,u0 + Xuy) +/o(fo>Xo>"o - ¿"i)] for all X = 0.

This statement was proved in [9a] and [10]. In particular, if for every

(t,x)eA, f0(t,x,u) is convex in u and /0(í,x,m)/|m| -» + oo, as |m|-> + oo,

then certainly f0(t, x, u) is normally convex in u.

(xvi) If A is a closed subset of the fx-space Ey xE„, if U(t,x), (r,x)e.d,

U(t, x) c= Em, is a variable subset of Em satisfying property (Q) in A, if M denotes

the set of all (i,x,u) with (t,x)eA, ue U(t,x), if /0 is a continuous function

from M into the reals, which is convex in u for every (t, x) e A, if either (a) the

sets fJ(i, x) are all contained in a fixed solid sphere S of Em, or (/?) the function

f0(t,x,u) is quasi-normally convex in u at every (f0>Xo>uo) °f M, then the set

0(t,x) of statement (xiv) has property (Q) in A.

Proof. Let m = (m°,m) be a point ü= QÄclco 0(t0,x0,ö). Then there is a

sequence [5k] of numbers ôk>0, ôk-*0, with  üeclcoÜ{t0,x0,5k). Hence,
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there is a sequence of pairs of points ttkl, ük2eEm+í and of points vk of the seg-

ment iükyük2)eEm+1, such that

vk-+u,       ùky,ùk2e Oit0,x0,5k),

vk = aküky + il-ak)ük2,       0áa*ál»       fc=»l,2, — .

We shall use the notation vk = ivk,vk), ü = iu°,u), ükj = iukJ,ukJ),j = 1,2. Then

we have

vk°^u°, vk-*u, ukl,uk2eVit0,x0,ôk),

i>° = «*"°i + (1 - a>°2 >       vk = ¥u + (1 - a*)"*2 •

Consequently, there are points such that

(fjti'Xfti)' ('t2'Xt2)eNA|í(í0,x0) ezz A,

t*kiGUitky,xky),       uk2eVitk2,xk2).

The sequence [a*] is bounded, hence there is a convergent subsequence, say

still ak, so that a,.-*a for some O^a^l.

For every « > 0 and k sufficiently large (so that ôk S n), we have

ukl,uk2eVit0,x0,n), hence

uky,uk2ecl co U"(i0,x0,n).

As a consequence

«* = a*"*i + (1 - a»)«« eclco L/(f0,x0,w)

for all /c sufficiently large. As fc->oo, we obtain weclcol/(r0,x0, n). By the

property (ß), finally

(1) ueP|7clcol/(i0,x0,M) = l/(r0,x0).

Assume first that condition (a) holds. Then both sequences [ukf\, \ukf\ are

bounded, and hence there is a subsequence, say still[ukf], [ukf], for which both

ukl and uk2 are convergent in Em, say uki-*Uy, uk2-+u2, Uy,u2eEm. For such

a subsequence, we have

$ = a*"ti + (1 - a>°2 ^ akf0itkl,xky,uky) + (1 - ak)f0itk2,xk2,uk2),

vk = «Ai+il-^Kz,

0*i.*fci»«*i), itk2,xk2,uk2)eM,

where M is closed. By taking limits as fc -* oo, we have

«° = a/o0o»^o."i) + (1 - a)/o(io.^o."2).

m = <x«i + (1 — oc)u2,

(i0,x0,Mi), it0,x0,u2)eM.
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By the convexity of/0 in u at (t0,x0) we have now

"° ^/oOo>*o,<x"i + (1 - «)"2) =/o(<o> *<)>")•

This proves that ü = (u°,u)e 0(t0,x0), hence

(2) fl cl co O(t0, x0,ô)œ O(t0, x0).
s

Since the opposite inclusion is trivial, = sign holds in this relation, and U(t,x)

has property (Q) at (r0,x0). Since (t0,x0)eA is arbitrary, Ü(t,x) has property

(ß) in A.

Assume now that condition (ß) holds. As stated by relation (1) above,

ueU(t0,x0), hence (t0,x0,u)eM. By the quasi-normal convexity of/0 in u at

(t0,x0,u) we deduce the existence of a number ô > 0 and of a linear scalar func-

tion z(v) = r + b-v such that (a)/0(f, x, v) ^ z(v) for all (i, x) e Nô(t0, x0), v e U(t,x)

and (b) f0(t, x, v) = z(v) + s for all (t, x) e Nó(t0, x0), ve U(t, x), | « — v \ S S.

By combining (a) and (b) we have then (c)z(u) Í3/0(r0,x0,ií) = z(u) + e.

Now we have vk = akukl + (1 — ak)uk2 for some 0 = ak :g 1, and vk-*u,

(tkpXkJ)-*(to,x0), J = 1,2. Thus, for k sufficiently large, (tkJ, xkj) e Ns(t0, x0),

j= 1,2, and, by property (a),

f°   = ^Jo(tkuXkl,ukl)-Y(l-ak)f0(tk2,xk2,uk2)

= «*z(«m) 4- (1 - cck)z(uk2)

= z(akukl + (1- ctk)uk2) = z(vk).

As fc-> 4- oo, we have then u° = z(u), and finally by (b) above, u° =f0(t0,x0,u)

— s, where e>0 is arbitrary. We conclude that u° ^f0(t0,x0,u), with

wel/(i0,x0). Thus ü = (u°,u)e 0(t0,x0), and again we have proved inclusion

(2). The same reasoning above yields that 0(t,x) has property (ß) in A.

(xvii) If A is a closed subset of the ix-space Ey x E„, if U(t,x), (t,x)eA,

is a variable subset of Em satisfying property (If) in A, if M denotes the set of all

(í,x,m) with (t,x)eA, ue U(t,x), if /= (f0,f) is a continuous function from M

into the z-space En+l, z = (z°,z), if Q(t,x)czEn, Q(t,x) c E„+1 are the sets

ß(r,x)=/(r,x,[/(i,x)) = [ze£„|z=/(í,x,H), mgí7(í,x)],

ß(i,x) = [z = (z0,z)e£„+1|z0^/0(í,x,u),z=/(í,x,u),Mel/(í,x)],

and (a) for every (i,x)eA, Q(t,x) is a convex subset of E„; (b) Q(t,x) has prop-

erty (ß) in A; (c) for every (i,x)e^4, z =f(t,x,u) is a 1-1 map from U(t,x)

onto ß(f,x) with a continuous inverse u =f~i(t,x,z), zeQ(t,x); (d) the real

valued function F0(t,x,z) =f0(t,x,f~1(t,x,z)), (t,x)eA, zeQ(t,x), is continu-

ous in the set M' of all (f,x,z) with (t,x)eA,ze Q(t,x), and F0(t,x,z) is convex

in z and also quasi-normally convex, then the set ß(i,x) is convex and has prop-

erty (ß) in A.
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Proof. Indeed, under the specific hypotheses above, the set Q(t,x) can be

represented as

Qit,x) = [z = (z°,z)eE„+l\z° = F0(t,x,z), zeQ(t,x)],

and thus ß is generated from ß(f,x) exactly as V is generated from V(t,x).

By statement (xvi) above we conclude that ß(i, x) has property (ß) in A.

Remark. The condition that / is a homeomorphism between V and ß is

certainly verified in all free problems, where m = n, f=u, that is, /¡ = u¡,

i = 1,2, ••-,« (see §11 below). In this situation then we have F0(t,x,u) =f0(t,x,u),

and the convexity of f0 in u implies the convexity of F0 in u. We shall need this

remark, and the more general statement (xvi) in §11.

5. Closure theorems. We shall use here the notations of §§2 and 3. In particular,

a trajectory x(t) is defined as in §3.

Closure Theorem I. Let Abe a closed subset ofEy x E„, let V(t,x) be a closed

subset of Emfor every it,x)eA, let f(t,x,u) = (fy,---,f„) be a continuous vector

function on M into E„, and let Q(t,x) =f(t,x, V(t,x)) be a closed convex subset of

E„for every (t,x)eA. Assume that V(t,x) has property (V) in A, and that Q(t,x)

has property (Q) in A. Let xk(t), tlk S t S t2k, k = 1,2, ••-, be a sequence of trajec-

tories, which is convergent in the metric p toward an absolutely continuous

function x(t), ty S t S t2. Then x(t) is a trajectory.

Remark. If we assume that V(t, x) is compact for every (t, x) e A, and that

V(t,x) is an upper semicontinuous function of (f,x) in A, then by statement (xiii),

the set ß(r,x) has the same property, V(t,x) has property (V), Q(t, x) has prop-

erty (ß) > and Closure Theorem I reduces to one of A. F. Filippov [2] (not ex-

plicitly stated in [2] but contained in the proof of his existence theorem for the

Pontryagin problem with V(t, x) always compact).

Proof of Closure Theorem I. The vector functions

eP(t) = x'(t),    tyStSh,

<t>kit) = x'k(t) = f(t, xk(t), uk(t)),      tikStSt2k,      k - 1,2,...,

are defined almost everywhere and are L-integrable. We have to prove that

(i,x(r))e.4 for every tySt St2, and that there is a measurable control function

u(t), tyStSt2, such that

(2) <KO = x'(í)=/0,*(0,"(»-)),       u(í)6l7(í,x(0),

for almost all te\ty,tf\.

First, pixk, x) -* 0 as k-> co; hence, tik-*ty, t2k-+t2. lit eity,tf),or ty < t < t2,

then tyk < t < t2k for all k sufficiently large and (f, xt(i)) e A. Since x..(í)-»x(í)

as k -> oo and A is closed, we conclude that (f, x(r)) e A for every tL < t < t2.
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Since x(r) is continuous, and hence continuous at í¡, and i2, we conclude that

(t,x(t))eA for every tx g r g t2.

For almost all te[ty,t2] the derivative x'(r) exists and is finite. Let f0 be such

a point with tt < t0 < t2. Then there is a a > 0 with ty < t0 - a < t0 + er < t2,

and, for some fc0 and all fc = fc0, also tlk < t0 — a < t0 + a < t2k. Let x0 = x(f0).

We have xk(r)-+x(r) uniformly in [t0 — a, t0 + a] and all functions x(t),xk(t)

are continuous in the same interval. Thus, they are equicontinuous in

[/0 — a, t0 + u]. Given s > 0, there is a ô > 0 such that t, t' e [t0 — a, t0 -Y a],

| r — t' | g 5, fc^fc0, implies

\x(t)-x(t')\ tit/2,       \xk(t)-xk(t')\^Eß.

We can assume 0 < <5 <a, ö = e. For any h, 0 < h — ô, let us consider the

averages

mh = n_1J    cp(t0 + s)ds   = h~l[x(t0 + h) - x(i„)],

(3)

% = h~J0 <Wo + s)ds = /i_1[xk(/0 + h) - xk(tj].

Given n > 0 arbitrary, we can fix/j,0<ñ = ¿<o-,so small that

(4) \mh-cP(t0)\ = n.

Having so fixed h, let us take fc, _ fc0 so large that

(5) I«» - m*| = n, | x»(r0) - *Oo) | ^ e/2

for all fc ̂  fc,. This is possible since xk(t)^>x(t) as fc-> co both at t = t0 and

t = f0 4- h. Finally, for O^s^h,

| **('o + s) - x(t0) I   g  I xk(t0 + s) - xk(t0) I 4-1 x*(í0) - x(í0) |

^ e/2 + e/2 = e,

|(r0 + s)-t0| = « = <5^E,

/(f0 + s, xk(t0 + s), uk(t0 + s)) e ß(fo + s, xk(to 4- s)).

Hence, by the definition of ß(i0,x0,2£), also

Wo +s) = f(t0 + s, xk(t0 + s), uk(t0 + s)) e Q(t0, x0,2e).

The second integral relation (3) shows that we have also

infecí co ß(r0,x0,2£),
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since the latter is a closed convex set. Finally, by relations (4) and (5), we deduce

| <K'o) - m„k | = | <K»o) - »•/, | + | ™h - mhk \S2t¡,

and hence

epit0)e[clcoQit0,x0,2s)]2,.

Here n > 0 is an arbitrary number, and the set in brackets is closed. Hence,

0(io)eclcoß(/o,xo,2E),

and this relation holds for every £ > 0. By property (ß) we have

«p(»o)e P| clcoß(r0,x0,2E) = ß(r0,x0),
£

where x0 = x(r0), and Qit0,x0) =/(r0,x0, (7(r0,x0)). This relation implies that

there are points ü = üit0)e l/(r0,x0) such that

(6) <Pit0)=fito,xit0),ûit0)).

This holds for almost all r0e[/,,f2], that is, for all t of a measurable set I

ezz [fi,i2] with meas I = t2 — ty. If we take I0 = [ii,r2] — I, then meas I0 = 0.

Hence, there is at least one function w(0> defined almost everywhere in [ty,tf\,

for which relation (6) holds a.e. in [<i,r2]. We have to prove that there is at

least one such function which is measurable. For every tel, let P(t) denote

the set

Pit) = [u\ue Vit,x(0),epit) =/(i,x(0,u)] c Vit,x(0) cEm.

We have proved that P(i) is not empty.

For every integer X = 1,2,'—, there is a closed subset Cx of I, Cx <= I ezz [ty, tf],

with measCA > max[0, r2 — ty — 1/Xj, such that epit) is continuous on X. Let

Wk be the set

Wx = [(t,u)\teCx, ueP(t)~\ezzEyXEm.

Let us prove that the set Wx is closed. Indeed, if (t, it) is a point of accumula-

tion of Wx, then there is a sequence (rs,ws), s = 1,2,••», with (ts,us)eWx,

rs->f, us->«. Then tseCx and teCx since Cx is closed. Also x(rs) ->■ x(i),

<Pits)->(p(i), and since (ts,x(ts))eA, ep(ts) =f(ts,x(ts),us), (is,x(rs), us)e M,

we have also (f,x(f))e^4, (i,x(("),«)eM, because A and M are closed, and

ep(i)=f(t,x(t),u) because/is continuous. Thus, üeP(t), and (t,x)eWx.

For every integer 1 let WXI, P,(t), be the sets

Wu  =  [it,u)\it,u)eWx,\u\Sl']^WxezzEyXEm,

P,(0 = [u | u e P(0, | « | S t] = P(0 «= C7(í, x(0) c £m,

Ql    =   [' | (', M) 6 WS.I f°r some u] ezz Cx ezz I ezz [ti, tf].
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Obviously, Wu is compact, and so is Cu as its projection on the i-axis. Also,

l^JiCu = CA, and   WM is the set of all (t, u) with  t e Cxl, u e P¡(t). Thus, for

teCu,Pi(t) is a compact subset of U(t,x(t)).

For / e Cu, the set P,(t) is the nonempty compact subset of all

u = (ui,--,um)eU(t,x(t))

with f(t,x(t),u) = cp(t), and |u| _/. As in Filippov's argument let P, be the

subset of P,(r) with u1 minimum, letP2be the subset of P, with u2 minimum, ••-,

let Pm be the subset of Pm_, with um minimum. Then Pm is a single point

u = u(t)eU(t,x(t)) with u{t) = {u1,--,um), teCu, |u(r)|^/, and f(t,x(t),u(t))

= cp(t). Let us prove that u(t), t e Cu, is measurable. We shall prove this by in-

duction on the coordinates. Let us assume that «'(i), •••,ws_1(t) have been proved

to be measurable on Cxl and let us prove that us(t) is measurable. For s = 1 nothing

is assumed, and the argument below proves that u%(t) is measurable. For every

integer j there are closed subsets Cxlj of Cxl with CxljczCxl, CUJ aCUJ + 1,

meas CxlJ0 >max [0, meas Cu— 1//J, such that u^í),■■•,iis_1(i) are continuous

on Cxij. The function cp(t) is already continuous on Cx and hence cp(t) is continuous

on every set CXI and CxlJ. Let us prove that u\t) is measurable on Cxij. We have

only to prove that, for every real a, the set of all t e CXIJ with us(t) 5¡ a is closed.

Suppose that this is not the case. Then there is a sequence of points tk e C)Aj with

u\tk) = a, tk->ieCxlJ, u\t)> a. Then cp(tk)->cp(i), u"(tk)-*■ u"(t) as fc->oo,

ot = l,--,s— 1. Since |wp(it)| g / for all k and ß = s,s + l,---,m, we can select a

subsequence, say still [tk] such that uß(tk)->üß as fc->oo, ß = s,s + 1,•••,»!,

for some real numbers ¿/. Then it -» i, x(it) -* x(f), u(tk) -* ü, where

fi = (M1(f)>-,u»-x(f), ü\---,üm).

Then, given any number i/ > 0, we have

a(y e í/(ífc, x(/t)) c cl U(t, x(t), n)

for all fc sufficiently large, and, as fc -> co, also

¿/ecll/(/,x(i),f/).

By property ((/) we have

üef>[nclU(i,x(i),n)=U(t,x(i)y

On the other hand cp(tk) =f(tk,x(tk),u(tk)), u\tk)^a, yield as k-*<x>,

(1) 4>(t)=f(t,x(t),u),       ü%a,

while ie Cn implies

(8) ^(0 = f(f, x(i), u(i)),       u\i) > a.
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Relations (7) and (8) are contradictory because of the property of minimum

with which u\i) has been chosen. Thus u'(0 is measurable on Cxlj for every j,

and then ws(r) is also measurable on Cxl. By induction argument, all components

ux(i), •••,Mm(0 of u(i) are measurable on Cu, hence u(i) is measurable on Cxl.

Since ILC^ = Cx,measCx>measI—l¡X, we conclude that there exists a function

m(í) which is measurable on every set Cx and hence on I, with meas I = t2 — r,.

Thus, u(i) is defined a.e. on [ty,t2],uit)e L/(r, x(r)), and/(r, x(r), u(r)) = <p(r) a.e. on

[fi,f2]» Closure   Theorem I is thereby proved.

Let us denote by y = (x1, ••-,xs) the s-vector made up of certain components,

say x1, ••*»»**• 0 S s S n, of x = (x1, •■■.x"), and by z the complementary (« — s)-

vectors z = (xs+1,■■-,xn) of x, so that x = (y,z). Let us assume that fit,y,u)

depends only on the coordinates x1, •••,xsof x. If x(r), t¡ S t S t2, is any vector

function, we shall denote by x(i) = [yit), z(i)] the corresponding decomposition

of x(f) in its coordinates yit) = (x1,»"»**) and z(r) = (xs+1,.",x").

We shall denote by A0 a closed subset of points (i.x'.—.x*), that is, a closed

subset of the ry-space Ft x £s, and let A = A0 x E„_s. Thus, A is a closed subset

of the fx-space £x x E„.

Closure Theorem II. Let A0 be a closed subset of the ty-space F, x Es, and

then A = A0 x F„_s is a closed subset of the tx-space Ey x F„. Let Vit,y) denote

a closed subset of Emfor every it, y)eA0, let M0 be the set of all (f, y, u)eF1+s+m

with it,y)eA0, ueVit,y), and let fit,y,u) = ify,---,f„) be a continuous) vector

function from M0 into E„. Let Qit,y)=fit,y,Vit,y)) be a closed convex subset

of E„for every it,y)eA0. Assume that l/(f,y) has property (Í7) in A0 and that

Qit,y) has property (ß) in A0. Let xt(i), tik S t S t2k, k = 1,2, ••■, be a sequence

of trajectories, xkit)=iykit), zfit)), for which we assume that the s-vector ykii)

converges in the p-metric toward an AC vector function yit), t, S t S t2, and

that the in — s)-vector zkit) converges pointwise for almost all r, < í < t2, toward

a vector z(i) which admits of a decomposition z(i) = Z(r) + S{t) where Z(<) is an

AC vector function in [íi,í2]> aT,d S'(0 = 0 a.e. in [ty,tf] ithat is, Sit) is a sin-

gular function). Then, the AC vector X(r) = [yit), ZitJ],ty£t£t2,is a trajec-

tory.

Remark. For s = n, this theorem reduces to Closure Theorem I.

Proof of Closure Theorem II. The vector functions

ePit) = X'it) = iy'it),Z'it)),        tyStSh,
(9)

4>kit) = xkit) = iy'kit),zk\t)) =fit,ykit),ukit)),       tlkStS t2k,   k = 1,2,-,

are defined almost everywhere and are L-integrable. We have to prove that

[i, yit), Z(t)] e A for every ii StSt2, and that there is a measurable control

function w(i), tyStS t2, such that



1966] EXISTENCE THEOREMS. I 387

-KO = x'{t) = (y'(t),Z'(t)) =f(t,y(t),u(t)),
(10)

u(t)eU(t,y(t)),

for almost all te[t{,t2].

First, p(yk,y)-*0 as fc->-0; hence tlk-> tu t2k-+ t2. If te(ty,t2), or i, < t < t2,

then tik < t < t2k for all fc sufficiently large, and (t,yk(t))eA0. Since yk(t)-*y(t)

as fc-> oo and /10 is closed, we conclude that (r,y(r))ey40 for every t¡ <t < t2,

and finally (t,y(t),Z(t))eA0 x £„_s, or (t,X(t))eA, ty^t = t2.

For almost all t e [ty,t2] the derivative X'(t) = [y'(t),Z'(t)] exists and is finite,

S'(t) exists and S'(0 = 0, and zk(t) -> z(t). Let i0 be such a point with /, < t0 < t2.

Then there is a o- > 0 with ty <t0 — o <t0 + cr <t2, and, for some fc0 and all

fc ̂  k0, also iu < r0 - o- < i0 4- o- < r2t. Let x0 = Z(f0) = (y0>Z0), or y0 = y(r0),

Z0 = Z(r0). Let z0 = z(i0), S0 = S(t0). We have S'(fo) = 0, hence z'(t0) exists and

z'(t0) = Z'(t0). Also, we have z¿(í0) -* z(t0).

We have y¿(í)-♦ y(t) uniformly in [r0 — cr, t0 + d], and all functions y(t),yk(t)

are continuous in the same interval. Thus, they are equicontinuous in

[t0 — o, t0 -Y a] . Given e > 0, there is a ô > 0 such that t,t'e[t0 — cr,t0 + a],

11 — t'\ — ô, k ^ fc0, implies

\y(t)-y(t')\Se/2,       \yk(t) - yk(t')\ ^ e/2.

We can assume 0<<5<<r,<5 = E. For any h, 0 < h 2¡ ô, let us consider the averages

m„   = h~l \ cp(t0 + s)ds = «_1[A:(í0 + /i)-X(í0)],
(11) Jo

»Ut = h'1 I    Wo 4- s)ds = h~l[xk(t0 + h)- xk(t0)],

where X = (y,Z),xk = (yk,zk).

Given >] > 0 arbitrary, we can fix h, 0 <h^d <a, so small that

| mh - cp(t0) \i%n,

\S(t0 + h)-S(t0)\<nh/4.

This   is   possible   since   h~l jh0 cp(t0 + s)ds -* cp(t0)   and   [S(t0 + h) - S^oflh'1

-+ 0 as h -* 0 + . Also, we can choose h  in such a way that zk(t0 + h) -» z(i0 + «)

as fc-* + oo. This is possible since zt(t)->z(i) for almost all /, < t < t2.

Having so fixed h, let us take fc, _ fc0 so large that

| yk(t0) - Ah) | > | AC o + *) - >(to + A) | á min [qÄ/4, e/2] ,

I Wo) - z(io) | . | Wo + Ä) - z(t0 + h)\ á ijfc/8.

This is possible since y4(r) -» y(t), zt(i)->z(r) both at í = í0 and t = f0 + h.

Then we have
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I «_1[y,(f0 + h) - ykit0)] - h-'[yit0 + h)- y(í0)] |

S Ih-^ito + V-yito + hftl + lh-^y^-yito^l

S h~\nh/4) + n_1(n«/4) = w/2.

Analogously, since z = Z + S, we have

I h''Xz.ito + h) - zkitff] - h-1 [Z(í0 + h) - Z(í0)] I

= lA-^z-Xío + h) - zkit0)] - h^lzito + h)- z(í0)] + tirito + h)-S it0))]\

S   | h-'faito + h)- z(í0 + h)]\ + | h-l[zkit0) - z(f0)] | + | h-x[Sit0 + h)-Sit0)]\

S   h~\nh/el) + h-\nhß) + h~\nh/4) = n/2.

Finally, we have

\mhk-m„\= I h'1 [xkit0 + h)- xkit0)] - h~' [X(r0 + h) - Xit0)] |

=  | h~*[ykit0 + h)- ykit0)] - h- » [y(i0 + h) - y(r0Y] |

+  | h-x[zkit0 + h)- zkit0f] - h~l[Zit0 + h) - Z(i0)] |

S n/2 + r\/2 = n.

We conclude that, for the chosen value of h, 0 <h So <er, and every k = k,,

we have

(12) \mh-epit0)\Sn, \mhk-mh\Sn, | yt(r0) - y(i0) | S e/2.

For 0 S s S h we have now

| y ti* o + s) - y(r0) | S | ykit0 + s)- ykit0) | 4- | yk00) - yit0) \Ss/2 + e/2 = E,

\it0 + s)-t0\ShSSSe,

/(«o + s, ykit0 + s), ukit0 + s)) e Qit0 + s, ykit0 + s)).

Hence, by definition of ß(f0,yo,2£), also

4>kito + s) = /(i0 + s, ykit0 + s), uk(t0 + s)) e Q(t0, y0,2e).

The second integral relation (11) shows that we have also

mM6clcoß(r0,yo>2£)

since the latter is a closed convex set. Finally, by relations (12), we deduce

| </>Oo) - »»** | ^ | <Pito) -mh\ + \mh-mhk\S2i],

and hence
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c6(i0)e[clcoß(i0,y0,2£)]2,.

Here n > 0 is an arbitrary number, and the set in brackets is closed. Hence

cp(t0)eel co Q(t0,y0,2s),

and this relation holds for every s > 0. By property (ß) we have

cP(t0)e f] clcoQ(t0,y0,2e) = Q(t0,y0),
£

where y0 = y(to), and Q(t0,y0)=f(t0,y0,lf(t0,yQ)). This relation implies that

there are points ü = ü(t0)e U(t0,y0) such that

<K*o) =f(to,y(to),û(t0)).

This holds for almost all i0 e [Jt,, r2]. Hence, there is at least one function ü(f),

defined a.e. in [f,,^], for which relation (10) holds a.e. in [ti,r2]. We have to

prove that there is at least one such function which is measurable. The proof

is exactly as the one for Closure Theorem I, where we write y,yk instead of x,xk,

and will not be repeated here. Closure Theorem II is thereby proved.

6. Notations for Lagrange problems with unilateral constraints. Let A be a closed

set of the (i,x)-space £, x En, and, for every (t,x)eA, let U(t,x) be a given

subset of Em. Let f(t,x,u), i = 0,1, •••,«, be real-valued continuous functions in

the set M czEy x E,,x Em of all (i, x, u) with u e U(t, x), (t, x) e A. Let / and /

be the «-dim and (n + l)-dim vector functions

f=(fi> '">fn)>        f = (/o>/ij ■">/«)•

As usual we say that u(t) = (uí,---,um),x(i) = (xí,---,x'>), t¡ <t<t2, is an ad-

missible pair provided (a) i/(f) is measurable in [f,,i2]; (b) x(t) is AC in [f,^],

(c) [r,x(r)]e,4 for every te[ty,t2]; (d) u(i)eU(t,x(t)) a.e. in [ty,t2];

(e)f¡(t,x(t), «(t))isL-integrablein [tj,t2], i = 0,1,■■■,n,anddx1 ldt=f¡(t,x(t), u(t),

i= l,-,n, a.e. in [Í!,t2]. Thus, by introducing the auxiliary variable x°, the

differential equation dx°/dt =f0(t,x(t),u(t)), the boundary condition x°(ty) = 0,

the vector x = (x°,x1,---,x"), and the set (Â = A x Ey czE„+2), the pair

[u(t), x(t)] is admissible if and only if the pair [w(i), x(t)] is admissible according

to the definitions of no. 2 for the set Â of the ix-space Ey xEn+1, the sets

U(t,x) czEm, and the vector function f(t,x,u).

If [u(t), x(t)] is admissible, then u(t) is said to be an admissible control func-

tion, x(r) a trajectory, and

(1) x°(t2) = I[x, u] = f nf0(t, x(t), u(t)) dt
Jty

the cost functional.

A class Q of admissible pairs x(t), u(t) is said to be complete if for every sequence

■W)>"*(0> tlk ^ t ^ t2k, k = 1,2, •••, of admissible pairs all in Q, with the sequence
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[xfXí)] converging in the metric p toward a vector function x(r) which is known

to be a trajectory generated by some admissible control function u(t), then [x(i),w(0]

belongs to fi.

Complete classes fi are often defined in terms of boundary conditions. For

instance, if B is a given closed set of points ity,Xy,t2,xf) of the (2n + 2)-dim

Euclidean space F2n + 2, we may define fi as the class of all admissible pairs x(i),

u(i) satisfying

(2) iti,xity),t2,xit2))eB.

Then fi is a complete class in the sense mentioned above, since B is, by hypothesis,

a closed set.

We shall denote by 5, the projection of B on the (r,x.)-space £B+1, that is,

By is the set of all points (r1,x1)e£„+1 for ity,Xy,t2,xf)eB. Analogously, we

denote by B2 the projection of B on the (r2,x2)-space £„+.. Obviously, B ezz B¡

x B2, and Bt x B2 may be larger than B.

It is often requested that each trajectory x(r) of a class fi as above possesses at

least one point (r*, x(r*)) on a given compact subset P of A. Such a condition is

certainly satisfied if B is compact, or at least if B is closed and By, or B2, is compact.

For the analysis of problems of Lagrange with unilateral constraints certain

variable sets have to be taken into consideration, namely, the set Í7(í,x) above

and the sets

Qit, x)= [z | z =/(*, x, «), u e Vit, x)] =/[*, x, U(t, x)] c £„,

Qit, x)= [f | f - fit, x, u), u e Vit, x)] = f[t, x, Vit, x)]

= [z = (z°,z)|z°=/0(r,x,w), z=fit,x,u),ueVit,x)] c£1+l,

ß(f,x) = [z = iz°,z)\z°^f0it,x,u), z=fit,x,u),ueVit,x)] ezEn+l.

The sets ß and Q are well known and have been considered by a number of authors

(for instance, A. F. Filippov [2]). The set Q(t, x) is being considered here and in

[lc] for the first time. By considering this set, instead of ß or Q, we prove

in §§ 7, 9 Theorems I rand II which include a number of existence theorems

for both problems of optimal control and the calculus of variations.

7. An existence theorem for Lagrange problems with unilateral constraints.

Existence Theorem I. Let A be a compact subset of the tx-space Fx x £„,

and for every {t,x)eA let V{t,x) be a closed subset of the u-space Em. Let /(r,x,u)

= (/o>/i> "•>/,.) =(/o>/) be a continuous vector function on the set M ofall (f,x, u)

with it,x)eA, ueVit,x). Assume that, for every it,x)eA the set

Qit,x) = [z=iz°,z)\z°^f0it,x,u),z=fit,x,u),ue Vit,x)] ezzE„+1

is convex. Assume that l/(r,x) satisfies property ([/) in A, and ß(r,x) satisfies
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property (Q) in A. Assume that there is a continuous scalar function <5(0, 0 ^ Ç

< + oo, with $(£)/£-» 4- co as ( -> + oo, such that f0(t,x,u) = 0(|«|) for all

(t, x, u) e M, and that there are constants C,D = 0 such that \f(t, x,u)\z%C-YD\u\

for all (t,x,u)eM. Then the cost functional I[x,u]= (¡?f0(t,x,u)dt has an

absolute minimum in any nonempty complete class Q of admissible pairs x(t), u(t).

If A is not compact, but closed and contained in a slab [f0 ^ t iS T, x e En], t0, T

finite, then Theorem I still holds if, in addition, we know that (a)

xlfy + -+x"fn£F[\x\2 + l]

for all (i, x, u) e M and some constant F = 0, and (b) every trajectory in Q contains

at least one point (t*,x(t*)) on a given compact subset P of A (t* may depend

on x(0). If A is not compact, nor contained in a slab as above, but A is closed,

then Theorem I still holds if hypotheses (a), (b) are satisfied, and (c)/0(í,x,m)

_ p > 0 for all (t, x,u)eM with 111 = R, for convenient constants p > 0, R = 0.

Finally condition (a) can be replaced in either case by the hypotheses: (a') There

are constants G > 0, H = 0 such that f0(t,x,u)¡tG \f(t,x,u) | for all (i,x,u) e M

with | x | = H. Furthermore, when A is not compact but closed, both conditions

/0 ;> d>(| u |), |/| ^ C + D\ u I can be replaced by the following condition: (y) for

every compact subset A0 of A there is a function <P0 as above and constants

C0, L>o = 0 such that /0 = <50(|u|), |/| = C0 + D0|«| for all (t,x,u)eM with

(i,x)e^40 (where <1>0, c0, D0 may depend on A0).

Proof of Existence Theorem I. We have <D(0 = — M0 for some number

Mo = 0, hence 0>(C) + M0 = 0 for all C = 0, and f0(t,x,u) + M0 ^ 0 for all

(f, x, u)eM. LetD be the diameter of A. Then for every pair x(i), u(t), i, g í _ f2,

of Í2 we have

(1) f[x, u] = f0dt = 0(| « |)di ^ - DM0 > - oo .

Let i = Inf I[x, u], where Inf is taken for all pairs (x, u)eQ. Then i is finite.

Let xk(t), uk(t), ilk = t — t2k, k=l, 2, ■••, be a sequence of admissible pairs all

in Í!, such that I[xk, uk] -» i as fc -> oo. We may assume

i ^ /[x^iij = f0(t,xk(t),uk(t))dt = i 4- fc-1 ^ i + 1,        fc = 1,2, ••• .
Jin

Since ,4 is compact, the sequence [xk(t)] is equibounded.

Let us prove that the AC vector functions xk(t), tlk^titt2k, fc=l,2,•••,

are equiabsolutely continuous. Let £ > 0 be any given number, and let

o- = 2_1e(DM0 + \i\ + 1)_1. LetAT>0be a number such that 4>(z)/z>l/o-

for z^N. Let £ be any measurable subset of [tik,t2k] with meas £ < i/ = £/2AT.

Let Ey be the subset of all t e E where uk(t) is finite and I uk(t) I ̂  N, and let



392 LAMBERTO CESARI [September

E2 = E-Ey. Then |u,(r)| S N in Eu and <6(|Mjt|)/|Mt| ^ I/o-, or uk S erd>(\uk\),

a.e. in £2. Hence

jjukit)\dt   =   (f +j)\Ukit)\dt

S N meas £t + er   i   <D(| wt(í) |)di

SNmeasE + er [0(| ut(i) |) + M0]dr

(2) fto
£ AT^ + o- I     [0(|ii»(0|) + Mo]í/í

J*i*

/•<2k

S Nn + er        [f0it,xkit),ukit)) +Mf\dt
Jtiu

S Nn + eriDM0 + \i\ + l)

S s/2 + a/2 = £.

This proves that the vector functions ufft), tik S t S t2k, k= 1,2, •••, are equi-

absolutely integrable. From here we deduce

ji\ x'kt) | dt = j  \f(t, xkit), ukit)) I dt S j [A + B | ukit) \]dt

S AmeasE + B       \ukit)\dt,

and  this  proves  the  equiabsolute  continuity  of the  vector functions  xt(r),

tikStSt2k, fc-=l,2,-.

Now let us consider the sequence of AC scalar functions x° (/) defined by

(3) x°(i) =       f0ix,xkÍT),ukÍT))dt,       tykStSt2k,
Jtik

with

xkitlk) = 0, x£it2k) = I[xk,uk]^>i   as   k-» + oo,

iSxîit^Si + k'1 Si + l-

If ukit)    =   foit, xkit), ukit)),   tlkSt St2k,   then   we   define    the   functions

M¡T(0» utit) as follows:

«7/(0 = - M0,      u\it) = w°(0 + M0,    tlkStSt2k.

Then «,7(0 = 0, «7?"(0 ̂ 0 a.e. in [tlk,t2k], and we define
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yk(t)=   f   u (t)dt,      yk(t) =   Í   u+(t)dt,   iu= t = t2k,k = 1,2,...
»/ilk Jilk

Since — M0 = w,~(r) ̂  0, we have — M0(t — tlk) = yk(t) — 0, and the func-

tions yk(t) are monotone nonincreasing and uniformly Lipschitzian with constant

M0. On the other hand, the functions yk (t) ate nonnegative, monotone nonde-

creasing, and uniformly bounded since

o ú yk(t2k) = (yt(hk) + yk~(t2k)) - yï(t2t) = **° (hù - yïihù

=  i -Y 1 -Y M0(t2k - tlk) g DM0 + \i\ + 1.

By Ascoli's theorem we first extract a sequence for which xk(t),yk (t), tlk :£ t

^ t2k, converges in the metric p toward a continuous vector function x(r), Y~(t),

ty i% t z% t2. Hete x(t) is ^4C because of the equiabsolute continuity of the vector

functions xk(t), and Y~(t).= -M0(t-ty), Y~(tl) = 0. Then we apply Helly's

theorem to the sequence yk(t) and we perform a successive extraction so that the

corresponding sequence of the yk(t) converges for every ty <t <t2 toward a

function Yo(t),ty<t<t2, which is nonnegative, monotone nondecreasing,

but not necessarily continuous. We define Fo+(0 at r. by taking Y¿(t,) = 0, and at i2

by continuity at i2, because of its monotoneity. Thus 0 ^ Fo+(0 =i DM0 + i 4-1, t.

^ t é t2.

Finally, Yq(í) admits of a unique decomposition Y0+(r) = Y+(t) + Z(t),

tl = t^ t2, with Y+(ty) = 0, where both y+(r),Z(t) are nonnegative monotone,

nondecreasing, where Y+(t) is AC, and Z'(r) = 0 a.e. in [r.,^]. Finally, if Y(t)

= Y~(t) + Y+(t), we see that xk(t), tyt%ti% t2, converges for all ty < t < t2

toward Y(t) + Z(t), where Y(r) is a (scalar) AC function, -DM0 g Y(t) g DM0

+ | i\ + 1, y(ii) = 0. Let us prove that Y(t2) = i. For the subsequence [fc] we

have extracted last, we have t2k^t2, xk(t2k)^i, xk(t2k) = yk (t2k) + yk (t2k).

If t2 is any point, t, < t2 < t2, i2 as close as we want to f2, then f2 < t2k for all fc

sufficiently large (of the extracted sequence), since t2k -» t2. We can assume fc so

large that f2 < t2k, 112 — t2k| < 21i2 — t2\. Then

|yk (h) - y~k (hk)| - Af01fa - hkI = 2M01 i2 - t2\.

Since yk(t)+is nondecreasing, we have yk (t2) = yk(t2k), and finally

yk~(h) + yt(h) = yk~(h) + yk(t2k)

= yk~(t2k) + yt(t2k) +1 y:(h) - yïih*)]

= Â(i)2k + 2M0\ï2-t2\,

where x°(t2k) -*i as fc -»• 4- oo, and x°k(t2k) <i + k~i. Hence

yn (k) + yt(h) < i + 2M0| t2-t2\ + k
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As k -* + oo (along the extracted sequence), we have

Y~ ii2) + 70+(i2) S i + 2M0\ f2 - t21,

or

Y~ii2) + Y+it2) + Z(i2) S i + 2M0| i2 - t21,

where the third term in the first member is ^ 0. Thus

y(/3) = Y~ii2) + Y +ii2) S i + 2M0\ t2 - t2 \.

As t2 -* r2 — 0, we obtain 7(i2) _ i, since Y is continuous at r2.

We will apply below Closure Theorem II to an auxiliary problem we shall

now define. Let « = (u°,u) = (u0,«1, ■■-,um), let ¡7(i,x) be the set of all üeEm+í

mth^u = iu1,---,um)eVit,x), «° ^/0(i,x,«), let x= (x°,x) = (x^x1,—,x"), let

f=fit,x,u) = (/o,/) = (/o,/i, ••■,/„) with /0 = u°. Thus/depends only on r,x, Ü

(instead of t, x, u), and V depends only on r, x, (instead of t, x). Finally we consider

the differential system

dx/dt =/(f,x,u),

or

dx°/dt = u°it),       dxi/dt=fit,x,u),       i = l,---,n,

with constraints

îï(0e£7(r,x(0),
or

«°(0 =/0(i, x(0, «(0).     "(0 6 Uit, x(0),

a.e. in [ti,t2], besides x°(fi) = 0, and [x,u]efi. We have here the situation

discussed in Closure Theorem II where x replaces x, x replaces y, x° replaces

z, n + I replaces n, n replaces s, hence (n + 1) — n = 1 replaces n — s. For the

new auxiliary problem the cost functional is

J[x,ü]= í'2f0du= \tlu\t)dt = x\t2).

Note that the set ß(f,x) =/(r,x, c7(r,x)) of the new problem is the set of all

z = (z°,z)e£n+1 such that z° = «°, since /0 = u°, z=/(/,x,«), u°Jzf0it,x,u),

ue Vit, x). Thus, the sets 0,Q for this auxiliary problem are the sets 0,Q considered

at the beginning of this proof.

We consider now the sequence of trajectories x°(0 = [xkit), xt(0], in = t

S t2k, for the problem J[x, ü] corresponding to the control function m(0 = [«?(0>

«k(0] with u°kit)=f0it,xkit),ukit)), ukit)eVit,xkit)), and hence ukit)e Vit,xkit)),

tlk S t S t2k, k = 1,2, •••. The sequence [xk(0] converges in the metric p toward

the AC vector function x(0, while x°(0 -* x°(0 as k -^ + oo for all t e (tlt tf), and

x°(0 = 7(0 + Z(0, where 7(0 is AC in [ty, tf] and Z'(0 = 0 a.e. in [ty, tf].
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By Closure Theorem II we conclude that X(t) = [Y(t),x(t)] is a trajectory

for the problem. In other words, there is a control function ü(t), tyf=t= t2,

a(t) = (u°(t),u(t)), with

dY/dt = u\f) £/„(*,x(t), u(t)),       u(t) e U(t,x(t)),

(4)
dx/dt=f(t,x(t),u(t)),

a.e. in [i1,t2], and

(5) i = Y(t2) = J[x, «] =  f 2u°(t)dt.

First of all [x(t), u(t)] is admissible for the original problem and hence belongs

to Í2, since by hypothesis Q is complete. From this remark, and relations (4)

and (5) we deduce

i^I[x,u] = f 2f0(t,x(t),u(t))dt =   f 2u°(t)dt=i,

and hence all ^ signs can be replaced by = signs, u°(t) =f0(t,x(t),u(f)) a.e. in

[í,,í2], and f[x,w] = i. This proves that i is attained in Q. Existence Theorem I

is proved in the case A is compact.

Let us assume now that A is not compact but closed, that A is contained in a

slab [i0 _ í ^ T, - oo < x' < 4- oo, i = 1, •••, n, t0, T finite], and that the addi-

tional hypotheses (a) and (b) hold. If Z(t) denotes the scalar function Z(t)

= | x(i)|2 4-1, then condition x1/, 4- ••• + x"fn = C(\x\2 + 1) implies Z' ^ 2CZ,

and hence, by integration from i* to  t, also

1 <: Z(i) ̂  Z(l*)exp2C 11 - t* \.

Since [z*,x(i*)] eP where P is a compact subset of A, then there is a constant

N0 such that |x| = N0 for every xeP, hence 1 ̂  Z(t*) ^ A¿ + 1, and 1 = Z(t)

it(Nl + l)exp2C(T-t0). Thus, for t0 = t=T, Z(t) remains bounded, and

hence | x(i) | = D for some constant D. We can now restrict ourselves to the

consideration of the compact part A0 of all points (i,x) of A with t0 = ' = T,

|x|=D.

Thus, Theorem I is proved for A closed and contained in a slab as above and

under the additional hypotheses (a), (b).

Let us assume that A is not compact, nor contained in any slab as above but

closed, and that hypotheses (a), (b), (c) hold. First, let us take an arbitrary ele-

ment x(t), ü(t) of Í2 and let j = I[x, ü]. Then we consider an interval (a, b) of

the i-axis containing the entire projection P0 of P on the r-axis, as well as the

interval [-#,#]. Now let / = p~ [\j\ + 1 4- (b-a)M0], and let [a',b'] denote

the interval [a —I, b + l]. Then for any admissible pair (if any) x(r), u(t),

ty^tiit2, of the class Q, whose interval [ii,r2] is not contained in [a',b'],
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there is at least one point í*e[í,,r2] with (r*,x*(0)eP, a <t* <b, and a point

ie[ty,t2] outside [a',b']. Hence [i<,r2] contains at least one subinterval, say £,

outside [a, b], of measure = /. Then I[x, u] _ Ip — (b — a)M0 = \j\ + l = i+l.

Obviously, we may disregard all pairs x(0, «(0> h = t S t2, whose interval [ty, t2]

is not contained in [a', b']. In other words, we can limit ourselves to the closed

part A' of all (i,x)e^4 with a' S t S b'. We are now in the situation above, and

Theorem I is proved for any closed set A under the additional hypotheses (a),

(b), (c). Finally, we have to show that condition (a) can be replaced by condition

(a'). There are numbers C,D > 0 such that /0(i,x,«) _■ C¡/(í,x,u)| for all

(i, x, u) e M with | x | = D. It is enough to prove Theorem I under the hypotheses

that A is closed and contained in a slab t0 S t S T, t0, T as above, and hypotheses

(a') and (b). First let us take D so large that the projection P* of P on the x-space

is completely in the interior of the solid sphere I x | < D, and also so large that

D ;> T— r0. Let m(0,x(0 be any arbitrary admissible pair contained in fi, and

let j denote the corresponding value of the cost functional. Let

L= C_1[/-)M0 + \j\ + 1], and let us take D0 = D + L. If any admissible pair

«(0, x(0, tyStSt2, of fi possesses a point it0,xit0)) with |x(i0)| 2: D0, then

x(0 possesses also a point (t*,x(r*))eP, with ¡x(i*)| _ D. Thus, there is at least

a subarc T:x = x(0, t'StSt" of x(0 along which |x(0|=7> and |x(0|

passes from the value D to the Value D0 = D + L. Such an arc Y has a length

^ L. If £ = [ii, tf] - [f, t"], then

I[x,u] =   j'2 hdt =  (£ + j   ) f0dt =-DM0+ j    C\f\dt

= -DM0+C\     \dx/dt\dt =   -DM0 + CL=\j\ + l = i + l.

As before we can restrict ourselves to the compact part A0 of all points (i, x) of

A with i0 S t S T, | x | S D ■ The case where A is closed, A is not contained in

any slab as above, but conditions (a'), (b), (c) hold, can be treated as before.

The case where A is not compact and the condition (y) holds, also can be

treated as before. Theorem I is thereby completely proved.

Remark 1.   If the set

Qit, x) =f[t, x, Vit, x)] = [z = (z°, z) | z = f\t, x, w), u e Vit, x)]

= [z = (z°,z)|z° =/0(i,x,u), z=fit,x,u), ueVit,x)]ezzE„+y

is convex, then certainly the set ß(i, x) of Theorem I is convex also. On the

other hand, trivial examples show that ß(i,x) may be convex, when ß(i,x) is

not. This is actually the usual case in free problems of the calculus of variations

(see Remark 3 below). Thus, the requirement in Theorem Ithatß(f,x) be convex

for every (i, x) is a wide generalization of the analogous hypothesis concerning
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Q(t,x) which is familiar in Pontryagin's problems. For these problems,

Filippov's existence theorem is a particular case of Theorem I.

The theorem of A. F. Filippov [2]. As in Theorem I, if A = £, x £„, if

f(t,x,u) = (f0,f) = (f0,fy,•••,/„) is continuous in M, if U(t,x) is compact for

every (t,x) in A, if U(t,x) is an upper semicontinuous function of (t,x) in A, if

Q(t,x) =f(t,x,U(t,x)) is a convex subset of En+1 for every (t,x) in A, if con-

ditions (a) and (c) are satisfied, and the class Í2 of all admissible pairs for which

x(ty) = Xy, x(t2) = x2, ty,Xy,x2 fixed, t2 undetermined, is not empty, then I[x,u]

has absolute minimum in Q.

This statement is a corollary of Theorem I. Indeed, under hypothesis (c) we

can restrict A to the closed part A0 of all (i, x) e A with a'St = b', and | x | :g N

for some large N. If M0 is the part of all (t,x, u) of M with (t,x)eA0, then the

hypothesis that U(t,x) is compact and an upper semicontinuous function of

(i,x) in A0 certainly implies that U(t, x) satisfies condition (U) in A0 and that

M0 is compact (§4, (vi) and (vii)). Also, since ß(r,x) is convex for every (i,x)

by hypothesis, we deduce that Q(t, x) is an uppersemicontinuous function of (i, x)

and satisfies property (ß) (§4, (xii) and (xiii)). Also, ß(f,x) is closed, convex,

and satisfies condition (ß) by force of Lemma (xvi) of §4. Finally, since M0 is

compact, the growth condition/, — <D and the remaining condition |/| ^ C + D\ u |

are trivially satisfied. Thus, all conditions of Theorem I are satisfied, and Filippov's

theorem is proved to be a particular case of Theorem I.

Remark 2. The analogous existence theorems of E. Roxin [8] and of L.

Markus and E. B. Lee [14] are also essentially contained in Theorem I. For a detail

on Roxin's statement see Remark 4 below.

Remark 3. For free problems of the calculus of variations (§11 below) we

have m = n, If = E„, f= u, hence

ß(i,x) = f[t,x,U(t,x)] = [z = (z°,u)\z° =f0(t,x,u), u e E„] cz En+1,

ß(i,x) = [z = (i°,u)|z°^/0(i,x,u), ue£„]c£„+1.

The set ß is convex if and only if/0 is linear in u, while ß is convex if and only if/0

is convex in u. Thus condition ß convex on Theorem I reduces to the requirement

/0 convex in u which is familiar for free problems in the calculus of variations.

We shall prove in §11 that the Nagumo-Tonelli existence theorem for free problem

is also a particular case of Theorem I.

Remark 4. The condition f0 = <D(|u|) with <b(z)/z-* + oo of the theorems

above is said to be a growth condition on/0. As it is well known such a condition

(for /0 convex in u, A compact, and U = £,„) is equivalent to the condition that,

for every (t,x)e A, we have f0(t,x,u)/\u | -»■ 4- oo as | u | -> 4- oo (L. Tonelli,

[9a]). On the other hand, it is known already for free problems, that if such a
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condition is not satisfied at the points (t,x)eA of even only one hyperplane

t = t, then the absolute minimum need not exist (see [9b], and §10 below,

example 2). For free problems, other additional conditions have been devised

in such cases [9a].

Condition (a) x1/, H-Yx"fn — C(|x|2 + 1) of Theorem lean be replaced  by

xlfy + •■• + x"fn = </>(i)(|x|2 -I- 1), where <p(t) = 0 is a fixed function of t which

is L-integrable in any finite interval. The remark was made by E. O. Roxin [8] in

connection with Pontryagin's problems.

Condition (a) could also be replaced by the following general assumption

from differential equations theory: there exists a (Lyapunov-like) positive,

continuously differentiable function V(x, t) and a positive constant c such that

| gtadxV(x, i) • fit, x, u) + dV/dt \ = c V(x, t)

for all (t,x,u)eM, and the set

{x | F(x, r) <; <x, (i,x)e^}

is compact for every a.

Remark 5. For problems of optimal control where U(t, x) is always compact

we have given in [lbc] an existence theorem, say I*, similar to the Filippov's

theorem above, where the condition "Q convex" is replaced by the following

requirement: ß(i,x) is a convex subset of £„, f0(t,x,u), ue U(t,x), is convex in

u, and "the curvature off is always small with respect to the convexity of/0"

(see [lb], or [lc] for a precise statement). Whenever this requirement implies

the convexity of the set ß, then the theorem given in [lbc] becomes a corollary

of Theorem I above. Also it should be pointed out that, whenever the relation

z =f(t,x,u) between ß(r,x) and U(t,x) can be inverted and u =f~l(t,x,z) is a

continuous function of z in ß(i,x), then the set ß(r,x) can be represented by

Q(t, x) = [z = (z°, z) | z° ^ F(t, x, z), z e Q(t, x)],

where

F(í,x,z)=/0(í,x,/_1(í,x,z)),

and thus the requirement of the convexity of the set ß reduces to the requirement

of the convexity of the function F(i,x,z) in z. Then the further requirement that

ß(r,x) satisfies property (ß) is certainly satisfied if, besides, F is quasi normally

convex as proved in [§4, (xvii)]. We discussed in [le] a case where the requi-

rement of Theorem I* implies the convexity of F in u, and correspondingly I*

becomes a corollary of I. The simpler requirement: ß(f,x) a convex subset of £„

and/0(i, x, u) convex in u, does not suffice for existence, as we prove in the following

number.

8. Example of a problem with no absolute minimum. The condition "Q(t, x)

convex for every (t,x)eA" of Theorem I cannot be replaced by the simpler
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condition "ß(i,x) convex for every (t,x)eA and f0it,x,u) convex in «," not

even when A and all sets V(t, x) are compact (that is, for Pontryagin problems).

This is shown by the following example.

Let us consider the differential system:

x' = «(1 - v) + [2 - 2_1(u - 1)2>,

y' = [2-2-\u-l)2]Cl-v) + uv,

with ii = 0, initial point (0,0), fixed target (0,1), and fixed control space

rj=[-l = « = l, 0 = t;^l]. If

Zy=fy= «(1  -V) + [2-2~ \U  -  1)2>,

z2 =fi = [2-2-\u- I)2] (1 - v) + uv,

we see that the segment [v = 1, — 1 rgu rg 1] is mapped by f = ify,ff) onto the

arc of parabola ABC = [zy = 2 - 2~\u - I)2, z2 = u, - 1 S u S 1], whose

points A = (0, - 1), B = (3/2,0), C = (2,1) correspond to « = - 1,0,1 re-

spectively. The segment [p = 0, — 1 g « -g 1] is mapped by / onto the arc

DEF = [zy=u,z2 = 2-2~\u- I)2, - 1 -g« •£ 1], whose points D = (-1,0),

£ = (0,3/2), F = (1,2) correspond to «=—1,0,1 respectively. Each segment

[« = c, 0 S v S 1] is mapped by / onto the segment joining the points corre-

sponding to (c, 1) and (c,0) on the two parabolas. Thus, the image Q=fiV) oft/

is the convex body ß = iABCFED) of the z^-plane. Let us consider the cost

functional

/ =   f "[x2 + (y - 02 + v2] dt.
Jt,

For /c = l,2,•■•, let ukit), vkit), Ogigl, be defined by taking ukit)=-l,

vk(t) = 0, or uk(t) = + 1, vk(t) = 0, according as t belongs to the inter-

vals k~x(i - 1) < t < k~\i - I) + i2ky\or k~\i-I)+ C2kYl <t<k~xi,

i = 1,2,■■-,k. Then the functions xk(t), yt(t), Ogigl, satisfy the differential

equations dxk/dt =4-1, dyk/dt = 2, or dxk/dt = — 1, dyk/dt = 0, according as i

belongs to one or the other of the two sets of intervals above. Then xk(t) —> xo(0 = 0,

yk(0 —> yo(0 = i uniformly in 0 _ t _ 1 as k -* oo. If Cfc, C0 denote these trajectories

we say that Ck-* C0.

The question as to whether C0 is actually a trajectory, that is, whether there

are admissible control functions «o(0> v0(t), 0 S i S 1, whose corresponding

trajectory is C0 can be answered in the affirmative because of the convexity of Q.

Actually, the point (a0,ß0)e V, (x0 = 2-5I/2= -0.23607, ß0 = (11)"1 (4- 51/2)

= 0.16036, is mapped by / into (z!=0, z2 = 1), and thus z0(0 = «0,v0(t)

= ßo, 0_f=l,  generate   C0. Now we have xk(f)-*0, yk(t)-*t, uniformly in
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[0,1] as k-* co, and vk(t) = 0, hence /[Cj-»0 as fc-> oo. On the other hand

/[C0] -  S0(02 + 02+ß20)dt = ß20>0.

Let us prove that / has no absolute minimum in the class Q of all trajectories

satisfying the differential equations, boundary conditions, and constraints above.

Indeed, I[Ck] -> 0 shows that the infimum of I[C] in Q is zero, but this value

cannot be attained in Q by I. Indeed, I[C] = 0 implies x = 0, y = t, v = 0, and

the first two relations alone imply u = a0, v = ß0 j= 0 a.e. in [0,1], a contradic-

tion. Thus J cannot attain the value zero in £2.

In this example ß is a convex set,/0 is convex in (u, v), and even satisfies trivially

the growth condition f0 _ d>, since here U is a bounded set. Now let us prove

that ß is not convex. It is enough to verify this forf = 0,x = 0,y = 0. Then

ß is simply the set of all z = (z0,Zy,z2) with (zi,z2)eß satisfying the relation

z0^/0 = u2, when Zy,z2,u,v ate related by z1=/1, z2=f2,(u,v)eU. Now

the segment t= [u = 0, — 1 :£ u ^ 1] is mapped by/onto the arcT = (DEF) c ß ,

and we have f0 > 0 in ß — T, f0 = 0 in T, and hence ß convex would imply

that r is a segment, and this is not the case. This proves that ß is not a con-

vex set.

9. Another existence theorem for Lagrange problems with unilateral constraints.

Existence Theorem II. Let A be a compact subset of the tx-space Ey x £„,

and, for every (t,x)eA, let U(t,x) be a closed subset of the u-space Em. Let

f(t,x,u) = (fo,fy, •••,/„) = (foJ) oe a continuous vector function on the set M

of all (t,x,u) with (t,x)eA, u e U(t,x). Assume that, for every (r,x)e^4, the set

Q(t,x) = [z = (z°,z)e£„ + y | z° =f0(t,x,u), z =f(t,x,u),ue U(t,x)]

is convex, and that U(t,x) satisfies property (U) and Q(t,x) satisfies property

(Q) in A. Let cp(t) be a given function which is L-integrable in any finite interval

such that f0(t,x,u)^cp(t) for all (t,x,u)eM. Let Cl be a nonempty complete

class of admissible pairs x(t),u(t) such that

(24) ( 2 \dxl/dt\pdt = Nt,       i = l,-,n,

for some constants N¡ =0, p> 1. Then the cost functional I[x,u] has an ab-

solute minimum in Í2.

If A is not compact, but closed and contained in a slab [t0 — t = T, — co

<x'< 4- oo, i = l,-..,n,í0,T finite], then Theorem II still holds under the

additional hypothesis (b) after Theorem I. If A is not compact, nor contained

in a slab as above, but A is closed, then Theorem II still holds under the

additional hypotheses (b) and (c*) : f0(t, x, u) _ cp(t) for all (f, x,u)eM where

</>(t) is  a given function  which is L-integrable in any finite interval and
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jo œcp(t)dt = + oo, f^cpfädt = + co. Finally, if for some i = 1,••-,«, and

any N > 0, there is some Nt > 0 such that (x,u) eQ., I[x,u] = N implies

JY^I dxl/dt\pdt — Nif then the corresponding requirement (24) can be disregarded.

Proof of Existence Theorem II. We suppose A compact, hence necessarily

contained in a slab [t0 = tz^T, t0, T finite, — oo < x'< + oo, i = 1, ••-,«],

and then I[x, u] = J,'2f0dt = — j,T01 cp(t) | dt. This proves that the infimum i of

I[x, u] in ÍJ is necessarily finite. Let uk(t), xk(t), tlk—^t¿á t2k, k = 1,2, •••, be a

sequence of admissible pairs all in ii with I[xk, uk] -* i. We may assume

(25)

Then

i = I[xk, uk] =   Ï   f0(t, xk(t), uk(t))dt g i + 1/fc ̂  f 4-1.
Jtik

(•»2k

(26) \dxlk/dt\pdtú N¡
Í2k

í = l,•••,/!, fc = l,2,'

By the weak compactness of Lp we conclude that there is some subsequence and

some AC vector function x(i) = (x1,---,x"), t1 = t^t2, such that tik-> ty, t2k-* t2,

dxk'/dt^dx'ldt weakly in Lp, xk(t)-+x(t) in the p-metric. The proof is now

exactly the same as for Existence Theorem I.

If A is not compact, but closed and contained in a slab as above, and condition

(b) holds, then for every admissible pair u(t), x(t) of Q we have

|x(0-x(t*)| = I   f  (dx/dt)dt   = I    i    dt f |dx/dí|"dí
I   Jt« I    Jr» I   Jr*

=    \t-t*\llq(Ny  +  -+N„),

where (t*,x(t*)) belongs to a fixed compact subset P of A. Then |x(i*)| ^ N',

11 - t* | = T- t0, and | x(i)| = N" for some constants N',N">0. Thus, we can

limit ourselves to the compact part A0 of all points (f, x) of A with f0 g / ^ T,

| x | — N". If A is not compact, nor contained in a slab as above, but A is closed

and conditions (b), (c) hold, then we can use the same argument as for Existence

Theorem I.

Finally, we see that assumption (24) has been used only in (26) for a minimizing

sequence uk,xk. Since for a minimizing sequence we see already in (25) that

I[uk,xk] 5Í i 4-1, it is obvious that any relation (24) which is a consequence of

a relation of the form J = N need not be required among the assumptions of

Theorem II. Theorem II is thereby proved.

10. Examples.

1. Let us consider the (free) problem

C'2
-^M =       (1 4- |x'|2)dr = minimum,

Jti
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with x = (x1,...,x"), in the class fi of all absolutely continuous functions

x(i) = (x1,-.-,x"), 0StSt2, whose graphs (i,x(0) join the point (i1=0,x(i1)

= (0,...,0)) to a nonempty closed set B of the half-space i2=0, xe£„. This

problem can be written as a Lagrange problem:

J[x, u] =       (1 + |u(í)|2)<ií = minimum,

dx /dt = «',       i = 1, •••,«,

where x(0 = (x1, •••,x"), «(0 = (m1,•■-,«"), m = n, 7o = 1 + |M|2> /¡ = u'>

/ = 1,•••,*., and the control space l/(r,x) is fixed and coincides with the whole

space £„. Here ß(i,x) = [(z,ti)|z _ 1-1-| u|2, ueE„] is a fixed and convex

subset of £„+1. The conditions of Theorem I are satisfied with 0(| u |) = | «21, or

<K(z) = z2, 0 S z S + oo, A is the half-space A = [it, x) 11 ̂  0, x e £„] c E„+ y.

Thus the problem above has an optimal solution.

2. The free problem

7[x] =       tx'2dt = minimum,       x(0) = 1, x(l) = 0,

is known to have no optimal solution [9b]. The same problem can be written

as a Lagrange problem with m = n = 1  in the form

Jy[x,u]=       tu2dt = minimum,       x(0) = l, x(l) = 0.

dx/dt = u,       ueEy,

as well as in the form

J2[x,u]=  I    t3u2dt = minimum,       x(0) = 1, x(l) = 0,
Jo

dx/dt = tu,       ueEy.

The relative sets ß(i,x) are here subsets of the z°z-plane £2. For the problem

J, the sets ß satisfy condition (ß), but f0 = tu2 does not satisfy the growth

condition of Theorem I. For the problem J2 the sets ß do not satisfy condition

(ß). (We shall take into consideration the same sets under examples 4 and 5 of

§12 below.)

The same free problem with an additional constraint

i x'2dtSN0
Jo

where N0 — 1 is any constant, has an optimal solution by force of Theorem II

and subsequent remark. The optimal solution will depend on N0: Note that
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N0 — I assures that the class fi relative to the problem is not empty. Indeed for

x(0 = 1 — t, we have   f¿x'2dí = 1.

11. The free problems. If we assume m = n,f = uhi = 1,...,«, U(t, x) = Em,

then the differential system reduces to dx/dt = u, and the cost functional to

/•Í2 Í»Í2

I[x,u]=      f0(t,x(t),u(t))dt =       f0(t,x(t),x'(t))dt.
Jti Jtt

Then the problem under consideration (no. 6) reduces to a free problem (no

differential system) where the integral is written in the form

(1) I[x]=   (2f0it,xit),x'it))dt,

and the only constraint is now (i,x(0)e^4 for all i, S t S t2. Again, complete

classes fi of vector functions x(<) can be defined by means of boundary conditions

of the type (í,,x(í1),í2,x(í2))6£, where B is a closed subset of £2„ + 2 as in §6.

The Nagumo-Tonelli Theorem [9 ac, 5]. If A is a compact subset of the tx-space

Ey x £„, if f0it,x,u) is a continuous function on the set M = A x E„, if for

every it,x) e A, f0(t,x,u) is convex as a function ofu in E„, if there is a continuous

scalar function 3>(0» 0 S C < + °°, with <1>(0/C "1—' °° as Ç -]—► oo, such that

f0it,x,u) 2: <b(| u \)for all(t,x,u)e M, then the cost functional (1) has an absolute

minimum in any nonempty complete class fi of absolutely continuous vector

functions x(t), ty St St2, for which f0(t,x(t),x'(t)) is L-integrable in [ty,tf].

If A is not compact, but closed and contained in a slab [t0 S t S T,xe £„],

t0, T finite, then the statement still holds under the additional hypotheses

(t.)/o^C|«| for all (f,x,«)eM with |x|S;D and convenient constants

C > 0, D — 0; (if) every trajectory x(0 of fi possesses at least one point (í*,x(í*))

on a given compact subset P of A. If A is not compact, nor contained in a slab

as above, but A is closed, then the statement still holds under the additional

hypotheses (xf), (t2), and (t3)/0(í> x, u) = p > 0 for all (t, x,u)eM with 111 = R,

and convenient constants  p > 0 and  R = 0.

Proof. First assume A to be compact. Then the set Q(t,x) reduces here to

the set of all z = (z0,z)e£n+j with z° '=f0(t,x,z), zeE„, where f0 is convex

in z, and satisfies the growth condition f0 Sï 3>(| u |) with <!>(()/£ -> + oo as

£ ->■ + co. By the remark after Lemma (xv) of §4, f0 is normally convex in «,

hence quasi normally convex, and, by Lemma (xvi), part (ß), of §4, ß satisfies

condition (ß) in A. Thus, all hypotheses of Theorem I of §7 are satisfied. If A

is closed but contained in a slab as above then the condition (a) of Theorem I

reduces to « • x S C(| x |2 4-1) which cannot be satisfied since we have no bound

on u. On the other hand, the condition (a')/0 — C|/| for some C > 0 reduces

here to requirement (ti) and condition (b) to requirement (tf). Finally, if A is
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not compact, nor contained in a slab as above, but A is closed, then requirement

(c) of Theorem I reduces to requirement (t3). All conditions of Theorem I are

satisfied, and the cost functional (1) has an absolute minimum in Q.

12. Lagrange problems with/linear in u. We shall consider now the case where

all functions fi(t,x,u), i = 1,•••,«, are linear in u, and the control space U(t,x)

is fixed and coincides with the total space Em. Precisely, we shall consider the

Lagrange problem

(1) I[x, u] =       [g(t, x) cp(u) + g0(t, x)]dt = minimum,

m

(2) dx'/dt = E gij(t, x)uJ + git, x),       i = 1, • • •, n,
j = i

where x = (xi,---,x")eEm, and cp(u), u e U = Em, is a convex function of u satis-

fying a growth condition as in Nagumo-Tonelli Theorem. If H(t, x) denotes the

n x m matrix (gij(t,x)), and h(t,x) the n-vector (g¡(t,x)), then the differential

system (2) takes the form dx/dt = H(t, x)u + h(t, x).

The sets ß(r,x), ß(r,x) relative to the problem above are

Q(t, x) = [z | z = H(t, x)u + h(t, x),ueEm]cz En,

Q(t,x) = [z = (z°,z)\z°^g(t,x)cP(u)-Ygo(t,x),z= H(t,x)u-Yh(t,x),ueE„]czEn+y.

Obviously, ß(r,x) is a r-dimensional linear manifold in £„ where r is the rank

of H(t, x). We shall need a few lemmas concerning the sets ß(f, x).

(i) If g is nonnegative, and cp is nonnegative and convex, then both sets

ß(r,x), ß(r,x) defined in (3) are convex for every (t,x)eA.

Proof. We give the proof for ß(f, x). Let £ = (¿;0, Ç), fj = (n°, n) be any

two points of ß(r,x), let Ogjtxííl, and z = (z°, z) = a| + (1 — a)f¡. Then

for some vectors u, veEm we have

e^gcp(u) + g0,       H = Hu-Yh,

1° ^ gcp(v) + g0,       n = Hv + h,

z = ^ + (l-a)Fj,       z° = a£° + (1 - <x)n°,       z = a£ 4- (1 - a)ij.

If weEm denotes the vector w = au -Y (1 — u)v, we have

z  = a£, +(1 - a)n = a(Hu + h) + (l- ot)(Hv + h)

= H(au + (l-ot)v) + h = Hw + h,

z° = < + (1 - a)n° = a(gcP(u) + g0) + (1 - °t)(gcP(v) + g0)

= g(cc<P(u) 4- (1 - x)cP(v)) + g0

= gcp(<xu + (1 - a)v) + g0 = gcp(w) + g0 ■
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Thus, z = (z°, z) e Qit, x) and Q(t, x) is convex.

(ii) If all functions ep, g, g0, g^, g¡ are continuous, if ep(u) is nonnegative

and convex, and there is a function 4>(Q, 0 S C < + oo, such that $(£) -» + oo

as £ -> + oo, and <£(u) ̂  3>(| u |) for all u e £m, if there is a neighborhood iV.(i, x)

of (i, x) where g ^ p for some constant p > 0, then the set ß (i, x) defined in (3)

satisfies property (ß) at (I,x).

Proof. We have to prove that Q(i, x) = P| ö cl co ß(i, x, (5). It is enough

to prove that p|¿ cl co ß(f, x, <5) c ß(i, x) since the opposite inclusion is trivial.

Let us assume that a given point z = (z°,z)eP)iclcoß(i,x,a) and let us prove

that z = (z°,z)Gß(f,x). For every ô > 0 we have z = (z°,z) eclco ß(i,x,<5),

and thus, for every ô> 0, there are points z = (z°,z) eco ß(i,x,¿) at a distance

as small as we want from z = i¿°,z). Thus, there is a sequence of points

zk = (z°, z,.) e co Qit, x, of) and a sequence of numbers Sk>0 such that ôk -* 0,

zk-* z. In other words, for every integer fe, there are some pair it'k,xk), it'^x'f),

corresponding points z'k = (z\',z'k) e Qk(t'k,x'k), zk = iz°k",z'k)eQkitk,x'k), points

«í, ufe Em, and numbers ak, 0 S a* S 1, such that

% = <**z* + (1 - «i)**,

z* = a*z£' + (1 - at)z?", zt = a,^ + (1 - ak)zk,

zf ^ «Oí,<)<K»4) + gofa,x'k),       z'k = Hit'k,x'k)u'k + hit'k,xf),

zf £ giC xDepiul) + g0(tl x'f),       z'k' = Hitl, x'f)u'k' + hitl, x'f),

and such that tk-*i, xt'->x, tk-*t, x£-*X, Sk-*z, z%-+z°, zk-+z as fe->oo.

Obviously g0it, x) is bounded in iVá(í, x), say gf(t, x)= — G for G _ 0.

The second relation (4) shows that of the two numbers zk', zk°" one must be

S z*- It is not restrictive to assume that zk' S zk for all k. Then the fourth re-

lation (4) yields

zl = z°k'^git'k,x'k)4>iu'k) + g0it'k,x'k)= pePiu'k)-G,

where zk -* z°, and hence [z°] is a bounded sequence. This shows that epiu'f)

S P~ (G 4- zk),hence [epiuff] is a bounded sequence, and finally [u'f] is a bounded

sequence because of the property of growth of ep. We can select a subsequence,

say still [u'f], which is convergent, say «..'-> û" eE'm as fc-> oo. The sequence [a,,]

is also bounded, hence we can further select a subsequence, say still [ak], for

which [ak] is also convergent. Thus u'k -» u', a.. —> ä as fc—> oo. Let «,. 6£m be the

point uk = atut' + (1 - ak)u'k. Then

z* = «kz'k + (1 - «*)-»*

= at[H(íí,xO^ 4- «(i*,xD] + (1 - a,) [H(£*!X 4- *(ft*D]

<5)' = Hitl, x'f) [aku'k + (1 - atK] -1- *(ft x'f)

+ ak{[Hit'k, x'k) - Hit¡, x'OK + [hit'k, x'k) - hitl, x'ff]}

= Hitl, x'f)uk + hitl, xD + A„
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z° ^ akz°k' + (1 - ak)zf

= ^k[g(t'k,x'k)cP(u'k) -Y go(t'k,x'k)] + (1 - ak) [g(t'i,xl)cP(ul) + g0(C*M

(5)" = g(tl, xl) [<xkcP(u'k) + (1 - ak)cP(ul)] + g0(t¡, x'i)

+ otk{[g(t'k,x'k) - g(tlxl)]<P(u'k) -Y [g0«,O - go(C<)]}

= g(tl,xl)4>(uk) + go(tl,xl) + ts.l

Obviously Afc-0, A?-»0, h(t¡,xl)-»h(i,x), g0(t'k,4)-g0(i,x). Since g(t'k,x'í)

— p, we conclude as before that [cp(uk)] is a bounded sequence, and so is [uk],

hence we can further select a convergent subsequence, say still [uk], with wfc-> «.

Relations (5) yield now as fc -» oo,

z = H(i, x)ü + h(t, x),   z° ^ g(i, x)cp(u) + g0(i, x).

Thus,  z = (z°, z) e ß(i, Je), and statement (ii) is proved.

Remark. Here are a few examples of linear problems and corresponding sets

ß(i,x) and ß(i,x).

1. Take m = 1, n = 2, i/ = £,, let ueEy be the control variable, and take

cp(u) = 1, g=l, go = 0, gyy = l, gy=g2 = 0, g2y = t. Then the sets ß and ß

depend on t,  — 1 z% t = + 1, and

6(0 =  [zl= (z1, z2) | z1 = », z2 = ru, - oo < u < + oo]

=  [z = (z',z2)|z2 = iz1, - oo < z1 < + co] <=£2,

g(0 =  [z = (z°,zl,z2)\z° = 1, z2 = tz\ - oo<z1< + oo]c£3.

Each set 6(0 is a straight line in £2 of slope t, and for each ô > 0, the set 6(0, <5)

contains both lines z2 = ±8z1, and the convex hull of Q(0,5) coincides with the

whole plane £2. Thus 6(0) is the z^axis and Qaclco6(0,(5) is the whole zlz2-

plane. The set 6(0 d°es not satisfy property (ß) at / = 0, and the same holds for

Q(t). Here $ = 1 does not satisfy the growth condition requested in (ii).

2. Take m = l, n = 2, [/ = £,, let ueEy,bethe control variable, and take

cp(u) = \u\, g=\t\, g0 = 0, gyy = l, gy = g2 = 0, g2l = t. Then again the

sets ß and Q depend on t only, gep = \tu\ = | z2|,-l^/=l.

6(0 = [z = (z1, z2) I z2 = tz1, - oo < z1 < + oo] cz E2,

Q(t) = [z = (z°,z1,z2)\z°^\z2\, z2=tz\-oo < zl< + oo]c:£3.

As before, the set 6(0 does not satisfy property (6) at r = 0. Analogously, for

any 5 > 0, and — <5 ̂ t ^ <5, we see that

z' = (z°',z1',z2') = (l,ô-1,l)eQ(ô),

z" = (z°", z1", z2") = (l,-ô-\T)eQ(-ô),
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and, for a = 1 ¡2, also

z = txz' + (1 - ol)z" = (z°,zl,z2) = (1,0, 1)6 co 6(0,S).

Hence,

z = (l,0,l)e naclco6(0,Ô),     z- = (1,0,1)#Q(0),

and 6(0 does not satisfy property (Q) at t = 0. Here g does not satisfy the condition

g = p > 0 requested in (ii).

3. Take m = 1, n = 2, (/ = £,, let ue£, be the control variable, and take

<P(u) = | u |, g = 1, g0 = 0, gu = 1, g, = g2 = 0, g21 = i. Then again the sets

6 and   6 depend on t only,  — l^i^l,and

Q(t) = [z = (z1,z2)\z2 = tz1,- oo <zJ < 4- oo] c £2,

Q(t) = [z = (z°,z1,z2)\z0^ \zl\, z2 = tz\ - oo <z' < + oo] c£3.

As before, 6(0 does not satisfy property (6), while 6(0 does satisfy property (6)

at every t because of statement (ii).

4. Take m = n = l, U = £,, let ueEy be the control variable, and take

<P(u) = u2, g=t, g0=0, gn = l, g,=0, 0=i=l. Then

6(0 = [z\z = u, — oo < u < + oo] c £,,

Q(0 = [z = (z°, z) | z° ^ Í«2, z = «, -oo<u<4-oo]c£2.

Here 6(0 ={/ = £, for every i, 0 ^ t ^ 1, and obviously 6(0 satisfies property

(6). On the other hand ß(0) is the half plane, z° ^ 0, - oo < z < + oo, while

ß(0 for í > 0 is the set ß(0 = [z° ^ tz2, — oo<z< + co]. Obviously, ß satisfies

property (ß) at t = 0 (and at every t as well).

5. Take m = n = 1, U = Ey, let ueEy be the control variable, and take

<P(u) = u2,g = t3,g0 = 0,gyy = t,gl=0,0 = tzi 1. Then

ß(0 = [z I z = tu, — co < u < -Y oo] c Ey,

Q(t) = [z = (z°, z) | z° = iV, z = im, - oo < u < + oo] c£2.

Here ß(0) is reduced to the single point z = 0, while 6(0 for every t > 0 coincides

with £,. Thus 6(0 does not satisfy property (6) at t = 0. Also 6(°)

= [z° ^ 0,z = 0] while 6(0 fot 19^0 is the set 6~(0 = [z° = iz2, - oo < z < + oo],

and clco 6(0, <5) is the entire half plane [z° _0, — oo<z< + oo]. Thus, neither

6 nor  6 satisfy property (6) at t = 0.

We shall denote by r(t,x) the rank of the nxm matrix (g¡;(í,x)). Then

0 ^ r(t, x) ;£ min [m, n].

(iii) If all functions gu(t,x) ate continuous and U = Em, then r(i,x)t%

lim inf r(t,x) as (t, x) -» (f, x).
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The proof is a straightforward consequence of the continuity hypotheses.

The statement below shows that a necessary condition for ß(i, x) to satisfy (ß)

at (t, x) is that rit, x) is constant in a neighborhood of (f, x), and this explains

why the set ß of Example 4 does not satisfy property (ß). On the other hand,

the condition is not sufficient, as the sets ß of Examples 1, 2, 3 show since in

these examples r = 1 is constant.

(iv) If all functions gip g¡ are continuous in A and V = Em, then a necessary condi-

tion in order that the set ß(f, x) satisfies condition (ß)at (t,x) is that rii, x) = lim r(t, x)

as (t, x) -> (i, x) (thus, there is a neighborhood Ns(i, x) of (I, x) with r(t, x) = r(f, x)

for every (t,x)eNô(i,x). If Q(t,x) satisfies condition (ß) in A and A is connected

then r(t,x) is a constant.

Proof. Suppose that r(t, x) = r is not the limit of the (integral-valued) func-

tion r(t, x) as (t, x) -* (t, x). Since r(t, x) = rS hm inf r(t, x) we must have

r(t, x) = r<r + lS hm sup r(t, x). There is, therefore, a sequence (tk, xk),

k=l,2, ••», with tk->t, xk->x, and r + 1 S rk = r(tk, xk) S min [m, n]. The

image of V = Em under the mappings H(tk, xk)u + h(tk, xk) and H(t, x)u + h(t, x)

are, therefore, linear manifolds of £„, say Q(tk, xk) of dimensions rk 2: r + 1,

and Q(t, x) of dimension r. The images of u = 0 on ß(it, xt) and Q(i, x) are the

points zk = h(tk,xk), z = h(f,x). Let ny,---,nr be r orthonormal vectors in E„

such that

ß(i,x) = [z6£„|z = Z+^1M1 + ••• -Kr"r,   tu'",tr  feal] »

and let us complete rjy,---,nr into a system of n orthonormal vectors «,, ■••,«,,

Mr+i,••-,«„. For every fc, there are systems of rk orthonormal vectors n[k, ---,n'rk k

of E„ such that

6(i*.^t) = [z6F|z = zfc + Çyt]'yk + ■ ■ ■ + S,rkn'rkk, Çy,—,Çrk real].

Since h(tk, xk) -> h(t,x), H(tk, xk) -»■ H(t, x), we can select n'lk,---,n'rkk so that,

together with zk->z, we have also

««•"¡-»•l»       ¿ = l,-,r,

n'jk-<li-+0,       j=£i, j = l,---,rk, as /c->co.

If we take ¿, = ... = £r = o, ír+1 = l, ^r+2 = ••• = e%rk = 0, then the point

z'k = zk + rlr+i,keQitfrXf). It is not restrictive to assume that for all k we have

|z*-z| <l/4, \njk-n¡\ <l¡4n,      j Ï i, ¿ = 1, — ,r,   /-l,—,r».

Then

Mr+lit   =     S   (Mr+l,It •";)"! =   f 2    +      £     I ("r+l,*•".)"( = "' + ""»
¡=1 \i=l l=r+l/

»        = 2 Olr+n-ihto,   ^ S |i/r+i>t-M¡|^r(l/4n)gl/4,
i=l !        i=l

|ffr+M-f'|è|-1r+M|-h'|àl-l/4-3/4.
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Finally,

|z,-z|  =  |(z4 + f/r+1|Jk)-z| ú\nr+y¡k\ + \zk-z\ = 1 + 1/2 = 3/2,

and, for every zeQ(t,x), also

|z'k - z|       | (z* + »7r+1,*) - (z + ^f/i + •• • 4- £r»7r)|

n r .

^ (tJr+ijk • 1¡)n¡ -   E &ffc + (zk - z)

409

> £ (t1r-n,k-t1i-Q«i +   2Z   (nr+1yni)n¡
¡ = i

-   z*-z

2      (»/r+l,k-'/l)l/    - |Z*-Z|   =   |»"| ~\zk-z\
¡=r+l

^ 3/4-1/4=1/2.
Thus,

| z'k - S | é 3/2,       dist (z¿, Q(f, x)) = 1/2.

The sequence [z'k] is bounded, hence, it contains a convergent sequence, say

still [zk], with z¿ -» z' e £„, and

\z' -z| á 3/2,      dist(z',6(/,*)) = 1/2.

Finally, for every fc there is a ukeU = Em such that z'k = H(tk,xk)uk + h(tk,xk),

or z'keQ(tk,xk), with zk->z'. Then z'ecl co Q(t,x,5) for every <5>0, and

hence

z'eÇ\6clcoQ(t,x,ô), z'$Q(i,x).

We have proved that Q(t, x) does not satisfy property (6) at (i, x), a contradiction.

This proves that, if 6(t, x) satisfies property (6) at (t, x), then r(i, x) = lim r(t, x)

as (t, x) -* (i, x). The necessity of the condition is thereby proved.

13. Existence theorems for Lagrange problems with / linear in u. We give

here a few examples of statements which can be deduced from Existence Theorems

I and II when / is linear in u.

Existence Theorem III. Let us consider the Lagrange problem

(1) I[x,u]  = [g(t,x)cp(u)-Y g0(t,x)]dt = minimum,

(2) dxl/dt   =   E   g¡j(t,x)uJ + g¡(t,x),       i = l,--,n,
J = i

where x = (x1,•••,x")e£„,  u = {u1,•■•,um)e Em,   and   cp(u)   is   a   continuous

nonnegative convex function ofu. Assume that there is some continuous function
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O(0> 0 S C < + °o> with 0(0/£ -> + ooasÇ-> + oo and ep(u) ̂  0(| u \)for every

u e£m. Assume that all functions g(t,x), g0(t,x), gu(t,x), g¡(t,x) are continuous in

A = Ey x E„, and that

g = P>0,go^p>0,  I \gu\SCg, z \glJ\+ z  \gi\scgo,
ij ij i

for some constants p > 0, C > 0, and all (t, x) e A. Let fi be the class of all pairs

x(t), u(t), ty St S t2, x(t) absolutely continuous, u(t) measurable, satisfying (2)

a.e., such that gep + g0 is L-integrable in [ii,i2], and such that the graph (t,x(t))

joins the fixed point (tt =0,x(i,) = (0,---,0))eA to a given closed subset B of

the half-space t = 0,xeE„ in A. If Q. is not empty, then the Lagrange problem

(I), (2) has an optimal solution in fi.

The functions 0(m) = ep(\ u |) = | u |p, « 6 Em, p > 1, as well as epc(u) = 0(| « |)

= 0 for | u | S C, Oc(«) = ep(\ u |) = | u \p - C for | « | = C, certainly satisfy the

requirement for ep.

Proof. By Lemmas (i) and (ii) of §12 the set Q(t,x) is convex for every (i,x)

and satisfies condition (ß) in A. The set V = Em is fixed, closed, and obviously

satisfies condition (V). Also f0(t,x,u) = g(r,x)0(«) + g0(t,x) and hence

/0^ «</>(«) ̂pO(|M|), fo^go^P,

where p > 0, and hence both the growth condition for f0 and condition (c),

of Existence Theorem I of §7 is satisfied. Now if A0 is any compact subset

of A = Ey x E„, then the continuous functions g¡¡, g¡ are bounded in A0, say

| gtJ | S C0, | g¡ | S C0 (where C0 depends on A0) and

|/| = |iíu + /i|^|ií| |u| + [/i|^n2C0|«| + nC0

for all (t,x)eA0. Thus condition (y) of Theorem I is also satisfied. Condition (b)

is satisfied since the initial point (ii,x(ii)) is fixed. Let us prove that condition (a')

is satisfied. Indeed 0(0/£-» + oo as £-> + oo, hence 0(0/C = 1 for all |£| ^ D

and some constant D = 0. Then for | u | = D we have | « | S 0(| u |), and hence

|m| ^D + 0(|m|) for all ueEm. Now for all (t,x)eA=EyXE„ and we£m

we have

|/j-  \Hu + h\s\H\ |«|4-|Ä|rg|H|(ö4-<D(|«|)) + |A|

= |h|ik|«|) + (d|h|h-|/i|)

S  Cgep(u) + (D + l)Cg0

S  C(D + l)igePiu) + g0) = CiD + l)f0.

Thus/0^C_1(D +1)_1|/| for all (i,x,u)e£i x £„ x Em. All conditions of

Theorem I are satisfied, and the Lagrange problem (1), (2) has an optimal

solution.
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Existence Theorem IV.   Let us consider the Lagrange problem

(3) I[x,u] =       [g(t,x)cp(u) + go(t,x)]dt = minimum

with differential equations

dx'/dt =   E   g¡j(t,x)uj + gf(t,x),       i = 1, ••-,«,

or

dx/dt = H(t,x)u + h(t,x),

where x = (x1,---,x")eE„, u = (u1,---,um)eU = Em, where H is the nxm

matrix (gy), where h is the n-vector (g¡), and where cp(u) is a continuous nonnega-

tive convex function of u. Assume that all functions g(t,x), g0(t,x), gij(t,x),

gi(t,x) are continuous in A = £, x £„, and that

git,x) = 0, g0(i,x) = - G0 for all(t,x)eA = EyX £„,

(5)
go(t,x)^p>0 for all (t,x)eA = Ey x E„ with \t\ = D0,

for some constants p > 0, G0 = 0, D0 = 0. Assume that the (convex) set

Q(t,x) = [z = (z°,z)\z° ^ gcP(u) + g0,z = Hu + h,ueU = Em]cz En+1

satisfies condition (Q) in A. Let fi be the class of all pairs x(t), u(t),

ty^tz% t2, x(f) absolutely continuous, u(t) measurable, satisfying (4) a.e.,

such that gcp + go is L-integrable in [íi,í2], and such that the graph (t,x(i))

joins thefixed point (ty = 0,x(ij) = (0, "-,0)) e £, x Ento a given closed subset B

of the half-space t S: 0,xe£„ in Ey x £„ and such that

V \dxl/dt\pdt^Ni,(6) I    ¡ax'/dt^dt^Ni,       i=l,-, n,

for some constants p>l,Ni = 0.IfQ. is not empty then the Lagrange problem

above has an optimal solution in £2.

The functions cp(u) — | u \p, p = 1, as well as cpc(u) = 0 for | u | ^ c, cp(u)

= |m|p — cpfor [u| — c, p — 1, all satisfy the requirements above for cp.

The requirement g0 ^ p > 0 can be disregarded if B is contained in a slab

[0 = t<T,xeE„], T finite. Any requirement (6) which is a consequence of

a relation f£(g<P 4-g0)di ^ Nq can be disregarded.

Proof. By (i) of §12 the set Q(t, x) is convex for every (f, x) in A. All conditions

of Theorem II of §9 are satisfied, and thus IV is a corollary of II.

Remark. The requirement concerning Q(t,x) of Theorem IV is certainly

satisfied if we assume that

(a) g(f,x) > 0 for all (r,x)e.4 = Etx £„,
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(ß) there exists a nonnegative convex function O(0, 0 S C < + °°> with

0(0->+oo asC-» + oo and ep(u) ̂  0(|u|) for all ueU= Em.

Indeed, by statements, (i), (ii) of §12, the convex set ß(i,x) satisfies property

(Ö) in A.
Remark. Theorems III and IV can be stated in an analogous form when the

special integrand gep + g0 is replaced by the more general integrand

foit, x, u) of §§ 7 and 9.
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