AN INTEGRAL REPRESENTATION OF A NORMAL
FUNCTIONAL ON A VON NEUMANN ALGEBRA(Y)

BY
HERBERT HALPERN

1. Introduction. Let 2/ be a von Neumann algebra with center 2 on a Hilbert
space H; a positive function g on & is included in a positive functional f on &/
(notation: g <f) if there is a scalar «>0 such that f— g is a positive functional on
&/. A nonzero positive functional on & which includes only scalar multiples of
itself is said to be irreducible. In this paper we shall call a positive functional f on
& generalized irreducible if whenever g is a positive functional such that g<f
there is an element A4, in &/ *, the cone of positive elements of .7, such that f(4,4) =
g(A), for all 4 in 7. A positive functional f on & is said to be normal if for each
monotonely increasing net {4, | d € D} with least upper bound 4, we have f(4)=
lub {f(4,) | d € D}. In the present paper we obtain a representation theorem for
a normal generalized irreducible functional f on a von Neumann algebra &7 of
Type 1. The representation has the form (A) f(4)=[, fi(4) d({) where

(1) Z is the spectrum of the center Z;

(2) v=v, (h € H) is the so-called spectral measure on Z given by f(4)=w,(4)=
{7 A(0) @(L) where 4 € Z and the function 4 is the image of 4 in the algebra of
all continuous complex-valued functions on Z under the Gelfand representation;
and

(3) the f; for { in the support Y of v are positive functionals such that for each
fixed 4 in & the map { — f,(4) is continuous. We shall show that the functionals
[ have special properties. We also prove that normal functional f obtained from
a representation of the form (A) in which the functionals f, have this special
property is generalized irreducible.

These theorems may be viewed as a generalization of certain results of Tomita
[6]. Tomita studied positive functionals f on a C*-algebra o/ with identity and
with center 2 with the property: if g <f, there is an 4, € Z* such that g(4)=
f(AA,) for all 4 € /. These functionals are called centrally irreducible functionals.
Some of the lemmas necessary for this generalization give results on centrally
reducible functionals with little additional effort. We therefore briefly indicate in
what direction this effort should be applied.

Let & be a von Neumann algebra with center & on a Hilbert space H; let Z
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be the spectrum of Z. For each { € Z the two-sided closed ideal in 7 generated by
{ will be denoted by [{]. The canonical homomorphism of & onto the C*-algebra
&[[L] will be written as ¥, while ¥',(4) will be written as A({) for each 4 € «.
Glimm has proved that for each fixed 4 in &, the function { — | A({)|| is contin-
uous on Z.

2. Centrally irreducible functionals. A projection E in & is abelian if the von
Neumann algebra E/E is commutative. If P is the central support of E (i.e., the
smallest projection in £ such that P= E), the map ®(4)=AE of ZP onto E&E
is an isomorphism. We define the linear function 7z(4) on & as 75(4)= P~} (EAE).

PROPOSITION 2.1. For each { in the set {{ € Z | B({)=1}, the functional f(A)=
15(A)~ (L) on A is irreducible.

Proof. The verification that f is a nonzero positive functional is straight-
forward. Let g be a positive functional on & included in f. Since f([{])=0,
g([£])=0. There is a functional g; on &/({) such that g,(4({))=g(4), for all
A in &/. Furthermore, g(/— E)=0; this means that g(4)=g(EAE), for all 4 in &/.
Therefore, we have

g(A) = g(EAE) = g(r5(A)E)
= g1(rs(A)DE®))
= f(A)g.(E(0)) = f(A)g(E),

for each A4 in /. This shows that g is a scalar multiple of f and hence that f is
irreducible on /. Q.E.D.

If fis a positive functional on a C*-algebra with identity, let L(f) be the closed
left-ideal L(f)={A4 € &/ | f(4*4)=0}. The Hilbert space which is the completion
of the left &/-module o7 — L(f) under the inner product (4 — L(f), B— L(f)) =f(B*A)
is denoted by H(f). The operator ®(A4) (4 € &) on H(f) which is the extension of
O(4)(B—L(f))=AB—L(f) to H(f) defines a continuous linear operator on H(f).
The homomorphism 4 — ®(4) of & into the *-algebra of bounded operators on
H(f) is called the canonical representation of & on H(f) induced by f.

LeMMA 2.2, If f is a centrally reducible functional on a C*-algebra <7 with center
Z, then the commutator O(Z) of O() on H(f) is O(Z). Here ® denotes the
canonical representation on H(f) induced by f.

Proof. We must prove that ®(27)' < ®(Z). Let Be (P())*; let h be a cyclic
vector in H(f) under ®(7) such that (®(4)h, h)=f(A), for all 4 in 7. Then the
functional g(4)=(®(4)- Bh, h) on &/ is majorized by f. Consequently, there is a
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Ce &+ such that (®(4)Bh, h)=(P(A)D(C)h, k), for all A in o/. Thus B(C)=B
and (O(£))* < (Z). So (L) = D(Z).

THEOREM 2.3. Let &/ be a von Neumann algebra with center & on a Hilbert space
H. A normal functional f on & is centrally irreducible if and only if f=w, where h
is a vector in H such that the cyclic projection E(A’, h) corresponding to the closed
subspace closure {A'h | A’ € &'} is abelian.

Proof. Let f be a centrally irreducible functional on 7 and let E be the support
of f. Let @ be the canonical representation of f on H(f) induced by f and let /P
be the kernel of ® where P is a central projection. Then there is a k € H(f) such
that f(4)=(®(A)k, k), for all 4 € &/. We have that ®(F) is the support of w, on
®(). Since O(E)D(Z) D(E)=D(E)D(Z)D(E), we have that O(E)D(F)D(E)=
O(E)DO(Z)D(E). Thus, ®(E) is an abelian projection in ®(«7). This means that
E is an abelian projection in &/ because E<J—P. We have that f| E</E is given by
f|Esd E=w,|ES/E for some h e E(H). Thus, f=w, and E=E(A’, h) is an abelian
projection.

Conversely let f=w, where E=E(%/’, h) is abelian. Let g be a positive functional
on & majorized by f. For each 4 in &/ we have g(EAE)=g(A4). The functional
g|E«/E is majorized by f|E/E. There is a B in (E/E)* =(ZE)* such that
g(EAE)=f(B-EAE) for all 4 in &. If B=CE where C is a member of Z'*, then
g(4)=f(CA) for all 4in &/. Q.E.D.

Let f be a centrally irreducible functional on a C*-algebra &/ with identity I
and center &; then the commutator ®(«7)’ of the image ®(«) of &/ under the
canonical representation ® of & on H(f) induced by f is equal to ®(Z). The
functional w,, (h=I—L(f)) on the von Neumann algebra (/)" on H(f) generated
by ®(&7) is representable as

wi(B) = f B O dn(Q  (Be N,

The measure v, is the spectral measure v, on the spectrum Z; of ®(Z), and the
projection E is the cyclic projection E=E(®(s/), h). The functionals f(B)=
75(B)"({) ({ € Z,) are irreducible on ®(=)" and therefore the f; ({ € Z,) are elements
of the pure state space of ®(=7) [2]. The representation ® of 2 onto ®(Z) induces
a homeomorphism of Z, into Z; the representation for

wi((4) = f(4)  (de)

can be carried over to an integral representation on the spectrum Z of & of the
form [, g/(A4) dv({). Each of the functionals g; ({ € support ») is in the pure state
space of «7; and for each fixed 4 in &7 {— g/(4) is continuous on the support of
v. These steps will be discussed in more detail in the ensuing theorems.
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3. Generalized irreducible functionals. Let ./ be an algebra of continuous
linear operators on a Hilbert space H. The commutator of & is the set &7’ of all
continuous linear operators 4' on H such that A4'=A'A forall 4 in &/. If his a
vector in H, the cyclic projection E(&Z, h) generated by 7 and 4 is that projection
which corresponds to the subspace of H given by closure {4A|A4 in &7}. A nonzero
vector # in H is called a trace element for the algebra &7 if (4Bh, h)=(BAh, h)
for all 4, Bin .

We first clarify the notion of a generalized irreducible functional in the next
proposition.

PROPOSITION 3.1. Let & be a von Neumann algebra on a Hilbert space H. The
vector functional w, is generalized irreducible on &/ if and only if h is a trace
element for Es/E where E=E(&’, h).

Proof. The statement that w, is generalized irreducible if % is a trace element
on EE is known [1, p. 96, Proposition 5]. We proceed with the proof of the
converse. Let w, be generalized irreducible on &7 and let E’ be the projection in
&' given by E' = E(«, h). If A’ is an element in (&/’')*, we have that g(4) =w,(4’'4)
is a positive functional on &7 included in w;,. Thus, there is an element A, in &+
such that g(A4)=w,(44,) for all 4 in &/. This means

((dog—A"Yh, Ah) = 0,
for all 4 in 7. Since {4h| A € &/} is dense in E'(H), we have

E'(44—A)E'h = 0.
Therefore, for any 4’ in &', there is an element 4, in &/ such that

E'A'E'h = E'A4E'h
and

E'A'"*E'h = E'"A§E’h.
These relations show that 4 is a trace element for E‘</’E’. Indeed, for 4’, B’, in
&' we have

(B'A'h,h) = (B'Agh, h) = (B'h, A¥h) = (B'h, A'*h) = (A'B’'h, h)
where A4, is an element of & given by E'AGE'h=E'A'E’'h and E'A¥E’h=
E'A'*E’h.
By the first part of the theorem w, is generalized irreducible on «7’; a

second application of the preceding argument shows w,, is generalized irreducible

on &.
From the preceding proposition the next decomposition follows immediately.
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THEOREM 3.2. Let o be a von Neumann algebra of Type 1 with center % on a
Hilbert space H. If f is a generalized irreducible normal functional on «/, we may
write (A) f(A)=] f(A) a(Q), for all A in . Here

(1) v is the spectral measure v, on the spectrum Z of % ; the vector h arises from
restricting f to Z;

(2) f; is a state for each { in the support Y of v and { — f((A) is continuous on Y
for each fixed A in

(3) for each L in Y, f(A)=A(L) for all A in &;

(4) except on a nowhere dense set N in Y, f is a finite sum of irreducible functionals
on & ; and

(5) except on N, f; is generalized irreducible on /.

Proof. We prove the parts (1), (2), (3) without using the hypothesis that .« is
of Type 1.

Let @ be the canonical representation of & on H(f) induced by f. The map @
is normal and therefore ®(27) is a von Neumann algebra on H(f). Let k be the
cyclic vector in H(f) under ®(&) such that (®(A)k, k)=f(4) for all A in «. If
g is a positive functional included in w,, it is easy to see that there is a B € ®(&)*
such that g(4)=w,(BA) for all 4 in ®(&). Thus, w,, is generalized irreducible on
the algebra ®(&7). Let F be the projection in ®(&) given by F=E(P(&), k).
There is a projection Q in & such that the kernel of @ is A(J— Q). The unique
projection E in &/ Q such that ®(E)=F is the support of f.

We claim that f'is a faithful finite normal trace on E<ZE. That f is faithful and
finite needs no verification. To prove fis a trace on E&/E, let A and B be members
of Es/E. We have

f(AB) = (D(AB)k, k)
= (®(A)D(B)k, k)
= (D(B)P(A), k)
= (D(BAY, k) = f(BA).

Thus, fis a trace on EXE.

We have proved that EZE is a finite von Neumann algebra. If &7 is of Type I,
so is EE. The algebra E&E possesses a canonical #-map 4 — A# of ESE
onto the center 2, of E&FE [1]. We may write for all 4 in E&ZE

O Sy = ) = [ 4#°@) (@)

where v, is the spectral measure on the spectrum Z; of Z;. The measure arises from
restricting f'to Z,.
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Let P be the central support of E. There is an isomorphism of ZP into £,
given by A — AE, for A € ZP. There is a homeomorphism p of the spectrum
Z, of Z, onto the spectrum

Y ={{eZ]|B{) = 1} of ZP such that

the map A — AE of ZPto &, is given by A — A-p when 2P and £, are identified
by the Gelfand map with the algebras of all continuous complex-valued functions
on Y and on Z; respectively.

We use p~!=7 to obtain a representation on Y. For each { € Y, we define
JA)=(EAEY*"(x(0)), for each 4 in &. It is easy to see that f; is a state for each
{ € Y, and that for each fixed 4 in &, the function { — f/(4) is continuous on Y.
Furthermore, if A € &,

f(4) = (EAE)*"(n()) = (AE)"(n(]))
= (4P)"(p-7(D)
= A(),

since P~ ({)=1 for { € Y. Therefore, f, satisfies condition (3).
Let v be the Radon measure on Z with support Y given by the formula

v(X) = v;(p(X)) for each Borel set X< Y.
Defining f,=0 for { ¢ Y, we have

£ = [ ) o,

for all 4 in &7.
We now show that » is a spectral measure. There is an element 4 in H such that

f|Z=w,|Z. We have
ﬂ@=fﬂowo=mu)

for all A in 7. By definition v=v,.
We now employ the hypothesis that & is of Type I to obtain properties (4) and
(5). First we construct the nowhere dense set Nin Y. Let

EAE = [1{(E&E)-P,|d € D}

where the P, are mutually orthogonal central projections in E</ E with least upper
bound E such that (E&/E)- P, is homogeneous for each d € D. Let

Ss ={lieZ, |ﬁd(§1) = 1} and let
S =\J{S:|de D}.
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The set S is open and dense in Z,; we set N; equal to the complement of Sin Z,.
The set N, is nowhere dense in Z; and thus N=p(N,) is nowhere dense in Y.

For each { € Y— N we must prove that f; satisfies properties (4) and (5). Let P,
be the unique projection in {P, | d € D} such that Py({,)=1 where {,=7({). Since
the algebra (E«/E)-P, is finite and homogeneous, there are equivalent orthog-
onal abelian projections Ey, E,, ..., E, such that E;+E;+---+E,=E. Let U,
(1 £, k =n) be partial isometric operators in (E&/E)- P, such that

(1) U Up=8,;Uy,, where 6 is the Kronecker delta;

(2) Uk=Uy,;; and

() U;=E,
forall 1=j,k,I,m=n. For each 4 in (E&/E)- P, there are unique By, (1<j, k<n)
in &P, such that

4= Z‘Bﬂchk-
7.k

We prove that the map ¥, =¥ takes (EAE)- P, onto the set of all linear opera-
tors on an n-dimensional Hilbert space H,. Let ¥Y(U;)=V; (1=j,k<n). If
ey, ey, . .., e, is an orthonormal basis of H,, define V,.e,=3¢;e,. Then for each 4
in (EAE)- P, we have

¥(4) = Z eV e

where «j.=B,({o) if A= 3 B; Uy, By € Z1Po; thus ¥(A4) is defined on H,. It is
easy to see that W((E/E)- P,) is the set of all linear functionals on H,,.
We have for each A4 in & that

Su(4) = (EAE)*"(Lo)

= (EAE -P, o)#/\(go)
1)
= Z (E,AE)* (L)

= Z (Y(EAE)e;, e)).

Now each functional 4 — (E;,AE;}#"({,) is irreducible on E«/E. Indeed, E, is
abelian in EAE. Thus for each 4 in & there is a Bin £, P, such that E;AE;= BE,.
So

(E,AE,)# = (BE,)#
= (BUlcink)#
= (B UJkka)# = (BEIc)#-
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Thus,

(EAEY () = [Z (BEW ()|~

- [l 35
= [Bo)In~?
= [r5,(A)")In "1

Setting f;,(A4) =(E;AE;)*"({,) we have that f, is irreducible on E«E. Consequently,
fi 1s irreducible on .

We now show that f; has property (5). Let g be the restriction of f; to E&/E.
It is sufficient to show g is generalized irreducible on E</E. Let g, be a positive
functional included in g. There is a positive functional g, on L(H,), the set of all
linear operators on H,, such that g,-¥'=g, and g, is included in > {w,, | 1 £k =n}.
But > w,, is a trace on L(H,). There is an 4, in (E&/E)* such that

£:(4) = go(¥(4)) = 3y wo(¥(AoA)) = g(AA),

for all A in E&/E. Thus g is generalized irreducible on E</E. Q.E.D.
The converse of the preceding theorem is contained in the next two theorems.

THEOREM 3.3. Let &7 be a von Neumann algebra of Type 1 with center & on a
Hilbert space H and let v=v, be a spectral measure on the spectrum Z of %. Let
E,, E,, ..., E, be equivalent orthogonal abelian projections in < with central support
P such that Ph=h. Let 7(A)=75(4) (1=j=n) for A/ and define fi(A)=
AT (A) () (L£j=n) where A; is a strictly positive scalar and { € Z. If we set

1) = 3 [ ey dod

for all A in &, there are elements B, and By in o/ * such that

(1) ByBy=ByB,=E=E;+E;+---+E,; and

(2) if g is a positive functional on & included in f, there is an A, in &+ such that
g(A)=f(ByAoBoA)=f(AByABy) for all A in . If A\y=X=---=X,=1, we may
take B,=B,=E.

Proof. Let By= 3 {A}'2E; | 1 <j<n} and let

By=>{N2|E1<jsn.
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Set f1(A)=f(BsABg)= 3 {(r(A)h, h) | 1=j<n} for all 4 in . Since (r,(4)h, h)
is a normal functional on E&E, f,(A) is a normal functional on E«/E. The support
of f; is E and, consequently, f; is a normal functional on &/. We show that f; is a
trace when restricted to E<&ZE. For each { in the spectrum Z of £ and for each
A, Bin EZE it is sufficient to show that

DATABY Q) |1 2jsnp =D {r(BA Q|15 =n.

We may assume [ €{{ e Z | PB(0)=1}. There is an orthonormal basis e,, e, . . ., e,
for an n-dimensional Hilbert space H,, such that ¥,(E«/F) is faithfully represent-
able on H, as the algebra of all linear operators and (¥'(A)e;, e,)=71,(4)"(), for
all A€ E/E and 1<j<n. Since X {w,, | 1<j<n} is a trace on H,, we have
SH{TBAQ) | 12jsn}= 3 {r(BA)~ () | 1£j=n}. Thus, f; is a normal finite
trace on E«/E.

Let g be a positive functional included in f. We have that the functional g,(4)=
g(BoABy) is included in f;. There is an element 4, in (E&/E)* such that g,(4)=
f1(AyA) for all 4 in E/E. Thus,

8(A) = g:1(BoAB,) = f1(AoBoAB,) = f1(BoAB,yAo)
= f(Bf)AoBoA) = f(ABvoB('))

for all 4 in &/. Q.E.D.
The next theorem is obtained by reducing it to the previous one by repeated use
of the following lemma.

LEMMA 3.4. Let & be a commutative von Neumann algebra and let Q,, Q., ...,
Q. be projections in Z. There are orthogonal projections Py, P,, . .., P, in Z such
that .

1) 2A{P;|1sjsmi=1ub{Q;| 15j=n};

(2) for each j (1 =j=<n) there is a finite subset m; of {1, 2, ..., m} such that k € m,
implies P,,< Q; and k ¢ m; implies P,- Q;=0.

THEOREM 3.5. Let &/ be a von Neumann algebra of Type 1 with center Z on a
Hilbert space H. Let v=v,, be a spectral measure on the spectrum Z of %. For each
{ in the support Y of v and for each j (1 <j=<n) let us assume that

(1) fi:(A) is a pure state on «;

Q) fi(A)=A), for all A in &; and

(3) £ — fi(A) is continuous on Y for each fixed A in . Let us set

fd) = jz [ 1 o,
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for each A in 4. Assume f is normal. Consider the hypotheses:
(@) for 1sj<ksn,{eY

St

is generalized irreducible on < ;
(b) hypothesis (a) holds, and for 1 S j<k<I=n,{eY

St St S

is generalized irreducible on <.

Then if hypothesis (a) is true, there are elements By, By in & * with ByBy= ByB,=E,
where E is the support of f, such that if g is a positive functional on & included in f,
there is an element A, in &/* such that g(A)=f(BoAoByA)=f(AByAyBy), for all A
in . If hypothesis (b) holds, f is generalized reducible on .

Proof. Let
) = [ asisn,

for all 4 in &. Since f; (1 £j=<n) is included in f, f; is a normal functional on 7.
Further, by Tomita’s theorem [4, Theorem 1, §40] f; (1=<j<n) is centrally irre-
ducible on /. The support E; of f; (1=<j<n) is an abelian projection.

Let Q3, Qs, ..., O, be the central supports of E, E,, ..., E, respectively. Let
P, P,,..., P, be the sequence of projections in & which satisfy properties (1)
and (2) of the lemma with respect to Qi, Q5,..., Q. For each j consider the
projections P;E;, P,E,, ..., P,E,. There is no loss in generality in assuming
P,E,, P;E,, ..., P,E, are nonzero and that P,E,,,=P;E, ,=---=P,E,=0. Since
P,E, PE,,...,P,E, are nonzero, we have P,<Q, for k=1,2,...,r. Thus,
P,E,, PiE,, ..., P,E, are abelian projections with central support P;. This implies
that P;E,, P;E,, . .., P,E, are equivalent.

Let us define the functional

1) = i) = 3 [POS dD (1S kS D)

-3 [fewd® asksn

where Z; is the open and closed subset of Z given by Z,={{ € Z | P({)=1}. We
have that the functionals fi,, for, - - .5 frr (§ € Z;) enjoy property (a) (respectively,

property (b)) whenever fi, for, ..., frr (€ Y) enjoy property (a) (respectively,
property (b)). If each f;, has the property set forth in the conclusion of the theorem

for &7 - P, depending on whether the f;; (1 <j<r) satisfy (a) or (b), then it is easy to



42 HERBERT HALPERN [October

see that f= > {f, | 1=j<m} will have the same property for 2/. So we may
assume that the supports E;, E,,..., E, of fi, fs, ..., f, are equivalent abelian
projections.

Let us assume that ¥'(«Z) ({ € Y) is represented as an algebra of continuous
linear operators on a Hilbert space H({) such that /()= C(H({)), where C(H({))
is the algebra of completely continuous operators on H({). Now we have for each
{ e Y that f;,([{))=(0) (1=j=n) by hypothesis (2). Furthermore, for each {€ Y
and 1=<j=<n, we have

0= f,U-E) = [ i~ E) D).

Thus, for 1 £j=<n, f;(I—E;})=0 for all {e Y— N, where N is a set of v-measure
zero in Y. Now the set N contains no open sets since v is a Radon measure whose
support is Y. Thus the set {{e€ Y| f;,(I—E,)=0} (1=<j=<n) is dense in Y. Since
{—f(I-E;) (1=j<n) is continuous on Y, f;(E)=f(I) 1=<j<n)forall {e Y.
Since for fixed { e Y W,(E;) (1=<j=n) is an abelian projection in £/({) and since
& (8) is irreducible on H({), we have that either E,({) (1=<j<n) is a 1-dimensional
projection on H({) or E({) (1=<j=<n)is equal to 0. If Ey({)=0 (1=<j=n), E; € [{]
(1=j£n) and 1=f(E)=0 (1=j=n). Thus E({) (1=j<n) is a l-dimensional
projection in H({). We may therefore write f;=w,,-¥; (1Sj<n) where x,
(1=j=n) is a unit vector of H(Y).

Consider fi;+fi; for j#k. Then we have fii+fir=(W. +w,,) ¥;. Because
Sie<fir+fur, there is an element B in &/ with the property

fi(4) = fi(BA)+fi(BA)
= fx(AB)+f.(4AB)

for all 4 in &7 (hypothesis (a)). Then

Wy, [A(Q)] = Wi, [BOAD)]+wx, [BAD)]
= Wy, [A()B(D)]+ wx, [4(D)B(0)]

for all 4 in &. Since &({)> C[H({)], we have that

(1) B({)*'2x;=A;x; and B({)!/%x,,=A,x;, where A; and A, are scalars. Indeed the
set B={4:(0) € L) | Wy, + W) A1(DAD]=(Wx, + W, ) A(D4:(0)], for all A)
in &/({)} is a uniformly closed x-subalgebra of &/({) with identity. Thus B({) e #
and B()=0 implies B({)'/2 € #. This means (A({)x;, x;)=(A()B(L)*2x,, B({)*'%x;)
+(A(0)B()*%x,, B(L) 2x,), for all A(L) € ().

From this expression (1) follows. Thus,

B(Dx, = Xx, and B(0)x, = AAex,.
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We have
(AQ)xj, x;) = M(AQ)x), X))+ AA(AQ)x;, xi),
for all 4 in &. So
2 X; = Alx;+ A

Because B()''220, A(x;, x;)=(B({)'?x;, x;)=0 and so A;=0. We also have that
A; >0 since (x;, x;)=f;(E;)#0 (expression (2)). Therefore (from expression (2)),

(1 —A?)xj = )\j)kxk.
Either x; is a scalar multiple of x, or A,=0. If A,=0,
A(xy xi) = (B(D)'2x;, x10)
= (x5, B(0)'"xy)
= (%), X))
=0,
by expression (1). This means that x; and x;, are orthogonal since A;>0. Since
E(0) and E () are both l-dimensional projections with E({)x;=x,;#0 and
E(Dx,=x,#0, we have E/{) is orthogonal to E,({) if A,=0 and E({)=E({) if
A #0.
Now by the preliminary remarks the map {— |(E;- E)(Q)| = |EADEQ)] is

continuous on Y. Since E({)=E,({) or E4{)- E({)=0 for each { € ¥, the function
|(E;- E)(L)|| assumes at most two values, namely O and 1. Hence the set

Xy = {Le Y| E(Y) = EL)}

is open and closed in ¥ and hence in Z since Y is open and closed in Z. Let P be
the projection in & with the property

{lez|PPO)=13=7Y
and let Q,, be the projection in ZP with the property
Xpe={leZ| Qu ) =1}

Such a projection Qj, exists because X, < Y.
Suppose we have found projections Q;, with the properties just specified for all
1<j<k=n. Consider the set of projections,

S={Qullsj<k=muU{P-Qu|lsj<k=n

in ZP. There are projections Qy, Q., . . ., @, in ZP which satisfy (1) and (2) of the
lemma with respect to the set S.
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For arbitrary Q, in {Q,, Qs,..., Q,} consider the set Q,E;, Q\E,, ..., Q,F,.
Since E,~E;~ ---~E,, we have QE;~ Q,FE;~ ---~Q,E,. For each j#k, Q,F;
is orthogonal to Q,E, or is equal to Q,E,. Indeed, either O, < Q. or @, <P — Q.
In the former case |(E;,—E.)({)|=0 for all { in Z,={{e Y| @7 ({)=1}. Thus,
I((E;— Ex)- Q)(©)] =0 for all { in Z. Since

N{ll|¢ez} =0

we have Q,E;= Q,E;. In the latter case, on the other hand,

||(Q1 (E;- E)XD) " =0

for all { € Z, and therefore Q,FE, and Q,E, are orthogonal.
We have

fald) = 1@ut) = 3 [ f4) dud,

for all 4 in &7. We divide the set {1, 2,..., n} into disjoint parts =, g, ..., 7,
such that (1)U, m.={1, 2,..., n}; (2) j and j' in =, implies Q,F;= Q,F;; and (3)
jem, and j’ € m. (k#k') implies Q,E; is orthogonal to Q,E;. We have

) fold) = ,Z [rgetty o,

for all 4 in «/. Here, g,(A4)=f...(4) where k € m; (1£j<m) and ), is a scalar equal
to the cardinality of =; (1=j<m). Since fi(4)= 71, (4) ({)=7q;5,(4) (D)=
filA) for k, k' em; (because Q,E,= Q,E,), the functionals g, are uniquely
defined.

If each fo, (I=1, 2,..., r) possesses the properties set forth in either conclusion
for (a) and (b) with regard to & Q,, then f= 3, fo, possesses the same properties
with regard to /. Thus, we may assume that

1) = 3 Ay @ vt

for all 4 in &, where E,, E,,. . ., E, are orthogonal equivalent abelian projections.
Thus, we have reduced to Theorem 3.3.
Let E=E,+E;+ - - -+ E,; let B, be the element in &/ * given by
By = M2E;+ M2Ey+ - - - + N 2E,
and let
By = ATY2E 4+ AFY2E + - - - + A Y2E,.
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If g is a positive functional on & included in f, by Theorem 3.3 there is an 4, in
&/ * such that

g(A4) = f(BoAoBoA) = f(ABoAoBo),

for all 4 in &. This completes the proof of part (a).
Let us assume that (b) applies. Using hypothesis (a), we can reduce to the
form (3)

fold) = 3 [Mea) d@.

We shall show either m=1 or A\;=A,=---=A,=1. In both of these situations
Theorem 3.3 can be applied to give the desired conclusion.

We argue by contradiction. Assume A;>1 and m#1. In the notation of the
proof

2fi(A) +fa(A) = Qwa, +ws,)[4(0)]
is generalized irreducible. Here x;, and x, are orthogonal unit vectors in H({).

This is impossible as the next proposition will demonstrate.

PROPOSITION 3.6. Let &/ be a B*-algebra with identity operating on a Hilbert
space H. Assume > C(H), where C(H) is the algebra of completely continuous
operators on H. If x, and x, are orthogonal unit vectors in H, then there is a positive
JSunctional g on & included in 2w, (AB)+w,,(AB), for all A in s/, implies B# B*.

Proof. Let g=w, where y=x;+x,. If 4 e L(H)*, we have

(A 2(xy — x3), A**(x1—X5)) 2 O,
and so
(42xy, AY2x1)+ (A2 Pxg, AYPX5) 2 (42X, AM2X5)+(AY X3, AM2X,).
Therefore, we have
(4y, y) = 2(AY%x,, A%x,) +2(A4Y2x5, AY%X3) £ 22wy, (A) + Wy, (4)).
Thus, w, <2w,, +w,, on L(H) and thus on /. Let B € L(H) have the property
wy(A4) = 2w, (AB)+w.,(4B),

for all 4 in &. Let 4;x,=0, A;x;=x; and 4,(K)=(0) where K is the orthogonal
complement of the subspace of H generated by x; and x,; let 4,x; =X, Asxs=0
and A4,(K)=(0). We have 4,, A, € C(H)< A. Then

1 = wy(4Y) = 2w, (4¥B)+w,,(4TB)
= 0+(BX2, xl),
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and
1 = wy(45) = 2w,,(43B)+w,(4%B)
= 2(Bx,, x3)+0.
So
(Bxy, x3) =4 and (Bx,, x;) = 1.
We have

(x1, Bxg) = (Bxz, x;) = 1.

Thus B#B*, Q.E.D.
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