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1. Introduction. In this paper asymptotic formulas for Wiener integrals similar

to the Laplace asymptotic formulas for integrals in one dimension will be proved

[5], and some applications to analysis of these formulas will be given.

Let C[0, T] be the space of continuous functions defined on the interval [0, 7"]

which vanish at zero, and let ||z|| be the sup norm of a function z. A functional

H(z) will be said to have a proper maximum at a point x if H{z) < H(x) for z^x.

Let C*[0, T]<=C[0, T] be the subset of functions on [0, T] which are absolutely

continuous and whose derivatives are in £2[0, T],

Suppose F(z) is a functional on C[0, T] such that £(z) — \ \\ {z'(t))2 dr has a

proper maximum on C*[0, T\. Call this maximizing function x(t). With further

restrictions on £(z)(2) but not supposing F(z) to have any Frechet derivatives, and

for a large class of functionals G(z), it will be shown(2) that

(i.i) ^ÊE^Û^^m = cKx)
¿-.o      £™{exp (A  2£(Az))}

where Ez{   } denotes integration with respect to Wiener measure [8].

In the case that £(z) and G(z) have Frechet derivatives in a neighborhood of x,

it will be shown that

(1.2)   exp(-6A-2)£r{G(Az)exp(A-2£(Az))} = ro + F1X+ ■ ■ ■ +FBXK + 0(XK + 1)

where b = F(x) — % ¡T0 [x'(t)]2 dr and the T¡ are Wiener integrals not depending

on A.

In §2, the exact conditions under which (1.1) and (1.2) hold will be given. In

§3, several lemmas necessary for the proof of (1.1) and (1.2) will be given, and in

§4, the proof of (1.1) and (1.2) will be completed. In §5, some applications of (1.1)

are given.

Formulas (1.1) and (1.2) first arose in connection with a problem in nonlinear

partial differential equations.
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2. Some asymptotic formulas for Wiener integrals. The main results of this

paper are :

Theorem A(3). Suppose F(z) and G(z) are two real valued functionals defined on

C[0, T], and suppose that the functional F(z) — \ ¡T0 [z'(t)]2 dr has a proper maximum

at x over C*[0, T]. If F(z) and G(z) satisfy conditions 1-5 below, then

E?{G(\z)exp(\-2F(\z))} _

ÍÜS      E0>{exp(\-2F(\z))}       ~U{X)-

Conditions 1-5 are:

1. G(z) and F(z) are Wiener measurable.

2. \G(z)\ ^ K1 exp (K2\\z\\2) almost everywhere with respect to Wiener measure

where K1 and K2 are any positive real numbers.

3. F(z) í¡ Lx + L21| z ||2 almost everywhere with respect to Wiener measure where

Lj is any positive real number but L2 < T/4.

4. G(z) is continuous at x in the sup norm.

5. F(z) is continuous for

\\z\\ < |(é-£1+l)/(2La-l/2r)|1/a>

and upper semicontinuous almost everywhere in the sup norm.

For convenience the following notation is introduced. If

_8KF(x + v)_
d(x(s1) + tjCji)) • • • 8(x(sK) + 7¡(sK))

is the Kth Frechet derivative of the functional F(z) at the point x + r¡ (r¡ e C[0, T]),

then the expression

1   ÇT «,   [T 8KF(x + v) . „        ,   w ,
■777 • • • ~,   ,    n-,    ,s    -7U—,—;--,—r: z(ii) • • • Z(SK) ds, ■ ■ ■ dSK
KlJo Jo  8(x(s1) + r¡(s1))---8(x(sK) + v(sK))   v u        KKJ

will be denoted by fK(v)zK-

Theorem B. Suppose F(z) and G(z) are defined on C[0, T] and satisfy the hypothesis

of Theorem A, and suppose also, that

1. F(z) has two continuous Frechet derivatives in a uniform neighborhood of the

maximizing function x.

2. Ez{exp ((1 + e)f2(q)z2)} is uniformly bounded for r¡inao uniform neighborhood

of 0, for some e > 0.

(3) See definitions in the Introduction.
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3. x'(t) is of bounded variation. Then

limexp(-oA-2)£2l0{G(Az)exp(A-2£(Az))} - G(x)£2w{exp (/2(0)z2)}

whereb = F<x)-\\l [x'{t)\2 dt.

Theorem C. Suppose £(z) and G(z) are defined on C[0, T] and satisfy the hypothesis

of Theorem A, and suppose also that

1. £(z) has « ä 3 continuous Frechet derivatives in a 8 uniform neighborhood of x.

It is supposed that fj(r¡)z' — OQlzW') if-n is in a 8 neighborhood of zero.

2. £"{exp ((1 + e)f2(7])z2)} is uniformly bounded for r¡ in a 8 uniform neighborhood

of 0, for some e > 0.

3. G(z) has n — 2 continuous Frechet derivatives in a 8 uniform neighborhood of x.

4. x'(t) is of bounded variation. Then

exp(-W-2)£-{G(Az)exp(A-2£(Az))} = r0 + FiA+• • •+rn_3A"-3 + 0(A"-2)

as A -*> 0,

the r, being Wiener integrals depending only on the Frechet derivatives of F(z) and

G(z) at x.

The assumptions of Theorem A on £(z) and G(z) are strong enough to insure

that there exists a A0 such that if A = A0, then the functional G(Az) exp (A~2£(Az))

is Wiener integrable. This is true since

|G(Az)exp(A-2£(Az))| ^ Kx exp (A"2£i + (/s:2A2+£2)¡|z[|2)

by hypothesis, and from Lemma 1 (§3) it follows that if A is small enough

Kx exp (A-^j^exp ((/s:2A2+L2)||z||2)}

S 2(2/ttT)1I2K1 exp (A-2Lj) f°° exp ((K2X2+L2)u2-u2/2T) du < 00.

Evidently, the same reasoning may be applied to show that exp (A~2£(Az)) is

integrable.

For any positive integer «, we will denote by zn the vector

z(T/n),z(2T/n),...,z(T).

For each «-dimensional vector sn, we will denote its polygonalization by s"(t),

i.e.,

s"(r) = s?+(r-j^ ~ (s?+1-sf)

for

jT/n = T = 0'+1)77",       j = 0, 1,...,«-1,   iS = 0.
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For each z e C[0, T], let zn(-) be the polygonalization of the vector zn. We will

call zn(-) the polygonalization of the function z.

If sn is a vector, then ||sn|| will mean its sup norm.

Define

(2.1) A(8) = sup F(z)-i f tz'(r)]2 dr-b,
zeA Jo

where A={z e C*[0, T] | ||z — x\\ 3: 8}, and b is defined in the Introduction.

Define F(z) as a function on Rn by

F(sn) = F(sn(-)).

3. Lemmas.    In this section we state and prove several lemmas necessary for

the proof of Theorems A, B, and C.

Lemma 1. Let f(u) be a nonnegative Lebesgue measurable function on [0, oo).

Then

E?{f(\\z\\)} ^ 2&/wT?* ^f(u)exp(-u2/2T)du.

Proof. Let A be any interval contained in (0, oo). By the symmetry of Wiener

measure with respect to reflections across the x-axis we have

PS  sup  |z(t)| eA\ ^ 2PJ" sup z(r)eA\
\osisr / \osist /

It is well known [5] that

PS sup   z(t) eA\ = (2/ttT)112 f exp (-u2/2T) du
\osigr S Ja

and hence from a familiar argument

ETiAM)) ^ 2(2/nTY'2 j"f(u) exp (-u2/2T) du.

Lemma 2(4). If

max sup |z(t) —z(7T/n)|l S 8/2,
OélSn-l llTln<zS(l+l)Tln J

then ||z-zn(-)|^S.

(4) This proof is completely obvious from a picture.
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Proof. Let t0 be a point where |z(t) — z"(t)| achieves its maximum value. Let 7

be such that jT/n<r0^((j+ l)T)/n. By hypothesis

f^Mf)l4
and hence it follows that every point (t, zu(t)) on the straight line segment joining

(jT/n, z(jT/ri)) and ((j+ l)T/n, z((j+ l)T/ri)) satisfies |z(7T/«)-zn(-r)| ^ 8/2. Again by

hypothesis \z(jT/n) — z"(t)| <; 8/2 so that by triangle inequality |z"(t) — z(t)| = £. This

holds in particular for t0 and the lemma is proved.

Lemma 3. P{||z-zn(-)|| ^y}ú4/y(2nT/n)112 exp (-ny2/ST).

Proof. Since Brownian motion has stationary increments we have from Lemma

1 that for any7 = 0, 1, 2,..., «—1,

PS Sup \z(r)-z(jT/n)\   ^ y/2\
liTln<iSU + l)Tln J

= Pi   sup    |z(r)| ^ y/2\ ^ 2(2n/nT)1'2 f " exp (-nu2/2T) du
\0SiSTIn S JyI2

= 2Í2A01 '2 f " (exp ( - v2/2)) dv í 4/y(2T/n-nf>2 exp ( - ny2/%T).
Jvnllzl2T112

Let

Ô? = SzeC\ sup |z(t)-z(jT/n)\ Z y/2\,       j = 0, 1, 2,...,»-1.

From the preceding inequality

ifUß?} = (4/y)(2«r/7r)1'2exp(-«y2/8P).

Now if z £ U?= o1 ß?, then supjr/n<lSU + 1)Tln \z(r) -z(jTjri)\ < y/2 for all/=0,1,..., n

and hence from Lemma 2, ||z—zn(-)\\ <¡y. Thus

P{\\z-Z*(-)\\ =ly}=i (4/y)(2nT/*y2exp(-ny2/8T).

Lemma 4.

f   [dsn(r)/dr] dr = snAn(sn)~
Jo

and

xnAn(xn)~ ^  f   [x'(t)]2í/t      for all n,
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where (xn) ~ means xn transpose and

An =    min     —.—     •
lSUJSn L"     «J

Proof. By definition

where j|}=0. But as is well known

2^[sf-s?-x]2 = snAn(sn)--

Now for the second part of the lemma. From the first part of this lemma, it is

sufficient to show that

¡T [dx\r)/dr]2 dr ^   C [x'(r)]2 dr
Jo Jo

Since

dxn(r) _ n I JjT\    J(j-l)

p-Tm->p=ñ)   ?<'<id

it follows from the Schwarz inequality, that

n      rtfln

=   2 [X'(r)fdr
j = ! Ju-DTIn

=   C [X'(r)]2 dr.
Jo

Lemma 5.1fze C*[0, T], then for r2>rx

sup    [z(t)-z(ti)]2 5? (r2-ri)   f" [z\r)f dr.
iiSiSt2 Jtj

Proof. From the hypothesis of the Lemma it follows z(t) —z(tj) = J'j1 z\s) ds.

From the Schwarz inequality it follows [z(r) — z(tj)]2^(t— tx)P [z'(s)]2 ds. The

Lemma follows since the sup of (t — tx)^ [z'(t)]2 dr for r2 2: r S: rlt is taken on

when r = r2.
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Lemma 6. Suppose F(z) satisfies the conditions of Theorem A. Then A(8) < 0 //

S>0, where A(8) is defined by equation (2.1).

Proof. Suppose not. Then there is a sequence {zm}cC*[0, T] such that

(3.1) ||zm-x|| ^ 8   and    lim F(zJ-i f [z'm(r)f dr = b.
m-+<x> Jo

It will be shown in the case of assumptions (3.1) above that the sequence {zm}

has a subsequence {z*} which converges uniformly to x* e C*[0, T], that x*^x,

and that F(x*) — %jl [x*'(r)]2 dr^b. This is contrary to the hypothesis of the

Lemma.

It can clearly be assumed that b—lSF(zm) — \ \\ \z'm(r)f dr for all m. From

Lemma 5 and condition 3 of Theorem A, it follows that \T0 [z'm(r)]2 dr ^ 4\L1 — b +11.

From Lemma 5 again, it follows that

sup    \zm(r)-zm(Tl)\ ^   (ra-Ti)     2[z;(t)]2í/t
iiá'Si2 L 7 t, J

I 1/2

[z'm(r)fdr\
>n

^2[(r2-r1)\L1-b+l\]112.

Therefore, the sequence {zm} is equicontinuous and bounded. By Ascoli's theorem

it follows that there exists x* e C*[0, T] and a subsequence {z*} such that x* is

the uniform limit of {z*}. From the inequality b— 1 èF(zm) — % [T0 [z^(t)]2 dr and

conditions 3 and 5 of Theorem A it also follows that F(z) is continuous at x*.

Since liminf Jp [z£'(T)]2 dr^)T0 |x*'(t)|2 dr is a standard property of weak con-

vergence, it follows that

F(x*)-$  f [X*'(r)}2dr ä liminfP(zJ-|  ¡T [Z'm(r)]2dr ^ b.
Jo Jo

Lemma 7. If \\sn-xn\\^w and w-pn>0, then F(sn)-$snAn(sn)-^A(w-pn) + b,

where pn= \\x—xn(-)\\ ; xn(-) is the polygonalization of the maximizing function x.

Proof. \\xn(-)-sn(-)\\ ^ ||x-in(OII + \\x-xn(-)\\. Thus

Ix-AOl = \\xn(-)sn(-)\\-\\x-xn(-)\\

= \\x"(-)-s"(-)\\-pn = \\xn-sn\\-pn ^ w-pn.

By Lemma 4, snAn(sn)~ =jT0 [dsn(T)/dr]2 dr. Thus

F(f)-±s"An(s»)- = F(s"(-))-i J' [^-}]2 rf-
2
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By the definition of A(8), b and Lemma 6, and since ||x —in(')ll =w—pn we have

F(sn)-±s"An(s»)- Ú A(w-Pn) + b.

Lemma 8. If £(z) satisfies the hypothesis of Theorem A, and B is any number

greater than zero, then for all X sufficiently small

(3.2) 7i(A) = exp (- bX~2)£^{exp (A"2£(Az))} ä i exp (- BX"2).

Proof. The translation formula for Wiener integrals [1] states that if q0(T) e

C*[0, T] and H(q) is a Wiener measurable functional, then

E?[H(q0+q0)] = exp (-* £ [q'0(r)]2 d^E^H(y) exp [Jj q'0(r) dy(r)^.(*)

Because of the assumption made on x(t) it follows, using this translation formula,

that

(3.3)

/i=exp[(-¿A-2)Jor[x'(T)]2</r]

x £-|exp [x-2[F(Xy + x)-b]-X-i £ x'(r) dy(r)Jj-

From the continuity assumption of £(z), it follows that there exists a ß > 0 such

that \\x-y\\ Sß implies F(x)^F(y) + B. Thus, from (3.3)

h ^ exp[(-$X-2) j* [x'(r)]2 dr]

x E^xiß/X, 0,y) exp ^X-2[F(Xy + x)-b]-X^ £" x'(r) dX*)]}

sSexpfi-iA-^jVir)]2^]

x £-{x(j8/A, 0, j) exp [x-2(F(x)-B-b)-X^ Jj x'(r) ¿)(r)]},

where x(S, >', z) is the characteristic function of the set {z e C \ \\y — z\\£ 8}. But by

assumption on x(t), £(x) = ^¡t0 [x'(t)]2 dr + b and, therefore,

(3.4) A ^ exp (-7iA-2)£-|v03/A, 0, y) exp (à'1 Jj x'(r) dy(r)j

(5) See [4, Chapter IX], for a definition of stochastic integral.
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Now let R(y) be the characteristic function of the set

{yec\jTo x'(r)dy(r)f¿0J-

From (3.4)

I, ^ exp(-BX-2)E^{x(ß/KO,y)R(y)}.

But by the symmetry of the Wiener measure with respect to reflections across the

t axis,

E^xißß, 0, y)R(y)} ̂ hE?WIK 0, y)}.

Therefore

h ä ^exp(~BX-2)E^{x(ß/X,0,y)} = i exp (-B\-2)P{\\y\\ < ß/X}.

Since P{||.y|| S ß/X} -> 1 as A -» 0, it finally follows for small enough A that

h ^ iexp(-BX-2).

Lemma 9. IfF(z) and G(z) satisfy the hypothesis of Theorem A and 8 is any positive

number, then

/(A) = exp (-bX~2)E^{[l - y(S/A, x/X, z)]\G(Xz)\ exp (X~2F(Xz))}

= 0(exp(A"2a))

where a < 0.

Proof. Since x(r) is continuous on 0 ^ r S T, we have

lim ||x-x"(-)ll = 0,
n->oo

and from Lemma 4 we have

lim xnAn(xn)~ â  Í   [x'(r)]2 dr.

Therefore, both sequences ||x"|| and xnAn(xn)~ are bounded. Hence there exists

a positive constant c so large that for all n

(3.5) L1/c + 2L2||x"||(P/C)1'2+L2(||x"||2)/c + (xMn(xn)-/C)1'2 ^ £.

In addition, c can be chosen so that

(3.6) {-b-A(8))/c ^ h
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From the continuity assumption on F(z), it follows that there exists 0<?7<S/4

such that

||z|| < [|è-Li + l|/|2£2-l/27-|]1/2   and    \\z-y\\ - r,

imply

(3.7) F(z)-F(y) S -,4(8/2)(S/2)2/47c.

Finally, let n be a positive integer so large that

(3.8) Li-b-mp/lGT á -1

and ||x —xn(-)|| =S/8, i.e., pn^8ß. In what follows keep these choices of c, r¡,

and « fixed.

For convenience, the following notation is introduced. Let

a= [\b-L1 + l\/\2L2-ll2T\Y>2

and let

h = hiS, *l, n, X)

= Em -x(8/X, x/X, z)][l -//(VA, «, z)]|G(Az)|(exp A-2[£(Az)-¿>])}

where H{q, n, z) is the characteristic function of the set

{zEC*[0,r]|  \z-*\   £,}.

h = /3(S, -q, n, X)

- £,"{[! -X(S/A, x/X, z)]H(r,/X, n, z)x(a/X, 0, z)|G(Az)|(exp A"2[£(Az)-è])}.

h = /(S, y, n, X)

= £?{[[1 -X(S/A, x/A, z)]//(VA, «, z)][l -rfa/À, 0, z)]|G(Az)|(exp A"2[£(Az)-¿])}.

It will be shown that I2, I3, and / are 0(exp (ctA-2)) where a<0. Since /=

h + h + h this will imply the conclusion of the lemma. First consider I2. By

hypothesis, for almost all z,

|G(z)| ^ Kj. exp(AT2|| z ||2)       where   ATi > 0,   K2 > 0.

Thus

/2 ;£ JT1£'»{[l-JÍ(1?/A,«,z)]exp(A8¿:a||z||a+A-a[F(Az)-6D}-

Applying the Schwarz inequality,

\h\ í K¿Ef{l-HtolKntzW»
(3.9)

x (£»{exp (2A2/Sr2||z||2 + A-2[£(Az)-è])})1'2.
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From Lemma 3,

Em-H(V/X,n,z)]} = P{||z-z"(-)|| è Vß)}
(3.10)

^ (4A/7,)(2nP/7r)1/2 exp (-nv2/SX2T).

By hypothesis, P(Az)^L1 + A2L2||zj|2 where Li>0 and L2<\T. Hence, from

Lemma 1,

E^{exp(2X2K2\\z\\2 + 2X'2[F(Xz)-b])}

(3.11) Ú exp(X-2(2L1-2b))Ez^{exp((2X2K2 + 2L2)\\z\\2)}

¿ 2 exp [(2L1-2è)A-2]i(^j   '     °° exp [(2X2K2 + 2L2)u2-u2/2T] du\-

Since L2 < \T, it follows that for sufficiently small A the integral on the right of

(3.11) converges, and therefore for sufficiently small A

(3.12) I2 =Pexp(-«7?2/16A2P+(L1-Ä)A-2),

where P is a constant. From choice of n in (3.8)

h ^Pexp(-A-2).

Consider now I3.

(3.13)

•ex;

Set D= -A(8/2)(8/2)2/4Tc (cf. (3.7)).
In the integral on the right of (3.13) the integration is over the set

{zeC| ||Az-Azn(-)ll ̂ v   and    IkII = a/X),

and hence by the choice of r¡ it follows that

(3.14) P(Az) £ F(Xzn(-)) + D.

Also ||z-zn(-)ll=1?M implies

(3.15) ||z||2 ^ \zn(-)\+l '

Using (3.14) and (3.15), in (3.13), one obtains

h â K,Em -x(*/A, x/X, z)]H(v/X, n, z)
(3.16)

•exp [A2tf2|| \z"(.)\+v/X\\2 + X-2(F(Xz\-)) + D-b)]}.
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Now

{zeC| ||Az-Az"(-)|| úr,,\\Xz-x\\ >Ä}c{zeC| ||Az"(-)-*ll > S-ij},

and therefore

h Ú K1E?{[l-rfL8-v)/X),xl\,z%-))]
(3.17)

•exp [X2K2\\ \z%.)\+v/X\\2 + X-2(F(Xz"(-)) + D-b)]}.

The integrand on the right of (3.17) is now a functional depending only on a

finite number of r points ; namely, it is a function of z(T/n), z(2Tjn),..., z(T), and

hence the function space integral reduces to an «-dimensional integral. Thus

'• * Wmw^L [i-x((^.)m>x/a,z"(.))]

•exp (x~2K2 |zn|-|-^ 2 + A-2(£[Az"] + ü)-¿zMn(zn)-,| dz\
\ II All /

Letting zn = A"1(wn-|-xn) one sees that

h è lX-"K1exp((D-b)Á-*W¿irTln)-«'a f   [l-X(S-ij, x, wn + x»(-))]
Jb„

•exp(/s:2|||M'n + xn|+7?||2 + A-2£[)vn + xn]-iA-2[H'n + xn]^n[w'1 + xn]-)i/wn.

Since « was picked so that pn=\\xn-x\\^8/8 and r¡<8/4, it follows that 8-rj—pn>

8—n-2pn>0.

Clearly ||wn|| ^8-7¡-pn implies \\wn(-)+xn(-)-x\\^8-r] and hence

l-x(8-V,x,wn + x\-)) g l-x(*-ri-Pn,0,wn{-))

= 1 — characteristic function of {wn e Rn \ \\wn\\ ^ 8 — -q— pn}.

Therefore

h ^ [KiX-* exp (D-b)X-2]-(2nT/n)-nl2

n i« • f exP fell |w'l + xn|+7?||2 + H'Mn(wn)-A-2

\F[w» + xn]-i[wn + x»]An[w» + xn]-\\
x [ /AM- \) dw ■

In the integral on the right of (3.18) the integration is over those points in Rn

where ||wn[| ̂  8 —17—/>„. It will be shown now that over that set

, F[wn + x'i]-i[wn + xn]An[w- + xn]-      A(8-v-2pn) + b

V'ly) J - wM»(w-)- = c
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where .4(8) is defined in (2.1) and c is the constant picked in (3.5) and (3.6). This

can be seen by considering the two possibilities wnAn(wn)~ <c and wnAn(wn)~ âc.

In the first case, it follows from Lemma 7 that (remembering (8-r¡ — 2pn > 0)),

F(wn + xn)-b-^(wn + xn)An(wn + xn)- ^ A(8-v-2p„),

and therefore

j ^ A(8-v-2Pn) + b
~ c

In the second case (wnAn(wn)~ ^c) it follows from the hypothesis on F(z), L2<\T,

and Lemmas 4 and 5 that

y< Lt +L21| wn + x"||2 - \(wn + xn)An(wn + xn)-

wnAn(wn)~

^¿1+L2||iv''|l2 + 2L2||vv''||||x''|[+L2||x"||2->Mn(>v'')--wMn(x")--|xMn(x'')-

wnAn(wn)~

Since -%xnAn(xn)~ ^0,

J < Ll +L T+2L 11x1 Í T W ll^ll2 1 wMn(x")-(«)
7 = wnAn(wn)~ +   2   +     2l1 x HwMn(iv-)-/    +  2wM>")-    2    wnAn(wn)-

xnAn(xn)-\112
è-l+LJc + 2L2\\x-\\(T/cr2+L2\\x^2/c+(XnAfny)

where in the last inequality, the bound

wnAn(xny ¿ [(wnAn(wn)-)(xnAn(xn)-)]112

was used. But from (3.5) and (3.6) it follows that

/ S -1/8 S (A(8) + b)/c S (A(8-r¡-2pn) + b)/c,

which completes the proof of (3.19). Now using (3.19) in (3.18) it can be seen that

I3 ^ [K^-* exp (DX-2)](27rT/n)-nl2

•f exp(/i:2|||wn + jtn|+7y|2
Jl!u)"llSW-n-pn)

+ iX-2w"An(w*)~[2A(8-V-2pn)/c]) dw\

Let v = (-2A(8—n-2pn)/c)112 and p.n = (v/X)wn, giving

Is ^ [K1v-nexp(DX-2)](27rT/ri)-n'2

• f exp (K2\\ \Xp."/v + xn\ +7¡¡2-lp,-An(p.n)-) dp.\
Jll«n|| = (á-t|-p„)B/A

(6) It can be seen that wnAn(w")- g(l/r)||tvn||
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Changing back to the function space integral, this gives

h ^ *iir»exp(Z>A-a)£H[l-x((8-,7-/OiVA,0,z»(-))]
(3.20)

•exp(/y |Azn/u + xn|+^||2)}.

But clearly

1 - X((* - V -Pn)v/X, 0, ̂ ))ál-áH -Pn)v¡X, 0, Z)

and thus from (3.20) and the Schwarz inequality

/a =£ AT1»-»exp(Z)A-a)£ïr{[l-x((8-1î-ipI1)i;/À),0,z]}l'a

(3.21)
x £^{exp [2K2\\ \Xzn/v + xn\ +r¡\\2]}112.

From Lemma 1,

£."{[1 -XÍ(8-1-Pn)»M, 0, z)]} ̂  2(4)1/2 f exp (-«2/2J) du
(3.22) \7r''/       Jw-n-p„)vM

á const. • exp ( - (8 - r¡ -pn)2v2¡2X2T).

Since ||z"¡| ̂  ||z||, we have from the triangle inequality

^{exp {2K2\\ \Xzn/v + xn\ +^||2)} Ú const. £*{exp (A2 const. ||z||2)} < oo

for small A. Thus for small enough A

(3.23) h Ú exç{{8—n-Pn)2v2l-4X2T+DIX2).

Since

0 < D = -A(8/2)(8l2)2/4Tc,

we have for sufficiently small A, from (3.23) and the definition of v and D,

I  < const exp ((*-V-Pn)2A(8-y-2Pn)   ^(8/2)(8/2)2\I3 S const, exp y 2A2Jc ^^    j

Since 7] = 8/4, pn = 8/8 and A(8) is a decreasing function,

I  < const exp/M2XS^_^2XS/2^\I3 s const, exp y     2X2jc ^^    j

or

(A(8l2)(8/2)2\/,* const, exp        ^       •
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Consider now 74. Clearly,

h = K1E^{[l-x(a/X, 0, z)] exp [(L1-6)A-2 + A-2A2+L2)||z||2]}.

By Lemma 1,

h Ú Kx exp [(L1-è)A-2]2(^)1/2 j^ exp [(a-2A2+L2-¿^2] du,

for K2X2^L2

h ^ K, exp [(Li-^A-2^^1'2 jX exp [(2L2- l/27>2] du.

Remembering the definition of a, we find that húKt exp (A-2) where Ki is an

absolute constant.

This proves Lemma 9, with

.   /    ,   ,4(S/2)(S/2)2\

Lemma 10(7). If x'(r) is of bounded variation and if

ff(r)y(r)dr-f x'(r)dy(r) = 0,
Jo Jo

forfeL2[0, T], and for y e C*[0, T], then

f f(r)y(r)dr-f x'(r) dy(r) = 0
Jo Jo

foryeC[0,T].

Proof. Define jT0 x'(r) dy(r) by -Jj y(r) dx'(r) + x'(T)y(T). Then ft f(r)y(r) dr

~ Jo X'(T) dy(r) is obviously a continuous functional on C.

4. Proof of main theorems. In this section the proofs of Theorems A, B, and

C will be given.

Proof of Theorem A. Let e>0 be given. Choose 8 so that \G(y)-G(x)\ ^e/2 if

\\y — x\\ i£ 8. This is possible since G(x) is continuous at x.

One sees that

(7) See [4, Chapter IX], for a definition of stochastic integrals.
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E?{G(Xz)exp(X- 2F(Xz))} _

E?{exp(X~2F(Xz))}

E?{x(8/X, x/X, z)|G(Az)-G(x)| exp (A-2P(Az))}

1    }        = E?{exp(X-2F(Xz))}

exp (-bX-2)E?{[\ -X(S/A, x/X, z)] | G(Az) - G(x) | exp (A~2P(Az))}

exp ( - b A - 2)E?{exp (A - 2P(Az))}

From Lemma 9 it follows that the numerator of the second term on the right of

(4.1) is 0(exp (aA-2)) where a<0. Choose B of Lemma 8 to be a/2 and apply

Lemma 8 to the denominator of the second term of (4.1). Thus the second term

on the right of (4.1) is 0(exp (aA~2/2)) and thus for sufficiently small A can be

made less than e/2. The first term is less than e/2 by choice of S. Thus the left hand

side of (4.1) is less than e. This proves Theorem A.

Proof of Theorem B. Choose y > 0, then for all A sufficiently small we will show

that

|exp(-¿>A-2)£-{G(Az)exp(A-2P(Az))}-G(x)P2nexp(/2(0)z2)}| ¿ 4y.

Pick a S > 0 so that

i. The first two Frechet derivatives of F(z) exist in a 8 uniform neighborhood

of x.

ii. sup,wll>1MSÖ|G(>'+x)-G(x)|£'au'{exp(f2(v)z2)}^y.

iii. | G(x)| £»{|«p (f2(v)z2) - exp (f2(0)z2)\} ̂  y if \\v \\ í 8.

Let

«i(A) = £3f{x(8/A, x/X, z)G(Az) exp [A-2(F(Az)-Z>)]}

and

h2(X) = E?{[l-xWKx/X,z)]G(Xz)exp[X-2(F(Xz)-b)]}.

From Lemma 9, |A2(A)|¿y if A is sufficiently small. Choose A this small and

consider /ii(A). From the translation theorem it follows that, letting y=z—x/X,

hx(X) = exp (\X~2 JJ [x'(r)]2 ¿t)

xP-|x(8/A, 0, y)G(Xy + x) exp [a"1 Jj x'(t) dy(r) + X-2(F(Xy + x)-b)^

Since F(z) has two Frechet derivatives in a 8 neighborhood of x, we may, by

an extended form of Taylor's Theorem [7], write

F(xy+x) = /0(0)+xfMy+W2(v)y2

where 0^ M ^8. Thus
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«!(A) = exp (a"2[-¿ j' [X'(r)]2 dr+f0(0)-b^j

x£»{x(8/A,0, j)G(A>- + x)exp (^'[fMy-[ x'(r)dy(r)] +/2(^)v2)}-

By hypothesis F(z) — \ ]\ [z'(r)]2 dr has a maximum at x over C*[0, T]; there-

fore, its first variation vanishes over C*[0, T]. Thus

0 = i (F(x + er,)-i JJ [X'(r) + ev'(r)]2 rfr) |^

= fl(0)v-[ X'(r)dr,(r),

if 77 e C*[0, T]. By Lemma 10,

fi(0)r¡-fo   X'(r) dr,(r) = 0

for 17 E C[0, r].

Since

b = F(x)-ir J* [X'(r)]2 dr,

it follows that

Ai(A) = £,nx(S/A, 0, j)G(A^ + x) exp (/2(^2)}.

We will now show that

|«1(A)-G(x)£-{exp(/2(0)z2)}| ï 3y.

Indeed,

|«1(A)-G(x)£-{exp(/2(0)z2)}| í £,»{x(8/A, 0, y)\G(Xy + x)- G(x)\ exp (/(,)/)}

+ £-{1 -x(S/A, 0, >>)|G(x)| exp (f2(V)y2)}

+ |G(x)|£-{|exp (/(r?)j2)-exp (/2(0)j2)|},

and by choice of S and for small enough A the last expression is less than or equal

to 3y. This proves Theorem B.

Proof of Theorem C. Choose 8 so that assumptions 1, 2, and 3 of this Theorem

hold. It can be shown [7] that the hypothesis on F(z) implies

£(Az + x) = /(O) + A/(0)z + • • • + A'" %. lZ' -1 + kj(Xz)
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where A:;(Az) = 0(X'), j= 1,..., n if ||z|| ^ 8. As in the proof of Theorem B, we may

show that

P2nG(Az)exp(A-2P(Az))} = h1(x)+h3(X)

where A2(x) = 0(exp (aA~2)) where a<0 and

h(X) = E^{x(8/X, 0, y)G(Xy + x) exp lf2(0)y2 + A"2A:3(Aj)]}.

It can be seen, using the Taylor expansion of ex, that

n-l

ex =  2 *7/! + Pn(x)
1 = 0

where

|Pn(x)| ^ (xn/nl)ex       if x ^ 0,

|Pn(x)| S |*|7«! if x < 0.

We may now write

hi(X) = "T (l/il)E^{x(8/X,0, j)G(Aj + x)exp(/2(0)j2)[A-2A:3(Aj)]'}+/n_2(A).
(=0

Let P(A, y) be the characteristic function of the set {y e C[0, T] \ k3(Xy)~¿0}. It

can be seen that

./„-2(A) g (ll(n-2)l)E^{x(8/X,0,y)\G(Xy + x)\-\X-2k3(Xy)\-2

■cxp(f2(0)y2 + X-2k3(Xy))B(X,y)}

+ (l/(n-2)l)Ey"{x^lK 0, >-)|G(Aj + x)| • |A-2Är3(Aj)|"-2

•exp(/2(0)j2)[l-P(A,j)]}.

From Taylor's Theorem for functional it follows that if ||Ay|| ̂ 8 then

A2/2(0)j2 + k3(Xy) = k2(Xy) = X2f2(r¡)y2

where ||ij|| ^8. By hypothesis [&3(Aj>)]^C3A3|j>||3, where 0^C3<oo. Thus

|A-2(A)| ^ (l/(«-2)!)P-{x(S/A, 0, j)|G(Aj + x)|(C3A)-2b||3'"-2»

■™P(f2(v)y2)B(X,y)}

+ (ll(n-2)\)E^{x(8IX,0,y)\G(Xy + x)\(C3Xr-2\\y\\^-2>

•exp(/2(0)/)[l-P(A,j)]}.

From the Holder inequality, and assumption 2 of this theorem, it follows that

Jn.2(X) = 0(X-2).
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Thus we have obtained

«i(A) -  2 (m)E^{x(8IX,0,y)G(Xy + x)exp(f2(P)y2)[X-2k3(Xy)f} + O(Xn-2).
i = 0

Since G(z) has n — 2 Frechet derivatives in a neighborhood of x, we may write

G(A>> + x) = "2 A^y+£n-2(Aj)
i = 0

where

Ln-2(Xy) = OOIAjII-2).

Thus

»i(A) = 2  2 d//!)A%nx(S/A, 0, j)&y exp (/2(0)>>2)[A-2Â:3(Aj)]<} + C>(A"-2)
1 = 0   í = 0

since

2 (l//!)£»{x(S/A,0, j)O(||Aj|"-2)exp(/2(0)j2)[A-2/:3(A>.)]'} = 0(A-2).
i = 0

It can be seen from assumption 2, the Holder inequality, Lemma 3 and the fact

that Ar3(A^) = C3A3||>'||3 that

2  2 (1//!)A%»{[1 -x(S/A, 0, y)]giy> exp (f2(0)y2)[X-2k3(Xy)]'} = 0(A-2).
i = 0   ¡ = 0

We may now write

«i(A) =  2 "f (l/'"!)A%n^/exp(/2(0)/)[A-2A:3(Aj)]'} + G(A"-2),
i = 0   i = 0

since

k3(W = A3/3(0)>'3+ • • • +A"-1/n_i(0)/-1 + A:n(Aj))

"i(A) = "t 2 (vmiEngiy'^P(/2(o)y2)
( = 0  1 = 0

x [A/3(0)/ + ■ • ■ +X»-%.1(0)yn-1 + X-2kn(Xy)]'} + 0{X"-2).

Expanding out we find that

"i(A) = "f 2 (A'/W{&/ exp (f2(0)y2)
( = 0   i = 0

x [A/W + • • • + A- % _ i(0)/> ->]<} + G(A" " 2)

since

A:„(Aj)/A2 = G(A"-2).
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Clearly we may rewrite «x(A) as

Ai(A) = r0A+r1A+..-+rn_3A*-3+o(A''-2)

which proves Theorem C.

5. Applications of Theorem A. In this section some applications of Theorem A

will be given. First an algorithm for solving certain types of functional equations

will be developed, and then this algorithm will be used to solve a problem in differen-

tial equations. Also, a problem in the calculus of variations will be solved.

It is easy to see that if the functional G(z) is z evaluated at the point s, i.e.,

G(z) — z(s), then G(z) satisfies conditions 1, 2, and 4 of §2. It follows from Theorem

A that if F(z) satisfied conditions 1, 3, and 5 of §2, and F(z)-%¡TQ [z'(r)]2 dr has

a proper maximum over C*[0, T] at x, then

(5 H xtá\ - lim ^{Az(*)exp(A-2F(Az))}
P,U *W     a™    P-{exp(A-2P(Az))}

i.e., we have a formula for the function which maximizes

F(z)-i j\z'(r)]2 dr

over C*[0, T].

Suppose the functional equation H(x) = 0 has a solution x e C*[0, T], and, more-

over, suppose H(x) is such that there exists a functional F(z) for which

F(z)-l j* [z'(r)]2 dr

has a proper maximum over C*[0, T] at the same point x. Then assuming F(z)

satisfies the hypothesis of Theorem A, (5.1) becomes a formula for the solution

of the functional equation H(x)=0.

As an example of this algorithm, the following theorem will be proved.

Theorem D. Suppose f(x) is Lipschitz continuous on bounded sets, real valued,

and defined on — co<x<co, and that |/(x)| ^cx where c is a constant and c< 1/2T.

Then the solution to the differential equation

(5.2) <p'(s) = f(<f>(s))

with (f>(0) = 0 is given by

Ef\ Xz(s) exp   2A -2      /2(Az(r)) dr + A - 2 f(u) du
j.r„\      i:_       I                L         Jo                                 Jo J
<P(s) = nm--,-p-jf-txïot-yr-

^°     £»|exp |2A~2 Jo /2(Az(r)) dr + X-2 ̂       f(u) du\j
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Proof. From the above reasoning it is sufficient to show that

(5.3) -i   \    f\z{r))dr+\        f{u)du-±\      [z'(r)]2 dr
Jo Jo Jo

has a proper maximum over C*[0, T] at <f>, that <f> solves the differential equation

(5.2), and that

(5.4) £(z) -  -i\    /2(z(r)) dr+ /(«)
Jo Jo

du

satisfies conditions 1, 3, and 5 of Theorem A.

It is clear from hypothesis and Picard's theorem [2] that the functional

(5.5) H(Z) =  -1 £ lf(z(r))-Z'(r)]2 dr, Z 6 C*[0, T],

has a proper maximum at <j>, the solution to the differential equation (5.2). Clearly,

also,

-ï[lf(z(s))-z'(s)]2ds

= -i \   f2(z(s))ds+\      ftu)du-±\    [z'(s)]2ds.
Jo Jo Jo

It will now be shown that £(z) (see (5.4)) satisfies conditions 1, 3, and 5 of §2.

It can be seen that

rT f2(T) f2(D

(5.7) £(z) = -i      f2(z(s))ds+        f(s)ds ^ f(s)ds è (c/2)||z||2.
Jo Jo Jo

It thus follows that condition 3 of §2 holds. To show that conditions 1 and 5 of

§2 hold, it is sufficient to show that £(z) is uniformly continuous in the sup norm

on bounded sets. This is easily shown.

The problem of finding the maximum of

(5.8) JJ b(z(r), r) - Mz'(r)]2] dr + <p(z(T))

will now be considered.

It follows from the reasoning given at the beginning of this section that if the

functional £(z) = ¡l p(z(r), r) dr + (/>(z(T)) satisfies conditions 1, 3, and 5 of §2

and if £(z)— Jo [z'(T)]2 dr has a proper maximum over C*[0, T] at y, then

£-ÍAz(í)exp (x-2\(Tp(Xz(r), r) dr + <KXz(T))])
(5.9) y(s) = lim Uo

A-.0
£-jexp (a-2[JoT />(Az(t), t) dr + <l>(Xz(T))\ )

The following theorem will be proved.
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Theorem E. Suppose p(x, r) and <f>(x) are two real valued continuous functions

defined on ( — oo < x < oo), (0 ^ r ^ T) and ( — oo < x < oo) respectively, such that

1. p(x, T)^d + C2x2 uniformly in r, and </>(x) ^ C3 + C4x2. d ano" C3 are awy

positive numbers but C2T+ C4 < 1/4P.

2. />(•*> T) w continuous in x and r and <¡>'(x) is continuous in x.

3. 8[p(x, r)]/8x is continuous in r and x.

4. The functional jl p(z(r), r)dr — \ \Ta \_z'(r)f dr + <f>(z(T)) has a proper maximum

on the class C*[0, T] at the function y.

Under conditions 1-4 it is true that the function y(s) defined by (5.9) maximizes

(5.8) and that the function y(s) satisfies the following differential equation.

PÁy(r), r)+y"(r) = 0

with boundary conditions y(Q)=Q and y'(T)=<p'(y(T)).

Proof. Let F(z) = ¡T0p(z(r), r) dr + <f>(z(T)). It can be seen that F(z) is uniformly

continuous in the sup norm on bounded sets.

It will be shown now that

p(z)^rc1+c3+(rc2+c4)||z||2

where TC2 + Ci< 1/4T. From the definition of F(z) and assumption 1 of this

theorem it follows that

F(z) ^ jT [d+C^rfldT+Ca+Ctztr) ¿ TCt + Ca+(TC,+Gi)|z|a.

Thus F(z) of the present theorem satisfies conditions 1, 2, and 5 of §2, has a

proper maximum over C*[0, T], and thus the maximizing function y(s) of (5.8) is

given by (5.9).

From the calculus of variations theory it also follows that y(s) satisfies an Euler

equation which, in the case considered, is px(y(r), r)+y"(r)=0 with the boundary

conditions y(0) = 0 and y'(T) = <f>'(y(T)) [3]. This proves Theorem E.

Suppose F(z) satisfies the hypothesis of Theorem A and that the functional

F(z) — \ Jo [Z'(T)]2 dr has a proper maximum on C*[0, T] and as usual let us denote

the maximizing function by x(r). We note that

(5 10) x(s) = lim £"{Az(,)exp(A-2F(Az))}
P-   J W     To     PJ{exp(A-2P(Az))}

gives us a formula for a maximizing function even if the functional F(z) does not

have a Frechet derivative. Thus formula (5.10) is an expression for the maximizing

function even if there is no Euler equation for the calculus of variations problem.
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