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Introduction. The purpose of this paper is to study a convexity property on

normed linear spaces (NLS's) which we call P-convexity. Interest in P-convexity

is generated by a theorem of Anatole Beck ([1] or [2]) which states that a Banach

space 3£ is P-convex if and only if a certain strong law of large numbers is valid for

X-valued random variables.

Let 3£ be a NLS and (S, 2, m) a measure space. The Borel a-field 38 of X is the

tr-field of sets generated by the subsets of BE open in the strong (norm) topology.

A Borel set is an element of 38. A function X from 5 into 3t is called strongly

measurable if for each Be Sä, X~ \B) = {se S : X(s) e B} e 2. X is called essenti-

ally separably valued if there is N eH, m(N) = 0, such that X(S—N) is separable.

If js || X(s) || dm{s) < oo and X is essentially separably valued, then X is strongly

(Bochner) integrable and there exists ye?), where ?) is the completion of 3£, such

that for every x* e £)*, the conjugate space to 9), Js x*X(s) dm(s) = x*y. In this case

we write y=js X(s) dm(s)=$s X dm. y is called the strong integral of X.

A probability space is a measure space (Í2, 2, 3P) of total measure 1 (^(D)= 1).

An 3t-valued random variable on Q. is a function X: Q. -*■ X which is strongly

measurable and essentially separably valued. The expectation of X, E{X) = ja X d£?

if this integral exists. For a random variable X with expectation, we define the

variance of X by

(20= f ixw-EvnvtWr).
Ja

var i

We will call a finite set Xu..., Xn of 3t-valued random variables on Q. inde-

pendent if for each choice of Borel sets Blt..., Bn e 38, we have

d\Xi eB1&-&XneBn) = 3^{XX eB,)-- -3P{Xn e Bn);

that is,
n

^{o £ Q : XiUm) e B1 & • ■  & Xn(oj) e Bn) = Y\0>{ojeQ.: X¿w) e Bt}.
i = i

An infinite set of random variables is independent if each finite subset is.
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A NLS X is said to satisfy property (A) if each independent sequence {Xn} of

3£-valued random variables which satisfies the conditions that E(Xn) = 0 for all n

and var (Xn) is uniformly bounded in n also satisfies the condition that

limn"1 2 Xi = 0
" i = l

strongly almost surely (i.e., limn n~11|2?= i ^.(«011=0 for almost all w in Q). This

is a form of the strong law of large numbers.

For k^2 and e>0, X is k, e-convex ("convex of order (k, e)" in Beck's ter-

minology) if for each choice of x1;..., xk from the unit ball of X,

|| ±X!±X2± • • • ±Xfc||   ^ k(l —e)

for some choice of the + and — signs. X is P-convex ("3£ satisfies property (B)"

in Beck's terminology) if X is k, e-convex for some k ä 2, e > 0.

Beck's theorem then states that a Banach space X satisfies property (A) if and

only if X is P-convex.

A great deal of what we will do here follows for general NLS's. Even in the case

when a result follows on the hypothesis of topological completeness, this can

sometimes be exorcised using the fact (see Remark I.2(c3)) that if X is a k, e-convex

NLS and 9) is the completion of X, then ?) is k, c-convex, and, of course ty is a

Banach space and contains an isometric copy of X. Thus, for example, Beck's

theorem is valid for NLS's. The proof Beck gives that if X is not P-convex, then

X does not satisfy property (A) (Beck [2, Theorem 11, p. 44]), is valid for general

NLS's. For the converse, let X be a P-convex NLS and let 2) be the completion

of X. We may regard X as a subspace of?). Let {Xn} be an independent sequence of

3£-valued random variables with E(Xn) = 0 and var (Xn) á M for all n. Then

{Xn} can be considered as an independent sequence of 9)-valued random variables

with the same properties, so by the Banach space version of Beck's theorem,

n~x 2f=i Xi -> 0 strongly almost surely in ?); hence, since n'1 2"=i Xfa) e X for

each weil,»"1 2?=i Xt->0 strongly almost surely in X. Thus, Beck's theorem is

valid for general NLS's.

For finite dimensional X, the strong law of large numbers can be verified by

induction on the dimension on X using the corresponding real- or complex-valued

form of the strong law of large numbers. Thus, by Beck's theorem, finite dimen-

sional spaces must be P-convex. In Example I.3(i) we verify directly that if

dim (X)<k, then A'is k, k~1-convex.

A forerunner of Beck's theorem, also due to Beck, stated that if X was uniformly

convex, then X satisfied property (A). Thus by the stronger version, uniformly

convex spaces must be P-convex. We verify directly that in fact uniformly convex
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spaces are 2, e-convex for some e > 0. Beck tested two other generalizations of

uniform convexity, namely locally uniform convexity and reflexivity, as hypotheses

and found them lacking. In fact, he discovered an example of a locally uniformly

convex, reflexive Banach space which did not satisfy property (A), hence is not

P-convex (see Example I.7(i)).

We also verify that tx, (m, and c0 are not P-convex (see Example I.3(iii) and (iv)).

P-convexity can be viewed as a cancellation phenomenon. A NLS X is k, e-

convex if for each choice of xu ..., xk from the unit ball of X, we may choose

coefficients Xu ..., Xk from {+1, —1} so that a uniformly great amount of can-

cellation occurs when we form the sum x=2f=i \xt so that x fails by a factor of e

to attain the maximum possible norm, k, for the sum of A: unit vectors. As a generali-

zation of this for NLS's over the field of complex numbers, let A be a subset of

the boundary of the unit circle in the complex plane and call X y4-convex if X

admits a cancellation phenomenon of the type just described with the set {+1, — 1},

which we will hereinafter designate as P, replaced by A (a rigorous definition of

this is found in Definition 1.1).

One might think that in an ^4-convex NLS X, the more vectors one takes, the

more cancellation one could get. This is true and we get two results in this direction,

a strong one using Beck's theorem (Theorem HI.3; see also Comments III.4)

and a weaker but extremely useful one (Lemma 1.4) directly from the definitions,

which state, in effect, that if A is closed under multiplication (including the case

A=B), then for every 8>0 there exists A such that if n¡£ A and xu...,xn are in

the unit ball of X, there exist Xx,..., Xne A such that ||2?=i \xt\\ ^«8.

Using this result, we prove in Theorem 1.5 that if A contains at least 2 elements,

then a NLS is A-con\ex if and only if it is P-convex.

We find a characterization of non-P-convex spaces (Lemma 1.6) which has a

geometric interpretation; namely X is not P-convex exactly in case there are

arbitrarily good copies of finite dimensional ¿x in X for arbitrarily large finite

dimension.

§11 is devoted to studying how P-convexity behaves under common opera-

tions on NLS's. We get results on first and second conjugates and factor spaces

of P-convex spaces, and on the image of P-convex spaces under continuous

linear transformations. Finite and infinite direct sums of P-convex spaces are

studied.

§111 contains results about internal properties of P-convex spaces. We sharpen

one direction of Beck's theorem and apply this result to investigate the cancellation

phenomenon in P-convex spaces. We find a condition under which a P-convex

space is reflexive. We give an example of a space with several properties of a

uniformly convex space without being uniformly convex.

§IV gives open questions, partial results, and acknowledgements.

An internal reference in this paper which does not include a section number

refers to the section in which it occurs.



1966] A CONVEXITY CONDITION IN NORMED LINEAR SPACES 117

I. Preliminaries. In this section we give the basic definitions and some examples

and we derive some technical results about P-convex and non-P-convex spaces.

1. Definitions. Let P={1, -1}, C={z:z is a complex number with |z| = l}.

Let 3c be a normed linear space (NLS) over the scalar field <D, where <S> is the real

or complex numbers. As a notational convenience, we let D (=Z>(3c, i>)) be P or

C according as 3c is a real or complex NLS respectively. Let S={x e 3c : ||x|| ^ 1}.

Let A<=D. Define ak(X, A) = sup (inf &-1||2?=i \xt\\) where the inf is taken over

all sequences {AJÏ e Ak and the sup is taken over all sequences {xjï e 5". Thus,

ak(X, A) measures the amount of cancellation one can be sure of getting by fitting

k vectors from the unit ball of 3c with coefficients from the set A. If the set A is

closed (in particular, if A is finite), then for each sequence xu ..., xk the inf is

achieved for some choice of Áu..., Xk, so the following definition agrees with the

one given in the introduction in the case A = P. 3c is A, k, e-convex if ak(X, A) ^ 1 — e.

36 is ^4-convex if there exists k^2, e>0 such that 3c is A, k, e-convex. For the fre-

quently used "P, k, e-convex" we write "k, e-convex."

2. Remarks, (a) It is immediate from the triangle inequality that ak(3i, A)^ 1.

(b) If A= {A}, a single point, then ak(X, A)=\ for all k as can be seen by con-

sidering the sequence x1 = x2= ■ ■ ■ =xk = x for any x with ||x|| = 1. Then

ak(X, A) ^infk~
n. _ ft.

2 -V^t    = k~x    2 ^x = fc-*||A:Ax|| = A:-*ifc|A| • ||x|| = 1.

Henceforth we will assume that all sets A contain at least two points. In the real

case, P is the only such set.

(c) If X2—%i and AX^A2, then ak{X2, A2)^ak(3i1, Aj) since in calculating

ak(X2, A2), the inf extends over a larger set and the sup over a smaller set than in

calculating ak(Xu A¡). Further, if 3c2 is dense in 3E1 (including X2 = X1) and Ax is

dense in A2 (including A1 = A2), ak(X2, A2) = ak(Xu A¡) since any element of the

form 2f=i \xt with A, e A2, xi e 3c2, ||xt|| ^ 1 can be approximated arbitrarily well

by an element of the form 2ic=i Mi^f with pt e Ax and yi e Xu \\yt\\ S 1, and vice

versa. Hence, if Sáe and 3t\ is Au k, e-convex (.^-convex) then 3c2 is A2, k, 8-

convex (A2-convex).

Particularly useful special cases of the above include :

(cl) If 3c is A, k, e-convex (^4-convex) and D Ç 3c, then ty is A, k, e-convex (A-

convex).

(c2) If 3c is A, k, e-convex and 8 ̂  e, then 3c is A, k, 8-convex.

(c3) If 3) S 3c and 9) is A, k, e-convex (,4-convex) then cl ?) is A, k, e-convex

(/i-convex). In particular, if 3c is the completion of ?), cl ^) = 3c, so 3£ is A, k, e-

convex (^4-convex).

3. Examples. Most of the following examples will be stated in terms of P-

convexity or sometimes in the complex case C-convexity. In the light of the following

Theorem 5, this is no real loss of generality.
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(i) All finite dimensional spaces are D-convex. In fact, if the dimension of X

is less than k, then X is D, k, k~1-con\ex. Let xu ..., xke S. We may choose

scalars au...,ak not all zero and normalized so that supj|a4| = l such that

2f=i a4x( = 0. Let A^sg^) where sg(-) is the sign function defined by sg(cz) = a/|a|

if a/0, sg(0)= 1. Then A¡ e D, |A¡ — at\ ̂  1 for all i, and A¡ —a( = 0 for at least one

i, l¿i¿¡k. Hence

2* = k 2 «Ä+ 2 (A¡-a¡)*¡
: = l i = i

^ k-1 2 lAi-a<l = k-\k-l) = l-k~\
k

Therefore X is D, k, k~^convex.

(ii) All uniformly convex spaces are P-convex. In fact, a uniformly convex space

is 2, E-convex for suitable e. A NLS X is uniformly convex if for each e > 0 there

exists 8(e)>0 such that if ||x|| = ||j>|| = 1 and ||x-j>||^e then ||x+j>|| <2(1-8(e)).

This condition says that if two unit vectors are e apart, they fail by 28 to add up

to the maximum possible norm of 2, and this occurs uniformly over the entire

surface of the unit ball of X. Equivalently (see Lemma 11.15), 36 is uniformly convex

if for each e>0 there exists 8'>0 such that if x, y e S with |x—j>||>e, then

||x+.y|| ^2(1-8'). Let r¡ be the 8' corresponding to e=l. Define 0 = min (1/2, ^).

X is 2, 0-convex, for if x, y e S, then either ||x-j>|| ^ 1=2(1-1/2)^2(1-0) or

||x->i>l in which case \\x+y\\^2(l—r¡)^2(l-9).

Examples of uniformly convex spaces include (finite or infinite dimensional)

*fp and Lv, l<p<ao, (cf. Clarkson [3]) and all inner product spaces. The Jordan-

von Neumann characterization of inner product spaces [14] gives us

||x+ji2+||x->>||2 = 2(|¡x|l2+b||2),

so if 1*11 = 1^1 = 1, then  j|x+.y||2 + ||x->-||2 = 4.  Hence if   [|x+j||ae>0, then

¡X-j]| ^(4-e2)1/2 = 2(l-8(e)) for S(e)=l-(l-(e/2)2)1/2>0.

(iii) ¿x is not ^4-convex. In some sense, £x seems to be the least ^-convex of any

imaginable space. Let xn = {8ni}, the nth unit vector in ^. Let A1;..., Xk e A. Then

k

2 Kxt   =A-1||(A1, A2,...,Afc,0,...)[|
¡ = i

-*-»¿ |A,| = 1.
i = i

Hence ak(fx, A)=l for all k and £x is not A -convex.
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(iv) ¿m and c0 are not P-convex. Here, £m is the space of all bounded sequences

of scalars under the norm ||x|| =supn |xn|. c0 is the subspace of £m of all sequences

convergent to 0. Fix k. Let

xj = (+1, -1, +1, -1,..., +1, -1,0,0,...)

x2 = (+1, +1, -1, -1,..., -1, -1, 0, 0,...)

xk (+1, +1, +1, +1, -1, -1,0,0,...)

where in each vector there are 2k nonzero terms and the nonzero terms in x¡

consist of alternating blocks of + l's and - l's, each block of length 2'~*. Note that

Xi e c0. Denoting the y'th coordinate of x¡ by xt(j), if (lt..., £k is a sequence of

+ l's and — l's, there is ay' such that £¡ = x¡(/)for all i. Thus, they'th coordinate of

2f=i ax, is k so 12*= i fiXfH =k. Thus ak(c0, P) = afc(/00, B)= 1, so c0 and C are not

P-convex.

4. Lemma. Let A be closed under multiplication. Let 3c be a NLS. Then either

ak(X,A)=l for all k (in which case 3c is not A-convex) or limk ak(X, A) = 0

(in which case 3c is A-convex). In the latter case there exists y>0 such that

ak(X,A) = 0(k-?).

Remarks on this lemma. This is the first result of the form " the more vectors

one takes, the more cancellation one gets." Using this lemma in its present form

and the following Theorem 5, one can reach the same conclusion under the hypoth-

esis that the closure of A has some nontrivial (i.e., more than one point) subset

A' which can be rotated to obtain a set A" which is closed under multiplication.

A necessary condition on the set A that lim ak(X, A) = 0 is that the closed convex

hull of A in the complex plane contain the origin, for otherwise we could separate

A from the origin by a line at a distance S > 0 from the origin. Then A1;..., Xk e A

implies |2f=i ^i| ̂ k8. Letting xeX, ||x| = 1,

ak(X, A) ^    inf   k-1 z* = inf A;"1
i = i

^ infk-i-kS = 8 > 0

2**

so limk ak(X, A) could not be 0. We show in Corollary III.5 that this necessary

condition on A is also sufficient.

Proof of Lemma. If 3c is not A -convex, then by definition, ak(X, A) = 1 for all k.

Now suppose 3: is A-convex. Then there exist k^2, e>0 such that 3c is A, k, 2e-

convex. We may pick e<l— k'1, so k(l—e)>l. Then for any k vectors xlt...,

xkeS, inf{k'1\\^k=1Xixi\\:XieA}^l—2e so we may pick Xu...,XkeA such
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that ||2f=i A¡*J èk(l—e). The basic idea of this proof can be seen in the following

special case. We pick k2 vectors x1;..., xkz from S. Grouping them into k sets of

k vectors each, we fit each set with elements of A so that the resulting sum has

norm^k(l —e). Then each sum can be multiplied by an element of A so that they

add to a vector of norm^A:2(l— e)2. Thus, let AJ e A be chosen so that if y¡ =

2íc=fco-i) + i XiXh then || v-J ̂ k(l —e) for 7= 1, 2,..., k. Then pick AJ e A so that

||2?=i X';yj\\ ̂k2(l-e)2. For k(j-l)+l£i£kj, let A^AJA';. Then XteA for all /.

So

2 x"'y<
1=1

2x"'   2   A'x*
1 = 1        i=kU-D + l

fc2

2A***^ £2(l-e)2.

So having chosen x1(..., xk¡¡ e S, we can find A( e ^4 so that

^ A:2(l-e)2.

fc2

2 A*xi

By induction, we easily see that we can repeat the process so that if x1(..., xfc"> e S,

we can find A¡ e A so that ||2f=i Afx,|| èkm(l -e)m.

Now for arbitrary n, write n = amÄ:m+ • • • +0^ + 00, 0^a¡^k—l for O^i^m,

amjí0. Let xu..., xn e S. Group these vectors into am sets of km vectors, am_! sets

of A:™-1 vectors,..., ax sets of k vectors and a0 single vectors. Fit each set of k'

vectors with elements of A so that the resulting sum has norm^A'(l — e)'. By using

the triangle inequality, we find that we have found A, e A such that

2 A(x(    S 2 ajk'Q-ey.
(=i 1=1

Then since a^k—l for ally and n^km so n~1^k~m,

n m

2 A,x,   ^ k~m 2 (k-l)k'(l-ey
i=l 1=1

,    mn      ,Jkm + \\-e)m + 1-l\

^ #(1 -e)l0fS*n   since w ^ logfc n

= An-"   for y = -ln(l -e)/ln k > 0.
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Note that the constants K and y depend only on k and e, not on the sequence

{x¡} or even on 3c. Thus infA(6i4 «_1||2"=i -M^ll ̂ Kn~y for all sequences x1;...,

xn e 5, hence an(X, A) = 0(n~r) -> 0 as « -* oo.    Q.E.D.

5. Theorem. If Al and A2 both contain at least two points, 3c is A-convex if

and only if X is A2-convex.

Proof. If 3c is a real NLS, the conditions imply A1 — A2 = B and the result is

trivial. Suppose 3c is a complex NLS. The proof proceeds in four steps.

(a) If 3c is ^-convex, 3c is C-convex (Remark 2(c)).

(b) If 3c is C-convex, 3c is P-convex where P = {con = exp ((2nn/5)i) : 0^«^4},

the complex fifth roots of unity. For each Xe C choose co(X) to be a fifth root of

unity closest to A. Then the short arc of the unit circle joining A and a>(A) is at most

7r/5 long so |A-w(A)| ^77-/5<3/4 (say). Since C is closed under multiplication

we may choose k so large that for each choice of xu ..., xk e S there are Xu ...,

Afc e C such that A:-1||2¡ = i A¡x(|| ̂ 1/8 (Lemma 4). This choice is such that if we

replace each A¡ in the above sum by its best approximation in P, we still have

cancellation. Thus

2 w(xi)x' < k- 2 Aix¡+ A"1

k

2i = i2 MAO-AJx,

Í 1/8 + Â:-1 2 H*d-\\M
¡ = i

k

^ 1/S + k-1 2 (3/4)-1 - 7/8.

So ak(X, P)^7/8 and 3c is P, k, 1/8-convex, hence P-convex.

(c) If 3c is P-convex, 3c is P-convex. The proof here follows the same idea as the

previous one of getting a lot of cancellation using coefficients from P, then approxi-

mating these with ±1. However, since Itüj —1| = |cu4—1| =2 sin n/5> 1, we must

arrange before approximating the coefficients from P with ± 1 that at most 2/5

of them are o^ and co4. Then the remaining at least 3/5 are at a distance at most

2 sin 7j/10 from their best approximations with ±1. If we let

Si = (2/5)2 sin tt/5+ (3/5)2 sin tt/10,

then .80^8^.82. Choose 82>0 and e>0 so that 81 + 82=1—e< 1. Using Lemma

4, choose k so large that for any choice of xu ..., xke S there are &,..., Ç'k eP

such that A:-11|2?=! £i*f|| =^2. A simple combinatorial argument yields the fact

that for some choice of «, at most 2k/5 of the £ are con + 1 and c»n _ 1 (all subscripts
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on cu's reduced modulo 5). Letting £, = cu_n¡¡¡, we see that k~1\\2f= i ÍíX¡|| iá 82 and

at most 2A/5 of the £( are cuj and co4.

If £( = co0, cc^ or co4, let Aj= 1 while if £( = iu2 or co3, let A¡= — 1. Then for at most

2k/5 of the i, |£(-A,| =2 sin tt/5 while for at least 3/c/5 of the /, |£,- A¡| ̂2 sin ir/10.

Thus

k

k-1 2 K¡-K\ ^ (2/5)2 sin tt/5+ (3/5)2 sin tt/10 = 8^

Hence

k

1
f = l
2 Ai*¡úk-1 2   «!-*>*!

f = l

+ Ar 2 ^x<

^Â:-1 2 K«-Ail + S2
i = i

^ S^S,, = 1-e.

Thus ak(X, B) ^ 1 — e so 36 is A, e-convex, hence P-convex.

(d) If X is P-convex, then X is A2-con\ex. Choose X, p,e A2, X=£p,. Then there

are scalars a, ß such that X = a+ß, p, = a—ß, |a|<l, ß^O. Pick 8, 0< S< 1, and

e>0 so that |a| + |j3|(l — 8)=l-e< 1. Pick k so large that for xu ..., xke S there

are Çu ..., £k e B so that fc_1||2?=i ft*t|| < 1 —8. Then a+£¡/9 e,42 for each / and

2 (« + 60*. 2 x*+A-

^ Ar-^alfe+ljSKl-S)

= 1-e.

2ftA'i

Thus 36 is ^42, A:, e-convex, hence A2-convex.    Q.E.D.

Remarks. We now see that all nontrivial forms of ^-convexity are equivalent

to P-convexity, and in what follows we shall restrict our attention to P-convexity

unless some special insight can be gained by using the more general form.

Beck has proven independently the following (unpublished) theorem: If Bn de-

notes the n nth roots of unity, X satisfies property (A) if and only if X is Bn-

convex. This showed that X was P ( = P2)-convex if and only if 36 was Pn-convex.

An argument similar to part (b) of the above proof yielded "If 3c is C-convex,

then 36 is Pn-convex for sufficiently large n" even without recourse to Lemma 4.

The present theorem yields the following generalization of Beck's theorem: If

A<^D has at least two points, then 36 is ^-convex if and only if 36 satisfies

property (A).
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6. Lemma. A NLS X is not D-convex if and only if for every k^2, e > 0, there

exist xu ..., xke S such that for each choice of scalar s au ..., <xk,

(l-e)2h| ^     2«'*'    =  2

Remarks. Geometrically, this lemma states that NLS which is not Z)-convex

contains arbitrarily good approximations of /¿-dimensional tfx over the appropriate

scalar field for all k.

The idea of the proof is this : Given k and e, we choose xu ..., xk appropriately

using the failure of 3c to be D-convex. Then in each "quadrant" of the span of

xu...,xk (we illustrate with the positive "quadrant") the surface of the unit

sphere comes near or touches the convex hull of Xi,..., xk at each of the points

xi; and comes very near the center of that convex hull at k ~ 1(x1 + x2 + • • • + xk).

Since the unit sphere is convex, its surface cannot get very far from the convex

hull of x1;..., xk anywhere in the positive "quadrant." If the span of x1;..., xk is

renormed with the tx norm using xu..., xk as basis vectors, the convex hull of

xu ..., xk lies in the surface of the ¿x unit sphere.

Proof. Suppose the latter condition of the theorem holds. Given k and e, let

xu..., xk be the vectors given by that condition. Choose arbitrary scalars

Xu ..., Xk e D. Then

? A*    à(l-e)2 M

= ÄT(l-e).

Hence ak(X, Z))^l-e. Since this is true for all k and e, 3c is not .D-convex.

Now suppose 3c is not D-convex. Pick k ^2, e>0. We may suppose e<l, or

else the desired conclusion holds trivially for any choice of k vectors from S.

Let 8 = k ~ 1e. Using the fact that 3c is not D-convex, hence not D, k, S-convex, we

may choose x1;..., xk e S so that for any choice of Xu ..., Xk e D,

k~ 2 ** > 1-8.

The linear span of {xu ..., xj is not D, k, 8-convex. Any space of dimension

less than k is D, k, k~1-convex (Example 3(i)), and 8<k~1, so the linear span of

{xu ..., xk} must be /r-dimensional. Hence xu ..., xk are linearly independent.

Choose scalars «u..., ak. ||2f=i a^J ^2f=i l«i| ■ ll*i|| ̂ 2f=i H> giving us one-

half of the required inequality. Since xu ..., xk are independent, 2?=i «iX¡ = 0 if

and only if «¡ = 0 for all i, if and only if 2f=i |«¿| =0. In this case

0 (1-e) 2  hi  è      2 "iXi = 0.
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Now suppose a = 2f = i lœi|^0 so A= ||2í=i <V¡|| #0. We wish to show (1— e)aí¡ A.

As before, let sg(0) = l, sg(|) = f/|f| for f#0. Then sg(f) e D for each scalar £.

Let ßi=\ai\X'1 and yl = sg(a^)xl. Then jS = 2!c=i ft = A_12f=i |«i| = A_1a and

||2?= i ßiya = \'2i = i A-1atjct|¡ = 1 so we must show that (8¿(1-e)_1. Suppose

j3>(l-e)-1. Theni3>(l-8)-1 since 8<e. Note that

J.k-Ki-b)-^ = k-\l-8)- 2 sB(ai)Xi> 1

by the choice of the x4.

We now restrict our attention to the real span of {yu ..., yk}. The hyperplane H

through yu ..., yk is the set of all points of the form 2f= i y^i where 2f= i y i = 1 •

The convex hull H' of yu ..., yk is the set of all points of the form 2?= i y< Jt

where 2i = i 71= 1 and y(a0 for all i. Since \\y,\\ ̂  1 for all /', H'<=S.

The line through w = 2f=i ft^i afid v = 2f=i k~1(l—8)~1yl is the set of all points

of the form (1 — y)u+yv for y real. This line intersects H at w=(l —y)u+yv for

0-1
j8-(l-8)-

We see y> 1 because ß>(l — e)_1>(l — 8)_1> 1. Since y> 1, u is on the line seg-

ment joining u and w. If ||w|| i= 1, then since ||«|| = 1 and the unit sphere of 36 is

convex it would be necessary that ||i>|| á 1. Hence, since ||f | > 1, \\w\\ > 1. In partic-

ular, w $ H', so if w = 2f=i ytyu some yt, say y;<0. Since w = (l — y)u + yv,

yj = (l-y)ßi + yk-\l-8)-^

= h(l-ß-(i-S)-i)+k(i=8) (¿}-(l-8)-\) < °-

Simplifying this last inequality, we find ß < 1 + k 8ß}. Since ßt á ß, we have ß <

(1— A8)_1 = (l— e)_1 contradicting our assumption that ß>(l— e)"1. Hence

jS^(l-e)-1.    Q.E.D.

7. Examples, (i) There is a reflexive, locally uniformly convex Banach space

which is not P-convex. (This example is due to Beck.) Let n¡ f co, /?¡ j 1. Let

36¡ = /p/, the space of all «rtuples of scalars under the norm \\(xi,..., xn,)|| =

(2?=i |*¡|p')1,p'- Then 36f is uniformly convex (Clarkson [3]) hence locally uniformly

convex (36 is locally uniformly convex if for each x e 36, ||x|| = 1, and for every e>0,

there exists 8(x, e)>0 such that if y e 36, \\y\\ = 1, and ||x—y\\ äe, then ||x+.y|| ^

2(1 — 8)). 36¡ is finite dimensional, hence reflexive. Let 36 = 2í"i©36¡, the Hubert
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sum of the 3c¡. Then x e 3c if and only if x = (Xi, x2,...) with x¡ e 3c, and the norm

l|x| =(2(™ i II xj2)1'2 is finite where ||X(|i is the norm of x( in 3c(. Since the Hubert

sum of reflexive spaces is reflexive (Day [6, p. 31]) and the Hubert sum of locally

uniformly convex spaces is locally uniformly convex (Lovaglia [16]), 3c is reflexive

and locally uniformly convex. Pick k £2, e>0. As p j 1, killp~1) f 1. Choose i so

large that n^k and A:<1,p<_1)> 1— e. Notice that Xt is imbedded isometrically in

3c. In 3Ê(, let xt = (0,..., 0, 1, 0,..., 0) with the 1 in they'th position. Let y¡ e X,

yj=(0, ...,0,Xj,0,...). Then || j>,|| = ||x,|| = 1 and for £•= ± 1,

k

2i=i
K

lew
k 1     k \ 1/p,

-*-» 2^ = *_1 2161*
i=i \ i=i    /

= k-1(kfipi = Jfc**«-* > 1-e.

Hence 3c is not k, e-convex. Since k and e were arbitrary, 3c is not P-convex.

(ii) R. C. James [12] has given an example of a nonreflexive Banach space which

has deficiency (codimension) 1 in its second conjugate under the natural imbedding

and is isometrically isomorphic to its second conjugate. In light of Corollary II.2,

if there existed a nonreflexive P-convex space, this would seem to be as likely a

candidate as any. However, we can show that it is not P-convex. James discovered

this independently.

S is the set of all sequences x={xn} of real numbers such that limn xn = 0 and

the norm |||x||| is finite where \\\x\\\2 = sup [(xp¡-xpJ2 + 2í=i (xp¡+1-xp¡)2] and

the sup extends over all «ä2 and all integers 1 ÚP\<p2< ■ ■ ■ <pn- Without loss

of generality (see Corollary II.7), we consider 3 with the norm || • || which is easily

shown to be equivalent to |||-||| and which is given by ||x||2 = sup 2?=i (xPt— xq¡)2

where the sup extends over all «^1 and all integers \^q1<px^q2<p2^ • • • 5¡

qn<Pn- If P = (Pi, • • -,Pn) and q = (?i,. ..,qn), we use the notation

71

*2(p, q) = 2 (x> ■xQi)2-

In this norm we see the character of a variation norm in that it is the difference

between members of the sequence {x„} which give rise to its norm and not (for

example) the size of the individual members. However, since the difference is

squared, the sup is sometimes (more nearly) achieved by taking the square of one

large difference rather than several small ones. Thus, ¡{1, .4, .6, 0, 0,.. .}|| is

((1-0)2)1/2=1, not ((l-.4)2 + (.4-.6)2 + (.6-0)2)1/2 = V-86. By balancing one

big jump against several smaller ones, we can construct elements of S which (nearly)

achieve their norms in several ways. Thus

[1, l/3,2/3,0,0,...}|2 = (1-0)2 = (l-l/3)2 + (l/3-2/3)2 + (2/3-0)2
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By exploiting phenomena of this sort, we can pick k ä 2 and e > 0 and construct

unit vectors xlf..., xk e ¡3 with the property that there are 2k sets of p's and q's

such that each x2(p, q) ^ (1 — e)2 and what is more for each choice of Xj^ = ± 1,...,

K= ± 1> the vectors A^,..., Xkxk reinforce each other on some one of the p's

and q's so that (Xxxx + • • • +Xkxk)2(p, q)^k2(l — e)2, hence || Aj.jcj 4- • • • +Afcxfc|| ̂

k(\ — e). The actual details of this construction involve an exceedingly tedious and

cumbersome calculation which seems to add little insight, so we omit it here.

Details can be found in the author's Ph.D. thesis (Giesy [10]).

II. Related spaces. In this section we shall explore conditions under which P-

convexity is preserved between related spaces.

1. Theorem. Let X be a Banach space. X is A, k, e-convex if and only if X** is

A, k, e-convex.

Proof. Since X is isometrically isomorphic to a subspace of 3c**, if 3c** is

A, k, e-convex, then 3c also is (Remark 1.2(d)).

The converse depends on a theorem of Goldstine (see, e.g., Dunford and

Schwartz [7, V.4.5]), which states that if S, S** are the unit spheres of 3c, 3c**

respectively and «: 3c -> 3c** is the natural embedding of 3c into 3c**, then kS is

dense in S** in the 3c*-topology of S**.

Now choose Xu ..., Xke S**. Let 8>0. Pick £lt...,ÇnsA so that for each

Is A, there is j(Ç) such that |£ — £y(i)| è 8 (every element of A is within 8 of some

one of the finite set {£,}). Let £=(fi,.. .,t;k) be a A:-tuple of elements from {£1;.. .,£„}.

Then ||2f=1 fA| -rapin-i 1(2?-» MÜXfll where fe 3c*. Pick f e 3c*, ||/{|| = 1
so that |(2?-i &*<)(/<) | > ||2i = i 6*tl - s- For each i, consider the 3c*-neighborhood

N of Xt determined by S and the nk functional/{ where f ranges over all ^-tuples

from the set {£u ..., £„}. Since kS is dense in S**, there is a vector xte S such that

KX{eN. This means that \Xt(fi) — (KXl)(f()\ = \X,(fi)-f((xi)\<8 for each f. Since

3c is A, k, e-convex, there exist Xu ..., Xke A such that k~1\\'2,k=1 Atxf|| < 1 — e+S.

For each A,, let j=j(Xt), £t=Cj so that |At—f¡| á8 and £=(&,..., ffc) is a fc-tuple

of elements from {£j,..., £„}. Then

it

i = l
2«* â Ar 2 tet +*"*2 (WJ*

< i..+i+jt-i 2 K-ftiHx,!!

£ l-e + S + Ar1 2 8 = l-£ + 28-
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ft

< k-

ú k

(a«)C/i)+ A"1(AS)

2 uxst-Axd +/C-1 % ej&xd
1-1 i = l

^ A-1 2 161 W«-/«*l+*-1 /( 2 £*i)
i=l \i=l /

<^-i2s+^_1ii/iii- ¿**

+ 8

+ 8

+ 8

á 8+l-e + 28 + S = l-e + 48.

Since for every 8 > 0 there exist ¿¡1,...,£keA such that k ~11| 2¡fc= i í¡A^ || < 1 — e + 48,

inf A_1|12?=i iiXt\\¿í—e where the inf extends over all A-tuples from A. Since

this is true for all A>tuples from S**, ak(X**, A)^ 1 — e so 36** is A, k, e-convex.

Q.E.D.

2. Corollary. Let X be a NLS. 36 is A, k, e-convex if and only if 36** is A, k, e-

convex.

Proof. Let 9) be the completion of 36. Then vector space operations can be

defined on f) so that D is a Banach space and 36 is a sub-NLS of ?). 36 is dense in

$ so by Remark I.2(c3), D is A, k, e-convex. Every element y* in 9)* defines a linear

functional x* on 36 by x*=.y*|3c, the restriction of y* to 3c, and ||x*|| = \\y*\\. Every

x* e 36* has a unique continuous linear extension y* to ty, and ||x*|| = ||.y*||. So

in a natural way 36* =9)*, hence 36** =?)**. Since slj** is ^4, k, e-convex (Theorem

1), 36** is A, k, e-convex. The converse direction follows since if 36** = '3)** is

A, k, e-convex, Si) is A, k, e-convex and since 36<=?), 36 is A, k, e-convex by Remark

1.2(d).   Q.E.D.

3. Theorem. Let Xbea Banach space. 36 is B-convex if and only ifX* is B-convex.

Proof. We will prove that if 36 is not P-convex, then 3c* is not P-convex. The

entire theorem follows from this, for, if it is true, then, if 36* is P-convex, then

36 is P-convex, and if 36 is P-convex, 36** is P-convex by Theorem 1, and since

3c** = (36*)*, this would imply 36* is P-convex.

Now suppose 36 is not P-convex. Choose Aä2, e>0. The idea of this proof is to

get a good enough approximation of a finite dimensional tx in 36 of sufficiently high

dimension in order to get a good enough copy of a finite dimensional /«, in 3c*

of sufficiently high dimension to show that 36* is not k, e-convex (see Example

I.3(iv)).
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Pick 8, 0<8<e, and let n = 2k. By Lemma 1.6, there are vectors x1;..., xn e S

such that for all scalars a¡, 1 IkHkn, we have (1 — 8) 2?=i hi ^ ||2?=i «¡^¡11 =2"=i hi-

From this we see easily that the x¡ are linearly independent. Define linear functionals

gj on the linear span of x%,..., xn, 1 íkjúk, reading gj(xt) from the following table

and extending by linearity.

Table

Xi        X2       X3       X4       • • •      Xn-i      xn

gi  +1   -1   +1   -1   ••■   +1   -1

g2 +1  +1  -1  -1  •••   -1   -1

gk +1  +1  +1  +1  •••   -1   -1

The rth line consists of alternate blocks of +l's and — l's, each block being

2i_1 long. Notice that every sequence of A +l's and —l's appears as a column

in this table.

If ||2?-i «txill = 1, (1 -S) 2"=i hi = 1, so for each/

(1-8) g¡y 2 aixi) = (i-s) 2 aiSi(xd

= 0-8)2 MlfcMIí = i

= (1-8) 2 N í¡ 1,

since |g/xf)| = l for all 1,7'. This tells us that ||(1 — 8)gj\\ ^ 1 where gf is considered

as a functional on span {xi,..., xn}. Let / be a norm-preserving extension of

(1 - 8)g¡ to all of 36. Then/ e 36* and ||/|| ^ 1. Let £=(&,..., fk) be a sequence of

+ l's and — l's. Pick i, 1 ¿ién, so that the ith column of the table defining the g/s

is the sequence f, that is gi(xi) = Çj, 1 újúk.

k

I
1 = 1
liifi ^ k-1

= k~1 (g&i-s)*,)

A-^l-S)

= k~\l-8)
1 = 1

(1-8) >  1-e.

2 ^iSÂXÙ
' = 1

k
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Since i was arbitrary, we see that 3c* is not k, e-convex. Since k and e were arbitrary

3c* is not P-convex.    Q.E.D.

4. Corollary. Let X be a NLS. X is B-convex if and only if X* is.

Proof. As in the proof of Corollary 2, let ?) be the completion of 3c, so 3c is

dense in ?), and $ is a Banach space. 3c* is P-convex if and only if ?) is P-convex

if and only if "$)* is P-convex if and only if 3c* ( = ■$")*) is P-convex.    Q.E.D.

5. Theorem. Let X be a NLS, T a continuous linear open transformation on X.

If X is B-convex, then T(X) is B-convex.

Proof. Write V) = T(X). Then ?) is a NLS. Since Pis continuous and linear, T

is bounded; i.e., there exists M>0 such that if x e 3c, ||x|| ^ 1, then ||P(x)|| S M.

Since Pis open T(S) is a neighborhood of 0 in f), hence there exists S>0 such that

{yey>:\\y\\i8}<=T(S).
Now, using the P-convexity of 3c choose k so large that ak(X, B)^.\8M'1.

Pick ylt..., yk in the unit ball of '§. Since 8y{ e T(S), there exists xt e S so that

P(x¡) = 8ji. Let £,= ± 1, 1 úi^k, so that

Ar1
k

I
i = l
2 fi*«g iAf-*8.

Then

2 fi* = 8-*Jfc-

S^A;-

= s-1^-

< 8~1Mk'1

2 fi8^
¡ = i

2 ^w=i

im
k

2fi*<
k

2i=i
¿ 8-1M($M~18)

Thus ?) is A:, ̂ -convex, hence P-convex.    Q.E.D.

Remarks. The condition that T be open cannot be dropped. Define T: f2 -> fx

by P(x1,x2,...) = (x1, ix2,...,«" 1x„,...). Then Pis linear, ||P|| á 1+77/^/6 so T

is continuous, and P(/2) is dense in /x. f2 is P-convex (in fact, uniformly convex)

and since ^ is not P-convex, no dense subspace of tx can be P-convex.
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The converse of this theorem is false. Let T: X®^ -> 36 be the projection of

36©$ onto 36, where 36 is P-convex, ¥) is not, and 36©D is made into a NLS by any

convenient norm, e.g., ||(x,^)|| = |x||x+ \\y\\%. Then Pis continuous, linear, and

open, and T(X®<§) is P-convex. However, SX)=0©S3) is not P-convex, hence

X®ty is not P-convex. Note that kernel (T) = 0®ty. We will prove (Corollary 10)

that if T is continuous, linear, and open, 36 is P-convex if and only if T(X) and

kernel (T) are both P-convex.

6. Corollary. If 36 and 9) are isomorphic NLS's, 36 is B-convex if and only if

?) is B-convex.

Proof. 36 and 9) are isomorphic if there is a transformation T on 36 onto D

which is a vector space isomorphism and a topological homeomorphism. This

implies T is continuous, linear, and open. Thus, if 36 is P-convex, 9) is P-convex.

Isomorphism is an equivalence relation on NLS's so the proof is complete.

7. Corollary. B-convexity is invariant under equivalent renorming.

Proof. Two norms || • ||iand || • |2on 36 are equivalent if (36, || • || ±) is isomorphic

to (36, || • ||2) under the identity map. Hence, (36, || • (d) is P-convex if and only if

(36, || • ||2) is P-convex by Corollary 6.

Remark. This result also follows directly from Beck's theorem since both the

hypotheses and the conclusions of the strong law of large numbers are invariant

under equivalent renorming.

8. Corollary. If 36 and ty are Banach spaces, T is a continuous linear trans-

formation on 36 onto f) and 36 is B-convex, then s2) is B-convex.

Proof. Under the hypothesis, T is open by the Open Mapping Theorem. Hence

Theorem 5 applies.

9. Theorem. Let X be a NLS, 3 a closed subspace. 36 is B-convex if and only if

3 and 36/3 are B-convex.

Proof. 36/3 is the linear space formed by taking the quotient of the linear space

36 by its subspace 3- The norm in 36/3 is given by ||x + 3|| =infsc=3 ||x + z|. The

natural map T: 36 -> 36/3 given by P(x) = x + 3 is continuous, linear, and open.

Thus, if X is P-convex, then 3 is P-convex (Remark 1.2(d)) and 36/3 is P-convex

(Theorem 5).

Now suppose 3 and 36/3 are P-convex. By Lemma 1.4, choose m and n so that

36/3 is m, 3/4-convex and 3 is n, 5/6-convex. Let k = mn. Pick xx,..., xk e S. Then
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x1 + Q,..., xk + S are in tne unit ball of 3c/3- We group these k = mn vectors in

3c/3 into « groups of m vectors each, and find coefficients + 1 to make the sum of

each group small. Thus, there are £¡= ± 1, 1 ̂ i^k, so that letting

Sj = {m(j-l)+l,...,mj}

2^+3) = (2 fi*«)+s
teS, \ ieS< I

Ú (l/4)m   for \ új ún.
II ieS, \ ieSj

By the definition of the norm in 3c/3, we may choose z¡ e 3, 1 isj^n, so that

(2 tixA+Zj á||(2fi*t)+3 + (l/4)m £ (l/2)m.

Then

NI s 2 ^x¡ + í 2 £i*0+zJ
(eSi \ ieSj /

^ m + (lß)m = (3/2)m.
I feS, \ ieSy

Using the n, 5/6-convexity of 3, we may find £,= ± 1, 1 újún, so that

2fi*ii=i
(l/6)«(3/2)m = (l/4)/c.

For 1 ̂ y^K, let A,»£,6 for i 6 S,. Then

fc n

2 tei =22 fifi*
¡ = 1 i = l ieSj

2 fi( 2 &*«+*>) + 2 fi**
i = 1 \ ieS; / i = 1

= 22 ^+zj
y = l II ieS,

+ (1/4)A:

^  2 (l/2)m + (l/4)A:
1 = 1

= (l/2)m« + (l/4)Ar = (3/4)Ar.

Thus 3c is k, 1/4 convex, hence P-convex.    Q.E.D.

10. Corollary. Let X be a NLS and T a continuous linear open transformation

on X with kernel 3- Then X is B-convex if and only if both 3 andT(X) are B-convex.
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Proof. If 36 is P-convex, since 3 is a subspace of 36, 3 is P-convex (Remark

1.2(d)) and by the hypotheses on Pand Theorem 5, T(X) is P-convex.

Suppose 3 and P(36) are both P-convex. Since T is continuous, 3 is closed in

36. Define U: T(X)-+ 36/3 by U(T(x)) = x + 3-

It is easily verified that U is a well-defined, continuous, linear, open transfor-

mation from P(36) onto 36/3, and since P(36) is P-convex, 36/3 is P-convex (Theorem

5). Since 3 is also P-convex, 36 is P-convex (Theorem 9).

11. Lemma. Let Xu ..., Xn be NLS's, and let S = 36a©- • -©36n, the direct sum

of the 36j under component-wise arithmetic and norm ||.y||g= ¡XiH^ + • • ■ + ||*n||$„

for y e ?), y = (xl5..., x„). Then ?) is B-convex if and only if all of Xu ..., Xn are.

Proof. First each 36¡ is isometrically isomorphic in the natural way to the sub-

space 0©- • -©0©36©0©- • -©0 of % so if S is P-convex, each 36¡ is.

For the converse, we proceed by induction on n. For n= 1, the result is trivial.

Suppose the theorem is true for n—1. Suppose 3c1;..., 36n are P-convex. Define

T: f) -> 36n by P(x1;..., xn) = xn. Pis easily seen to be continuous, linear, and open

with P-convex image 36n and with kernel 36i©- • •©36„_1©0 which is isometrically

isomorphic to 36i©- • -©X,,-! which is P-convex by the hypotheses of induction.

Hence by Corollary 10, ?) is P-convex.    Q.E.D.

12. Theorem. Let X be a Banach space and Xx,..., 36n linear subspaces of 36

such that 36 is the linear span of 361;..., 36„. Then 36 is B-convex if and only if

Xu ..., 36„ all are.

Proof. As usual, by Remark 1.2(d), if 36 is P-convex, each 36¡ is also.

For the converse, suppose 361;..., 36n are P-convex and closed in 36. Then each

36j is complete. Let <§ = X1®- ■ -©36„ as in Lemma 11. Then by that lemma,

5) is P-convex and ?) is easily seen to be complete. Let T: ^) -> 36 be defined by

P(xi,..., xn) = xx+ • • ■ +xn. T is clearly linear

||P(*l,...,Xn)||ï  =   ,*!+•• •+*.!   ^   ||*l||+" -+ll*n|| = || (*!,..., X„) || g

so ||P|| ^ 1, and hence T is continuous. Since 36 is the linear span of 36!,..., 36n,

T is onto. Hence by Corollay 8, 36 is P-convex.

Now if each 36¡ is P-convex but not necessarily closed, by Remark I.2(c3)

el 36¡ is P-convex, and the hypothesis of this theorem is satisfied with each 36f

replaced by el 36¡ and the previous argument shows that 36 is P-convex.

Remark. We cannot weaken the hypotheses to state "36 is a NLS." Let ^ be

James'   space  (see   Example   I.7(ii)).   Define  ^ = {(x1; 0, x3, 0,... ) e 3},   £>2 =
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{(0, x2, 0, x4,...) e^}- Then §x and §2 are isomorphic to Hubert space and

sp(3?i, ©2) is dense in S (James [11]). By Example I.3(ii) and Corollary 6, ^ and

§2 are P-convex. However, since 3 is not P-convex sp(§1; §2), a NLS, is not

P-convex by Remark I.2(c3).

13. If 3c is a NLS of sequences, i.e., scalar-valued functions, on an index set

3~ and for each íeJ, 3c¡ is a NLS, we may form a new NLS, P-¿XU the set of all

sequences {x(0} with x(t) e Xt such that the sequence of scalars {||x(r)||} is in 3c.

It is customary to impose some restrictions on 3c which we shall give presently

in order to make the situation manageable. Such a restricted 3c will be called a

proper function space. M. M. Day showed ([4] and [5]) that if 3c is a uniformly

convex proper function space and the 3c¡ are uniformly convex with a common

modulus of convexity (the function S(-) associated with a uniformly convex space

is called its modulus of convexity; see Example I.3(ii)), then Pj3ct is uniformly

convex. Following Day's techniques, we show that if 3c is uniformly convex and

3c¡ is k, e-convex for each (eJ, then P^3ct is k, S-convex for suitable 8 (Theorem

17).

14. Definitions. Let 3~ be an index set and 3c a NLS of real-valued functions

on &~, For each te3~, let 3ct be a NLS (all 3ct over the same scalar field). Denote

by Pj;3ct the set of all functions x on ST such that x(t) e Xt and if the real-valued

function $ on ST is defined by £(*)= ||x(0||, £ s X. Norm P$3c¡ by ||x|| = ||£|| with

x and f as above.

Call a NLS 3c of real-valued functions on &~ a proper space of functions if 3c

satisfies the condition that whenever i e X and £ is a real-valued function on ¿7~

with I£(0| S|£(0| for each te$~, then £ e 3c and ||£|| ̂  ||f||.

It is known (Day [6, p. 31]) that if 3c is a proper space of functions on &", then

Pj3ct is a NLS, and is complete if 3c and all 3c¡ are complete.

15. Lemma. Let X be a uniformly convex NLS. Then there exists a function

S'(-) with S'(e)>0 for e>0 such that if x,yeS and ||x—_y||^e, then |jx+j||;£

2(1-S'(e)).

(This lemma is stated by Day in [5, Lemma 1]. The proof given here is due to

this author.)

Proof. Let S() be the function given by the uniform convexity of 3c and let

8'(e) = min ((l/3)S(e/3), e/6, 1/4). Then for e>0, S'(e)>0.

Now let x, y s S and suppose ||x+^|| >2(1 — S'(e)). Now

11*11  ^  li* + j||-bll  > 2(1-S'(e))-1 = l-28'(e) > 0

since 8'(e)ál/4, so x#0. Similarly y=£0. Let A=||x||-1, ^=||,y|-*. Then ||Ax|| =

llwl| = l. Also,

||(l-A)x|| = |l-A|.||x|| = |l-||xl|-*|-||xl

= |||x||-l| < 28'(e)
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since 1 = ||x|| > 1 -28'(e). Similarly ||(1 -p.)y\\ <28'(e). Therefore

\\Xx+p.y\\ = \\x+y\\ - ||(1 -A)x||- ||(1 -^||

> 2(l-8'(e))-2S'(e)-28'(e)

= 2(1-3S'(0) = 2(l-8(e/3)).

Therefore, since Ax and p.y are unit vectors, ||Ax—py\\ <e/3. Hence

\\x-y\\ ï ||Xx-p.y\\ + |(1 -A)x| + \\(l-^)y\\

< e/3 + 2S'(e) + 28'(0 = e.

Hence, if x, y e S with ||x—j|| ^ e, we must have

\\x+y\\ = 2(l-8'(e)).   Q.E.D.

16. Lemma. Let X be a uniformly convex proper space of functions on &~, and

let n be a positive integer and e > 0. Then there exists 8 = 8(36, n, e) > 0 such that if

&~i, • • •, ^~n are pairwise disjoint with $~ = \J ^"i( and if f e 36 with || f || ̂  1, and if

for each i, $teX with |ft(0l á|KOI M t i ^¡ and |ft(í)| ̂  |(1 -«)¿(0I /<v íe^i,
rnen /or sowe /, 1 ̂  i* ̂ n, || f¡ || ;£ 1 — 8.

Proof. We will make heavy use of the "monotonicity" property which charac-

terizes proper spaces of functions. If ||f || =0, the proof is clear, so we shall assume

||f || >0. Define <f> e 36 by <p(t) = |f(OI/l|f II- Then ¿(0 = 0 and ||<¿|| = 1. Let Xi be the
characteristic function of <^"( so x¡(0=0 resp. 1 if t $ &~t resp. t e ^~¡. Define </>i(t) =

(l-Xi(t)e)<t>(t)- Then ¿(0 = 0 and |fi(0|-*(0. so ||f,|| Ú \\H- We will find a
S>0 depending only on 36, n, and e such that for some i, ||^(||_1 — 8, hence

||fill S1-8. First suppose e^2/3.
Let i?i(0 = e^(0Xi(0 and ■q(t) = c(p(t). Then since {^~1;..., ^n} is a partition of

■^ 2?-i Vi = V = E4>, so e= ||e^|| = ||ij|| = ||2"=i r?*II =2r=ihi|| so, for some /, l^i^n,

11%|| 2ïe/n. Fix this i for the remainder of this proof.

Define É(0 = U-Xi(0W2M0, Í'(0=(l-Xi(0<>/2M0- Then since e^2/3,
for each t, 0 á £'(0 = 5(0 = ¿(0 so ||£'|| ̂  ||£|| = 1. Now

£(0-£'(0 = (i-»(0(«/2M0-a-xi(0(3«/2M0

= eXi(t)<f>(t) = Vi(t)

so £-£' = %.

«0+r(0 = (l-x<(0(«/2M0+(i-x«(0(3e/2M0

= 2(1 -Xi(00^(0 = 2^(0-
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So £ + £' = 2<£¡. Thus ||£—£'|| = ||i?(|| ̂ e/«, so if S'(-) is the function in 3c given by

Lemma 15, ||£ + £'|| ¿2(l-S'(e/n)). Thus letting 8 = S'(e/«), ||&|| ̂ 1-8.

Now if e>2/3, the hypotheses of the lemma are satisfied with e replaced by

e' = 2/3. S(3c, «, e') given by the above proof is a suitable choice for 8(3c, «, e).   Q.E.D.

17. Theorem. Let X be a uniformly convex proper space of functions on an index

set 3~, and for each t e 3~, let Xt be a k, e-convex space. Then there exists 8 > 0

such that PzXt is k, 8-convex.

Proof. The proof divides naturally into two parts, the first a special case and

the second the general case. For brevity, we write ty=P$Xt.

Part I. Let 81 = 8(3c, «, e) of Lemma 16 with n = 2k. Let xu ..., xk sty, ||x¡|| ^ 1

with the additional restriction that |x¡(0|| = ||*i(OI¡ for 2f£/áA;. Denote this com-

mon value ||xi(0|| by £(t). Using the k, e-convexity of each 3c,, we partition 3~

into 2k sets {^h: X = (XU..., Xk), A¡= ± 1, l^/'^A:} with the property that if

te$-K, then fc-*||2?-i Wí)|á(l-#). Define & by MO-*"1«!?-! W0||-
Then by the triangle inequality, 0 S L(t) S f(0 and for /e^.Oá £A(0 ̂  (1 -e)$(t),

so by Lemma 16, there is a A such that |fA|| ^ 1 — &i- But by the definition of norm

in ty, || ̂ A || = ^ - * || 2?= i Ai-Xi II ■ Hence, given k vectors xu...,xk in $, ||x,||^l,

such that IWOIH || *i(0 II > 2^/^Jfc, ts$~, there exist A,= ±1, l^i'^A; such that

Part II. Pick 82 so that 81 > 82 > 0. Let 8'( ■ ) be the function in 3c given by Lemma

15, and define 83 by requiring S'(82) = £A;83. Then 83>0. Let 8 = min (Sj —82, 83).

Then S>0. Let xu...t-xke% |x,||;gl for l^i^k. Let £t(t)= ||x,(0||, so & e 3c

and IftH = ||jc«|| ^ 1. |2f=i *(0l ¿Zf-i IWOII =2ifc=i Uf\ so by a componentwise

comparison, ||2f=1 xt|| ̂  ||2?=i fill- Suppose ||2f=i xf|| >A;(1 -8). Then |2f=i ¿,|| >
A;(l -S3). Then for each;, 2^j^k,

llfi + fill ̂
k k

2 fi -   2 . «
t = 2. t #/

> Ar(l-83)-(A:-2)

= 2(l-iA:S3) = 2(l-S'(82)).

Hence by the properties of S'(-). ||£i —iy|| <<>2, for each j, 2-¿j-¿k. Since 82>0, it

is true that ||£i- fj < S2 for 1 ̂ jS k.

We now define zisty, l^i^k, so that z, is a good approximation of x¡ and

{zlf..., zk} satisfies the hypotheses of Part I of this proof. We let

zt(t) = {!i(0/f,(0}x,(0
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if 6(0^0 and z,(0=*i(0 if 6(0 = 0. Then for each t, 11^(011 = 6(0, so ||zf| =
||fi|| = 1 and zu ..., zk falls under Part I. Furthermore, if 6(0^0,

¡zt(t)-x((t)\\ = IK6.(0/¿«(0M0-*i(0l

= nafiío/aoi-iKíoii = |{«o/mo}- i|-iki(oi
= 16(0-6(01,

andif fi(0=0,

||zt(0-*«(OI = 11^(0-011

= Ifi(0l = 16(0-6(01,

so by componentwise comparison, ||zf — x¡|| = ||fi — 6|| <82.

By Part I, choose At= ± 1, 1 úiúk, so that k-^t-i Ai^ll ál-8i. Then

ft-

2 A'x' < A"1 2 Ai2 + k- 2 X^zt-Xi)

i i-81+k-^2 N-lki-*tll
i = l

^ 1-Si+A:"1 2 S2
¡ = i

= l-(8,-82) ^ 1-8.

Thus, for xu ..., xke'§, ||x,|| ^ 1, there exist A¡= + 1 such that

2A¡X{ S 1-8.

Thus ?) is k, S-convex.   Q.E.D.

18. Corollary. Let X be a uniformly convex proper space of functions on an

index set &~. For each ieJ, let Xt be a kt, et-convex NLS. Suppose sup,?- kt = k <co

and'mf> e( = e>0. Then P$Xt is k, 8-convex for suitable S>0.

Proof. We will reduce this to the previous theorem by showing that all 36¡ are

k, e'-convex for some e' > 0.

Let us fix our attention on a fixed t and let kt = n, et=9. n^k, so write k = an + r

a>0, 0^r<n. Let xu...,xke Xt, \\x¡\\ ̂  1. Dividing the x¡ into a groups of n

elements and r single elements, we fit each group with ± l's so that the sum has
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norm^«(1 — 0). Thus using the triangle inequality, there are A¡=±1, 1^/^A;,

such that

2 tet
k

2¡=i
Clearly r < k\2, so

^ an(l-9) + r = an(l-6) + r(l-d) + re = k(l-6) + r6.

2 tet è l-d + (r/k)6 < I-id = 1—£et.

Thus, 3ct is k, -2-et-convex for (eJ. Since e' = ^e á $et, Xt is k, e'-convex for t s ¡T.

Thus Theorem 17 applies.    Q.E.D.

19. Theorem. A NLS X is k, e-convex (B-convex) if and only if each k-

dimensional (separable) subspace is k, e-convex (B-convex).

Proof. If 3c is k, e-convex (P-convex) then every subspace of 3c is k, e-convex

(P-convex). If 3; is not k, e-convex, there exist xu ..., xks S such that

H+X^Xai ••• ±Xfc|| > A:(l-e)

for all choices of + and — signs. If we denote the span of {xlt..., xk} by 3c(A:, e),

then 3c(A:, e) is a subspace of 3c of at most dimension k such that 3c(A:, e) is not

k, e-convex. If 3c is not P-convex, then for all k ^2, «^ 1, 3c is not k, «_1-convex.

Choosing 3c(Ar, «"*) as above and letting 3^ = span {3c(A;, «_1) : A: ̂2, «^ 1}, then

$! is separable and 3cx is not P-convex.   Q.E.D.

III. Internal structure of P-convex spaces is explored in this section. We

strengthen one direction of Beck's theorem, get a cancellation result much

stronger in one sense than that of Lemma 1.4, and discover a condition under

which P-convex spaces are reflexive. We close with a curious example.

For definitions of various concepts involved in Beck's theorem, the reader is

referred to the introduction of this paper, or to Beck [1] or [2].

1. Lemma. Let (O, 2, m) be a measure space with m(Q)<co. Let l^p<q¿oo.

Let {/„} be a sequence of real valued functions on Q. such that

(i) /„ -*- 0 almost everywhere or in measure,

(ii) I/, ||, is bounded uniformly in n.

Then lim, ||A|P=0.

Remarks. As usual, \fX = (5a\fM\'mdo>)v'> ll/n|« = ess0sup ||/»(w)|. This

result is well known. See, e.g., Loève [15, p. 164, Corollary 2].
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2. Theorem. Let lSp<q^oo with 2?iq. Let k2:2, e>0. Then there exists a

sequence of real numbers bn = bn(p, q, k, e) such that lim„ bn = 0 and if 36 is a k, e-

convex NLS, (ß, X, 0") is a probability space, and Xu..., Xn are independent

X-valued random variables on ß, with £(A¡) = 0 and \X¡\q^M,  l^z = «, then

Wn-^UiX^ÚMK.

Remarks. Here we use the notation \\Xi\\p = ((Ci\\Xi\\p d0>)llp for 1^/xoo,

|| Afj || e = essn sup || A'i(cü) ||. This author first proved the special case of this

theorem for p=l, q = 2. Anatole Beck noticed that it could be generalized to all

p e [1, 2), and suggested a generalization which this author refined to the present

form.

Specializing this theorem to the case of real- and complex-valued random

variables, we find that for 1 ;£/? < <7 = oo and q ä 2 there exists a sequence bn = bn(p, q)

such that lim„ bn = 0 and if {/,} is an independent sequence of random variables

with ||/J, = M for all n, then ||(l/n) 2"-i./i||p = A^V This shows that the speed of

approach to 0 given by the strong law of large numbers is uniform over a wide

class of sequences.

Proof. For a fixed p and q with 1 ̂ p< q á oo and q ä 2, let 3c be an arbitrary

P-convex NLS, (Q, S, 0s) a probability space and {Xn} an independent sequence of

36-valued random variables with E(Xn) = 0 and || A^fl,^ Af for all n. Let

En = {wen: ||A-n(<u)|| = 1},

Fn = n-En. If <7<oo,

var(An)= ||An|!=  f  \\Xn\\2 d& =  f    ||jq|2^+f    ||An||2^
Jo Je„ Jf„

è 1+ f    \Xn\*d9 = 1+ Í  ||*„||«d0» ̂ 1 + AÍ«,

and if 9 = co,

var (Xn) =  f  lA-JI2 dSP è essn sup || An||2 = (essn sup ||Afn||)2
Ja

= llalli Ú M2,

so var (Xn) is uniformly bounded, hence by Beck's theorem,

lim n-1 2 XAw)

for almost all w. |n_1 2"=i Xt\\ , = n_1 2?=i l|Ai||,= M, so by Lemma 1,

lim n'1 2 *« = 0.



1966] A CONVEXITY CONDITION IN NORMED LINEAR SPACES 139

Now, fix k ä 2 and e>0. Define ¿>„ = sup ||«_1 2f=i ^¡L where the sup extends

over all k, e-convex Banach spaces 3c, all probability spaces (Q., 2, 3P), and all

independent sequences Xu ..., Xn of 3c-valued random variables on Q with

E(Xi) = 0 and ||-Yi||,ál, 1^/^w, Then bn depends only on p, q, k, and e and

0^èn^oo. Let limn sup bn = a. Then O^a^oo. We wish to show a = 0.

Suppose a>0. Choose /3>0 such that 2/3 < a. We will now construct an inde-

pendent sequence of 3c-valued random variables {Xn} on Q, where E(X¡) = 0 and

1^11,^1, all i, (Q, 2, 3P) is a probability space, and 3c is P-convex, having the

property that lim„ sup |n~* 2"=i Xi\\p^ß>0, contradicting the result we got in

the first part of this proof.

Using the fact that limn sup bn>2ß, for each « pick an integer m(n)^n, a k, e-

convex NLS 3cn, a probability space (Í2„, 2n, ¿?n), and an independent sequence of

3c„-valued random variables on On, Y[n\..., Y$n) such that E(Y¡n)) = 0 and

|| 17-1,^1 and K«)"1 2SÏ Y\»\\p^2ß.
Let X=P{2 Xn and (Q, 2, 01) = n"= i (Q„, 2n, &>n). Then 3c is P-convex by Theorem

11.17 and Example I.3(ii), and (D, 2, 3?) is a probability space. For all « and

l^z^m(«) define X¡n) on Q into 3c by X}n\w1,w2,...) = (x1,x2,...) where

x„ = Y¡n)(wn) and x, = 0 forjan. Then for all « and l^/^m(«), E(X¡n)) = 0 and

n»|,ál, and ||»i(«)-* 2?^ *JT = M»)-1 2?SÎ 17n>||pè2j8, and

w:«)1 2j> i S «i(«), « ^ 1}

is an independent set of 3c valued random variables on Q.

Let «!=1, rx = m(n¿ and XK = X\n¿ for lá«'á»<«i)- Then ¡Irr1 2?-i *i||i>à

2)8>ß. Suppose we have chosen r1<r2< ■ ■ ■ <rs and a sequence 3ff, 1 á'árs, such

that l!^-1 2P=i *i||p^|8 for 1£/¿J. Let y,= ||r,-* 2î-i X,\\P. Choose «s + 1 so

large that if we let ms + 1 = m(ns + 1), then

(*) (2ms + 1-rs(ys/ß))/(ms + 1 + rs) ^ 1.

For 1 áiám(íi¡ + 1), define Xu+t= Xi*>*i\ Let rs + 1 = «î(«s + 1) + rs. Then (*) becomes

(**) (2ms + 1-rs(ys/ß))/rs + 1 ^ 1.

rs +1    ¿    Xi

*■»+ 1

2 *i
i=rs + l

-r_1
's + l 2*

(«is + 1/rs+1)ms+11 2 *<n.+ l> -(rjrs+1)rs *

^ (ms + Jrs+i)(2ß)-(rJrs+1)ys

= ß(2ms + 1-rs(yslß))/rs + 1 ^ß

by (**).

2*
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Hence by induction, we have chosen from the independent set

{A/n) : 1 ^ / = m(n), n ^ 1}

of 36-valued random variables with 0 expectation and ^-norms uniformly bounded

by 1, a sequence Xn such that lim„ sup ||n_1 2?=i X^^ß, a contradiction.

Hence lim„ ¿n = 0. To complete the proof, let 36 be a k, e-convex NLS, (Q, 2, SP)

a probability space, and {Xn} a sequence of 36-valued random variables on Q. with

E(Xn} = 0 and \\Xn\\ g^M for all n. Hence \\M-1Xn\\q£l. Thus, the independent

sequence {M^A,,} satisfies £(M"1An) = 0 and |Af-1Arn||î^l, so

n"1 2 M-lXK = Z>„

hence \\n~x 2?=i Xn\\p^Mbn for all n.    Q.E.D.

3. Theorem. Let p St 1, A 5; 2, a«*/ e > 0 and /er èn = bn(p, co, A, e) ¿e the sequence

of Theorem 2. Let (Qn, £„, p.n) be a probability space, fn a D-valued measurable

function on Q.n such that Snnfndpn = 0. Let (Q, 2, p.) = n™= i (^n, 2„, p.n) and

define gn on Q. by gn(iou w2,.. .)=fn(a>n). Then ¡n gn dp, = 0. Let X be a k, e-convex

NLS, and let {xn}<=S. Then

(1) lim„ n_1||2?=i gn(o>)xn\ =0for almost all w e O, and

(2) (L\\n-1lX=ignXnYdp.rpúbn.

Proof. {gn} is an independent sequence of Z)-valued random variables on £2.

If we define Xn(a>)=gn(w)xn, then {Xn} is an independent sequence of 36-valued

random variables. We have E(Xn) = $ngn(co)xn dp. = xn jngn(w)dp. = 0 and llA^H«,

^1 so by Beck's theorem, lim„n_1||2?=i A¡(oj)|| =0 for almost all ai and by

Theorem 2, ||n_1 2"=i A¡||p:£¿>n. Hence limn n_1||2r=i gii*")*;! =0 for almost all w

and (Jn ¡n"1 2Uig^)xâP 401"»*».    Q.E.D.

4. Comments. Lemma 1.4 showed that, for a k, e-convex NLS 36 and under the

condition that A was closed under multiplication, for every e>0 there exists A

such that if n =ï A, and xu..., xn e S, then for some choice of Al5..., Xn e A,

n_1||2r=i A(x¡|| ̂ e. Theorem 3 shows us that for a large class 9Jt = {/x} of measures

on P0O={A = (A1, A2,...) : A, e D}, if xu x2,.. .e S and A e Z>°°,

/»(A) = "-1 2 A^t

then/n->0 almost everywhere [p,] and \\fn\\„^bn(p, co, k, e), so/n->0 in the

/x-mean of orders >: 1 uniformly for all sequences xl3 x2,... e S, for all A, e-convex

36, and for all p. e 90Î. The only recommendation for Lemma 1.4 at this point is its
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comparatively simple and intuitive proof from the definitions involved while

Theorem 3 rests on Beck's theorem whose proof is tremendously involved, and

the estimate an(X, A) = 0(n~y) where the 0-constant and y depend only on k

and e while nothing is known of the speed of convergence of bn(p, q, k, e) to 0.

A sequence of measure spaces (Qn, 2n, p,n) gives rise to a direct product measure

space (ß, 2, p) = (UnCln, n„2n, Unpn). Conversely, if (Q, 2, p.) is a measure space

and il=UnQn, then (Q, 2, p.) induces a a-field 2n and a measure pn on Q„ by

2n = {rn^ßn : r = Q1 x • • • x Û»_, x Tnx On + 1 x • • -e2} and pn(Yn) = p(T).

Let p be a measure on D°° and let pn be the measure induced by p. on the «th

component of D°°. Call pn admissible if pn(D) = 1 and jD X dpn = 0. (If an admissible

p.n is considered to be a mass distribution on D, then D has mass 1 and center of

gravity 0.) Call p. admissible if all ¡xn ave admissible. Let 9JÎ = {p. : p. is admissible}.

Let p. s 3JI. Then (D, 2„, pn) is a probability space for each «. Let fn be the

identity function on D. Then/,, satisfies the hypotheses of Theorem 3 with Í2„ = D.

Let 3c be a k, e-convex NLS and let {x^S. Then, by Theorem 3,

lim«"
re

2 tet = o

for /¿-almost all A e fl" and ||«_1 2?=i tet\\pèbn(p,co, k, e). Thus, the assertions

of the early part of this comment are established.

In the case D = B, the only admissible measure on D is pn({l}) = pn({ — l}) = i-

In this case, JD» «_1||2?=i A,x,| dp = 2~n 2A,= ±i.isiSr,n_1||2r=i te¡\\- Thus, as n

gets large not only is one of the numbers n~1\\±x1±x2± ■ ■ ■ ±xn\\ small as asserted

by Lemma 1.4, but the average of all of the nonnegative numbers

«-1||±x1±x2±---±xJ

is small, hence, most of them are small.

5. Corollary. Let X be a B-convex NLS. Then limn fl„(3c, A) = 0 if and only if

0 is in the closed convex hull of A in the complex plane.

Proof. For the convex hull of A, write co(^4), for the closed convex hull of A,

write cl(co(A)). In the remarks following the proof of Lemma 1.4, we showed that

if 0 i cl(eo(A)), say d(0, cl(co(A)))=ß>0, then lim„ inf an(3c, A)Zß- We prove the

converse here.

By Remark I.2(c2) if A denotes the closure of A, an(X, A) = an(X, Ä), so it suffices

to consider closed sets A. Since A is a closed subset of C, A is compact. Since

0 e cl(co(A)), there is a sequence {xn}<=co(A) such that limn x„ = 0. By a theorem

of Carathéodory (cf. e.g., Eggleston [8, p. 35]), every point of the convex hull of a

set in the plane is a linear combination of 3 points of that set, so there are A¡(«) e A

and a¡(«) e [0, 1], i=l, 2, 3, such that 2¡a¡(«)=l and 2iai(«)Ai(«) = x„. Choose a
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subsequence n, such that a¡(n;) -*■ a¡ and A¡(ny) -»- A¡, for i — 1, 2, 3. Then a¡ e[0, 1]

and A¡ e A for i=l, 2, 3, and £¡«¡=1 and £¡(^¡ = 0. Let íln = {X¡ : 1 î£z'^3},

Sn = 2n", and define p.n by p.n({X¡}) = at. If/n(Ai) = Ai, i=\, 2, 3, then the hypotheses

of Theorem 3 are satisfied, so for xu..., xn e S, ¡a n _ * ||2"= i gnOO^nl dp- = bn. Hence

for some ueQ, n~1Wï,f=ign(w)xn\\=bn. Hence for some sequence £i,...,£n

from {A1; A2, A3}, n -* || 2"= i Lxn || = bn, so that an(36, A) ^ ¿>„. Hence limn an(36, A) = 0.

Q.E.D.
Remark. Let A^D. If we define an admissible measure on A to be an admissible

measure p, on D such that p,(D — A) = 0, then the preceding argument shows that

for a closed set A, there exists an admissible measure on A if and only if 0 e cl(co(^4)).

6. Theorem. Let X be a B-convex Banach space with an unconditional basis.

Then 36 is reflexive.

Remarks. This theorem is due independently to R. C. James [13] and this

author.

A basis for a Banach space 36 is a sequence {xn}<= 3c such that if x e 36, there exists

a unique sequence {an} of scalars such that limn ||x —2f=i a«*t||=0. We write

X = 2i = i «¡Xj.

Let 2 be the set of all finite subsets of the positive integers directed by set

inclusion. A basis {x„} of 36 is unconditional if for x e 36, x = 2¡" i «i*i, we have

lim^s ||x-2ieff «1*11=0.

By a theorem of James [11], a space 36 with an unconditional basis is reflexive

if and only if no subspace of 3c is isomorphic to fx or c0.

Proof. Since 36 is P-convex, every subspace of 36 is P-convex by Remark 1.2(d).

Neither fx nor c0 is P-convex (Examples I.3(iii) and (iv) respectively). Hence, by

Corollary II.6, no isomorph of ¿x or c0 is P-convex. Hence no subspace of 36 can

be isomorphic to ix or c0. Therefore, by James' theorem, 36 is reflexive.    Q.E.D.

7. Example. In the introduction we mentioned that P-convexity and in

particular 2, e-convexity, locally uniform convexity and reflexivity were all generali-

zations of uniform convexity. We give here an example of a 2, S-convex, locally

uniformly convex, reflexive space which is not uniformly convex. It would be

much more impressive if it were not isomorphic to a uniformly convex space;

however, this is not the case.

We will construct a sequence {36„} of 2-dimensional, 2, e-convex, locally uniformly

convex, reflexive spaces and let X=Pe2Xn. Then 3c will be 2, S-convex (by Theorem

11.17), locally uniformly convex (Lovaglia [16]), and reflexive (Day [6, p. 31]).

However {36n} will be constructed so that 36 is not uniformly convex.

For ease of description, we need the following definitions. If A is a subset of a

linear space and a is a scalar, a A = {ax : x e A}. A is symmetric about 0 if A = ( — I) A.

A is linearly bounded (closed) if the intersection of A with each one-dimensional

subspace is bounded (closed) in the usual topology of the line. For each vector x,
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[ —x, x] denotes the line segment joining x and — x. 0 is an internal point of A

if for every vector x there exists e>0 such that e[ — x, x]<=A. A is called a sphere

set if it is convex, symmetric about 0, and linearly bounded and closed, and 0

is an internal point of A. The Minkowski functional of a sphere set A is a norm

whose closed unit sphere is A ; all closed unit spheres in NLS's are sphere sets.

Let A be a sphere set and || • || the norm whose unit sphere is A. Then x e A if

and only if ||x|| £1. A is rotund if for every x and y in A with x+y, \x+y\ <2;

equivalently, the boundry of A contains no line segments.

Let C be the Euclidian unit circle in Euclidian two-space E2. Let S be a non-

rotund sphere set in E2 such that S<=C and there exists e>0 such that

(■\/l¡2)C<^(l— ¿)S (for example S could be a regular inscribed hexagon of C).

Let {Sn} be a sequence of rotund sphere sets in E2 such that

C => Si => S2 =>■■■=> S

and S=C}n Sn (for example, Sn could be the result of replacing the sides of the

hexagon by circular arcs of radius «). Let || • || be the Euclidian norm in E2,

|| • ||„ the norm generated by Sn and || • \m the norm generated by S. We should

not confuse the norms defined here with the Lebesgue norms usually denoted in

this fashion. Then for x e P2, ||x| ^ ||'x||1 = ||x|2= • • • = \x\x and limn ||x||„= ||x||co.

Let 3c„ be the vector space E2 with the norm generated by Sn. Since 3cn is finite

dimensional and Sn is rotund, a compactness argument shows 3c„ is uniformly

convex, hence locally uniformly convex. Since 3c„ is finite dimensional, it is reflexive.

Let x and y be in Sn. Since || • || is an inner product norm, the Jordan-von Neuman

relation (parallelogram law) holds and

||x+ji2+||x-}>||2 = 2||y||2 + 2||x||2 ^ 4

since   ||x|| ^ ||x||n=l   and   j|_y|| ̂  ||_y||n_; 1.   Hence  for  some  choice  of A= + l,

(l/2)||x+Ay||^-v/l/2. Since

(l/2)(x+Xy)e(Vl/2)C^(l-e)S,

(l¡2)\\x+Xy\\n = (l/2)||x+Aj>||. ^ 1-e,

so 3c„ is 2, e-convex.

Since S is not rotund, we may choose x and y in S such that x#j, hence

\\x-y\\=7i>0, \\x\\a = \\y\\x = l and ||x+j||a,=2.

Let X=P(2Xn. Then 3c is 2, S-convex, locally uniformly convex, and reflexive

for reasons given above. Let x„ e 3c have all coordinates 0 except the «th coordinate,

which is x. Define yn e X from y similarly.

I|x„-7n||3£ =   ||x-7||n  =   ||x-^||   = V > °
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for all n, so if 36 were uniformly convex there would exist  9>0 such that

\\xn+yn\\x<2(l-9) for all n. However

\\xn+ynh = II*+J'II»-H*+.J'IU = 2

as n -»■ co. Hence 36 is not uniformly convex.

IV. Miscellany. This section is a compendium of conjectures, open questions,

partial results, and acknowledgements.

1. Reflexivity. The principal outstanding conjecture about P-convex Banach

spaces is that they are reflexive. There is a great deal of heuristic evidence to support

this. James [13] has shown that all 2, e-convex spaces are reflexive. He has also

obtained partial results for the case A = 3. Call 3c strongly 3, e-convex if for each

choice of x, y, z e S, ||x ± y ± z\\ ̂  3(1 — e) for at least 2 of the four choices of +

and — signs. Then James has shown [13] that strongly 3, e-convex spaces are

reflexive. James [13] and this author (Theorem III.6) have shown independently

that P-convex spaces with unconditional bases are reflexive. Our Theorem II. 1

shows a similarity in structure between a k, e-convex 36 and its k, e-convex second

conjugate. Since k, e-convexity is invariant under isomorphism, we looked at an

example of a nonreflexive space isometric to its second conjugate (Example

1.7(a)), and found that it was not P-convex. In fact, every nonreflexive space for

which the question has been answered has turned out not to be P-convex. P-

convexity parallels reflexivity in many theorems. Thus, given a space 36 and a

closed subspace 3, 36 is P-convex if and only if 3 and 36/3 both are (Theorem II.9),

just as 36 is reflexive if and only if 3 and 36/3 both are (see, e.g., Dunford and

Schwartz [7, II.4, 19-20]). 36 is P-convex if and only if each separable subspace of

36 is P-convex (Theorem 11.19) just as 36 is reflexive if and only if each separable

subspace of 36 is reflexive (see, e.g., Dunford and Schwartz [7, V. 4.7 and V. 6.1]).

In fact, it is still an open question whether or not all P-convex spaces are iso-

morphic to uniformly convex spaces. If they are, this would establish the Reflexivity

Conjecture. This suggests the problem of determining for given P-convex 36,

what numbers k and e there are for which some isomorph of 36 is k, e-convex. In

particular, if every P-convex space is isomorphic to a 2, e-convex space, then

James' theorem would tell us that every P-convex space is reflexive. Failing to

establish the Reflexivity Conjecture would still leave open the following questions :

Does a separable P-convex Banach space have a separable second (equivalently,

first) conjugate? Is a P-convex Banach space weakly complete? (A sequence

{xn}<=X is weakly Cauchy if for each x* e 36*, {x*(x„)} is a Cauchy sequence of

scalars. 36 is weakly complete if each weakly Cauchy sequence {xn} has a weak limit

x, i.e., limn x*(xn) = x*(x) for each x* e 36*.)

2. 33(36, 3) is the Banach space of all continuous linear transformations of

36 into 3- Writing 93 = 93(36, 3), it is easily seen that 33 contains isometric copies of
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3c* and 3> so in order that S3 be P-convex, it is necessary that both 3c and 3 be

P-convex. If 3c is «-dimensional, «<co, and 3 is P-convex, S3 is isomorphic to

2 ©?=i Si (direct sum) where 3¡ = 3> hence 93 is P-convex. Similarly if 3c is B-

convex and 3 is finite dimensional, 33 is isomorphic to the finite direct sum of

copies of 3c*, hence, is P-convex. However, in the case where both 3c and 3 are

infinite dimensional, the question is not so easily settled. Some of the "nicest"

P-convex spaces are £p, 1 </? < oo. However, we see 33(ifp, /„) is not P-convex as

follows: For fe= 1, let xk = (xk(\), xk(2),...) be the sequence of + l's and — l's

where xk(l)=+l and the +l's and —l's alternate in blocks of 2k~1 entries. Let

«!, u2,... be the natural basis of fp. Define Tk s S3(¿p, fp) by Tk(u¡) = xk(f)Uj and

extend by linearity and continuity. It is easily seen that Tk is an isometry, hence,

in particular, \Tk\ = 1. If A = (A1;..., Afc) is a sequence of + l's and — l's, there

exists y such that xi(_/) = Ai, 1 ̂ i^k. Then 2?=i \T¿Uj) = 2f= i tei(j) = 2¡ = i tf—k,

so ||2f=i \Ti\\ =k. Hence 33(/p, ip) is not P-convex.

It is conjectured that for 3c and ?) both infinite dimensional, 33(3c, 9)) is never

P-convex. The technique given above can be generalized to show S3(3c, X) is not

P-convex when 3c has an unconditional basis or when 3c is a proper space of

functions. Beyond that point, nothing is known.

3. P-$Xt. Since P$3ct contains isometric copies of 3c and all 3c¡, if P-$Xt is to be

P-convex, 3c and all 3cf must be k, e-convex for some common k and e. It is con-

jectured that this condition is sufficient. It also seems reasonable to conjecture

that in Theorem 11.17, the hypothesis that 3c is uniformly convex can be weakened

to state that 3c is 2, e-convex and reach the same conclusion.

4. In Lemma 1.4, we showed that if A is closed under multiplication and 3c

is A, k, e-convex, then a„(3c, A)^Kn'y where the positive constants K and y

depend only on k and e. It would be of interest to know best possible bounds for

a„(3c, A) given that 3c is A, k, e-convex.

It is easy to show that given y>0 there exists a P-convex (even uniformly

convex) space 3c (namely, £p forp close enough to 1) such that an(X, P)#0(«~y).

It would be of interest to know more about the constants bn(p, q, k, e) of Theorem

III.2. For example, for fixed p, q, k, and e, how fast does bn^-Q1 For fixed «

what is the form of the dependence of bn on p, q, k, and e ?
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