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Let A be an indiscrete locally compact primitive ring having minimal left ideals.

Algebraically, A may be regarded as a dense ring of linear operators containing

nonzero linear operators of finite rank on a vector space E over a division ring K,

and furthermore if A is simple, then A contains only linear operators of finite

rank. The topology of A induces topologies on F and A" in a natural way, so that

K becomes a locally compact division ring and E a locally compact vector space

over K. Theorems about locally compact division rings and locally compact vector

spaces imply that if K is indiscrete, then E is necessarily finite dimensional over K,

and thus A is the ring of all linear operators on a finite-dimensional vector space

over a locally compact division ring. Kaplansky proved that if A has characteristic

zero, then K is indeed indiscrete, but he showed by an example that E could be

infinite dimensional. Kaplansky remarked [9, p. 459], however, that if A is simple,

it seemed unlikely that F could be infinite dimensional, since otherwise "complete-

ness appears to require the presence of linear transformations with infinite-

dimensional range." Our principal result in §1 is the verification of this conjecture;

however, our argument is based not on the fact that a locally compact ring is

complete, but rather on the fact that a locally compact space is a Baire space and

on the symmetry between minimal left and right ideals in a simple ring. In §2 we

shall present certain results about locally compact vector spaces over discrete

division rings; these enable us to prove that a locally compact, indiscrete, central

primitive algebra having minimal left ideals is finite dimensional provided its

scalar field either is indiscrete, has characteristic zero, or is uncountably infinite.

However, there is a very natural example of a locally compact, indiscrete, infinite-

dimensional central primitive algebra having minimal left ideals over a discrete

countably infinite field of prime characteristic.

1. Locally compact simple rings having minimal left ideals. We begin with a

summary of the structure theory of a primitive ring A having minimal left ideals.

Let e be a minimal idempotent of A, that is, an idempotent such that Ae is a

minimal left ideal, or equivalently, such that eA is a minimal right ideal. Then

eAe is a division ring, the additive group Ae becomes a right eAe-\tctor space by

defining scalar multiplication to be the restriction of multiplication on A to
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Ae x eAe, and similarly eA becomes a left e¿e-vector space by defining scalar

multiplication to be the restriction of multiplication on A to eAexeA. For each

a e A, let aL be the linear operator on the right c¿e-vector space Ae defined by

aL(x) = ax, and let aR be the linear operator on the left eAe-vector space eA defined

by aR(x) = xa. Then a^-aL is an isomorphism from A onto a dense ring AL of

linear operators on Ae, a -> aR is an anti-isomorphism from A onto a dense ring

¿b of linear operators on eA, and both AL and AR contain nonzero linear operators

of finite rank [7, Chapters 2 and 4].

Let us assume further that A is a locally compact ring. If y is a fundamental

system of neighborhoods of zero in ¿, then {Ve : V e V} is a fundamental system

of neighborhoods of zero in Ae. Indeed, if V e V, then Ve is a neighborhood of

zero in Ae since Kn ¿cç Ve; conversely, if U is a neighborhood of zero in A,

then there is a neighborhood W of zero in A such that PFeç L n ¿c as x -> xe is

continuous. Similarly, {cF : Ve~f~} and {eVe : Ve'f} are fundamental systems

of neighborhoods of zero in e¿ and eAe respectively. If V e 'f is compact, then

Ve, eV, and eVe are also compact since they are continuous images of V; hence

¿e, e¿, and eAe are all locally compact. A theorem of Otobe [10, Theorem 3],

generalized in several ways by Kaplansky [9, Theorems 7-9], implies that x -*■ x'1

is continuous on the set of nonzero elements of eAe, and hence eAe is a locally

compact division ring; this also follows from a theorem of R. Ellis [4, p. 78,

Exercise 25] applied to the multiplicative group of nonzero elements of eAe. Since

the scalar multiplications of the vector spaces Ae and eA are simply restrictions of

multiplication on A, they are locally compact topological vector spaces over eAe.

The topology of eAe is defined by an absolute value [8, Theorem 8], and hence if

eAe is indiscrete, then Ae and eA are necessarily finite dimensional over eAe

[1, p. 29, Theorem 3]. As mentioned earlier, Kaplansky [9, Theorem 14] proved

that eAe is indeed indiscrete if A is indiscrete and has characteristic zero, and this

follows also if A is connected, for then eAe is also connected and hence indiscrete

as it is a continuous image of A. From Pontrjagin's theorem on connected locally

compact division rings, we therefore obtain the following result:

Theorem 1. If A is a connected locally compact primitive ring having minimal left

ideals, then A is isomorphic to the ring of all linear operators on a finite-dimensional

vector space over either the field of real numbers, the field of complex numbers, or the

division ring of quaternions.

In general, for each a e A the linear operator aL on Ae and the linear operator

aR on eA are continuous as multiplication is continuous on A. We topologize AL

and AR so that the bijections a^-aL and a^-aR are homeomorphisms. Both AL

and ¿b are then locally compact rings of continuous linear operators, and since

multiplication on A is continuous, (u, x) -> u(x) is continuous from AL x ¿e into

Ae and also from ARxeA into eA. In particular, for each xe¿c [respectively,

x e eA], u ->- u(x) is continuous from AL into Ae [respectively, from AR into eA].
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The vector spaces Ae and eA possess an important property defined as follows:

Definition. A topological vector space E over a topological division ring K is

straight if for every nonzero vector xe E, the function A -> Xx is a homeomorphism

from K onto the one-dimensional subspace of E generated by x.

A Hausdorff vector space over an indiscrete topological division ring whose

topology is given by an absolute value is straight [1, p. 25, Proposition 2], and any

Hausdorff vector space over a (discrete) finite field is clearly straight.

Lemma 1. If A is a locally compact primitive ring having minimal left ideals

and if e is a minimal idempotent of A, then the eAe-vector spaces Ae and eA

are straight.

Proof. Let K=eAe. The function A -+ eX from K onto the subspace e.K of Ae

is simply the identity mapping of K and hence is a homeomorphism. Let x be a

nonzero vector of Ae. The set of all continuous linear operators on Ae is dense

since it contains AL. In particular, there exist continuous linear operators u and v

on Ae such that u(e) = x and v(x) = e. Thus eX^-xX is a homeomorphism from

e.K onto x.K, for it is the restriction of « to e.K, and its inverse is the restriction of

v to x.K. Hence A -> xX is also a homeomorphism from K onto x.K. Similarly,

the left ^-vector space eA is straight.

Lemma 2. Let E be a discrete topological vector space over a discrete topological

division ring K, and let A be a set of linear operators on E, topologized so that

u -*■ u(x) is continuous from A into E for each xe E. For every n ^ 0, the set Fn

of all linear operators in A of rank ^n is closed in A.

Proof. Let w belong to the closure of Fn, and let xx,..., xn+xbe a. sequence of

n +1 vectors. There is a filter ÍF on Fn converging to w, and hence by hypothesis

■F(x¡) -> w(xt) for l^i^n+l. Since E is discrete, there exists HiefF such that

u(x¡) = w(x¡) for all u e H^ Let ue Hxn- ■ -n Hn + X. As u e Fn, there exist scalars

K, ■ • -, K + i not all of which are zero such that

Xxu(xx)+ ■ ■ ■ +Xn + Xu(xn + X) = 0.

Hence

n+l n+1

2 A,w<*i) = y Ku(xt) = 0.
( = i i = i

Therefore rank w^n.

Lemma 3. Let E be a discrete topological vector space, and let A be a dense ring

of linear operators of finite rank on E, topologized so that A is a topological ring and

u -»■ u(x) is continuous from A into Efor each xe E. If in addition A is a Baire space

and the open additive subgroups of A form a fundamental system of neighborhoods

of zero, then A is discrete.



398 SETH WARNER [December

Proof. If L is finite dimensional, then A is discrete, for if {clt..., cs} is a basis of

L, then

{0} = {u e A : u(ct) = 0, 1 5 / á s}

is a neighborhood of zero since L is discrete. Therefore we shall assume that L

is infinite dimensional.

For each näl let Fn be the set of all linear operators in A of rank ^ n. Then

Unsi Fn = A, so by Lemma 2 and our hypotheses there exist «2; 1, a linear operator

ve A, and an open additive subgroup G of A such that v+G^Fn. For any weG,

rank w ^ rank (t> + w) + rank ( — v) ^ n + rank p,

so the ranks of members of G are bounded. Let m be the largest of the ranks of

members of G, and let u e G have rank m. Let xl5..., xm e E be such that

{u(xx), ■ ■ ■, u(xm)} is a basis of the range M of u. As L is discrete,

K = {v e G : v(xt) = 0,1 á / á w}

is an open neighborhood of zero in ¿.

We shall show that if t> e K, then u(L) ̂  M. If not, let v e V and ye£be such

that v(y) $ M. Then u + v eG, so rank (m + v) ̂  w. But (u + t>)(Xi) = w(x¡) if 1 ̂  /^ m,

and (w + tO(.y) = M(.y) + f(j) £ M since v(y) $ M; hence u(xx), ■.., u(xm), u(y) + v(y)

is a linearly independent sequence of m+ 1 vectors belonging to the range of u+v,

a contradiction.

Since L is infinite dimensional, there exist yx, ■ ■ -,yme E such that »(xj),...,

u(xm), yx, ■ ■ ■, ym is a linearly independent sequence of 2m vectors. As A is dense,

there exists we A such that w(u(Xi))=yt for l^i^m. As t;—^>w is continuous,

there is a neighborhood U of zero in ¿ such that [/ç Kand w[/ç V. To show that

£/={0}, let v e L and let x s L. Then v(x) e M, so there exist scalars Al5..., Am

such that

m

fW = 2 A¡w(x<)-
i=i

Consequently,

m

WV(X) =   2   Ai>'i'
i = l

but wv(x) e M as wve V; hence vvf(x) = 0, so A1=-=Am = 0, whence v(x) = 0.

Thus U={0}, so the topology of A is the discrete topology.

Lemma 4. Le/ Ebe a straight locally compact vector space over a discrete topologi-

cal division ring K, and let A be a dense ring of continuous linear operators of finite

rank on E, topologized so that A is a locally compact ring and (u, x) -» u(x) is con-
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tinuous from AxE into E. If E is generated by a compact neighborhood V of zero,

then A is discrete.

Proof. The ring A is a simple ring having minimal left ideals [6, Theorem I];

let e be a minimal idempotent of A, i.e., a projection on a one-dimensional subspace

M of E, and let N be the kernel of e. As E is straight, M is a discrete subspace and

hence is closed, so V n M is a compact discrete subset and hence is finite. Therefore

there is an open neighborhood W of zero in E such that W n M={0}. Now N

= e-\W), for if xee-^W), then e(x) e Wn M = {0}, so xe N; but N=e~1(W) is

open as e is continuous. As (u, x) -> u(x) is continuous, the topology of A is

stronger than the compact-open topology on A [4, p. 46, Corollary 1]. Con-

sequently,

U = {ueA : u(V) S N}

is a neighborhood of zero in A. As V generates E,

U ={ueA: u(E) £ N),

so eU={0}. Therefore eA is discrete.

As we observed earlier, A is anti-isomorphic as a topological ring to a dense

ring AR of linear operators of finite rank on the left eAe-vector space eA. As eA

is discrete, A is not connected ; as A is simple, therefore, A is totally disconnected,

and thus the open additive subgroups of A form a fundamental system of neigh-

borhoods of zero [2, p. 114, Exercise 18]. Also A is a Baire space as it is locally

compact [4, p. 110, Theorem 1]. Thus by Lemma 3 applied to AR, we conclude that

AR is discrete, whence A is also.

Theorem 2. A locally compact simple ring A having minimal left ideals is either

discrete or isomorphic to the ring of all linear operators on a finite-dimensional vector

space over a locally compact division ring.

Proof. Let e be a minimal idempotent of A, let K=eAe, and let E be the right

/^-vector space Ae. As observed earlier, the latter conclusion follows if K is in-

discrete; therefore we shall assume that K is discrete, and we shall prove that A is

discrete. Let F be a compact neighborhood of zero in E, which we may assume

contains a nonzero vector; then the subspace F generated by F is a nonzero sub-

space of E. Clearly Fis a locally compact and hence closed subspace, so the subring

B = {u e AL : u(F) ç F}

is a closed and hence locally compact subring of AL. For each u e B let uF be the

restriction of u to F, and let P: u -> uF. Then P is a homomorphism from B onto a

subring B' of continuous linear operators of finite rank on F, and the kernel of P

is the ideal

H = {ueB : u(F) = {0}}.
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Now H is clearly closed in B, so the topological ring BjH is Hausdorff and hence

locally compact since the canonical epimorphism from B onto BjH is continuous

and open. We topologize B' so that the algebraic isomorphism from BjH onto B'

induced by p is a homeomorphism ; then p is a continuous open epimorphism from

B onto B'.

To show that B' is a dense ring of linear operators on L, let xl5..., xn be a

sequence of linearly independent vectors of L and let ylt..., yn e F. Now AL

contains a projection p on the subspace generated by {yx, ■ ■ •, yn} [6, Lemma 1],

and there exists ueAL such that u(xl)=yl, l^i^n. Then pu(E)^F, so the re-

striction v of pu to L belongs to B' and satisfies v(x{)=yt, l£i¿n. Moreover,

L is straight since L is by Lemma 1, and (v, x) -*■ v(x) is continuous from B' x L

into Lsince (u, x) -*> w(x) is continuous from ALxE into L and since p is an open

mapping. Therefore by Lemma 4, B' is discrete. Consequently, 7/ is open in B.

But as V generates L,

£2{»eA: u(V) S K},

which is a neighborhood of zero in AL since the topology of AL is stronger than the

compact-open topology [4, p. 46, Corollary 1]. Hence B is an open subring of

AL, so H is an open left ideal of AL.

For each xeE, let

Hx = {u e AL : u(x) = 0}.

Let z be a nonzero vector of L. Then Hz 3 H, and hence L/2 is an open left ideal of

AL. Let x be any vector of L, and let g e AL be such that g(z) = x. Then there is a

neighborhood W of zero in AL such that Wg^Hz; hence W^HX, so /L* is open.

We now retopologize L with the discrete topology. Then for each xeE, u-+ u(x)

is continuous from AL into L, since Hx is open in ¿L. As K is discrete and thus not

connected, A and hence AL are not connected; therefore AL is totally disconnected

as it is simple, and consequently the open additive subgroups of AL form a funda-

mental system of neighborhoods of zero [2, p. 114, Exercise 18]. Also AL is a Baire

space since it is locally compact [4, p. 110, Theorem 1]. Thus by Lemma 3, AL is

discrete; hence A is discrete.

2. Locally compact vector spaces over discrete division rings. Here we present a

few results concerning straight locally compact vector spaces over discrete division

rings, and from them we obtain a theorem on locally compact primitive algebras

having minimal left ideals.

Lemma 5. If E is a straight Hausdorff topological vector space over a discrete

division ring K and if V is a compact subset of E, then for every nonzero vector

x e E, {Xe K : Xxe V} is finite.

Proof. By hypothesis, K.x is discrete and hence closed, so Kn A".x is compact

and discrete and therefore finite; consequently {XeK : Xxe V} is finite.
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Theorem 3. Let Ebea straight locally compact vector space over a discrete infinite

division ring K. If V is a compact neighborhood of zero in E and if (An)n61 is any

sequence of distinct nonzero scalars, then (XXV n- • -n AnF)nSl is a fundamental

system of neighborhoods of zero in E; in particular, E is metrizable.

Proof. For each n^ 1,

Gn = {xeV: X^xÇV)

is an open subset of V, and Un6i Gn= V— {0} by Lemma 5. Let U be an open

neighborhood of zero contained in V. Then V— U is compact and is contained in

Unäi Gn, so for some m^l, V- £/£ [Jk = x Gk. Therefore

(m \ m m

U Gk   =  H (V-Gk) = n {xe V : X^xeV}
fc=l        / k=l fc=l

= vnXxVn---n XmV.

Thus (V n XXVn- ■ -n XnV)n^x isa fundamental system of neighborhoods of zero.

Replacing F by AjFand X^1, we conclude that (XXV n X2Vn- ■ -n AnF)nSl is a

fundamental system of neighborhoods of zero.

Theorem 4. If E is a straight locally compact vector space over a discrete un-

countably infinite division ring K, then E is discrete.

Proof. Let F be a compact neighborhood of zero in E, let (An)n£1 be a sequence

of distinct nonzero scalars, and let Vm = XxV n- ■ -r\ AmFfor each m£l. For each

nonzero scalar p., ¡xV is a neighborhood of zero, and hence by Theorem 3 there

exists r(fi)^l such that Fr(tt)S^F. Since K is uncountably infinite, there exists

m^ 1 such that r(¡x) = m for infinitely many nonzero scalars ¡j.. If x were a nonzero

vector in Vm, then xe ¡x.V and hence ¡x~1x e F for infinitely many nonzero scalars

y,, in contradiction to Lemma 5. Hence Fm={0}, so E is discrete.

Theorem 5. If E is a straight locally compact vector space over a discrete division

ring K whose characteristic is zero, then E is discrete.

Proof. We assume that E is not discrete.

Case 1. There is a neighborhood of zero in E that contains no nonzero additive

subgroup. By a theorem of Gleason [5, Lemma 1.4.2], there is a nonzero continuous

homomorphism a from the topological additive group R of real numbers into the

additive group E. Let t0 e R be such that a(r0)#0, and let x0 = a(t0). Let ß be the

restriction of a to the subgroup of all rational multiples of t0. As the characteristic

of K is zero, ß is injective, and its range is discrete as it is a subset of the one-

dimensional subspace generated by x0. Thus ß is a continuous bijection from an

indiscrete group onto a discrete group, which is impossible.

Case 2. Every neighborhood of zero in E contains a nonzero additive subgroup.

Let x0 be a nonzero member of an additive subgroup G contained in a compact
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neighborhood V of zero. Then n.x0 e Gç V for every integer n, so Ax0 e V for

infinitely many scalars A as the characteristic of K is zero, in contradiction to

Lemma 5.

It is easy to construct a straight, indiscrete, compact vector space over a discrete

finite field : we need only consider the cartesian product of infinitely many copies

of the field. By Theorems 4 and 5, there is no straight, indiscrete, locally compact

vector space over a discrete division ring K if either K is uncountably infinite or K

has characteristic zero. We next construct an example of a straight, indiscrete,

locally compact vector space over a discrete, countable division ring of prime

characteristic.

Example 1. Let P be a prime field of prime characteristic, and let AT be a

countably infinite algebraic extension of P, e.g., let K be an algebraic closure of P.

Let Aj, A2,... be an enumeration of the nonzero elements of K, let K0=P, and

for each «^1 let Ln=L[A1,..., An], the subfield generated by Al5..., An. As K is

an algebraic extension of P, (/?„)„ ao is an increasing sequence of finite subfields

of K whose union is K. Let E=KN, the K-vector space of all sequences (an)nè0

where ane K for all n 3:0. Let V— flnao Ln, and for each m ^ 1 let Vm = Xx V n • • •

n XmV. We shall prove that (Vm)mil is a fundamental system of neighborhoods of

zero for a topology on L making L an indiscrete, straight locally compact vector

space over the discrete field K.

Since each Vm is an additive subgroup, addition is continuous on L. As K is

discrete, to show that scalar multiplication is continuous it suffices to show that

x -> Ax is continuous at zero for each nonzero scalar A. But if m^ 1, then XVr^Vm

where r is such that A_1A1,..., A_1Am are among Xlt..., Ar. Thus L is a topological

LJ-vector space.

To show that our topology is stronger than the cartesian product topology on

E=KN, let W= rinso Ln where Ln={0} for n<m and Ln = K for n^m. Let ß e K

be such that ß $ Km; to show that VnßVzlV, let (a„)naoe V n ßV. If n<m,

then aneKn and ß~1aneKn, so if an#0, then ß'1 and hence also ß would

belong to Kn^Km, a contradiction. Hence an = 0 if n<m, so (an)„ao e W, and thus

V t~\ ßVc w. In particular, our topology is a Hausdorff topology.

Next we shall show that the topology induced on V is identical with the cartesian

product topology of V= ELso Kn. By the preceding, it suffices to show that for

each mil we have H— Flnao Lf„£ Vm where Hn={0} if n<m and Hn = Kn if

n^m. Let (an)eH, and let n^m. Then aneKn and Xf1 eK^Kn if 1^/^w,

so A,_1an e Kn if 1 giúm, and thus an e XxKn n- ■ -r\ XmKn. Therefore

(an) e n (AA n- • -n Am/Tn) = XxVn. ■ -n XmV = Fm.
nSO

In particular, our topology is indiscrete and V is compact for it; thus L is an in-

discerte locally compact L-vector space.

It remains for us to show that L is straight, i.e., that every one-dimensional
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subspace of E is discrete. Let z = (a„)nao be a nonzero vector, let as#0, and let

L = {Xe K : Xze V}. Then Las^Ks, so L is finite since as#0 and Ks is finite. There-

fore K.z n V is finite, so K.z is discrete.

To apply these results to locally compact primitive algebras having minimal left

ideals, we first note that if A is a primitive algebra, then a minimal left ideal of the

algebra A is also a minimal left ideal of the ring A since the right annihilator of A

is the zero ideal. Therefore a primitive algebra having minimal left (algebra) ideals

is also a primitive ring having minimal left ideals.

Theorem 6. Let A be a locally compact primitive algebra having minimal left

ideals over a topological field K. If any one of the following three conditions holds,

then either A is discrete or A contains an identity element and is finite-dimensional

over its center.

1° K is indiscrete.

2° K has characteristic zero.

3° K is uncountably infinite.

Proof. Let e be a minimal idempotent of A, and let D = eAe.

Case 1. D is indiscrete. Then D is an indiscrete locally compact division ring and

hence is finite dimensional over its center [8, Theorem 8], and as we observed

earlier A is isomorphic to the ring of all linear operators on a finite-dimensional

F>-vector space. Hence A has an identity element and the center of D may be

identified with the center of A, so A is finite dimensional over its center.

Case 2. D is discrete. As A —> Xe is a continuous injection from K into D, K

is also discrete and hence by our hypothesis either has characteristic zero or is

uncountably infinite. To show that the Ä^-vector space A is straight, let a be a

nonzero element of A, and let xe Ae be such that aL(x)#0. As we saw earlier,

v -> v(x) is continuous from AL into Ae, and its restriction to (K.a)L is an injection

from (K.a)L into aL(x).D, since

(Xa)L(x) = (Xa)x = (Xa)(xe) = (ax)(Xe) e aL(x).D

as x = xe. By Lemma 1, aL(x).D is discrete, so K.a is also discrete.

Therefore A is straight, so by Theorems 4 and 5, A is discrete.

Corollary. If A is a locally compact central primitive algebra having minimal

left ideals over a topological field K and if K either is indiscrete, has characteristic

zero, or is uncountably infinite, then A is finite dimensional over K.

Proof. If A is indiscrete, then by Theorem 6 A has an identity element 1, and

hence A -> A. 1 is a bijection from K onto the center of A as A is central ; therefore

A is finite dimensional over K by Theorem 6.

Kaplansky [9, p. 458] constructed for any finite field K an indiscrete locally

compact primitive A-algebra that has an identity element and minimal left ideals
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but is infinite dimensional over its center. We construct another example of such

an algebra where K is countably infinite and has prime characteristic.

Example 2.   We continue with the notation of Example 1. Let L be the sub-

space of L generated by V. Then L is locally compact, metrizable, and

F= U ÍKV+--+KV),
näl

the union of a countable sequence of compact open subgroups; hence L is also

separable [3, p. 43, Corollary]. Consequently ^(L), the L-algebra of all continuous

functions from L into L, equipped with the compact-open topology, is a separable,

metrizable, topological L-algebra [4, p. 47, Proposition 9; p. 34, Corollary; p. 41,

Corollary]. We shall show that the subalgebra A of all continuous linear operators

on L is indiscrete and locally compact. Clearly A is a closed subalgebra of ^(F).

Let

U = {ueA : u(V) s V}.

Then U is a neighborhood of zero in A, and U is clearly closed in A and hence

in m(F). Also, U is equicontinuous, for w(Km)£ Vm for all ueU and all m¿, 1.

To show that U is compact, therefore, it suffices by Ascoli's Theorem [4, p. 32,

Corollary 3] to show that U(x) is relatively compact for each x e L. But if xe F,

then x e XxV-\— • +XmV for some m^l, whence u(x) e XxV-\— ■ + XmV for all

ueU; thus L(x)s XxV-\— • +XmV, a compact set. Hence A is a locally compact,

separable, metrizable K-algebra.

For each m ̂  0 let em be the projection defined by

ßm((«n)) = (8nm«n)

for all (an)EL, where Snm is the Kronecker notation. Then eñ1(V)'2V, so

eñ 1( Vr) 2 Vr for all r ^ 1, and hence eme A. Thus A contains nonzero linear operators

of finite rank. To show that A is dense, it suffices to show that A is 2-fold transitive.

Let {(an), (ßn)} be a linearly -independent set of two vectors of L. If am = 0 and

ßm^0 for some w^O, then cm((an)) = 0 and em((ßn))=£0; otherwise am = 0 implies

that ßm=0 for all w^O, so there exist r, s such that ar^0, as^0, and /3r/ar#/35/as,

whence u = ar~ 1er — a~ies satisfies w((aj) = 0, u((ßn)) ^0. Since A contains the identity

linear operator 1, A —> A.l is therefore an isomorphism from K onto the center of

A. Therefore A is an infinite-dimensional central primitive L-algebra having minimal

left ideals and an identity element.

It remains for us to show that A is indiscrete; we shall show that em —> 0. Every

compact subset of F is contained in Xx V+ ■ ■ • + XnV for some n^ 1. If m ï: n, then

Xx,..., XneKm,   and   hence   em(XxV-\-\-XnV)zXxVn- ■ -O XnV.   Therefore

em^Q.
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