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Introduction. Local class field theory at first was concerned with the abelian

extensions of fields which are complete with respect to a non-Archimedean discrete

rank one valuation and which have a finite residue class field. Moriya, Nakayama,

Schilling [4] and Whaples [6], [9] generalized this theory, allowing the residue class

field to be quasifinite, that is, perfect and having for each positive integer n a

unique extension of degree n. The condition on the group of values was also

relaxed somewhat to include infinite algebraic extensions of such generalized local

fields, where the value group need not be infinite cyclic, though it is still of rank

one. The purpose of this paper is to show that the reciprocity law holds for a

certain class of complete fields with valuations of arbitrary rank.

The fields we consider are assumed to be maximal (maximally complete) [3,

p. 80], [4, p. 36] with respect to a non-Archimedean valuation. The (multiplicative)

value group F will be assumed to satisfy the condition (F : Vn) = n and the residue

class field will be essentially quasifinite. Under these conditions we show that

there exists a norm residue symbol for abelian extensions which gives the recipro-

city law, including the norm transfer and isomorphism transfer properties. The

general approach is that of Whaples [1], [6], [9].

The norm index. For a valuation on a field k, \c\ will denote the value of an

element c, \k\ will denote the (multiplicative) value group, and 0(c) and o(c) will

denote elements of k for which |0(c)| ^ \c\ and \o(c)\ <\c\. If K is an extension

field of finite degree [K : k] over k, NKlk or N and SKlk or S will denote the norm

and trace functions respectively from K to k. We want to compute the index

(k* : NK*) of the group of norms NK* in the multiplicative group k* of k. First

we consider the case when the residue class field í has characteristic p > 0 and Kjk

is cyclic ramified of degree p. The following theorem contains some facts about

orthobases and distortion constants which will be used in this case. The relevant

definitions, proofs, and further results are in a paper of MacKenzie and Whaples [2].

Theorem 1. Suppose Kjk cyclic ramified of degree p and p is the characteristic of

î. Let A be any element of K such that \A\ $ \k\, o a generator of the Galois group

G(Kjk), and V = (o-A-A)A-1. Then:

1. |T|<1 and\oB-B\-¿\TB\forallBeK.
2. Every B in K* can be expressed uniquely as B=bV+C with bek, SC=0, and

\cr-i\t\k\.
3. \SB\-¿\BY~1ST\ for all B e K, and equality holds iff \BY-i-\ e\k\.
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With the aid of this theorem we make some simple computations. Since

1 + r = (er¿)¿-\       N(l + F) = 1.

But by expanding

N(i + r) = i+sr+L2(r)+...+Lp_1(r)+ivr

where the Ln(r) are symmetric functions of F and its conjugates. Since the Galois

group G(Kjk) is prime cyclic, each of the Ln(r) is a sum of traces of elements of the

form n?=i Tir where t¡ e G(Kjk). But |xfr| = |T| and so by 3 above,

\En(T)\ ^ \TnT-1SY\ < \SV\

for 1 < n <p. Hence

1 = N(l + Y) = l+Sr + AT + o(Sr)

from which \SY\ = \NY\ = \Y*\ and SY= -NY + o(NY).
The inequality in 3 now becomes \SB\ ̂  ILr""1] with equality iff |fir_1| e \k\.

For any BeK,

N(l+B) = l+SB + E2(B)+ ■ ■ • +Ep_x(B) + NB

and as above, |Ln(L)| ^ ILT5-1!. We consider separately three possibilities for \B\.

Case 1. Suppose l>|L|>|r|. Then \BnY"'1\<\Bp\ = \NB\ forO<n<p. Hence

N(l+B) = l+NB+o(NB).

Case 2. Suppose |L| = |r|. Again ILT""1! < |LP| = |A^L| for l<n<p so that

N(l+B) = l+SB + NB+o(NB).

From 2 in Theorem 1, B = bY+C with bek, \b\ = l, |C|<|5| and SC=0. Then

SB = bSY= -bNT + o(NY) and L = Z>r(l+o(l)) so NB=bpNY + o(NY). Hence

N(l+B) = N(l+bY+C) = l+(bp-b)NY + o(NY).

Case 3. Suppose |L|<|r|. ILT""1! < iLr""1! for 1 <n<p, ISBI^IBY"-^ and
|ArL| = |Lp|<|Lrp-1|. Thus

N(l+B) = l+SB+o(BY"-1).

If Ifir-1! e\k\ then \SB\ = |Lr"-1| and so

N(l+B) = l + SB+o(SB).

Lemma 1. Assume k is maximally complete and Kjk and Y are as in Theorem 1.

Then l+(NY)Pk = N(l + YPK) where Pk, PK are the maximal ideals of the valuation

rings ofk, K.
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Proof. By Case 3 N(l + YPK)ç l+(NY)Pk. For the converse, let a e k such that

\a\ < \NY\, then b = a(SY)~1ePk. By Case 3 N(l +bY)= 1 +bSY + o(bSY)=l +a + ri

with K|<|a|. Again c=-r1(SY)~1 ePk so JV(l+cr)=l-r1 + o(r1). Then

N(l+bY)N(l+cY) = (l+a + rx)(l-rx + o(rx))=l+a + o(rx). Set Bx = b,

B2 = b + c + bcT   and   N(l+B2Y) = l+a + r2.

Then \Bx\ > \a\ > \rx\ > \r2\ and \B2- Bx\ = \c\ = \rxY~p\.

Now suppose {(B¡, rt) : /< /} is a sequence indexed by all ordinals less than some

ordinal /, withLfEL, r¡ eä:, N(l+BiY)=l+a + ri, \rt\ > \r¡\ and \Bj-Bt\ = |r(r-p|

if /</', and (Bx, rj) as given above. If t is not a limit ordinal and r(_!#0 set

d=-rt.1(SY)~1, then 7V(l+í/r)=l-r(_1 + o(rí_1). Let Bt = Bt_1 + d+dBt_1r,

then as above N(l+BtT)=l+a + rt with |rt| < [rt_i|. Moreover

\Bt-Bt_x\ = \d\ = |rt_xr-*j

so \Bt — B¡\ = l^r-"! for /< / since |^_x| < \r¡\. So we can add (Bt, rt) to the sequence

and retain all the properties.

If / is a limit ordinal then {B¡ | /</} is a pseudo-convergent sequence in K, for

if/</<«</, \Bj — Bi\ = \riY'p\ > \rjY~"\ = \Bn — Bj\. Since k is maximally complete,

K is also so there is a pseudo-limit of this sequence in K [4, Chapter 2]. That is,

an element Bt in K such that \Bt-Bi\ = \B,— Bt\ = \riY-p\ for /</'</. Let

C=(Bt-Bi)(l + BiT)-\ then |C| = |rir-,,j so JV(1 + CT)= 1 + S(Cr) + oiSiCT))

and |5(Cr)| = |Crp| = |r,|. Thus

N( 1 + BtY) = N( 1 + J»tr)/V( 1 + Cr) = ( 1 + a + r>)( 1 + S(CY) + o^))

= l+a + ri + S(CY) + o(ri).

Let 7/(l+5(r)=l+a + r(, then |ri-r,| = |5'(Cr)| = |ri| and since \r¡\ > \r¡\ if/<_/

then \rt\ < \r¡\ for all /< /. So again we could add (Bt, rt) to the sequence and retain

all the properties.

By Zorn's Lemma there is a maximal sequence among all such sequences. The

preceding shows that for a maximal sequence {(L¡, r¡) : /< /}, / is not a limit ordinal

and r^^O, which gives A^(l + L(_ir)=l+a and \Bt-x\ = \B1\ = \a(SY)-1\. Thus

l+aeN(l + YPk) and l+(NY)PK^N(l+YPK) which completes the proof.

Let Ok, Ok be the valuation rings of A:, K. By Cases 2 and 3 and Lemma 1,

l+ÍTVTjO, 2 N(l + YOK) 2 l+(NY)Pk.

Also if |L| = |r|, then B=bY + C with b e Ok, \b\ = l, SC=0 and

N(l+B) = l+(b"-b)NY + o(NY).

Let A be the homomorphism of the multiplicative group 1 + (AT)C>fc onto the

additive group f given by h(\ +(NY)u) = u where u is the residue class of u e Ok,
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and let p be the endomorphism of I defined by p(x) = x" — x. The kernel of h is

1 +(NY)Pk and the A-image of N(l + rOK) is p(t), thus

d+(NY)Ok : N(l + YOK)) = (I : P(t)).

Lemma 2. Assume k is maximally complete, characteristic t is p, (\k\ : \k\")=p,

t is perfect, and Kjk, Y are as in Theorem 1. Then I +Pk = (l +(NY)Ok)N(l +PK).

Proof. Let aek with 1 > \a\ > \NY\. We must show that there exists a BePK

and ceOk such that \+a = (l+cNY)N(l+B). The condition (|Ä:| : \k\p)=p is

equivalent to |/T|p=|fc| so there is a BePK with \a\ = \B\"=\NB\. k being perfect

means Ip = t and since a(NB)~1 is a unit of Ok there is a unit b of Ok such that bp

is in the residue class of a(NB)~1. That is, bp=a(NB)-x + o(l) or a=b"NB+o(NB).

Since 1 > |¿>j9| > |r|, by Case 1

N(l+bB) = l+b"NB+o(NB) = l+a + o(a).

Thus we have an element Bx = bB for which |51|"=|a| and N(l+Bx)=l+a + rx

with \rx\ < \a\.lf \rx\ > \Y\ there exists as above a C such that A^(l + C)=l—r1 + o(/-1).

Let B2 = BX + C+BXC and N(l+B2)= 1+ a + r2, then |r2|<|ri| and

\B2-BX\P = \C\" = \rx\.

Now suppose {(Bt, r,) : i<t} is a sequence with B¡ePK, N(\+B¡)=\+a + r{,

and |r¡| > |r;|, and \B¡ — B¡\v= |r¡| if i<j. As in Lemma 1 one can show that if all

|r,| > | AT | the sequence can be extended. Thus for a maximal sequence some

|r,| ^ |AT|, which means 7V"(1 +5¡)= 1 +a + n = (l +a)(l +cNY) with c e Ok.

Theorem 2. Assume k is maximally complete, (\k\ : \k\p)=p, lp = l, and Kjk

cyclic ramified of degree p where p is the characteristic oft. Then

(k* : NK*) = (I : p(l)).

Proof. Let a be any element of k*. In the proof of Lemma 2 we showed that

a = (l+o(l))NB = (l + c)N(l + D)NB with c e k and \c\ ¿, \NY\. Thus

k* = (l+(NY)Ok)NK*.

From Case 1 and the fact that ï has no primitive pth root of 1 it follows that if

NB=l + 0(NY) then B=l+0(Y). Thus (l+(NY)Ok) n NK* = N(l + YOK). This

and the computation following Lemma 1 gives

(k* : NK*) = (l+(NY)Ok : N(l + YOK)) = (I : pit)).

Essentially the same method works for unramified extensions.

Theorem 3. Assume k is maximally complete, Kjk unramified of degree n, and

£/f separable. Then \+Pk = N(l+PK) and (k* : NK*) = (\k\ : \k\n)(t* : AÄ*). If

t* = N®* then NK* = k*nk* where k* is the group of units of Ok.

Proof. It is easy to see that the norm and trace on 0KjOk induce the norm and

trace on il/f. Since £/ï is separable there is an 2t e Ä such that 59Í ̂  0. Thus there

is a unit A in K with \SA\ = 1.
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Now for any aePk if we let bx=a(SA)~1 then |Z»j.| = [¿z| and

N(\+bxA) = l+bxSA + E2(bxA)+ ■ ■ ■ +N(bxA).

Each of the Et(bxA) is a sum of products of i conjugates of bxA so \Ex(bxA)\ ̂  \bxA\{

and hence N(\ + bxA)=\+bxSA + o(bx)= \+a + rx with |r!|<|a|. Let c=-rx(SA)'1

then N(l+cA)=l-rx+o(rx). Now l+(bx + c)A = (\+bxA)(l+cA)(l + 0(bxc))

from which

N(\+(bx + c)A) = (l+a + rx)(l-rx + o(rx))(l + 0(bxc)).

Thus N( 1 + (bx + c)A) = 1 + a + o(rx) and if we set b2 = bx + c and

N(l+b2A) = l+a + r2

then |¿»2 — ¿>i| = [/"il and |ri|>|r2|. This is the beginning of an approximating

sequence which yields as in Lemma 1 an element b such that N(l +bA)= 1 +a.

For each B e K* there is a bek* such that |5| = |A| since Kjk is unramified.

\NB\ = \B\n=\b\n so \NK*\ = \k\n and NK* nk* = NK?. Let h be the natural

homomorphism of k* onto t*. The kernel of A is 1 +Pk which is contained in

NK? by the first half of this proof, and h(NK?) = N®*. We get the last result and

the norm index

(k* : NK*) = (\k*\ : \k*\n)(k* : NK?)

= (\k*\ : \k*\n)(i* : N®*)

by two applications of the following proposition.

Proposition 1. Assume A is a group, B is a subgroup of A, and <f> is a homomorphism

of A. Then

(A : B) = (<j>(A) : </>(B))(ker <f> : ker <j> n B).

We shall also use Proposition 1 in the following form.

Corollary. For any tower of fields R^S^Twith [T : R] finite, (R* : N(TjR))

divides (R* : N(SIR))(S* : N(T¡S)).

For(R* : N(T/R)) = (R* : N(SIR))(N(SIR) : N(T/R)), so applying Proposition 1

to NSIR, (N(SjR) : N(TjR)) divides (S* : N(TjS)) and the corollary follows.

For tamely ramified extensions the norms are easy to compute, even for more

general kinds of fields [4, pp. 60-66]. We state here for reference the relevant

results.

Theorem 4. Assume k is relatively complete (Henselian) and n is relatively prime"

to the characteristic exponent of t. Then (1 +Pk)n= 1 +Pk. If Kjk has degree n and

is totally ramified, it is a radical extension and

(k* : NK*) = (ljn)(\k\ : \k\n)(t* : t*n).
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Finally, suppose k is maximally complete and Kjk is a finite Galois extension.

By the Hubert ramification theory [4, Chapter 3] there is a tower

kczUcTx^T2c...cTm = K

where U is the maximal unramified extension in Kjk, Tx is the maximal tamely

ramified extension in KjU, and each ri + i/L¡ is cyclic ramified of degree the charac-

teristic exponent of f. In the next section we will discuss conditions on |A:| and I

which guarantee that when Theorems 3, 4, 2 are applied to Ujk, TxjU, and Li + 1/Lj

respectively, in each case the norm index equals the degree. By the corollary of

Proposition 1 we may then conclude that (k* : NK*) divides [K : k].

The conditions on |A:| and f. Henceforth k will be a fixed maximally complete

base field and all extensions of it are assumed to be in a fixed algebraic closure with

its unique extension of the valuation on k. The remaining conditions on k can be

stated most easily, without unduly restricting \k\, in terms of a collection of prime

numbers. Let P be any set of primes and let D be the formal product of the /?"

for all p e P with the natural definition of when an integer divides D. For each

prime/; in P we assume that (\k\ : \k\p)=p. Also, for each/; eP we assume that if

£/f is finite then 2 has a unique cyclic extension of degree/?, if p = 2 then I is not

an ordered field in which every sum of squares is a square, and if p is the charac-

teristic of ï then f is perfect.

We list some of the consequences of the latter assumption [5], [7], [8], [9].

1. For each finite 2/f and each n > 0 there is a unique extension of 2 of degree

pn, and it is cyclic.

2. If [m : 2]=pnb with (p, b)=l then 9ÏÏ contains the/?" extension of 2.

3. If [M : 2]=p, then 7V(a«/£) = £* and if p is not the characteristic then

(2* : 2*p)=p whereas if p is the characteristic then (2 : p(2))=p.

By taking composites over the primes in P one gets the following extensions of

1, 2, and 3.

4. For each finite 2jt and each n\ D there is a unique extension of 2 of degree n,

and it is cyclic.

5. If [HR : 2] = nb with n\D and (D, b)=l, then 9JÎ contains the « extension of 2.

6. If [3JÍ : 2]=n with n\D then N(M¡2) = 2* and if n is relatively prime to the

characteristic exponent then (2* : 2*n) = n.

Now every finite Kjk has a unique maximal unramified subextension, and the

unramified extensions of K correspond uniquely to the extensions of Ä [4]. Thus

for each finite Kjk and each n\D there is a unique unramified extension UK¡n of

degree n over K, and it is cyclic. Let UK¡D be the union of the UK¡n for all n\D.

From 5 above it is easy to see that these unramified extensions have the following

important property.

7. If Kjk is finite and [$ : t] = nb with n\D and (D, b)=l, then K n Uk.D=Uk>n

and for each r\D, UK¡T = KUk<nr.
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The next lemma provides us with the analogue of the classical Frobenius

automorphism.

Lemma 3. There exists a family of automorphisms {FK} indexed by all finite

Kjk such that:

A. FK e G(UK¡D¡K) and FK restricted to UK¡n generates G(UKiJK) for each n\D.

B. IfK^L and [2 : Ä] =/then FL restricted to UK¡D is L¿.

C If a is any automorphism of the algebraic closure which is identity on k, then

FoK = oFKo~1 for each finite Kjk.

Proof. It is well known that in this situation each G(UK¡DjK) is isomorphic to

the topological product of the /?-adic integers for all peP. So there is an auto-

morphism Fk of UktDjk which generates an infinite cyclic subgroup which is dense

in G(Uk¡Djk); that is, A holds for Fk. Keeping this Fk fixed all the other FK can be

defined in a unique way such that A, B, and C hold. Namely, if [Ä : l] = nb with

n\D and (D, b)=l, then Fk" is identity on Kr> Uk¡D=Uk¡n so there is a unique

extension of it to an automorphism FK of UK_D = KUk¡D which is identity on K.

For each r|L>, Fk" restricted to Uk¡nr generates G(Uk,nr¡Uk¡n) since (nr, b)= 1 and so

FK restricted to UKir = KUk¡nr generates G(UKtTjK). It is easy to check that B and

C also hold for these FK.

We turn now to the value groups. Since the value group W of the algebraic

closure is torsion-free and divisible, the condition (\k\ : \k\p)=p is equivalent to

saying that there is a unique subgroup S of W such that (S : \k\)=p, that is, \k\

has a unique p extension in W. This generalizes immediately to powers of p and

then to products of the primes p in P. The result is that for each n\D, \k\j\k\1 is

cyclic of order n and the set of all nth roots of the elements of \k\ is the unique n

extension of |Ä:j in W. It follows easily that for each finite Kjk and each r\D,

(\K\ : \K\r) = r so that \K\ has the same properties as \k\. Moreover, if(|L| : \k\)

= nb with n\D and (D, b)=l, then |L| contains the n extension of \k\ so that the r

extension of \K\ is the composite of \K\ with the nr extension of \k\, and

\k\ n |JÇ'|Br=|&|r. Thus the system of Galois groups G(UKtJK) with restriction

maps is mirrored exactly in the system of value groups |A"| and subgroups |L|"

with inclusion maps.

Let VK be the inverse limit of the system of cyclic groups |ÄT|/|ÄT|n for all «|L>

with the natural projection maps. The limit homomorphism maps |L| onto a dense

subgroup of VK, for VK is the Hausdorff completion of |L| relative to the topology

defined by the subgroups |L|n for all n\D, and the kernel of the homomorphism

is the intersection of these subgroups. Since |A:| r> | AT|rer = \k\r when (|L| : \k\) = nb

with n\D, (D,b)=l, and r|L», the inclusion |A:|<=|L/| yields a monomorphism of

|fc|/|A:|r into |>?|/|L|nr. These maps for all r|L> induce a monomorphism of Vk

into VK and we shall identify Vk with its image in VK. On the other hand, the map

x->xn" takes |L/|/|L|r isomorphically onto |fc|/|£|r for each r\D, so this map is

also an isomorphism of VK onto its subgroup Vk.



1966] A RECIPROCITY LAW FOR MAXIMAL FIELDS 429

Lemma 4. There is a family {TK} indexed by all finite Kjk such that:

A. TK generates a subgroup which is dense in VK.

B. IfK^Land(\L\ : \K\) = e thenT[ = Tk.

C If a is any automorphism of the algebraic closure which is identity on k, then

TaK = TKfor each finite Kjk.

Proof. Let Tk be any element of Vk for which A holds. If Kjk is finite with

(|A"| : |&|) = i/ we have seen above that V^ = Vk so there is a unique element TK

in VK such that T% = Tk. The TK determined like this clearly satisfy A and B.

For any a as in C, by the uniqueness of the valuation on K and oK it follows that

|Ä"| = \oK\ and so VK= VaK and TK = TaK by construction.

The norm residue symbol. Having chosen a family of automorphisms {FK} as

in Lemma 3 and a family {TK} as in Lemma 4, the assignment TK -*■ FK extends

uniquely to an isomorphism of VK onto G(UK¡DjK) for each finite Kjk by property

A. Composing this isomorphism with the natural map of \K\ into VK and the

homomorphism | | of K* onto \K\ gives a homomorphism <j>K of K* into

G(UKiDjK). These <f>K give a norm residue symbol for the UKy„.

Theorem 5. The homomorphisms j>K of K* into G(UK¡D¡K) have the following

properties:

1. (Reciprocity) For each finite Kjk and each n\D, <f>K followed by restriction

induces the exact sequence

1 -> N(UKJK) -+K*-+ G(UKJK) -+ 1.

2. (Norm Transfer) Ifk^K^L with Ljkfinite, for each EeL*,

MNLIKE) = ME)

restricted to UK¡D.

3. (Isomorphism Transfer) If o is any automorphism of the algebraic closure which

is identity on k, then <f>aK(aE) = a</>K(E)o~1 for each EeK* and each finite Kjk.

Proof. \K\ maps onto a dense subgroup of VK so <f>K maps K* onto a dense

subgroup of G(UKiDjK) which implies that <j>K followed by restriction to UK¡n

maps K* onto the cyclic group G(UK_JK). The kernel of this homomorphism is

the subgroup of K* which | | takes onto \K\n, that is, K*nK?. But by Theorem 3

and property 6 of the residue class fields, K*nK? is N(UKiJK) and so part 1 is

proved. Part 2 results from the following commutative diagram.

* G(UL,DjL)

I restriction

* G(UKJK)

where e = (|L| : \K\) and/= [S : Ä]. It is clear that the first square commutes and

L*-> \L\ -► VL ■

NLIK\             [ef ["

K*->|Ä"|-> VK-
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we have previously shown that the second does also. The third commutes because

Tir = TJt: by B of Lemma 4 and FL restricted to UK¡D is F¿ by B of Lemma 3. Part

3 comes from the fact that \E\ = \aE\ for all Ee K*, TaK = TK by C of Lemma 4,

and FaK = oFKo~1 by C of Lemma 3.

For each finite Kjk let AK be the composite of all the finite abelian extensions

of K with degree dividing D. AK is abelian over K and contains UKfD. The (f>K

can now be extended to give a norm residue symbol for all the fields in AK.

Theorem 6. The <f>K extend uniquely to homomorphisms ¡fiK of K* into G(AKjK)

with the following properties:

1. (Reciprocity) For all finite Kjk and MjK with M^AK, ^K followed by restriction

induces the exact sequence

1 -» N(MjK) -*K*-^ G(MjK) -»■ 1.

2. (Norm Transfer) Ifk <^K^L with Ljkfinite, for each E e L*, <j>K(NLIEE) = xj>L(E)

restricted to AK.

3. (Isomorphism Transfer) If a is any automorphism of the algebraic closure

which is identity on k, then ifi!,K(oE) = oijjK(E)o~1 for each E e K* and each finite

Kjk.

Proof. This result follows directly from Theorem 5 by means of a general

theorem on extending a norm residue symbol [1]. We need only check that the

following two sufficient conditions for the extension theorem are satisfied.

1. For all k c K <= L with Ljk finite and each cyclic CjK with C <= A K, if [CL : L] = r

there is a cyclic ZjK with Z<= UK¡D such that [ZL : L] = r.

This condition is clearly satisfied, since if L n UK¡D=UK,n we may take UKtnT

forZ.

2. For all k c K <=■ M with Mjk finite and M<=AK, (K* : N(MjK))^[M : K].

The conditions we have imposed on \k\ and f are sufficient to guarantee that for

extensions of degree dividing D and of one of the types in Theorems 2, 3, 4 the

norm index equals the degree. So by the remarks following Theorem 4, condition

2 is satified. Thus Theorem 6 is proved.

We remark in conclusion that the most interesting situation is when ï has

characteristic p>0 and peP because the structure of the abelian pn extensions,

the norm maps, and the norm groups are quite complicated in this case.
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