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1. Introduction, ^-complete complex spaces have important cohomological

properties. It is not known whether these properties are sufficient to characterize

them.

Since in many applications the ^-completeness of a space X is of interest mostly

because it helps to determine cohomological properties of X, we thought it would

be useful to introduce the more general notion of a cohomologically q-complete

space. The study of these spaces may be an initial step towards a possible characteri-

zation of complex spaces with respect to their degree of completeness.

The plan of the paper is as follows: in §2 we give some conditions for ^-complete-

ness of a complex space.

In §3 we give the definition of a cohomologically ^-complete space and prove

some criteria for cohomological ^-completeness of a complex space.

In §4 some results in the theory of ^-complete spaces are extended to cohomo-

logically ^-complete spaces.

In §5 we produce examples of ^-complete or cohomologically ^-complete spaces

and study some of their properties.

We should like to thank Hugo Rossi for a suggestion which led to the proof of

Lemma (2.11).

2. ^-complete spaces. Let A be an analytic set defined on an open set U of

C". Let z=(zx, ■ ■., zN) be local coordinates on U. A real-valued function <f>,

defined on A, is said to be differentiable on A if there exists on U a differentiable(2)

function $ such that $\A=<f>.

The function <f> is said to be strongly q-plurisubharmonic on A, if $ can be chosen

so that the Hermitian form in TV variables :

has at least N—q positive eigenvalues at every point x e U(3). &($, x) is called the
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(2) By differentiable we always mean differentiable of class C".

(3) There is no uniformity in the literature concerning this terminology. The function

<f> which we call strongly ç-plurisubharmonic is sometimes called strongly (<7+l)-plurisub-

harmonic. As a consequence also the complex spaces which we shall call ^-complete are some-

times called (q + Incomplete.
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Levi form of <f> and it will be written ^C(<f>) when there is no possibility of confusion.

Now let X be a reduced complex space (i.e., a complex space in the sense of

Serre). A real-valued function </>, defined on X, is said to be differentiate, respectively

strongly q-plurisubharmonic on X, if the restrictions of <f> to a system of coordinate

neighborhoods, which determine the given structure of A" as a complex space, are

differentiable, respectively strongly ^-plurisubharmonic.

A complex space X is said to be q-complete (see for instance [1, p. 235]) if there

exists a differentiable strongly «/-plurisubharmonic function <f> defined on X such

that for every ceR the sets

Bc = {x e X | <f>(x) < c}

are relatively compact in X.

We recall the following theorem.

(2.1) Theorem. A complex space X is 0-complete if and only if it is holomorphic-

ally complete (i.e., is a Stein space).

For the proof of this theorem see [9]. Note that this theorem generalizes to

complex spaces the analogous theorem established in [7] for complex manifolds.

The following propositions give useful sufficient conditions for a complex space

to be ^-complete.

(2.2) Proposition. Let Xbea complex space, q-complete with respect to a function

<f>. Then for every fixed real constant c the open subspace of X:

Bc = {x e X | <f>(x) < c)

is q-complete.

Proof. We consider on Bc the function lj(c — <p). For every seR the sets

Bs={xeX\ ll(c—(f>(x))<s} are relatively compact in Bc. In every coordinate

neighborhood which contains a point xeBc, the function l/(c — <f>) is the trace of

the function \j(c — $). For every y e U, we compute

H—r y)to = 7-^-2 *<$> JW+r-TS Igrad ̂ x W|2.
\c-<j>    I (c-i>)2 (c-<f>)3

The last summand, when considered at the points where </> < c, is a positive semi-

definite form. It follows that the number of positive eigenvalues of J£?(l/(c — $), y)

is not less than the number of positive eigenvalues of &($, y).   Q.E.D.

(2.3) Proposition. Let X and Y be two complex spaces. Let X be p-complete and

Y be q-complete; then Xx Y is (p+q)-complete.

Proof. By hypothesis there exists a function <f>(x) strongly /?-plurisubharmonic

on X such that the sets Bc(X) = {xe X \ <f>(x)<c} are relatively compact in X.

There is also a function i¡/(y) strongly ^-plurisubharmonic on Y such that the sets

Bc(Y) = {y e Y | <p(y)<c] are relatively compact in Y.
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The function x defined on X x F by

x(x,y) = 4>(x)+>Ky)

is clearly strongly (/7+ç)-plurisubharmonic on Xx y.

Moreover, the sets:

Bc(XxY) = {(x,y)\x(x,y)<c}

are relatively compact in Xx Y, as it is easy to check, since the functions </>, i¡>

are bounded from below on X and Y respectively.    Q.E.D.

(2.4) Proposition. Let X, Y be two open subsets of the same complex space. Let

X be 0-complete and Y be q-complete. Then In Y is q-complete.

Proof. Let <f>(x), tji(y) be the two functions already considered in Proposition

(2.3). Define onJn F the function:

|(x) = 4>(x) + 0(x),       xeXnY.

Let IK be a coordinate neighborhood ofxeln Y and let A be an analytic set,

defined on an open set U<=CN, isomorphic to W. By definition there exist two

functions <j> and $, respectively, strongly 0- and <¡r-plurisubharmonic on U such that

f\A coincides with the image of <f> in A and <¡>\A coincides with the image of <p

in A.

The function | defined on U by

è(z) = $(z) + f(z),       zeU,

has the property that £|¿ coincides with the image of £ in A.

By hypothesis there exists a complex linear subspace L of CN, of complex dimen-

sion N—q, such that the form J¡f(<í¿)(ü) is positive definite if ueL. Therefore the

form ¿¿?(£)(u) is positive definite if ueL. This proves that =S?(|) has at least N—q

positive eigenvalues at every point of U; thus £ is strongly ¿¡r-plurisubharmonic on

Xn Y.

Moreover, it is easy to check that the sets :

BC(X n Y) = {x e X n Y | f (x) < c}

are relatively compact in X n Y.    Q.E.D.

(2.5) Remark. Proposition (2.4) can be easily generalized. In fact if X is p-

complete and Y is ^-complete then X n Y is (p+^-complete. Indeed, let L1; L2

be two complex linear subspaces of CN, of dimensions N—p, N—q where the forms

y(<j>), ̂ ('¡i) are positive definite. Then the form ¿?(£) is positive definite on the

intersection L± n L2 which is a linear subspace of CN of dimension ^N—(p+q).

This result is, in general, of little interest, at least when it happens that

p+q ^ dimc(In Y).
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Indeed, if Z=X n y is a manifold, and n = dimcZ, then the following stronger

result holds: Z is «-complete [14].

However, if p+q < dimc (X n Y), it can be shown that the result of the general-

ized proposition is the best possible, since X n Y may fail to be s-complete for any

s<p+q (see §5, Example 5.4).

(2.6) Proposition. Let X be a 0-complete complex space. Let Y be a subspace of

X representable in the form: Y={fx= ■ ■ ■ =/, = 0} withfi,...,/, e Y(X, C)(4). Then

the space X— Y is (q— \)-complete.

Proof. Let <¡>(x) be a strongly O-plurisubharmonic function on X such that the

sets Bc(X) = {x e X | <f>(x)<c} are relatively compact in X. For x e X— Y, put:

#*) =

We shall prove that the function: X(x) = <f>(x) + </>(x), x e X- Y, is strongly (q-1)-

plurisubharmonic at every point x e X— Y.

Let x0 e X— Y; we consider a regular embedding of an open neighborhood

C/c:X— Y of x0 in a suitable open set of CN. Let zx,..., zN be coordinates in C

and let the embedding be defined by the equations :

zx = hx(x)

.        xeU,

zN = hN(x)

with«!, ...,hNe Y(U, 0).

The neighborhood U is also regularly embedded in an open set WcC**' by

the map r: U->CN + 9 defined by the equations:

zx = hx(x),

zN = hN(x),

ZN + l   = Jl(x),
xeU.

ZN + q   — jq(X),

Since the set

{(zx,.. .,zN + q)er(U) | zN + x =■■■= zN + q = 0}

is clearly empty, r induces a regular embedding of U in

Wx = W-{z e W | zN + x = • • • = zN + q = 0}.

(4) T(X, C) denotes as usual the group of sections of the sheaf 0 on X.
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Let <f>x be a strongly O-plurisubharmonic function which extends <j> to all of W,

and let

Then the function :

I 2, zn + jzn + A

Ai(x) = <¿i(x) + <Ai(x)

extends A to all of Wx. We must prove that Ax(x) is strongly (q— l)-plurisubharmonic

at every point z0 e Wx- An easy computation shows that:

VZN+aVzN+a

q\(q+l)zN + JN+a-  2 zw+A+yl

/4      "   y72I   2,   ZN + jzN + j)

Let now z° = (zï,..., z%, z& + 1, ■.., z%+q) e Wx and let a0t 1 be an index such

that:

|z£+a„| =    max    \z°N+j\.
í=i.«

Then the form ^C(<f>x, z°) is positive semidefinite on those vectors (wl5..., uN + g)

whose q-l components uN + 1,..., «w+tt0-i, «*+<,0 + i, • • •,%+« are zero.

Hence the form JS?(<^i + ^, z°) is positive definite on the same vectors. Since

the given vectors form a vector subspace of codimension q — 1, it follows that

<j>x + ^x = K is strongly (q — l)-plurisubharmonic at the point z°.

To complete the proof of Proposition (2.6) it suffices to observe that, by con-

struction, the sets:

BC(X- Y) = {x e X- Y | X(x) < c}

are relatively compact in X— Y.   Q.E.D.

(2.7) Remark. If F is a complete intersection in X then the integer q which

appears in Proposition (2.6) coincides with the complex codimension of Y, with

respect to X, at every point of Y. The example (5.1) that we will study in §5 will

show that, corresponding to every nonnegative integer/', there exist complex spaces,

indeed even manifolds X, holomorphically complete, and analytic subsets Y of

codimension q (q^2) at every point, such that the manifold X— Y is not (q+j)-

complete.

However, if X is a 0-complete manifold, under suitable hypotheses on Y it is

still possible to establish a relation between the codimension and the degree of

completeness (see Proposition (2.12) below).

We first consider the following situation : let Ibea complex manifold, holo-

morphically complete, of complex dimension n, and let F be a submanifold of X
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of codimension q, regularly embedded in X by means of a finite number (but arbi-

trarily large) of functions fx,...,/ e Y(X, 0); i.e., assume

Y={xeX\fx(x)=-=fT(x) = 0}

and assume that the Jacobian of/l5...,/ with respect to the local coordinates of

X has rank q at every point of Y. Then we have the following:

(2.8) Lemma. Let X and Y satisfy the above hypotheses. Then the manifold X— Y

is q-complete.

Proof. Let ^ be a strongly O-plurisubharmonic function on X which determines

the O-completeness of X. With no loss of generality we may assume ^âO on I,

since otherwise it would be sufficient to consider the function <fi+k (k suitable

real constant) or e* which also determine the O-completeness of X.

For m= 1,2,... we put:

Xm = {xeX\t(x)<m}

and

Ym = Xmn Y.

Fix an arbitrary point ye Y n Xm. There exists a coordinate neighborhood U0

of y in X such that on U0 the first q coordinates zx,..., zq are q of the r functions

fx,...,/, while the last n—q coordinates zq + x,..., zn form a system of local co-

ordinates of Y, when restricted to U0 n Y. Let y be the origin of this system of

coordinates.

For simplicity of notation we shall assume that zx =fx,..., zq =fq. There exists

a neighborhood Ux ofy, possibly smaller than U0, in which the remaining functions

fq+\, ■ ■ -,fr are linear combinations, with holomorphic coefficients, of the functions

zx, . . ., zq:

fq+j = zxaXJ(zx,..., zn)+ • ■ • +zqa„,f(zx, ...,zn)       Q « 1.r-q).

We consider on X— Y the function :

r

$ = -log 2/«/«
<r = l

and shall prove that there exists a neighborhood U2 of y, possibly smaller than

Ux, such that at every point z° = (zx,.. .,z°)e U2— Y the restriction of the Levi

form ¿tf(<l>, z°), to the space:

zx      zJ, ..., zq      zq,

has all its «—^ eigenvalues (positive and negative) bounded in absolute value by a

suitable constant K(U2).
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Bz

Putting p = 2ra = xf«fa one has:

+<* fc,+Ä      p ̂  [^ ' sz,+J \t4i ' szi+gj

+-
j=X \i = X        VZ1 + «/ J   Li = 1  M = 1 OZQ + 6/

Take as L2 any relatively compact subset of Ux containing y. Then there exists

a constant M such that at every point of U2 one has :

faq + c
< M,

for every i=l,...,q, for every j=l,..., r — q, and for every a=l,... ,r—q.

Moreover, there exists a constant N such that at every point of U2,

l«ul < N,

for every /=!,.. .,q and for every/=!,..., r—q. It follows that:

OZq + a CZq + g
^LZ£

P
s'*    l'r_,r("(|w)(«|l*l)

3 \'ï (M í MV..1ÍI Í2 (« Z lil)l/..,l+-p
M2

+ -

<r-<ítM)ÍZí¡i)

?[M£w)ßwj]M£w)ßw).
On the other hand, p^(2?=i N)2/?2 and therefore at every point z° e U2—Y

one has:

d2<t>

VZq + a VZq + ß

S (r-q)q2M2 + (r-q)2q*M2Ns

This proves that all the coefficients of the Levi form S£(<\>, z°), restricted to the

space of the last n — q variables, are bounded on L2— Y. Hence also the eigen-

values of the same form are bounded on U2- Y. Therefore there exists, as we

claimed, a constant K(U2) which, at every point z° e U2— Y, majorizes the absolute

values of these eigenvalues.

We now cover F n Xm by a finite number of coordinate neighborhoods U20„

with the same properties as U2 and let LJm = max¡ K(U2l)).

Using the function </j which determines the O-completeness of X, we define

¡¿(U|') = infimum of the values taken by the eigenvalues of 3?(>\>, z) computed at

the points z e t/2°.



1966] ^-COMPLETE SPACES AND COHOMOLOGY 439

Let jicm = min, ^(U^); /xm is a positive number.

Let Tm be a constant such that TmP.m>Km and such that áC(<p) + TmáC(>p) is

positive definite on the compact set Xm — \J¡ C/2°.

Let Sm=infimum of the values of <j> on Xm— Ym. Clearly 8m> — oo.

Corresponding to each nonnegative integer m we choose now a new constant

km, such that:

(l)      «m = ^m + l>

(ii)   km>m+l-8m + 2,

(»i)   fcm + l^fcm-

We may now use a technique of Andreotti-Narasimhan [2] in order to replace

the function ifi by a function <¡í such that the function $ + $ determines the in-

completeness of X— Y. To do this we consider a differentiable function h(t), of the

real variable t, such that :

«(f) = 0 ifrá -1,

h(t) > km       if m ^ t ^ «i+l,

h'(t) > 0 if r > -1.

Next we define a function x : R -*■ Ä by :

x(x). f «(o *
J — CO

and let «/¡(x) = x(>A(X))-
We shall show that the function </>0 = <£ + <^ has the required property. First of

all, we shall show that <j>0 is strongly ^-plurisubharmonic on X— Y. To do this,

observe that:

<£(U = J?(t) + J?(f) ^ J?(t) + km-xSe(t)

on(Xm-Xm,x)-Y.

Hence from km _ x ̂  Tm it follows that :

Therefore ¿¿f((f>0) has at least «—q positive eigenvalues at every point of

(Xm — Xm _ x) — Y. Applying the same reasoning for every m, it follows that <f>0 is

strongly ç-plurisubharmonic at every point of X— Y.

In order to prove that X— Y is ^-complete with respect to <j>0 it remains to show

that the sets:

B° = {x e X- Y | <f,0(x) < c}

are relatively compact in X— Y for all c e R. Actually it will suffice to prove this

statement for integral values of c. Assume then that c is an integer. We shall prove
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that B° (closure of B° in X) has empty intersection with Y and that B° is contained

in the compact set Xc. Let y be a point of Y. There exists an open neighborhood

[/cj of y such that <f>(x)>c—<f>(x) for all xe U— Y (we may choose U to be

relatively compact in X; then </r(x) is bounded from below on U). Hence no point

of U belongs to B°c, so y $ B°, and this proves precisely that B° n Y= 0.

Finally, B° is contained in Xc, for if x $ Xc — Y, then there exists a nonnegative

integer s such that x e (Xc+S + X-Xc+S)— Y.

Then one has:

i/i(x) ^ c+s

whence

<Kx) ̂  fc0+.-i > c+s-8c+s+x ^ c+s-<t>(x)

so that

<f>o(x) = <j>(x) + ijj(x) > c + s £ c

and this implies that x <£ 5?.

Thus X— Y is ^-complete with respect to <f>0.   Q.E.D.

(2.9) Lemma. Let Y be a submanifold of codimension q, regularly embedded in

X; dime X=n. Then there exists a regular embedding of Y in X by a finite number

of functions ofY(X, 0).

Proof. The submanifold Y, as a set, can be represented as the zeroes of a finite

number of global holomorphic functions fx,.. .,fk. (Actually k could be taken

equal to « [6].)

Let J be the sheaf of ideals of Y in X. Let F be the Fréchet space direct sum of

q copies of Y(X, J). Then an element of F is a ^-tuple of global holomorphic func-

tions on X, vanishing on Y.

Let y e Y. Let Fy be the subset of F of those ^-tuples (/,...,/,) e F whose

Jacobian with respect to a system of local coordinates zx,..., zn of X near y,

has rank q at y.

For the proof we need the fact that the set F— Fy is of the first category in F(5)

as we shall prove in the next lemma.

Let N0 be a countable subset everywhere dense in Y. Then, \JyeN0 (F—Fv)

= F— (~)yeN0 Fy is a set of the first category in F, but F is not of the first category

in F, hence (~)yeN0 Fy is not empty. Therefore there exists a q-tuple

fo.i,.-.,fo.«eY(X,F)

such that the Jacobian of/0>i,.. .,/0,a with respect to the chosen system of local

coordinates of X near y, has rank q at every point y0 e N0.

(5) A set N is said to be of the first category if JV=U"-i.2.... N° with (W = 0-
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Now Y, as a set, may also be represented as :

Y={xeX\fx =•■•=/* =/o.i =--=/o., = 0);

moreover the embedding defined by these functions is regular outside a closed

analytic subset Y0<=Y which is nowhere dense in Y. Hence dime Y0<dimc Y.

Now let Nx be a countable subset everywhere dense in Y0. By the same argu-

ment, there exist functions Z,i,...,/,„ £ Y(X, J), (/1§1,. .../tJefWi ^<

Furthermore:

F  =   {XE *|/l   = •  •  ■  =/fc   =/0>1   = •  •  •  =/„.,   =fx.X   = ■  ■  ■  =  fx.q   =   0}

and the embedding defined by these functions is regular outside a closed analytic

subset Yxc F0 with dime Yx < dime Y0.

After at most n—q+l steps one has:

(2.10)    F = {x eX\fx=---=fk =fo.x — • ■ =/„., = • • • =/,-,.: — • ■ =/»-„., = 0}

and these functions define a regular embedding of F in X.   Q.E.D.

It remains to prove the following lemma.

(2.11) Lemma. F—Fy is a set of the first category in F.

Proof. It suffices to prove that Fy is open and everywhere dense in L.

First of all we shall prove that Fy is not empty. In fact, since the embedding of

F in X is regular, an open set U<^X, ye U, and a g-tuple (<£1;..., </>q) e Y(U, F)

exist such that :

rank(§^^)   = q.
\d(Zx,...,Zn))y

Now from Theorem A (Cartan-Serre) it follows that there exist functions

hx,...,hde Y(X, F) such that :

a

<f>a = y aaBhg       (a = l,...,q)
ß = x

with aaß £ Y(V, <S) where V is an open set containing y, V<=U.

Moreover, putting Ay = (aag(y)), one has:

(Wi,...,*q)\   = A (8(hx,...,hd)\

I KZX, ■■■,zn)ly V\d(zX, ■■ -, zn)ly

Hence there are functions hh,..., hiq, among the hx,...,hd such that:

\d(zx,...,zn))y

which shows that Fy is not empty.
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Next, Fy is clearly open in F.

Finally, we prove that Fy is everywhere dense in F. With no loss of generality

we may assume that :

Tank[d(zx,...,zq))y-q-

Let (gx,..., gq) e F. We consider (gx + Xhx,..., gq + Xhq) e F where A is any com-

plex number, and prove that for sufficiently small A^O the rank of

j ,A) = ¡8(gx + Xh1,...,gq + Xhq)\

\ 8(ZX,.    .    .,    Z„) / y

is equal to q. This will prove density.

In fact det //A) is a polynomial of degree q in A which does not vanish identically,

since the coefficient of A3 is

det
ld(hx,...,hq)\

\8(zx,. ..,zq))y

which is different from zero.

Therefore all the values of A which are not roots of the equation detJy(X) = Q

give elements of Fy.    Q.E.D.

Lemma (2.9) proves that the hypotheses of Lemma (2.8) are always satisfied

for any regular embedding of Y in X. Hence :

(2.12) Proposition. Let X be a holomorphically complete manifold. Let Y be a

regularly embedded submanifold of X of codimension q. Then the manifold X— Y

is q-complete.

As a consequence of Lemma (2.9) we have the following proposition which we

wish to note because of its intrinsic interest.

(2.13) Proposition. Let X be a holomorphically complete manifold. Let Y be a

regularly embedded submanifold of X and let F be the sheaf of ideals of Y in X.

Then Y(X, F) is a finitely generated Y(X, 0)-module.

Proof. We denote by sx,..., sp the functions defining the regular embedding of

Y in X in (2.10). The sequence:

0 —> Ker a —> 6P -^-> F —> 0

where a(vi) = si, vt being the rth unit vector in Qp, is exact. We thus have the exact

sequence :

a*
-> Y(X, &p) —^ Y(X, F) —> H\X, Ker a) —>■■■.

Since Ker a is a coherent analytic sheaf, it follows from Theorem B (Cartan-

Serre) that H1(X, Ker a) = 0. Hence the homomorphism a* is surjective.   Q.E.D.
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3. Cohomologically ¿/-complete spaces. An important result in the theory of in-

complete spaces is expressed by the following theorem.

(3.1) Theorem [1, p. 250]. Let X be a q-complete complex space, let F be any

coherent analytic sheaf on X. Then

(3.2) W(X, F) = Q      for i ^ q+1.

(3.3) Definition. A complex space X will be called cohomologically q-complete

if for every coherent analytic sheaf F on X the property (3.2) holds.

A cohomologically ç-complete space is clearly also cohomologically (q+l)-

complete.

(3.4) Theorem [10]. A complex space of complex dimension n which is countable

at infinity is cohomologically n-complete.

Clearly a ^-complete space is cohomologically ¿/-complete by Theorem (3.1).

J.-P. Serre has shown that the converse is true when #=0:

(3.5) Theorem. A complex space X, which is cohomologically 0-complete is

necessarily 0-complete.

The proof is divided into two parts. First, one proves that every cohomologic-

ally 0-complete space is holomorphically complete. Indeed, when A' is a manifold,

this result can be found in [5, p. 53] ; and a similar proof can be given in the general

case. The theorem now follows from Theorem (2.1).

(3.6) Proposition. Let Xbe a complex space. Let X= (Jm=Ui... Bm, where {Bm}

is an increasing sequence of open subsets of X. If each Bm is cohomologically q-

complete, then X is cohomologically (q+ l)-complete.

For the proof of this proposition, see [4]. Some similar results are also proved

in [1] (see in particular §20).

(3.7) Proposition. Let X be a complex space; let X=Xx u X2, with Xx, X2

open subspaces of X such that for some fixed integer q>0:

(i)   Xx, X2 are cohomologically q-complete,

(ii) Xx n X2 is cohomologically (q—l)-complete. Then X is cohomologically

q-complete.

Proof. Let F be a coherent analytic sheaf on X. We shall denote by F also the

restrictions F\XX,F\X2,F \ Xx n X2. They too are coherent analytic sheaves.

Then the following Mayer-Vietoris sequence holds :

-► W-^Xx n X2, F) -> H\X, F) -> H'(Xx, F) 0 W(X2, &)-*•■•.

Hence from hypotheses (i) and (ii) it follows :

0->H\X,F)->0       ifi^q+l.       Q.E.D.
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The latter proposition has the following generalization :

(3.8) Proposition. Let X be a complex space. Let X= (J?=i X}, with X¡ open

subspaces such that:

(i)   Xj is cohomologically q-complete (j= 1,..., h),

(ii) (Xx u- • -u Xj) n Xj + X is cohomologically (q—\)-complete (j=\,..., «—1).

Then X is cohomologically q-complete.

Proof. Applying Proposition (3.7) to the triple (Xx u X2, Xx, X2) it follows that

Xx u X2 is cohomologically (/-complete. Therefore Proposition (3.7) may be

applied to triple ((J;= i X¡, {Jj= x X¡, X3). After « -1 steps the proof is complete.

Q.E.D.

4. Some properties of cohomologically (/-complete manifolds. Theorem 2 of [12]

can be extended to cohomologically ^-complete manifolds. Namely, one has :

(4.1) Theorem. Let X be a cohomologically q-complete manifold. Then every

complex-valued differential form, d-closed, of degree n+q on X is cohomologous

to a differential form of type («, q), 8-closed (and therefore d-closed).

Putting:

Hp-"(X, C) = {{e Hp+q(X, C) | i can be represented in the

de Rham isomorphism by a form of type (p, q)},

Theorem (4.1) shows that if Zis cohomologically ^-complete, then:

Hn+q(X, C) =" Hn-"(X, C).

The proof is the same as in [12] since only cohomological properties are used.

(4.3) Remark. Let X0 be a complex manifold of complex dimension «, and let

X<= X0 be an open submanifold such that X= X0.

The problem of finding a representation of a holomorphic function on XQ by

an integral over an («+^-dimensional cycle of X, (O^q^n— 1), is connected with

the study of the cohomology group Hn + q(X, C). On the other hand, if <f>n + q

represents, via de Rham's theorem, an element of Hn+9(X, C), the condition

d<f>n + q = 0 does not necessarily imply that d(fif>n + q) = 0 for every fe Y(X0, 6).

But if <pn + q is of type (n,q) then certainly d(fl>n + q) = 0 for every fe Y(X0, 0).

Therefore the problem is ultimately reduced to the study of the group Hn,q(X, C).

These two aspects of the problem are related under the hypotheses of Theorem

(4.1), for if X is ^-complete, then the cohomology class of <f>n+q always contains a

differential form of type («, q).

With respect to the homology of cohomologically ^-complete manifolds one

has the following result, similar to the corollary of [11, p. 304]:

(4.4) Theorem. Let X be a cohomologically q-complete manifold of complex

dimension n. Then :

Hn+i(X,C) = 0      fori^q+l.
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Proof. One has:

Hl(X, fi») = 0       if/£tf+l.

This means, by the Dolbeault isomorphism, that every differential form <f>n,i of

type (n, /), S-closed, is of the form:

On the other hand, if <j>n,i is any ¿-closed differential form of type (n, i), <£"■'

is also S-closed. Furthermore, <f>n't = 8ifin,i~1 implies that:

^n.i = ¿tyn.i-1

This equality shows that the groups Hn,i(X, C), defined in (4.2), are zero. Hence

from the isomorphism proved in Theorem (4.1) it follows that:

Hn+i(X, C) = 0      for/fcf+1.

Therefore also Horn (Hn + i(X, C), C) = Hn + i(X, Q = 0. This implies that

Hn + i(X, C) = 0 for i^q+1.    Q.E.D.

5. Examples.

(5.1) We consider in C2n (nt2), the two linear complex subspaces of dimension

n: Cn(zj, ...,zn) given by the equations zn+1= • • • =z2n=0, Cn(zn+1,.. .,z2n)

given by the equations zx= ■ ■ ■ =zn=0. We put:

Xx — C n — Cn(Zx,. ■., zn), X2 = C " — C (zn+1,..., z2n),

X = Xx u X2, Y = Cfc,..., 2„) u C(z„+1, • -., z2n).

Then one has :

X = C2n-{0},       XxnX2 = C2n- Y.

Let ^ be a coherent analytic sheaf on X. Since A^ and X2 are («— l)-complete

(see Proposition (2.6)), it follows from the Mayer-Vietoris sequence that :

0 -* H'(Xx n X2, F)-+Hi + l(X, J^) -> 0       for / ^ n.

Thus we have the isomorphisms :

(5.2) W(Xx n X2, F) s Hi + 1(X, F)       (i ^ n).

Now take F=£l2n, the sheaf of germs of holomorphic forms of maximum

degree over X. We shall prove that H2n~\X, Q2n)#0.

Indeed, X is (2n— l)-complete; hence from Theorem (4.1) it follows that:

H2n-2n-\X, C) £ Hin~\X, C).

Since X=C2n-{0} is contractible to the sphere S4""1, then

Hln~\X, C) ^ H**-\$**-\ C) s C # 0.
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Now H2n-2n~\X, C)^C is in a natural way, a quotient of H2n~\X, Q,2n) and thus

it follows that H2n'\X, Q.2n)^0.

Hence from the isomorphism (5.2), for j'=2« — 2, it follows that:

H2n~2(Xx n X2, ü2n) # 0.

This proves that for any nonnegative integer /<« —2, the space obtained by re-

moving the subset Y of complex codimension « from C2n is not (n +j)-complete. This

example shows that the hypothesis that Y be regularly embedded in X can not be

removed in Proposition (2.12).

With a more subtle argument, it can be proved (see for instance [3]), that

H2n~\X, Q.2n) is a complex vector space of infinite dimension; hence from the

isomorphism (5.2), it follows that dime H2n~2(Xx n X2, Q.2n)= +00. This proves

that the space C2n— Y not only is not ^-complete, for q<2n—2, but it is not even

strongly q-pseudoconvex(e) for q < 2« — 2, as one could have conjectured.

(5.3) Remark. In example (5.1), Y has codimension q^2 at each of its points.

It is not possible to give similar examples with q= 1. In fact, if X is a 0-complete

manifold and one removes from X any analytic subset Y of codimension 1 at each

of its points, then the manifold X— Y is 0-complete.

(5.4) Example (5.1) may be modified in the following way: consider in Cn+m

(«, m^2), the two linear complex subspaces Cn(zx,..., zn) represented by the

equations zn+1= • • • = zn+m=0 and Cm(zn+X,..., zn+m), by the equations zx= ■ ■ ■

=zn=0. Put:

Xx = Cn m — C(zx,..., zn), X2 — Cn m — Cm(zn + x,..., zn + m),

X = Xx u X2,  Y= Cn(zx,..., zn) u Cm(zn + X,..., zn + m).

By the same argument as in example (5.1) one proves that, for any integer

j<n+m — 2, the space Cn+m— Y is not/complete.

Noting that Cn+m-Y=Xxn X2 and that Xx, X2 are (m-\)- and («-!)-

complete, this example proves that the result of (2.5) can not be improved.

(5.5) In Cn («> 1), consider the two following domains:

X1={(z1,...,zn)|l/2< \zx\ < 1, |z2|2+... + |z„|2 < 1},

X2 = {(zx,...,zn)\\zx\ < 1, |z2i2+.-.+|zn|2< 1/2}.

The domain X= Xx u X2 is cohomologically l-complete. In fact, consider the

domain Xx n X2 defined by:

XxnX2 = {(zx,...,zn) I 1/2 < \zx\ < 1, |z2|2+ • • • + |zn|2 < 1/2}.

Then it is clear that Xx, X2, Xx n X2 are holomorphically complete and there-

fore 0-complete. Hence from Proposition (3.7), it follows that X is cohomologically

l-complete.

(e) For the definition of a strongly g-pseudoconvex space see, for instance, [1].
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(5.6) Remark. The domain X of the preceding example occurs in some proofs

of Hartog's theorem. This theorem shows, among other things, that the domain

X is not holomorphically complete, since every holomorphic function on X can

be continued outside X.

(5.7) Finally consider in Cn the linear complex hyperplanes Cf ~1 defined by the

equation z^ = 0. For a fixed integer q (q = 0, 1,..., n— 1), consider the following

domains:

Xx = cn-cr\

Y    _  /"»n      /"»n - 1
A. 2   —   ^ ^2       ?

Y    —  fn      /"'n-l
A.q   —   \^ \^q        .

xq+x = c- û c?-1.
i=Q + X

We shall show that the domain X= (J?=î Xt is q-complete. In fact one has

X=Cn-A, where:

A   =  {Zx   =  0, . . ., Zq  =  0, Zg + x.Zn  =  0}.

Since A is represented as locus of zeroes of q +1 global holomorphic functions, it

follows from Proposition (2.6) that X is (/-complete.

(5.8) Remark. The domain X in example (5.7) is (/-complete; moreover,

dimc Hn + q(X, C)= 1. According to Remark (4.3), this guarantees the existence of

differential forms <¡>n,q on X such that every function / holomorphic on Cn, can

be evaluated at the origin by means of the integral of fif>n,q over an (n+q)-

dimensional cycle of X.

The explicit determination of the forms <f>n,q, together with the study of the

general topological aspects of the cycles to be used in the integration was carried

out by E. Martinelli [8], for a domain F which is the intersection of a finite number

of domains of the same type as the domain X considered above. For such a

domain F, one has dimc Hn + q(Y, C)> 1; the resulting integral formulae are

symmetric in the « variables involved [15].

A similar study was subsequently carried out in [13] for the domain X itself.
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