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1. Introduction. In his paper On an inequality ofLyapunov [7] Nehari considered

a linear differential system

n

(1) y't(x) = 2 aik(x)yk(x),       i = l,...,n,
k = X

where the real (or complex) functions aik(x) are continuous on the interval afíx^b.

From the coefficients aik(x) Nehari built a matrix A with nonnegative constants as

elements. Denoting the maximal characteristic value of A by A(¿), he showed that

A(¿)^1 ensures the disconjugacy of (1) in the sense defined below [7, Theorem

III]. His proof, based on a variational property of A(¿), holds also for the complex

system

n

(2) w',(z) = 2 aík(z)wk(z),       i = 1,..., n,
k = X

where the aik(z) are analytic functions in a bounded convex domain (Theorem 1

below). By means of Gronwall's inequality this result can be strengthened (Theorem

2).

The disconjugacy of system (2) can be interpreted in different ways; it is equiv-

alent to a simple property of the determinant of any fundamental system of

solutions of (2) (Theorem 3). This interpretation leads to applications which may

be of independent interest. One application is a condition which implies that two

analytic functions map a given domain onto disjoint domains (Theorem 4); the

other one implies that/(z) satisfies Yl?=xf(zd¥: 1 for all sets (zh ..., zn) of a given

domain (Theorem 5).

2. Preliminaries and Theorem 1. We shall write the system (2) in matrix

notation as

(2) w'(z) = A(z)w(z).

Here A(z) is the matrix (aik(z))x and w(z) is the column vector [wi(z),..., w„(z)].

We consider only the case where the n2 analytic functions aik(z) are regular in a

bounded simply connected domain D. We now define : the differential system (2)

is called disconjugate in D if, for every choice of n (not necessarily distinct) points
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zx,..., zn in D, the only solution of (2) which satisfies wi(zt) = 0, i= 1,..., « is the

trivial one w(z) = 0 (i.e., wt(z) = 0, i= 1,..., « and all z e D). Note that for «= 1

every "system" is disconjugate.

A («x«) matrix with constant elements A=(aikJl is nonnegative, ^4^0, if

aik^0, i, k=l,..., n. We denote the maximal characteristic value of such a non-

negative matrix A by X(A) and we shall use the following variational property of

X(A):

Lemma 1. If A is a (nxri) nonnegative matrix and x a nonnegative nonvanishing

n-dimensional vector (i.e., A^O, x^O, x^O) then Ax^Xx, AäO implies X(A)^X.

This property of the Perron-Frobenius maximal characteristic value X(A) was

first proved by Collatz [2] and Wielandt [10]. For recent independent proofs see

Nehari [7] and Ostrowski [9]. (Lemma 1 is a slight modification of the lemma in

[9, p. 82]; the corresponding modification of the elegant proof given there is

obvious.)

After these preparations we now state

Theorem 1. Let the analytic functions aik(z), i, k= 1,..., «, n^2, be regular and

bounded in the bounded convex domain D. Set

(3) aik = sup \aik(z)\,       i,k = 1,..., «,
zeD

and let X(A) be the maximal characteristic value of the matrix A = (aik)\. Let d be the

diameter of D. If

(4) dX(A) < 1,

then the differential system (2) is disconjugate in D.

Proof. (Cf. [7].) Assume, to the contrary, that there exist points a¡ e D, i= 1,...,

« and a nontrivial solution w(z) = [h^íz), ..., wn(z)] of (2) such that H>¡(a¡) = 0,

i'=l,...,n. The « points a¡ cannot all coincide, as this would imply w(z) = 0.

Their convex hull H=H(ax,..., an) is thus either a segment or a closed convex

polygon belonging to D. Set now

(5) «j( = max |w((z)|,       i = 1,..., «.
zeH

The vector m = [mx,..., mn] is nonnegative and nonvanishing. If m¡>0, let ßt

be a point in H (necessarily on the boundary of H if H is a polygon) satisfying

|wj(jS,)|=»jt. Integrating the ¡th component of (2) along the segment from at to

ßi, we obtain

0 < m, = IwjOSO-MtfoOl = I f ' w[(z) dz I fï  f ' W(z) dz\
Ja, Jat

(6)

k(z)wk(z) dz\ < d 2 aikmk.= IJ   K
fc = l Jai



484 BINYAMIN SCHWARZ [December

(We used (3), (5), and |/J¡ — a¡\ <dfor the last inequality sign.) Hence,

n i

k = X "

which holds for all / (i.e., also if mt = 0). We thus obtained the vector inequality

Am = -j»i,       m ^ 0,       m # 0.

By Lemma 1 this implies X(A)^ljd, which contradicts assumption (4). This

completes the proof of the theorem.

We add some remarks.

(i) If we assume that the functions aik(z) are regular in the closure L» of the

bounded convex domain D, then (4) implies the disconjugacy of (2) in D. The

proof is now simpler; (5) has to be replaced by

(5') mx = max ¡h^z)!,       / = 1,..., n,
zeD

and there is no need to consider closed subdomains of D.

(ii) The convexity of D was used only to obtain an upper bound, d, for the lengths

of all paths which had to be considered. Let D be a domain bounded by a, not

necessarily convex, rectifiable Jordan curve C of length L. It follows from the

isoperimetric inequality that any two points in D ( = D u C) can be joined by a

path in D of length smaller than (2 + tt)LJ2tt. Let d be the smallest number such

that any pair of points in D can be connected by a path in D of length not larger

than d. If the aik(z) are regular in D and if (4) holds, then (2) is disconjugate in D.

(iii) Theorem III of [7] is stronger than the restriction of Theorem 1 to an

interval. Indeed, the elements of the nonnegative matrix used by Nehari for the

system (1) are J* |al)c(x)| dx and are thus smaller than (b — a) max |a(fc(x)|; the

maximal characteristic value of his matrix is therefore smaller than dX(A) of

Theorem 1 (d=b — a). A similar idea can be used in the complex case; however

the result in this case, which we are now going to state, is not necessarily stronger

than Theorem 1. Let D be bounded by a rectifiable Jordan curve C. For any

analytic function f(z) regular in D and any pair of points a, ß e D, the inequality

\f(ß)-f(a)\  ú\^c\f'(z)dz\,

holds [8, formula (16)]. Assume that the coefficients aik(z) of (2) are regular in

D and define m¡ by (5'). Instead of (6), we now use

i r \   n        c
m = |w,(A)-w,(at)| ̂ - I |w,'(z)í/z| ¿ 2 2 m« I K00<fe|-

Set C=(cik)x, where cik = %$c \aik(z)dz\, i,k=l,...,n. IfX(C)<l, then the system

(2) is disconjugate in D.
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3. Theorem 2.   To improve the former result we shall use the following

Lemma 2. Let u(t) be a real continuous function for 0^f¿T and let a^O, b>0.

Then

0 S u(t) ^  f (a + bu(s)) ds,       OíííT,
Jo

implies

u(t)è g(e"-l),       Oút^T.

This is a simple case of (well-known generalizations of) Gronwall's inequality

and e.g., a special case of an inequality proved in [1, p. 37, problem 1]. For a

direct proof, set <f>(t)=f0 (a+bu(s)) ds, which gives </>'(t)¿a + b<f>(t). Set now

<¡>(t) = <l>(t)e-bt. Then f (t)-¿ae~bt and therefore >fi(t)ú(alb)(l-e-bt).

We now state our main result on disconjugacy of differential systems.

Theorem 2. Let the analytic functions aik(z), i, k= 1,..., «, «^2, be regular and

bounded in the bounded convex domain D of diameter d. Let aik, i, k= I,..., n, be

defined by (3) and set

bü = 0, i'=l,...,n,

(7) bik = ^ (exp (atid) -1)       if «,, # 0,
"« i ,¿ k;i,k = 1,..., «.

bik = aikd ifiait = 0,

Let X(B) be the maximal characteristic value of the matrix B = (btk)x. If

(8) X(B) < 1,

then the differential system (2) is disconjugate in D.

Proof. We start as in the proof of Theorem 1 ; i.e., we assume the existence of

« points a( e D and of a nontrivial solution w(z) of (2) such that H>,(a()=0, / = 1,...,

«. We define H, mt (by (5)) and, if mt > 0, ft as before. If mt > 0, we integrate w[(z)

along the segment from at to ft. For any point z on this segment we obtain

Wi(z)\ = 1 {* wU)dA Z   P \w't(QdC\
(9) lJ"        '   ■'*

aikmk + aii\wi(0\\ \d£\.

We now choose the arc length as parameter :

ft — a, ft — cc¡ „

lft-«il lft-«i|
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and denote Mi(/)=|wi(z)|, ut(s)=\w¡(!,)\. (9) yields

(10) 0 ^ ut(t) ̂  £ (2 «**»»* +««Hi(j)) *>       0 ^ / ^ |j3,- «J.

If a(t # 0, it follows from Lemma 2 that

(il)       mt = KA)| = «.(Ijs,-«,!) ^ 2 - w^(exPMÄ-«*I)-D-

If ai(=0, (10) implies

(IF) w¡ ̂  |A—«il 2 «ikWfc.

(7), (11), (11') and Ift —a¡| <dgive the vector inequality

Bm^m,        m ^ 0,        m # 0.

By Lemma 1 this implies A(L) è 1 and we thus obtained the desired contradiction

to assumption (8).

We now prove that Theorem 2 is stronger than Theorem 1. To do this we show

that A(fi)ä 1 implies dX(A)^ 1. Let x be the nonnegative eigenvector of B which

corresponds to the maximal characteristic value A(L) [3, p. 66]. A(L) ä 1 implies

(12) Bx £ x,       x ^ 0,       x # 0.

If a,¡7¿0, then the /th component of (12) is

aH1(exp(aiid)-l) 2 aikXk ̂  x,.

This gives

2 atkXk ^ Xia^expíaüí/)-!)-1 g Xil-j-aii).
fc*( \" /

Hence,

(13) 2 aikXfc - 77'

If a(i = 0, then the /th component of ( 12) is t/ 2fc * i «¡fcXfc ^ x¡. ( 13) is thus valid for all

/, /= 1,..., n. By Lemma 1 this implies dX(A)^ 1.

The weaker Theorem 1 has some obvious merits: its elements aik are simpler

than the bik and do not depend explicitly on d. We mention that remarks similar

to (i) and (ii) of the end of the last section hold also for Theorem 2.

Theorem 2 is sharp in the following sense.

Let k be any given constant larger than 1. Let A be the diameter of the convex

domain D and set d=A¡K. Let the aik be defined by (3) and let the blk be defined by

(7) (using d, not A). Then (8) does, in general, not imply the disconjugacy of the system

(2) in D.
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To prove this, let the matrix A(z), defining the system (2), be the constant matrix

>-o '»(14) A(z

The general solution of (2) is in this case given by

WiOO = cx(p + (p2 +1)112) exp ((p2 + l)1/2z) - c2 exp ( - (p2 + l)1/2z),

w2(z) = cx exp ((p2+ l)ll2z) + c2(p + (p2 +l)1'2) exp (-(/>2 + l)1/2z).

wx(zx) = w2(z2)=0, w(z) ̂  0, imply

exp [20^4-1)^2-^0] = -(F+(F2 + 1)1,2)Z-

Hence,

(15) \z2-zx\ = 2{p2l+l)ll2 Pog2(/» + (p2+l)1'2)2 + (2«-l)27r2]1'2,

here «= 1, 2,..., and log denotes the principal branch of the logarithm. For any

p ^ 0 we define A(p) > 0 by

(16) A(p)2 = ^rp^ [4 log2 (P + (P2 + Dl,2) + -2].

(15) and (16) imply that (2), with A(z) given by (14), is disconjugate in every convex

domain of diameter A(p), but that for any e > 0 there exist convex domains of

diameter A(p) + e for which (2) is not disconjugate.

On the other hand, the matrix B of Theorem 2 corresponding to our A(z)

becomes, for p > 0,

(17)

Hence,

(18) X(B) = -p(epi-\),       p>0.

For given p > 0, we denote the root of the equation

(8') X(B) = 1

by d(p). Therefore,

(19) d(p) = l-log (p+1).

Theorem 2 gives that for any p > 0

(20) d(p) í A(p).
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(16) and (19) imply

(21) hm ̂ 4 = 1.
P-«oA(/7)

It follows from (20) and (21) that for any given k, k> 1, we can findp large enough

and e > 0 small enough such that

(22) A(p) + e = K(d(p)-e).

Consider now the differential system (2), with ¿(z) given by (14), such that the

constant p of (14) satisfies (22). By the above, there exist convex domains D of

diameter A = A(p) + e such that this system is not disconjugate in D. On the other

hand, if the constant d, appearing in the definition (7) of the corresponding B,

is given by d=d(p) — c=AJK, then the inequality (8) holds. This proves the italicized

sharpness statement.

We did not prove that the constant 1 on the right-hand side of (8) is the best

possible constant. However, it is easily seen that this constant, both in (4) and (8),

cannot be replaced by any constant larger than 7r/2. This follows by considering

(14) for p = 0. In this case (17) has to be replaced by

(17') B -CÍ)-
and it follows that dX(A) = X(B) = d. Using the former notation, we thus have d(0) = 1.

On the other hand, A(0) = tt/2.

To satisfy (22) we had to take p large, so A(p) and d(p) became small. This

smallness can be avoided by using the invariance of the theorems under the trans-

formation z* = az, a#0. Indeed, if we define w*(z*) in D* by w*(z*) = w(z), then

(2) becomes

dw*

dz*
(2*) ^V = ¿*(z*)w(z*),       z* e D*,

where A*(z*) = a~1A(z). For the corresponding nonnegative matrices of Theorem

1 it follows that A*=\a\~1A (and therefore A(¿*)=|a|_1A(¿)). As we now have

to use d* = \a\d in the definition of the matrix B*, we obtain B* = B. To return to

our example, if instead of (14) we use

then  it  follows  for the  corresponding  system  (2*)  that d*(p) ( =pd(p)) and

A*(p) (=/>A(/>)) tend, together with/?, to infinity.
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4. Simultaneous disconjugacy. Until now a given differential system (2) was

considered and conditions for its disconjugacy were obtained. We now could

consider not only (2), but also the permuted system w'(z) = Â(z)w(z); here the

permutation Â(z) is obtained by a permutation of the rows of the given matrix

A(z) combined with the same permutation of its columns [3, p. 50]. Clearly, (2)

and the permuted system are simultaneously disconjugate or not disconjugate.

But this elementary remark is worthless for applications. Indeed, in the notation

of Theorems 1 and 2, obviously X(A) = X(Â) and X(B) = X(B). The case which we are

going to consider is also elementary, but useful. The nonnegative matrices, built

according to the two theorems, for the two simultaneously disconjugate systems

(2) and (2) (below) will, in general, have different maximal characteristic values.

The following lemma may thus be applied to improve the estimate for the domain

of disconjugacy of the given system (2), (see proof of Theorem 5 below).

Lemma 3. Let the analytic functions aik(z) and ot(z), i, k = 1,..., «, be regular in a

bounded simply connected domain D and assume that o¡(z)^Q, for i = 1,..., n and

all zeD. Set A(z) = (aik(z))\, and Ä(z) = (äik(z))\, where

(23) äik(z) = alk(z) 2& -8ik^,       i,k=l,..., n.
at(z) at(z)

The systems (2) and

(2) w'(z) = Ä(z)w(z)

are together disconjugate or not disconjugate in D.

To prove this, let w(z) = [wx(z),..., wn(z)] be a solution of (2) and define w¡(z) by

(24) w¡(z) = o,(z)wf(z),        i = 1,..., «.

(2) and (24) give that w(z) = [wx(z),..., wn(z)] satisfies (2). Conversely, if w(z) is a

solution of (2) and w(z) is defined by (24), then w(z) satisfies (2). As ct((z)^0,

i= 1,..., n, (24) gives the assertion.

We mention two special cases, (i) For any given matrix A(z) and any analytic

function s(z) we can always choose Ä(z) — A(z) — s(z)I, (I=(8ik)x). This follows from

(23) by setting <r¡(z) = exp ]\o s(Q aX, i= 1,..., «. (ii) We can always choose Ä(z)

so that aii(z) = 0, i=l,...,n. This follows by setting o¡(z) = exp J"*o au(Ç) d£,

i'=l,..., n. Theorem 2 reduces in this case to the simpler Theorem 1.

5. A property of determinants equivalent to disconjugacy. We now interpret

disconjugacy of the linear homogeneous system (2) in terms of the determinant of

n independent solutions, i.e., in terms of the determinant of a fundamental matrix

[1, p. 69]. In view of the applications which we shall give in the next sections, it

seems preferable to define the system (2) by one of its fundamental matrices (and

not vice versa).
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Theorem 3. Let the analytic functions wlk(z), i, k= 1,..., n, w^2, be regular in

the bounded simply connected domain D and assume that the determinant \ W(z)\

of the matrix W(z) = (wik(z))1 satisfies

Wxx(z)    w12(z)

w21(z)   w22(z)
(25) \W(z)\ = K(z)|î =

W„x(z)    wn2(z)

Let the matrix A(z) = (aik(z))x be defined by

(26) ¿(z) = W'(z)W-\z)

Disconjugacy of the differential system

(2) w'(z) = A(z)w(z)

(w(z) = [wx(z),. . ., wn(z)]) in D is equivalent to

Wxx(zx)     W12(zx)

(27) KizOlï

Wm(z)

w2n(z)

wnn(z)

+ 0,       for all ze D.

w21(z2)    w22(z2)

Wln(zx)

w2„(z2)
#0,

Wnl(zn)      Wn2(zn)       ■ ■ ■       Wnn(zn) |

for every choice of n (not necessarily distinct) points zlt...,zn in D.

Proof. (26) is equivalent to

(28) W(z) = A(z)W(z).

The given matrix W(z) is, by (25), a fundamental solution of the matrix differential

equation (28). Keeping thus W(z) fixed, |H/(z)|#0, the solution vectors w(z) of

(2) are given by

(29) w(z) = W(z)c,        w(z) = [wx(z),..., wn(z)],        c = [cx,..., cj.

c = 0 implies w(z) = 0, i.e., w(z) is the trivial solution of (2). Conversely, if w(z) = 0

then c = 0. We called (2) disconjugate if w¡(z¡) = 0, i=l,...,n, always implies

h'(z) = 0. (2) is thus disconjugate if, for any set zx,...,zn in D,

n

wiZi) = 2 wiki.zi)Ck = 0,       / = 1,..., n,
k = X

implies Cx= ■ ■ • =cn = 0. But this holds if, and only if, |wlfc(z()|}^0. Disconjugacy

of (2) in D is thus equivalent to the validity of (27) for all sets of n points in D.

We mention here another interpretation of disconjugacy, which, however, will

not be used in the sequel. Disconjugacy of the homogeneous system (2) in D is

equivalent to the existence and uniqueness of a solution for the nonhomogeneous

system

(30)    w'(z) = A(z)w(z) + b(z),   b(z) = [by(z),. ..,bn(z)],        all b¿z) regular in D,
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under the initial condition h>,(z,)=<4 z¡e D, i= 1,..., n. This follows by (27) and

the well-known relation : general solution of (30) equals particular solution of (30)

and general solution of (2) (given by (29)).

6. Mappings onto disjoint domains.    As first application we obtain

Theorem 4. Let the analytic functions f(z) and g(z) be regular in the bounded

convex domain D of diameter d and assume that

(31) f(z)*g(z),      forallzeD.

Assume also that the following suprema are finite:

(32)

//

(33)

then

(34)

L = sup
zeD

f'(z)
f(z)-g(z)

G = sup
zeD

g'(z)

f(z)-g(z)

(eFd-l)(eGd-l) < 1,

f(zx) # g(z2)>      for all pairs zx e D, z2e D.

Proof. If one of the functions is constant, then (33) holds trivially; but in this

case (31) and (34) are equivalent. We therefore assume that L>0, G>0. Set

(31) is thus |wifc(z)|f #0. Define

(26') ¿(z) = W'(z)W-\z)

and consider the corresponding differential system

(2') w'(z) = A(z)w(z),       with ¿(z) given by (26').

The matrix A = (aifc)ï of Theorem 1 is in this case

- (o I}
and (as L>0, G>0) the matrix B of Theorem 2 is

_ /    0        eFd-l\

B~\ead-l        0    /"
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X(B)2 = (eFd-l)(eGd-l) and (33) is therefore equivalent to A(5)<1. Theorem 2

implies that (2') is disconjugate in D. This is, by Theorem 3, equivalent to

(27') K(z()|2
Äzi)    1

&Ù    1
*0,

which is just the conclusion (34) of the theorem.

We add again some remarks.

(i) We do not claim that Theorem 4 is sharp. All we know is that the constant

1 on the right-hand side of (33) cannot be replaced by any constant larger than

(e— 1)2 = 2.95 .... This follows by choosing f(z) = z and g(z) = z+ 1. F=G= 1 and

for any d> 1 there exist convex domains of diameter d for which (34) is invalidated.

(ii) A direct proof gives the following result. Set

F* = sup |/'(z)|/inf |/(z)-s(z)|,       G* = sup \g'(z)\linf \f(z)-g(z)\.
zeD I zeD zeD I zeD

Then min (F*d, G*d)^ 1 implies (34). This follows by supposing that/(zi)=g(z2).

Then

fi(z2)-g(z2) =f(z2)-f(zx) = f"7'(9«ß,

which gives F*d> 1; G*d> 1 follows similarly. The example in (i) shows that this

result is sharp.

(iii) Pairs of univalent functions mapping \z\ < 1 onto disjoint domains were

considered by Nehari [6]. The necessary conditions obtained by him were

generalized by M. Lavie [5] to nonunivalent functions. See also [4, pp. 123, 124].

We finally note that we could modify our theorem according to the remarks at

the end of §2. Such a modification, to nonconvex domains, will be convenient for

the second application.

7. Products not taking a fixed value. As second application we derive the

following result.

Theorem 5. Let D be the interior of a piecewise smooth Jordan curve C and let

the positive number d be such that any pair of points in D = D u C can be joined by

a path in D of length not larger than d. Let the analytic function fi(z) be regular in

D and assume that for a given integer n, « ä 2, the nth power of f(z) satisfies

(35) f\z) / 1,       for all zeD.

Denote

IfM/M(36) F, = max
zeD f\z)-l

i = 0, ...,«-2.
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(37) /j F* < l>
i = 0

then

(38) fl fa) ** 1.       /<»■ a'' «'■» (zi, • • ■ - zn) c 5-
¡ = i

Proof. We first prove the case « = 2. Set

■*» ■ É? /¿>
The assumption/2(z)7^ 1 is thus equivalent to |wiA.(z)|f/0. Define

riz) tm -\\tm -i\
l-i mr(40) ¿(z) = W'(z)W-\z) -

and

It follows from Lemma 3 (see cases (i) or (ii) at the end of §4), that the corre-

sponding differential systems (2) and (2) are together disconjugate (or not dis-

conjugate) in D. The constant matrix ¿, whose elements are the maxima, for

ze D, of the absolute values of the elements of ¿(z), is

(42)
\Lo    0 ;

Hence, A(¿) = L0. By Theorem 1, modified according to remark (ii) following its

proof, our assumption (dX(A) = ) dF0 < 1 implies that (2) is disconjugate in D.

By the above, system (2) is then also disconjugate in £>. By Theorem 3, disconjugacy

of (2) is equivalent to

Kfc(z()|?
f(zx)        1

1   /fe)
#0.

But this is the desired result for n = 2.

For general n, the (n x n) matrix W(z) has only 2« elements different from zero :

f(z) in the diagonal, 1 in the first superdiagonal and (— l)n in the lower left corner:

(39')
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I W(z)\ = \wik(z)\nx^O is the assumption (35). Set

(40')

[December

A(z) f
/"-I

/n-i

-1

/

_yn-2

yn-1

-1

/n-3

_yn-2

/n-l

^(-l)"-1/"-2  (-l)"/"-3  (-1)»-1/»-*

(For even « /l(z) is a circulant.) The validity of W'(z) = A(z)W(z) is readily checked.

Ä(z) is again obtained from A(z) by replacing the elements in the diagonal by zeros :

(41') M-^-OßgM,.

The corresponding nonnegative matrix Ä is a circulant (hence generalized sto-

chastic) :

(42')

(0 Fn_2 Fn_3

F> 0 Fn_2

I Fx F0 0

n-2 Pn-3 tn_4

Clearly, A(^) = F0 + Fj + • ■ ■ +Fn_2. This and (37) give, by Theorem 1, that the

system (2) is disconjugate in D. By Lemma 3, the same holds for (2). Theorem 3

and (39') now yield

\wik(zi)\l = flf(zi)-l #0.
t = i

This completes the proof of Theorem 5.

We now show that for any given even n, the constant 1 on the right-hand side of

(37) cannot be replaced by any constant larger than ir(n— 1)/«. To prove this, we

choose/(z)=z and consider circular arcs C(s), e>0, defined by

e —> 0 implies

C(e) = {z:|z-l| =e, \z\ è  1}.

|zn-l| = ne + 0(e2),        zeC(e),

which holds uniformly in z, z e C(e). It follows, that each of the « — 1 fractions,

appearing in (36), satisfies

(43)
f\z)m
fn(z)-l zn-l ]¿í|=¿+°^

i = 0,...,n-2,

which again holds uniformly in z, z e C(e), as e —> 0. Let /(e) be the length of
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C(e). Then 1(e) < ne. This and (43) imply that, for any given 17 > 0, we can find a

small enough e*, e* >0, such that

(44) l(e*) V   rnax
i^O  zsC(e') 1

«-1
< -7r-\-r¡.

M *

For any 8, 0< 8<e*, we now define the 8-neighborhood D = D(e*, 8) of C(e*) by

D = D(e*, 8)={z: \z—w\ <8,we C(e*)}. (See figure.) For this domain we set

(45) (/= d(e*,8) = l(e*) + 28.

This d can serve as the bound for the lengths of all necessary paths in D. By (44),

(45), and the continuity of the appearing fractions, it follows that we can choose

8 so small, 8 > 0, that

(46)

where

d2F< n-l
1 < ——7T + 7)>

L( = max
zeD Zn-\

i = 0, ...,n-2,    D = D(e*,8).



496 BINYAMIN SCHWARZ

If e* is small enough, then

(35') fn(z) = zn ¿ I,       for all z e D.

On the other hand, denote the endpoints of C(e*) by z' and z" and set

zx = • • • = zn/2 = z ;   zn/2 +1 = • • • = zn = z .

Then

n/(z<) = n^ = i.i=i      (=i
This proves that, for even n, the assumption (37) of the theorem cannot be replaced

by (46).

The class of analytic functions/(z) regular in \z\ < 1 and such that/(0) = 0,

f(zx)f(z2)^l, \zx\, |z2| < 1 was studied extensively. These are the Bieberbach-

Eilenberg functions [4].
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