THE FREDHOLM METHOD IN POTENTIAL THEORY(?)

BY
JOSEF KRAL

Introduction. Let G be an open set with a compact boundary B in R™, the
Euclidean m-space. If 4 is a harmonic function in G such that

) J; |grad h(x)| dx < o

for every bounded open set P< G, one may form the distribution Nk over the space
D of all infinitely differentiable functions ¢ with compact support in R™ defining

Y, Nhy = J; grad ¢(x)- grad A(x) dx.

This distribution will be termed the generalized normal derivative of A (compare
[CC], [M], [YD. It is easily seen that Nh has support in B. In general, Nh need not
be a measure in the sense usual in distribution theory [S]. §1 of the present paper
deals with generalized normal derivatives of Newtonian potentials. We denote by
C*(B) the Banach space of all finite signed Borel measures with support in B;
total variation is taken as a norm in C*(B). With every u € C*(B) we associate the
corresponding Newtonian potential

Uutx) = [ pe=3) duty)

where p(z)=|z|2-™/m—2 or p(z)=log (1/|z|) according as m>2 or m=2, and we
ask what necessary and sufficient condition is to be imposed on G in order that
NUp be a measure for every u € C*(B). For this purpose it is useful to introduce
the concept of a hit of a half-line {y+18 : t>0} on G (cf. Definition 1.5). If n(6, )
denotes the number of such hits, then n(6, y) is a Baire function of the variable
0onI'=R™" N {0:|0| =1} and the above mentioned condition reads as follows:

@ sup [ n(6,5) dHp-1(0) < <o,
yeB Jr
where H,,_, stands for the (m— 1)-dimensional Hausdorff measure.
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If G fulfills (2), then the operator
NU: p— NUp

is bounded on C*(B) and has the form 147+ W*, where A=H, _,(T'), I is the
identity operator and W* is adjoint to an operator W acting on the space C(B)
of all continuous functions on B. Some properties of W, which is connected with
the classical double-layer potential, are investigated in §§2-3. In particular, in
§3 we show that, in case B has no isolated points, the Fredholm radius of W is the
reciprocal of the quantity

Vo = lim sup [ 41d»)—31+ [ n(0,5) dH,-,0)]
rl0 yeB r

where d(y) denotes the m-density of G at y and n/(0, y) is the number of hits of
{y+10 : 0<t<r} on G. Relations between V, and the geometric structure of B
are also investigated in §3. In case V, is sufficiently small, these results apply to
the Neumann problem where the boundary condition is given by an arbitrary
measure v € C*(B), as treated in §4. By duality based on the Fredholm theory
one obtains, as a by-product, representation of solutions of the Dirichlet problem
by means of double-layer potentials.

Methods and concepts employed here are those of geometric measure theory;
they have their origin in investigations connected with the Gauss-Green theorem,
sets with finite perimeter and functions whose partial derivatives are measures
[DG], [F], [FL], [FY], [KR], [MA], [P].

1. Normal derivatives of potentials.

1.1. Terminology and notation. The symbols R™, C*(B), p, Un, D will have the
meaning described in the introduction. For M < R™ we shall denote by cl M, int M,
fr M and diam M the closure, interior, boundary and diameter of M, respectively.
H, will stand for the k-dimensional Hausdorff measure; H,, coincides with the
Lebesgue measure in R™ We put Q()=R"N{z:|z—y|<r}, Q=Q,(0),
I'(y)=fr Q(y), I'=T,(0), A=H,, _,(T"). Throughout this paragraph G< R™(m=2)
will be a fixed set with a compact boundary B. We shall tacitly assume that G is
open. On several places, however, it will be useful to allow G to be a Borel set; this
will be always pointed out explicitly.

The generalized normal derivative of a harmonic function 4 (satisfying (1) for
every bounded open P<G) is defined as in the introduction; we shall write N¢h
instead of Nh if it is necessary to specify G. The reason for the terminology is
obvious: if G has a smooth boundary with exterior normal » and 4 is smooth up
to B, then

b, Nb> = fB (ohon) dH,, _,.
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If spt ¥ (=the support of ¥) does not meet B, then there is an open set Q with
a smooth boundary such that spt y N G= Q, cl Q<gG, so that

<'/', N0h> = <¢9 NQh) =0.

In particular, if Nh is a (Borel) measure v, which means that

Ny = [ pab

for every ¢ € D, then v € C*(B).

Variation of a (signed) measure n on a Borel set M will be denoted by |u|(M);
for u € C*(B), |u|(B)=|n| is the norm of w.

Simple calculation shows that, for n € C*(B) and x € G,

|grad Up(x)| < J; |x—y|* =" d|u|(3),

whence we obtain for any bounded Borel P<G
1.1 J' |grad Up(x)| dx < A4 diam (B U P)|.
P

We see that NUp is meaningful for every p € C*(B). Our main objective in §1 is
to answer the following question:

1.2. What necessary and sufficient restrictions are to be imposed on G in order
that NUp be a measure for every u € C*(B)?

1.3. ReMARK. Let us agree to denote by 8, the Dirac measure concentrated at
y € R™, We have for any y € D and any ye B

(P, NUS,» = J;grad ¢(x)~l7y__x%‘ dx.

Direct calculation shows that, in case Q=R"—{y}, NUS,=A43,.
Let us also observe that, for ¢ € D and p € C*(B),

(1.2) h Ny = [ b NUB> du().

Indeed, if P=G N spt ¢ and K=sup |grad ¢|, then
JJ |erad 99235 dil) < K diam (P 0 By,
GxB

so that Fubini’s theorem applies to

(13 [ rad w0 =01y dx duty);

GxB

it remains to notice that the two repeated integrals derived from (1.3) occur in
(1.2).
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Before investigating the problem 1.2 we shall answer the following simpler
question:

1.4. Fix y € B. What must be the shape of G in order that NUS, be a measure ?

Let us first introduct a concept which will be useful later.

1.5. DerINITION. If M < R* is a Borel set and S< R¥ is an open segment or half-
line then z € S will be termed a hit of S on M provided both S " M N Q,(z) and
(S— M) N Q,z) have a positive linear measure for every r>0.

An answer to 1.4 is included in the following proposition, which will be needed
later.

1.6. PROPOSITION. Suppose that G is a Borel set. Fix y € R™, r>0 and put
E(y)=Dn{f:sptgh = Q(y), [¢] =1
D(y) = E(y) " {§:y ¢spti}.

If n(6, y) denotes the number (possibly 0 or o) of all hits of {y+p0 : 0<p<r} on
G, then n/(0, y) is a Baire function of the variable 6 on T, the integral

n(y) = f 1,6, y) dHyu_1(6)

is equal to

sup { | grad b e de e .}

and

sup { [ srad peo- s ¢eEf(y)} < A+5,0).

If y € B and G is open, then NUS, is a measure if and only if v,(y) <co.

1.7. REMARK. If it is necessary to specify the set G, we write nf(6, y) and v¢(y)
instead of n,(8, y) and v,(y).

We postpone the proof of Proposition 1.6 to 1.11. First we establish two lemmas.

1.8. Notation. If fis a function in R* we denote by var [f; (a, b)] its variation on
(a, b))=R* N {t: a<t<b}. If fis known to be summable over every compact subset
in (a, b), we shall use var ess [f; (a, b)] to denote sup, [> 4'(t)f(¢) dt, ¥ ranging
over all infinitely differentiable functions with compact spt $<(a, b) such that
l¥l=1.

REeMARK. It follows easily from the Riesz representation theorem and elementary
distribution theory that var ess [f; (a, b)] <oo implies the existence of a function g
in (a, b) such that g=f a.e. in (a, b) and var [g; (@, b)]=var ess [f; (a, b)].

Clearly, var [f; (a, b)]=var ess [f; (a, b)] whenever f'is continuous in (g, b).

1.9. LEMMA. If ¢y is the characteristic function of a Borel set M <R, then
var ess [cy; (a, b)] equals the number of hits of (a, b) on M.
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Proof. Let g stand for the number of all hits of (a,5) on M. If g<oo and
a, < - - - <a, are all the hits, then no (a;, a,,,) can meet both M and (a, ))— M ina
set of positive linear measure. It follows that either M or (a, b)— M is equivalent
with |, (@gi -1, asx), Where 1=k, 2k=q. Consequently, var ess [cy; (@, b)]=4.
Conversely, if var ess [cy; (a, b)] <o, then there is a g with var [g; (a, b)] <0 such
that g=cy a.e. in (g, b).

Clearly, this implies g < co.

1.10. LEMMA. Let f be a bounded Baire function in R™, y € R™, 0<a<b=< 0. For
el put

(1.4) fot) = f(y+16), teR.

Then var ess [fy; (a, b)] is a Baire function of the variable 6 on T' and the integral

f var ess [fy; (a, b)] dH,,_,(6)

equals
oa, b,0) = sup [ f00) grad i) 22 i,
v Jr" [y—x|
Y ranging over all functions in D with
(1.5 spty < R*N{x:a < |x—y| < b}, 4] = 1.

Proof. We may assume y=0, b<oco. Using the notation from (1.4) we obtain
for any ¢ € D satisfying (1.5)

J;m f(x) grad '/'(x).ﬁ dx = J; ( J: (O dt) dH,_,(6),

f " W) dt < var ess [fy; (a, B)].

Assuming that we know already that var ess [fy; (a, b)] is measurable (H,,_,) on
I' we get

oa,5,0) S [ var ess Uf; @, D)) dHa-(0)
r
It remains to prove that var ess [f;; (a, )] is a Baire function of 8 and

(1.6) f var ess [fy; (@, b)] dHn_1(6) < v(a, b, f).

To show this we first assume, in addition, that
(D). f; has a continuous derivative on (a, b) for every 6 € I' and
sup{|fo(?)] : 0T, c <t <d} = K(c,d) < 0

whenever a<c<d<b.
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For every positive integer N we subdivide (@, b) by means of points
a,=afl =a+k2-¥b-a), 1 <k<2V

Consider k <2¥—2. Since sign [fy(ax 1) —f5(ax)] is a Baire function of 8, there are
functions ¢, € D such that |¢,|<1 and

gn; $es(0) = sign [fo(ar+1)—fo(a)]  ae. (Hn-y)

on I'. Further express the characteristic function of (ay, @x4+1) as lim,_ o pys,
where p,, are infinitely differentiable functions in R* with

Spt pys < (ak: ak+1)3 |Pka| =1,

and define
2N -2
$(t)) = = > bu@pult), 120, 0el.
k=1
Then
YseD, || =1, spty, <« R"N{x:a < |x| < b}
Consequently,

oo b0 2 [ [[ sieioe) ae] a0

The sequence of integrals
b 2N -2 4 1
[ sewistrae =3 40 [ putoficoy ar
a k=1 aj
is dominated by (b—a)K(a,, a.~ _,) and converges, as s — o0, to
2N -2
on® = 3 1fulans)=fo@)
=1
a.e. (H,_,) on I'. Hence we conclude

va, b,f) 2 f on(6) dH,y_1(6).

Noting that oy(6) 4 var [fy; (a, b)] as N — oo we see that var [f;; (a, b)] is a Baire
function of 8 and (1.6) holds in this special case.

Let us now drop the additional assumptions (I) on f. For every positive integer
N we fix a symmetric infinitely differentiable function wy in R* with

spt wy < (= 1/N, 1/N), f oyt dt =1
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and define fy so that fy,=f, * wy (=the convolution of f; and wy) on the positive
real axis, f3(0)=0. Let a¥=a+1/N, b¥"=b—1/N, 2/[N<b—a. It follows from the
first part of the proof that

(L.7) f var [fye; (@", b")] dHp-1(6) = v(@", b7, fy).

If ¢ is obtained from ¢ in the same way as fy from £, then

yeD, || =1, spty = R"N{x:a" < x| < b"}

imply
YyneD, |fy| £ 1, sptyy <« R"N{x:a < |x| < b}
and
N , b ,
[}, vty at = [ sy ar.
Consequently,
(1'8) v aN’ bN,fN) = v(“: b9.f)

The same argument shows that
(1.9) var ess [fy; (@", b")] < var ess [fy; (a, b)].
It is easy to see that

lim inf var ess [fyq; (@, bY)] = var ess [f3; (a, b)],

N—> oo

which together with (1.9) yields
(1.10) Al,im var ess [fye; (@V, b¥)] = var ess [fy; (a, b)].

In particular, var ess [fp; (a, b)] is a Baire function of 6. (1.7), (1.8), and (1.10)
imply (1.6).

REMARK. The above lemma could also be derived from general theorems on
functions, whose partial derivatives are measures; cf. [FL], [KR], [P] on the subject.

Now it is easy to present the following.

1.11. Proof of Proposition 1.6. Let f be the characteristic function of G. By 1.9
and 1.10

var ess [f;; (0, r)] = n,(8, y),
vr(y) = v(O, r,f)'

If n(0, y)<oo, then G N {y+1t0 : 0<t<r} is equivalent (H,) with a finite union
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of disjoint segments, whose end points are hits of {y+20 : 0<t<r} on G and,
possibly, y and y+r6. Hence we conclude for ¢ € E(y)

< 1+n4(9, y), fel,

[ seicey a

L grad $(x)- (y—x)| y—x| "™ dx = f (1416, )] dHpn_1(6) = A+0,00).
It remains to note that, in case y € B and G is open, NU§, is a measure if and only
if
sup {<¢, NUS,> : € D, || < 1} < oo.
1.12. REMARK. Let us observe that, in case y € B and NUS, € C*(B),
(1.11) Vo(p) £ |NUS,|| £ A+0va(p).
Now we are in position to answer the question raised in 1.2.
1.13. THEOREM. NUpy is a measure for every p € C*(B) if and only if
(1.12) V= s;l;g V() < co.
If this is the case, then
NU: p— NUp
is a bounded linear operator on C*(B),
|[NU| = 4+V
and (1.2) holds for every bounded Baire function  on B. In particular,

NUW(M) = f NUS,(M) di(y)

Jor p € C*(B) and every Borel set M< B.

Proof. With every ¢ € D we associate a linear functional L, over C*(B) defined

by
s Lyy = b, NUpp,  pe C¥(B).
Denoting
P,=Gnspty, s, =sup|grady|,
we obtain from (1.1)
|<p Ly>| < syA diam (B U Py)|u

which shows that every L, is bounded on C*(B). Let E=D N {¢:: || <1}. Then
NUp is a measure if and only if

sup <$, NUu) < oo.
VeE
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In particular, if NUp is a measure for every p € C*(B), then the class of functionals
{L,}yex must be pointwise bounded on C*(B) and, by the uniform boundedness
principle,

Ly| = K < o0.
sup [|Ly| ®

Employing (1.11) we get for every y € B
vo(y) < sup <Y, NUS,) < K.
veE

Conversely, if (1.12) holds, then (1.2) together with (1.11) imply

sup [<g, NUp| < (4+V)|kl
for every u e C*(B). It is also easily seen that in this case (1.2) extends to any
bounded Baire function .

2. Double layer potentials.
2.1. Notation. Throughout this paragraph C < R™ will denote a Borel set with a
compact boundary B. Given z € R™ we put

D(z) = DN {:z¢spty}

and define

@1 W) = [ grad o) ge D)

If it is necessary to specify C we write W instead of W,. In case C has a smooth
boundary with exterior normal »n the integral (2.1) reduces to

=2):n()
[0 8252 a3,

which is the classical double-layer potential. If ¢ vanishes in some neighborhood of
B then there is a Q < R™ with a smooth boundary such that

spty N C < int Q, clQ <intC,
whence
W) = W(2) =
If z ¢ B, we use this observation to extend W,(z) from D(z) to D defining
W(2) = Wi2),

where ¢ is an arbitrary function in D(z) coinciding with given ¢ € D in some neigh-
borhood of B. W,(z) may thus be considered as a distribution over D with support
in B (compare [D, Chapter III, p. 157]).
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For fixed ¢ € D, W,(z) is a harmonic function of z in R™— B. Indeed, if O is an
open set with B N cl O= @, then there is a § € D coinciding with ¢ in some neigh-
borhood of B and vanishing on O; clearly,

X—2Zz

Wle) = Wi = [ rad o) 20

is a harmonic function of z in O.

Our main objective in this paragraph is to find necessary and sufficient geometric
conditions on C securing natural extendability of W, from D to broader class of
continuous functions and also *“nice behaviour” (e.g., boundedness) of W, near
B for each continuous .

2.2. LeMMA. Fix z € R™. Then
2.2) 15(2) < ©
is a necessary and sufficient condition to secure

lim W,,(2) = W)

for every sequence of Y, € D(z) converging uniformly (as k — o) to y € D(z). If (2.2)
holds then there is a v, € C*(B) such that

@3 W@ = [ M d0),  de D),
2.4) vi((z)) = 0,
2.5) vl = v5(2).

(2.3) together with any of the two conditions (2.4), (2.5) determine v, uniquely.
Proof. This follows at once from the equality
26) v(2) = sup {Wy(2) : b D), ¥l < 1)

established in 1.6.
2.3. ReMArk. If (2.2) holds we extend W - - - (z) defining

W@ = [ f0) )

for any bounded Baire function f on B.

In order to present another integral representation for Wf(z) we introduce the
following.

2.4. Notation. Fix z € R™ and 6 € I'. We put for >0

s(t;2,0) = o(=%1)
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if there is a 8 >0 such that
z+(t+or)0e R*—C, z+(—on)fe C

for a.e. 7 € (0, 8); otherwise we set s(¢; z, 6)=0.
Clearly, s(¢; z, 0) 0 only if z+¢0 is a hit of {z+ 70 : +>0} on C.

2.5. LeMMA. If v5(z) <o then

@7 W) = f {Z fz+10)s(t; z, o)} dH,_1(6)

for any bounded Baire function f on B.
Proof. Let v5(z) <co. If fe D(z) then

wra = | gred f(9) (25 d

_ f { L ouf(+18) dt  dHp—(0),

where
2.8) Co={t:t>0,z+10€ C}, 0,f = 0-grad f.

Noting that n$ (6, z) < oo implies

2uf(z+10) dt = 3 flz+10)s(t; z, 6)
Co >0
we obtain (2.7). .
If {f,} is a pointwise convergent sequence of functions on B such that, for all
k, | f]| £ K and (2.7) holds with f replaced by f;, then

> flz+t)s(t; z, )| < KnS(6, 2)

t>0

a.e. {H,_,} on I' and, by the Lebesgue convergence theorem, (2.7) holds for
f=Ilim, f; as well.

We conclude that (2.7) is valid for every bounded Baire function f vanishing at
z; in view of (2.4), vanishing at z is irrelevant.

2.6. PROPOSITION. Let v5(z)<oo. Denote by K, and L, the set of all 0T for
which there is an e =&(0) >0 such that

H({z+10:0<t<enC)=0
and
H{z+10:0 <t <e—-C)=0,
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respectively. Then K,, L, are measurable (H, _,),
29 Hy (I'=(K; VL)) =0

and v (B)=H,_,(L,) or v(B)= — H,_,(K.) according as C is bounded or not. If
Y e D, then

@.10) f grad Y(x) 22 dx = Wylz) — Hp-o(LIHE).

Ix—z]|
If Q is a convex Borel set, then
(2.11) v.(BN Q) < A.
Proof. 1t is easily seen that
I'n{0#:n%(0,2z) < 0} <L, UK,

whence (2.9) follows at once.
Fix now a 8 € I" with n$ (6, z) <co. Let

2.12) h<---<t,
be all the points ¢ € (0, ) with s(¢; z, 8)#0 (cf. 2.4). Clearly,
(2.13) S@tarse) = —=s(t;--2), 12j<gq

and s(¢,;---)=1ors(ty;---)=—1 according as 8 € L, or 6 € K. If C is bounded,
then s(z,; - - -)=1, while s(¢;; - - -)= —1 in the opposite case. We conclude that

20 =2 s(t;2,0

t>

almost (H,_,) equals the characteristic function of L, if C is bounded, while
—> (0) almost equals the characteristic function of K, in the opposite case.
Employing (2.7) with f=1 we get the first part of our proposition.

Let now f be the characteristic function of a convex Borel set Q. Consider again
a fixed 0T, nS(6, z)<oo, and the corresponding sequence (2.12). If ¢ and ¢,
are the first and the last members of (2.12) with z+ 2,0 € Q, respectively, then (2.13)
implies

3 ferioning|=| 3 swiz o<1

whence (2.11) follows by 2.5. If ¢ € D then we have with the notation from (2.8)
. Oz +10) dt = z) Wz +10)s(t; z, 0)
0 S

for 6 € K, N {0 : n% (0, z) < oo}, while

oz +10) dt = > Wz +10)s(t; z, 6)—(2)
Co t>0
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for e L, N {0: n% (6, z) <oo}. Hence
fc grad ./,(x).ﬁ, dx = J; ( fc Oz +16) dt) dH,_,(0)
= Wi(z)— Hp - 1(L)(2).

2.7. LEMMA. Let v5(z)<oo and define L, as in 2.6. If M<T is measurable
(Hm-1)9 Hm—l(M)>0 and

Ay ={z+1t0:0eM,t > 0},
then

. Hy(Qz2) N CN Ay _ Hy_ (L. N M)
214 o T HAD N ) - Haa (D)

In particular, C has an m-dimensional density
do(z) = Hn_1(L)/A
at z.

Proof. Let £(6) have the meaning described in the definition of K, L, in 2.6 and
put

Kr=Mn{0:0eK, 60 > r},
L'=Mn{0:0€L, 6) > r}.
We have
H (QzNCNAy) =2 m r"inn H,_,(L"),
H,(Q(z2)-C)N Ay) 2 m~r™inn H,_,(K"),

where inn H,,_; stands for the inner (m—1)-dimensional Hausdorff measure.
Denoting ’

Hy(Q(z) N C N Ay)
Hp(Q2) 0 Ay) -

d, =

and noting that
K"t (k.0 M), L4t(LNM)
as r | 0, we obtain

liminfd, 2 H,_(L, " M)/H, _,(M),

r—+0+

limoinf(l —d) 2 H,_(K, " M)|H,,_ (M),
r—0+

whence (2.14) follows by (2.9).
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2.8. Notation. P(C) will denote the perimeter of C defined by
P(C) = sup f div w(x) dx,
w (o)

where w=[w,, ..., w,] ranges over all vector-valued functions with m components

w; € D satisfying
m 1/2
(Zw?) =|w =1
j=1

(Further information on sets with finite perimeter may be found in [DG], [F3],
[FL], [MA])
For M= R™ and z € R™ we let

dist (z, M) = inf{|z—y| : y € M}.

2.9. LeMMA. v$(z) is a lower semicontinuous function of z on R™ satisfying the
inequality

v5(z) £ P(C)(dist (z, B))* ™, z¢B.

Proof. If K<v$(z), then there is a ¢ € D(z) such that |¢|<1 and W (z)>K
(see (2.6)). Hence

lim inf v$,(y) 2 lim Wi(y) = Wi(z) > K.
Y-z y-—+2
Suppose now that z ¢ B, fix an arbitrary ¢ € D(z) with |¢| <1 and a positive

p<dist (z, B). Then there is a ¢ € D, || <1, which coincides with ¢ in some neigh-
borhood of B and vanishes on Q,(z). Let us define w(z)=0 (e R™),

W@ =)o X # 5

and observe that |w|<p!~™,

¥4

grad """T;—__zlm = div w(x).

Consequently,
@) = Wi@) = [ div wx) dx < p="P(C).
(o]
REMARK. We see that v5(2) is finite on R™— B provided P(C)<oo. The converse

is also true as it follows from the following

2.10. PrOPOSITION. If

+1
v%(z) < ©
=1

-
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for an (m+ 1)-tuple of points z,, . . ., z, ., in general position (i.e., not situated on a
single hyperplane), then

2.15) P(C) < oo.
Proof. To prove (2.15) it is sufficient to show that
sup{f db(x) dx : pe D, |§] < 1} <w®
c

for every 6eTl. Fix 0el. Let II, denote the hyperplane determined by
{zx : k#J}. Since

m+1
U ®e-11) = &m,
there are «; € D such that

n, a) Spt ¢l = ﬁ
and

o« = a,=1

in some neighborhood of B.
Noting that

f o(X)O(x) dx = f %) dx
c c
we see that it is sufficient to prove that

sup { J; o (X)) dx : pe D, 9| < 1} <®

for j=1,...,m+1. Consider, for instance, j=1. If x € spt o;, then x—z,,...,
X—Zn 41 are linearly independent. Consequently,

="’2 o) 22

X—Z|™

where a, are infinitely differentiable in some neighborhood of spt «;. Extending
a, arbitrarily to R™ we get

[ b ax = "’Z [ 9,09 grad ey 22

[x — 2z, |™

Fix ke{2,m+1) and define F(x)=o;(x)a,(x). Then Fe D(z,) and denoting
K=max |F| we obtain for any ¢ € D with || <1

J F(x) grad y(x)- lx |"'dx Li+1,,
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where
= [ erad PO 225 dx < K2,
I = f #0) grad Fo- 2285
= f |grad F(x)|-|x—z,|* "™ dx < 00.(2)

2.11. ReMARK. It follows from 2.2, 2.9, and 2.10 that (2.12) is a necessary and
sufficient condition to secure continuous dependence (with respect to uniform
convergence) of Wi(z) on ¢ for every z ¢ B. For this reason we agree to impose
(2.15) on C throughout the rest of the present paragraph.

Let us recall that 8 € T is called the exterior normal of C at y in the sense of
Federer provided the symmetric difference of C and the half-space

RrNi{x:(x—y)-0 <0}

has m-dimensional density 0 at y (cf. [F1]).

In what follows the term exterior normal is always to be interpreted in this sense.
We put n°(y)=n(y)=0if 6 is the exterior normal of C at y; otherwise n(y) denotes
the zero vector. The set of all y with n(y)#0 is called the reduced boundary of C
and will be denoted by B. It is known from [DG2] and [F3] that

H,_,(B) < ©

and
[ divwe dx = [ w0)n) dH-10)

for every vector-valued function w={[wy, ..., w,] with components w, € D.

2.12, LemMA. For every z € R™

(2.16) 0%(2) = f “'(yJ))(—J;l,,,z)'de 1)

If v5(z) <o and M < B is a Borel set, then

_ [ n0)-(»r-2)
won) = [ T a5,
Proof. Fix z e R™ Let ¢ € D(z) and put w(z)=0 (€ R™),
w(x) = P(x) Ixx—;zzl"" X # z.

(2) The author is indebted to Herbert Federer for simplification of this proof.
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Then

W@ = [ divwe) s = [ o) "BLZD an, ()

and (2.16) follows from (2.6). Let now v%(z) <co. As we have just seen,

[ 1= [ 5™ 2L an, ()

provided f'e D(z); it is easily seen that this formula extends to any bounded Baire
function f.
The following result will be useful below:

2.13. THEOREM. Let
VC = sup {v5(y) : y € B}.
Then v5,(2)< A+ VC for every ze R™.

Proof. We may assume V'®<oo. Fix z € R™— B and let d be an arbitrary number
less than v5,(z). Then there exist mutually disjoint closed parallelepipeds Xj, . . ., K|
such that

q
> (BN K)| > d.
i=1
Put ¢;=sign v,(B N K)) and consider the function

hx) = ; opB N K,
which is harmonic on
R™— jL:JI BNK,> R"—B.
Fix an arbitrary y € B. If y ¢ | Jj-, K, then
lim h(x) = h(») = || = V°.

In the opposite case we may assume that y € K;, so that

q q
lim Z oy (BN K) = Z oy (BN K) £ |v,|| = V°
xX—Y i=2 =2

and, by Proposition 2.6,
sup [v.(BN K;)| < A.
x

We see that
lim sup h(x) < A+V°.

xX—Y: x¢
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Noting that h(x) -0 as |x| - o we conclude that A< A+V° on R*"—B. In
particular, d<h(z)< A+ V°.

2.14. COROLLARY. If r>0 and z € R™, then
2.17) H,_1(2(2) N B) £ m(m+1)™(4+VO)rm-1,

Proof. To prove (2.17) we may clearly assume that z=0. Noting that V¢ is
invariant with respect to dilations of C we observe that it is sufficient to establish
(2.17) for r=1 only. Let ¢! denote the point in R™ all of whose coordinates vanish
with the exception of the ith one which is equal to m+ 1. We have then for 6 e T’
and y e Q=Q,(0)

D 10— 2 1,
i=1
so that

mmmnmgzﬁwwudwmmm

s ey 3 [ PO an, )

= (m+1)" i 15(e) £ m(m+1)™(4+V°).

2.15. THEOREM. Let C(B) denote the Banach space of all continuous functions f on
B with the norm | f|| =sup |f|. If Wf is bounded on R™— B for every f € C(B) then
(2.18) V¢ < 0.

Ir

Ci=R"Nn{z:d(z)=i} (=01

and (2.18) holds, then Wf is bounded and uniformly continuous on each of the sets
C,, C, and

@19)  lm Wf@) =W/ +AA—d(DS)  foryeBnclCy,
(2.20) cJm  Wf(2) = W) - 4dd)f(y)  forye BNl G

whenever f € C(B).

Proof. If Wf(z)=</, v.) is a bounded function of z on Q = R™ for every f € C(B)
then, by the uniform boundedness principle, |v.|=v%(z) is bounded on Q. In
view of 2.9, v5(z) must be bounded on cl Q as well. For Q=R™— B we get the
first part of our theorem. Assume (2.18) and fix y € B. If f=1 on B then (2.19),
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(2.20) follow from 2.6, 2.7. It is therefore sufficient to prove (2.19), (2.20) assuming
fe C(B), f(»)=0. For every k we have the decomposition f=f,+g,, where
Ji € C(B) vanishes in some neighborhood of y in B and | g,| <1/k. Then Wf, is
continuous at y and |Wg,| S(4+ VC)/k. We see that Wf=Ilim,_, Wf, is con-
tinuous at y. The rest is obvious.

3. The Fredholm radius of an operator.

3.1. Notation. As in the introduction, G will stand for a fixed open set with a
compact boundary B in R™. We put C=R"—G and write v,(»)=v8(y) (=08(p)),
V="V¢ (cf. 1.6, 1.7, (1.12), 2.13). We always assume

3.1 V < oo.
In view of 1.13,
(3.2) NU : p— NUu

is a bounded linear operator on C*(B). By 2.7, G has an m-dimensional density
dg(y) at any y € R™.

3.2. LeMMA. If f is a bounded Baire function on B then
(33) f,NUS,> = Adds(D)f(»)+Wf(y), yeB.
Proof. It is sufficient to prove (3.3) for f€ D only. Employing 1.3, 2.6, and 2.7

we obtain

{f, NU3,) = J; gradf(x)-lj’l)—:)c)cl—m dx
= 1)+ [ grad S o de
= Ade()f (D) + WS ().
3.3. DerINITION. If fe C(B) we define
34 Wf(y) = {f, NU8,>—34f(y), y€eB.
3.4. LeMMA. Wfe C(B) whenever f € C(B). The operator
3.5 W:f— Wf

is bounded on C(B) and the operator (3.2) is adjoint to AI+ W, where I is the identity
operator on C(B). If f€ C(B) and C, has the meaning described in 2.15, then

(3.6) Wf(y) = Jdim  W@)-34/(»), yeBNdC,

Wf() = W)+ Ade(3) — ()
= lim WY@+34/(), yeB.

2

3.7
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Proof. (3.7), (3.6) follow from (3.4), (3.3), and (2.19), (2.20). By (3.7), Wfe C(B)
for fe C(B). If v, has the meaning described in 2.2 and

(3.83) 7, = A(de(y) -3, +vy,

then

(3.9) Wf(y) =<f,%»  feC(B), yeB,
whence

(3.10) IW] = sup [7,]| = sup (4]de(y) — 3] +0a(»)).

By 1.13, the formula (1.2) holds for any ¢ € C(B). This together with (3.4) implies
(3.11) NU = 341+ W)*,

where (- - -)* denotes the operator adjoint to (- - -).

3.5. REMARK. In §4 we shall be engaged with the Neumann problem in the
following formulation: Given » € C*(B) find a u € C*(B) with NUp=v. By (3.11),
this problem reduces to solving the equation

GAI+W)*u = ».
In connection with this equation it is useful to know the Fredholm radius of W,
i.e., the reciprocal of

oW = igf |W-T|,
where T ranges over all compact operators on C(B) (cf. [RS]). Our main objective

in §3 is to express w# in terms of geometric quantities connected with G and
investigate relations between w# and regularity of B.

3.6. THEOREM. Let Iy denote the set of all isolated points of B and put E=B—1Iy
if Iy is finite, E= B in the opposite case. Let V,=0 or

V, = sup [Al—de()| +0,0)]

according as E= & or not and define
Vo = lim Vfc

-0+

Then o W=V,.

Proof will be divided into two steps.
Step 1. We first prove that

(3.12) oW

IA

Ve
for every r >0 satisfying

3.13) H,_.Bn{z:|z—y|=r) =0 forally,
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where B is the reduced boundary defined in 2.11. If R is the set of all >0 enjoying
(3.13) then (0, o) — R is at most countable, because spherical shells with different
radii meet each other in a set of H,_,-measure zero and H,,_,(8)<c. Hence
Vo=inf {V, : r € R} and

will follow from (3.12). So let us fix r € R. If I is finite we assume, as we may,
r<dist (I, E)=inf {dist (z, E) : z € Is}. Let ¢, denote the characteristic function
of B—(£,(y) N E) and put

W) = [ afd,  recm,
where 7, is defined by (3.8). Absolute values of all the functions in

(3.15 {(W.f:feCB), |f] =1

are bounded by sup,¢; ||7,| <34+ V. If f € C(B) and x, y are arbitrary points in
E with |x—y|=d<4r, then we obtain from 2.12

W f(x) =W f(y) = Ji(N)+J(f),

where
1) = [, e - D a2,
1) = [, 1060~ 0] @) d- 2.
Denoting

od) = sup Hyp—;[(c] @, 4(2)~ Q;_4(2)) N B]
we get for || f]| =1
[N = Gr)t~"w(d),
[J2()| < (m+1Dd@Er)-".
Since r € R, an easy compactness argument yields

lim «(d) = 0.

d-0+

We see that all the functions in (3.15) are equicontinuous on E; noting that B— E
is finite we conclude that they are equicontinuous on B as well and the operator

W, . f—>W.f

is compact. Hence
W< |W—w,.
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If fe C(B) then

W.f(y) = Wf(y) foryeB-E
while (3.9) shows that, for y € E,

T-wr) = [ 1,

with the integral extended over B N Q,(y). Consequently,
IW—W,| = sup |5,|(2(») N B) = V,

and (3.12) is established.
Step 2. Now we are going to prove the inequality

(3.16) oW 2 V,

which is trivial if E= & . Therefore we assume E# &, so that E is infinite. A point
y € B will be termed a discontinuity for a p € C*(B) if u({y})#0. By the Radon
theorem, every compact operator on C(B) can be arbitrarily closely approximated
by operators of finite rank. If Q is such an operator, sending f'€ C(B) into

) of = 3 ehim,

where g, € C(B) and m,, € C*(B), then every m, can be arbitrarily closely (in the
norm of C*(B)) approximated by i, € C*(B) having only a finite number of
discontinuities. Defining

g = 5 o

we see that the deviation |Q— Q| can be made as small as we want. It follows
from these observations that, in order to prove (3.16), it is sufficient to show that

(3.18) I7-Ql 2 Vo

for every Q of the type (3.17), where m, € C*(B) have only a finite number of
discontinuities each. Let us fix such a O and denote by K the (finite) set of all
y € B which represent a discontinuity for some of the measures m, (k=1,..., q).
Every my splits into mj} having no discontinuities and a finite combination of Dirac
measures, to be denoted by mj. Since y is the only possible discontinuity for 7,,
we have for ye B— K

2

7= Z gm| = |7 Ek: g(y)mi

+ ||Z gi(y)m?

whence

1w-g| 2 sup{ = 3, i

:yeE—K}
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Since the operator
f— <f, =D gk(y)mk>
k
sends each f'e C(B) into a continuous function of y we conclude that

a(y) = |7,— ,,Z &(»mi| (@) N B)

is a lower semicontinuous function of y for every r>0. Consequently,

|W—-Q| = sup{a(y) : ye E-K}

3.19)
= sup{a,(z) : ze E—(Iz N K)}.

Consider now an arbitrary y € E N Iy N K and note that E N Iz# @ implies

% # En(Iz—K) < E—(Is N K).

If
r < dist (Is N K, E— (I3 N K)),
then
> s(y)mi[ () N B) = |Z gk(y)m,t| Q) NI =0,
(3.20) k *

a(y) = [5|(Q(y) N Ip) = 34.

On the other hand, we have for any z € Iy

34 £ |AG—di(2)8,)|(Q(2) N B)+ |v.— ;gk(z)mk (Q(2) N B) = a,(2),

533

because v,— Y, gi(z)mi has no discontinuities. Combining this with (3.20) we get

a(y) < sup{a(z) : ze ENn(Izg—K)} = sup{a(2) : ze E—(Iz N K)}.
We have thus for small r>0
3.21) sup{a(z) : ze E—(Is " K)} = sup{a(y) : y€ E}.
Note that
Ve = sup [7,|(Q(») N B).
If M=max {|gi(x)| : x € B, 12k <q}, then

(3.22) sup{a(y): yeE} 2 V,-M Z sup [mi|(Q(y) N B).
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Since m}, (k=1, ..., q) have no discontinuities,
lim sup [mi|(Q(y) N B) = 0.
r—0+ yeB
Making r — 0+ in (3.22) and using (3.21), (3.19) we arrive at (3.18).
ReMARK. The basic idea of the above proof goes back to J. Radon (cf. [RS]).
3.7. LEMMA. Let us define B as in 2.11 and put
B* = BN{y: |de(»)—4 < 3}

Then B is dense in B* (moreover, every ball of center in B* meets B in a set of positive
H,, _,-measure) and

H,_,(B*—B) = 0.

Proof. If y € B* then there is an ¢>0 such that
Hu(Q(y) N G) > eHu(Q(y)),
Hy(Q(y) 0 C) > eHa(Q(y))

for 0 <r<e. By the relative isoperimetric inequality for sets with finite perimeter
(cf. Theorem (4.3) in [MI]; general isoperimetric inequalities for currents may be
found in [FF, §6]) we conclude that

H, (Q(»)NBZarml, 0<r<e,
where « >0 does not depend on r. Hence it follows by [F2, §3] that
H,_,(B*—B) = 0.
3.8. Notation. For ze R™, r>0 and 0 € I" we put
Qz,0) = Q(z)N{x:(x—2)-0 > 0}.

We denote by a(6, n)=arccos (6-1) the nonoriented angle enclosed by 6, n eI
It is easily seen that

a(o, 7) — H(Q(z, 6) N Qz, _"7))
2m Hn(Q(2))

The symbol n will always have the meaning described in 2.11. The symmetric
difference of P, @ < R™ will be denoted by P Q.

3.9. LeMMA. Let z € B, 0=n(z). Then

(3.23)

H,(Q.(z, ) N int C)+ H,(Q(z, —0) N G) £ H,(Q(2)) PL,SZ_)

Proof. Let

Hn(Q(z, 6) N int C) Ho(Qz, —0) N G)
nETUHQE) 0 T T HQG)
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PutT',=I'n{y:9-0>0}, I'_=T'N{5:79-0<0}, S(p)={x : |x—z|=p} and define
K, L, as in 2.6. There are p,, p; € (0, r) such that

(329 Hp-1(S(p1) N Qu(z, 0) N int C) > y1Hp - 1(S(py)),
(3.25) Hp_1(S(p2) N Q(z, —0) N G) > y3Hp-1(S(p3))-
By virtue of 2.7

Ho (L,AT,) =44 lim & HN0C) _

p=0+ Hm(Qo(z: 0))

e HuQz, =) N C)
Hp-sLeNT-) = 34 im = "5

= 34.
We see that L, is equivalent (H,_,) with I'_ and K, is equivalent (H,_,) with

I'y. If yeL, and {z+pn : 0<p<r} N G# & then, with the notation from 1.6,
n.(n, z)2 1. Employing (3.25) we obtain

fL 1o, 2 dHosa) > 72
Similarly, (3.24) implies
fx. my(n, 2) dHn-2(n) > 724,
so that
0l@) = [ e, ) dBlas@) > a7,

3.10. LeMMA. Let NeT, y € R™, r>0 and suppose that

(3.26) sup v(2) £ uoA,
(3.27 H,(Q(y, N) N C) £ u; Ho(Q(y)),
(3.28) Ho(Q(y, —N) N cl G) = usHa(Q(y)).

If s=ug+uy +uy <34, then for every y> s there is a 8> 0 (depending on (y— s)r only)
such that

a(n(z), N) £ ny  for ze Bn Q).

Proof. Let y=s5+2¢, >0, and consider a 6 € I' with a(N, 6)>y=. We have by
(3.23)

Hm(Qr(ys _N) N Qr(y’ 0)) > '}yHm(Qr(y)),
Hy(Q,(y, N) 0 Q(y, —0)) > 3yHu(Q(y)).
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Let us fix 6 >0 small enough to secure

Hp(Q(z, 1) = Qy,m)) < eHn(Q(3))
for |z—y| < 8 and any 5 € I". We have then for z € Q,(y)
Hy(Q(y, —N) 0 Q(z, 6)) > 3sHn(Q(2)),
Hy(Q(y, N) 0 Qu(z, —0)) > 3sHn(Q:(2)),
whence we obtain on account of (3.27), (3.28)
H,(Q(z, 0) nint C) 2 Hu(Q(z, ) N Q(y, —N))— Hn(Q(y, —N)Ncl G)
> (35— ux) Ha(Q(2)),
Hu(Q/(z, —0) N G) 2 Hu(Q(z, —6) N Q(y, N))
—Hy(Q(y, N) 0 C) > (35— u) Hu(Q(2)).

Suppose now that z € B and 6=n(z). Employing (3.29), (3.30) and Lemma 3.9 we
arrive at v,(z) > uyA4, which violates (3.26).

3.11. Notation. Let Py stand for the orthogonal projection of R™ onto
R™ N {x : x- N=0}. With every « € (0, 4) we associate B(c)< B as follows. We let
¥ € B(«) if for every y € («, 4) there is a neighborhood Q of y in Band an Ne T’
such that |Py(x)—Py(z)| 2 |x—z| cos my whenever x, ze Q. By Theorem 5.1 in
[MI] we get the following corollary of Lemma 3.10:

3.12. CorOLLARY. If (3.26), (3.27), (3.28) hold and s=u,+u,+u,<%, then
¥ € B(s); moreover, for every y € (s, 3) there is a 8>0 (depending on r(y—s) only)
such that B N Qy(y)< B(y).

3.13. THEOREM. If V,<3A then Iy is finite and
(3.31) H,_,(B—B(V,/A4)) = 0.
If Vo<3A then B=B(Q2V,/A).

Proof. Let Vy<4A4. Then I must be finite, B—Iz=E<B* and, by 3.7,
H,_,(B—B)=0. To prove (3.31) it is therefore sufficient to show that

(3.29)

(3.30)

B< B(3e+%’)

for every small ¢>0. Fix y € B, N=n(y) and £>0, 3¢+ V,/4 <}. We have then for
sufficiently small »>0

Hu(Q(y, N) N C) £ eHn(Q(y)),
Hu(Q(y, —N) N cl G) = Hu(Q(y, —N) N G)
S eHu(Q(y)),
(3.32) V, < Voted.
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Employing 3.12 we get y € B(3e+ V,/A). Suppose now that «=V,y/4 <% and fix
an r>0 with (3.32). By 3.9 we have for all y € B

Hy(Q(y, n(3)) 0 C)+ Hu(Q(y, —n(y)) N cl G) < («+e)Hn(Q:()).

By 3.12 there is a 6 >0 independent of y such that Q,(y) N B< B(3¢+ 2c) for every
y € B. It remains to note that B is dense in E by 3.7.

3.14. COROLLARY. If V,<2%A then
lir;m sup {p* "H,_1(Q,(») " B): yeB,0 < p < r} £ b,_, sec QV,ym/A),
=0+

where by, _, denotes the volume of the unit ball in R™~1,

3.15. THEOREM. Let V=0 (which means that W is compact). Then Iy is finite
and E=B— Iy is a surface of class C*.

Proof. For every ¢>0, e<} there is an r>0 such that V,<e4. By 3.9 (note
also that H,(B)=0)

Hy(Q(y, n(y)) 0 C)+ Hu(Q(y, —n(y)) N ¢l G) < eHn(Q(y))

for all y € B. Employing 3.10 we get a >0 depending on re only such that, for
every couple of points y, z € B, a(n(z), n(y)) < 3er whenever |y—z|<8. We see
that » is uniformly continuous on B. By 3.7, n extends to a continuous function N
on E=cl B and, for every y € E,

. N(z) dH,-1(2)
NO) = lm @)~ B

with the integral extended over Q,(y) N E. Hence it follows by [DG3, Theorem
III] (see also definition of the reduced boundary presented in [DG3, p. 10]) that
E is a surface of class C*.

REMARK. The main results of this paper (such as Theorem 1.13 or Theorem 3.6)
are expressed in terms of the quantity v,(y). In the definition of v,(y) one considers all
half-lines issuing at y, i.e., orthogonal trajectories of the level surfaces of the Green
function with a fixed pole at y. This suggests the possibility of generalizing these
results to the case of a Green space in the sense of [BC].

4. Boundary value problems.

Notation. We shall keep the notation and assumptions introduced in §3.
Besides that we always assume here that m > 2 (see Remark 4.10 below dealing with
m=2). We shall start with investigation of solutions of the equations

4.1 GAI+W)f =0 over C(B),
4.2 GAI+W)*u =0  over C*(B).
Co(B) will denote the class of all fe C(B) satisfying (4.1) and C*(B) will stand for
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the set of all u € C*(B) satisfying (4.2). We agree to use M as a generic notation
for a Borel set. If u is a signed Borel measure in R™ and R< R™ is a fixed Borel set,
we define 4 N R by

uwN RM) = p(M N R), M < Rm,
Recalling the definition of 7, presented in (3.8) we obtain from (3.9) that, for every
n € CX(B),
@3 WouM) = [ o) dus), M < B.

It follows from (3.10) that
4.9 [W*| < 34+,
where V= V¢ has been defined in 2.13.

4.1. LEMMA. If p € C¥(B) then |u|(Iz)=0 (see 3.6 for notation).

Proof. Let e C¥(B), z € Iz and denote by f the characteristic function of {z}.
We have by 3.4, 1.13, and (3.3)

0 = NUu((z}) = f (AdeD)f ) + W) du(y).

It follows from (2.12) that W¢f=0, so that Ads(»)f(¥)+ W°f(y)=Af(y) for all
y € B. Hence u({z})=0.

REMARK. A refinement of the preceding argument may be used to show that,
for every pe C¥(B), p N M is absolutely continuous with respect to H,_, N B
provided dg(y)>0 for all y e M.

As it follows from 4.1, C¥(B) contains only trivial measure in case B=Iz. In
what follows we always exclude the trivial case of a finite B.

4.2. LEMMA. Fix z € B, p € C*(B) and put for t>0

@.5) R, = BN Q2),
4.6) o(t) = Hp_y(R, N B),
@.7 B(®) = |k|(Ry).

Let 0< p<8<A and suppose that

BN (Ry—Ry) = p
Then

B(r) dt
="

48) Ful(R) 5 22Dt n- 1)) [
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Proof. Let g denote the, characteristic function of 8N R,. By 2.12 we obtain
forye R,— R, and M<R,

90D] = 30| S [ gyl dHp-s3),

whence it follows easily by (4.3)

4.9) |W*u|(R,) < f j ()| y—x|*~™ dHp_1(x) d|u|(9).

BxB

Since

[ 1y=s-mdiu0) < [ @- s deo)
A
(4.9) implies (4.8).
4.3. LeMMA. Fix z € B, r>0 and put, with the notation from 4.2,
R = R(=Q(z) N B),
V(R) = sup {|%,|(R) : y€ R},
O(R) = sup {p'""a(p) : 0 < p <1},

m-1
K(R) = inf{V(R)k"'-2+ O(R) [(k—fl) - 1] k> 1}-
Define
Wip = (W*s) AR, peC*(B).
Let C% denote the set of all p € C*(B) enjoying

56 = [ - lul R dp < 0
and
4.10 [w|/(B=R) =0
and put

1
m-—2

lelz = r™ul+Jw), peCE.

Then p € C¥ implies W¥u € C¥ and
IWelz = KR)|e]z-
Proof. Fix p € C¥ and k> 1. We have with the notation from (4.7)

@11) 56) = [[ $*="(p) d.
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Let now 0< p<r/k and define

=pNRy, p=p—p,

In view of (4.3)
4.12) [Wipo| = V(RB(Kp).
Employing 4.2 we obtain
Wur a(p)B(r) B(t) dt
@13 (Wtwel(Ry) s et mut) [ FOC

On account of (4.12), (4.13) we get for 0<p<rfk

P WRHIR) S VRP"Blke)+ OB -2+ (m— o) [ FOL,

while, by (4.3),
P WERI(R,) S V(R ()  forrfk S p <.
Using (4.11) we obtain after simple calculation

1780 = [ oWl R) dp+ |51 3ul(R) do
< ,5;(:12-'=-m(V(R)(km-2—1)+ Q(R)[(fc—f—l)m-z—l])

+J(p)(V(R)k""2+ Q(R)[(k—fl)""l— 1] )

Since, by virtue of (4.3),

[Wkul = VBB,
we get finally

- 1 - -
Wil = —— r* ™| Win| +J(Wip)

s Iula(vaRkm-2+ 0B (£55) " -1])
4.4. Notation. Let
Q, =sup{p' ™H,_(Q,(z)NB):zeB,0<p<r}, r>0,
0= lim 0,

Further define ¥, as in 3.6 and put

@4.14) K, = inf{Vok"‘"+ Qo[(k—fl)m-l—l] k> 1}-
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In what follows we shall always assume that

4.15) Ky < 34.
4.5. REMARK. The inequality (4.15) implies
(4.16) Vo < 34.

Indeed, since B is infinite and V<44, (3.7) secures H,,_,(B)>0. It is known from
[DG2], [F3] that for (H,,_,) almost all y € B

lim p*~"H,_(Q,(») " B) = bp_,,
p—0+

where b,,_, denotes the volume of the unit ball in R"~*. Hence Qy2b,,-; and k

minimizing
oy

> ol ] ot

must satisfy

which guarantees k™~2> 2.

On the other hand, if (4.16) holds, then 3.14 provides an estimate for Q, in
terms of V,. Clearly, (4.15) is fulfilled whenever V,, is sufficiently small.

In view of (4.16) and 3.6, the Fredholm theory applies to the pair of adjoint
equations

GAI+W)f = g,
GAI+W)*u = ».

4.6. LEMMA. If p € C¥(B) then U|p| (see the introduction for notation) is bounded
on B.

Proof. Define V, and E as in 3.6 and fix r>0 and k> 1 such that

K = Vykn- 2+Q,[( ) 1]<5,4

r < dist (E, B—E).

Fix an arbitrary z € E and define R=Q,(z) N B. We have then with the notation
from 4.3

V(R) é Vﬂra Q(R) é Qn
4.17 K(R) £ K < 4.
Let p € C¥(B), || =1 and put

Bo=pNR, p°=p—p.
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In view of (4.2)

(4.18) YApo+ WHpy = —3Au®— WHul.

Restricting all measures occurring in (4.18) to R we obtain

4.19) (T+247 W¥po = =24 WHp°

where, of course, I is the identity operator. Employing 4.2 with 8=r and A=r
+diam B we obtain easily for 0<p=<r/2

P HOI(R,) £ Q2mrt 0] S Q2mrtm.
On the other hand, we have for p>r/2
PMIWROI(R,) = 2| H| - 0] S 2034+ ),

so that
J(WEp® £ 2" 2r2-m20Q,+ 34+ V).
Since
[Wtue] < |W*u°] < 34+V
we arrive at
IWEnlz < ve
where
Vo = g T GAH V)220, 4 1A+ V).
We see that W¥u® € C¥. It is easily seen that C¥, equipped with the norm ||- - - ||z,

is a Banach space. In view of (4.3) and (4.17)
IWkle = K < 34.
Hence we conclude by virtue of (4.19) that u, € C¥ and

2K\
"F’O"R = (l _7) 2‘4-17'1' = ay.

Since a, is independent of z € E, we have, in particular,

T
sup f o1 ~"{u|(Q,(z) N B) dp < o,

whence it follows easily

sup f P "ul(Q,(z) O B) dp < oo
2ek 0
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Noting that
1
Ul = 5 [, =2l dlulo)

—_ l ® . —~|2-m
=3 ) M@ 2> By ar

= [7 pmlkl@,@ 0 B do

we see that U|u| is bounded on E. Since, by 4.1, spt u< E and B— E has a positive
distance from E, U|u| is bounded on B as well.

4.7. Notation. It follows easily from (4.16) and 3.13 that G has only a finite
number of components; their closures are mutually disjoint. We shall denote by
qg(0=g<oo) the number of bounded components of G. G, will stand for the
unbounded component of G (if any); the bounded components of G will be
denoted by G, . .., G,.

Employing 4.6 we obtain by standard reasoning the following.

4.8. LEMMA. The dimension of C¥(B) does not exceed q.

Proof. Let n € C¥(B). By 4.6, U|u| is bounded on B. Hence it follows that p
has finite energy [B, p. 122] and

| lerad Vo)l dx = 4 [ V) duty) < o0
(see [B, pp. 131, 132]). In particular, there are ¢, € D such that
Lm |erad ¢(x)—grad Up(x)|*dx 0  as k — oo,
(4.2) means that NUp=0 (see 3.4), so that
[ grad 4.3)-grad Uty ax = 0
for each k; making k — co0 we obtain
L |grad Up(x)|? dx = 0.

We see that Up is constant on each G, and vanishes on G,. Next we prove the
following assertion:

(@) If Up=0 on G then u=0.

Indeed, let u=p; —p, be the Jordan decomposition of u and assume that Up,
and Up, coincide on G. Since G has a positive m-dimensional density at any
z € B, every fine neighborhood of z (in the Cartan topology) meets G (compare
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[B, p. 78, paragraph 2, §3 and p. 84, paragraph 6]) and we conclude from the
Cartan Theorem [B, p. 86; see also p. 84] that Uw,(z) = Uny(2). Since Uy, and Up,
coincide on B, they must coincide on R™, by the domination principle [B, p. 123].
We have thus Up=0 on R™, whence =0 [B, p. 122].

If g=0 then (a) completes the proof of 4.8. Assume now g>0. With every
w € C¥(B) we may associate the g-tuple c(u)=[c,(r), . . ., c,(#)], where c,(r) is the
value taken on by Up in G;. The map

c:p—c(p)

is an injection of C§(B) into R% Indeed, c(x)=0 means that Up=0 on G and (a)
implies p=0.

4.9. PROPOSITION. Let f; denote the characteristic function of fr G,(1<j=<q).
Then {f,, . . ., f3} is a basis in Cy(B).

Proof. Let us fix je <l,q> and put H=R"—G;. Employing 2.12 and 2.6 we
obtain for any ze R"—cl G<int H

Wf(z) = vi(fr G) = 0,
whence it follows by (3.6)
GAI+W)f; =0,

so that f; € Co(B). Since the dimension of Cy(B) coincides with the dimension of
C#(B) which is known to be <q and f}, .. ., f, are linearly independent, the proof
is complete.

4.10. ReMARk. Combining the above proposition and Fredholm’s theorems one
obtains Theorems 4.11-4.13 below.

If m=2 then 4.9 holds under more general assumptions on B. It is sufficient to
require that E (see 3.6) consists of mutually disjoint simple closed curves and
Vo <44 (compare [K3], where further references may be found).

4.11. THEOREM. Let v € C*(B). Then v=NUp for some p € C*(B) if and only if
(frG) =0, j=1,...,q.
Proof. This follows at once from 4.9 and the Fredholm Theorem.

4.12. THEOREM. Let {f,. .., f} be a basis in Cy(B). Given g € C(B) there are
fe€ C(B) and constants o, (j=1, ..., q) such that, for every y € B, Wf(x) tends to

q

80— 2, wf{y)

i=1

as x — y, x €int C. The constants «; are uniquely determined and f is determined
modulo Cy(B).
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Proof. Let {u,,...,p} and {f,...,f;} be dual bases in C§(B) and Co(B),
respectively. Given g € C(B) we can find «; so that

(o= Siny=s

for all j; clearly, o, =<{g, ps>. Then

GO

and the Fredholm Theorem yields an fe C(B) such that

q

GAI+W)f=g— > «

k=1

The rest follows from (3.6).
Standard reasoning yields also the following.

4.13. TueoreM. Fix x;€ G;(j=1,...,q). Given ge C(B) there are fe C(B)
(determined modulo Cy(B)) and uniquely determined constants a; such that, for every
Y€ B,

q
Wf(x)+ 21 aj|x—x,|2-™
i=

tends to g(y) as x -y, x €int C.
Proof. Define g, by

1
&%) = o) [x— x| 2™

Then < gy, n) = Uun(x,) for every p € C*(B). It follows from (3.6) that

q
+ D og(fe C(B), o € R
i=1

represents a solution of the Dirichlet problem for C and the boundary condition
g if and only if

q

(4.20) GAI+W)f = g— D o8,

i=1

on B. For the existence of an f € €(B) satisfying (4.20) it is necessary and sufficient

that
q
<g - 121 o8;, C§ (B)> =0,

ie.,
q

@21) D oUn(x) = <& w,  meCHB).

i=1
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We know from the proof of 4.8 (note also that CF(B) has dimension g) that

p—> [Up(x1), . . ., Up(xy)]

is an isomorphism of C§(B) onto R% Consequently, (4.21) determines «; uniquely.
The rest is obvious.

REMARK. Results related to some of those proved in the present paper were
announced without proofs in [K1] (for the plane), [BMS] and [MS] (for a domain
bounded by a simple closed surface in 3-space), [K2] (for a domain bounded by a
hyper-surface in m-space) and in Abstract 630-197, (Theorem 1.13), Notices
Amer. Math. Soc. 13 (1966).
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