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Introduction.    Let G be an open set with a compact boundary B in Rm, the

Euclidean m-space. If « is a harmonic function in G such that

(1) Jjgrad«(x)|dx < oo

for every bounded open set P^G, one may form the distribution Nh over the space

D of all infinitely differentiable functions </> with compact support in Rm defining

(tp, Nhy —      grad t/>(x) ■ grad A(x) dx.

This distribution will be termed the generalized normal derivative of n (compare

[CC], [M], [Y]). It is easily seen that Nh has support in B. In general, Nh need not

be a measure in the sense usual in distribution theory [S]. §1 of the present paper

deals with generalized normal derivatives of Newtonian potentials. We denote by

C*(B) the Banach space of all finite signed Borel measures with support in B;

total variation is taken as a norm in C*(B). With every ¡¿ e C*(B) we associate the

corresponding Newtonian potential

Ufix) =       p{x-y)dlx.(y),
jBm

where/>(z)=|z|2~m/m — 2 or/?(z) = log (l/|z|) according as m>2 or m = 2, and we

ask what necessary and sufficient condition is to be imposed on G in order that

NUfj, be a measure for every p e C*(B). For this purpose it is useful to introduce

the concept of a hit of a half-line {y+tO : t>0} on G (cf. Definition 1.5). If n(0, y)

denotes the number of such hits, then n(6, y) is a Baire function of the variable

6 on F = Rm n {d : \d\ = 1} and the above mentioned condition reads as follows:

(2) sup f n(6,y)dHm_1(d) < oo,
yeB Jr

where Hm.1 stands for the (m— l)-dimensional Hausdorff measure.
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If G fulfills (2), then the operator

NU: fi -+ NU/x

is bounded on C*(B) and has the form \AI+ W*, where A = Hm_1(F), I is the

identity operator and W* is adjoint to an operator W acting on the space C(B)

of all continuous functions on B. Some properties of W, which is connected with

the classical double-layer potential, are investigated in §§2-3. In particular, in

§3 we show that, in case B has no isolated points, the Fredholm radius of W is the

reciprocal of the quantity

V0 = lim sup \A\d(y)-±\+ f nr(6,y) dH^^d)],
r|0   yeB   I Jr J

where d(y) denotes the m-density of G at y and nr(0, y) is the number of hits of

{y + td : 0<t<r} on G. Relations between V0 and the geometric structure of B

are also investigated in §3. In case V0 is sufficiently small, these results apply to

the Neumann problem where the boundary condition is given by an arbitrary

measure v e C*(B), as treated in §4. By duality based on the Fredholm theory

one obtains, as a by-product, representation of solutions of the Dirichlet problem

by means of double-layer potentials.

Methods and concepts employed here are those of geometric measure theory;

they have their origin in investigations connected with the Gauss-Green theorem,

sets with finite perimeter and functions whose partial derivatives are measures

[DG], [F], [FL], [FY], [KR], [MA], [P].

1. Normal derivatives of potentials.

1.1. Terminology and notation. The symbols Rm, C*(B), p, Up, D will have the

meaning described in the introduction. For M<^Rm we shall denote by cl M, int M,

fr M and diam M the closure, interior, boundary and diameter of M, respectively.

Hk will stand for the A>dimensional Hausdorff measure; Hm coincides with the

Lebesgue measure in Rm. We put Q.r(y) = Rm n {z : \z-y\ <r), i^O^O),

Vr(y) = fr nr(y), F = T1(0), A = Hm.1(T). Throughout this paragraph G<=Rm(m^2)

will be a fixed set with a compact boundary B. We shall tacitly assume that G is

open. On several places, however, it will be useful to allow G to be a Borel set; this

will be always pointed out explicitly.

The generalized normal derivative of a harmonic function h (satisfying (1) for

every bounded open P^G) is defined as in the introduction; we shall write Nah

instead of Nh if it is necessary to specify G. The reason for the terminology is

obvious: if G has a smooth boundary with exterior normal n and n is smooth up

to B, then

<& Nh) = jB ftdhlBn) dHm
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If spt iji (=the support of \¡>) does not meet B, then there is an open set Q with

a smooth boundary such that spt 0 n G <= Q, cl Q c G, so that

<*, WGn> = <0, iV°n> = 0.

In particular, if N Gh is a (Borel) measure v, which means that

<<£, Afcn> =  [   xj,dv

for every 4>e D, then v e C*(5).

Variation of a (signed) measure /x on a Borel set M will be denoted by |/x|(M);

for /x e C*(B), \¡i\{B)=\ií\ is the norm of /¿.

Simple calculation shows that, for n e C*(B) and xeG,

[grad C/M(x)| ^ J Ix-jI1-"1 ¿HOO,

whence we obtain for any bounded Borel P<=G

(1.1) f |grad Un(x)\ dx ^ A diam (5 u P)||/i||.

We see that Af£//x is meaningful for every /u. e C*(B). Our main objective in §1 is

to answer the following question :

1.2. What necessary and sufficient restrictions are to be imposed on G in order

that NUfj. be a measure for every ¡j. e C*(B) ?

1.3. Remark. Let us agree to denote by 8y the Dirac measure concentrated at

y e Rm. We have for any i/>e D and any y e B

, NU8yy =  f grad -A(x) • ̂ -^ dx.
Ja \y—x\

Direct calculation shows that, in case Q = Rm — {y}, NQU8y = A8y.

Let us also observe that, for tfi e D and n e C*(B),

(1.2) <*, NU!,} = jB <& NU8yy d^y).

Indeed, if P=G n spt <j> and A^=sup |grad >j>\, then

If |gfad>ft(x)-/   *rv ' \y-x\"
dx d\¡j.\(y) ú KA diam (P u Ä)||/i||,

so that Fubini's theorem applies to

(1.3) JJ grad t(x)(y-x)\ v-x| "m ¿x <fcO0;
Gxfl

it remains to notice that the two repeated integrals derived from (1.3) occur in

(1.2).
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Before investigating the problem 1.2 we shall answer the following simpler

question :

1.4. Fix y e B. What must be the shape of G in order that NU8y be a measure?

Let us first introduct a concept which will be useful later.

1.5. Definition. If M<=Rk is a Borel set and S<^Rk is an open segment or half-

line then z e S will be termed a hit of 5* on M provided both S n M n Qr(z) and

(S—M) n ßr(z) have a positive linear measure for every r>0.

An answer to 1.4 is included in the following proposition, which will be needed

later.

1.6. Proposition. Suppose that G is a Borel set. Fix y e Rm, r>0 and put

Er(y) = D n & : spt + c nr(y), |0| ^ l},

Dr(y) = Er(y) ntf-.ytspt >i>}.

If nr(6,y) denotes the number (possibly 0 or co) of all hits of{y + pd : 0<p<r} on

G, then nr(8, y) is a Baire function of the variable 6 on Y, the integral

vr(y) = jrnr(e,y)dHm_1(6)

is equal to

sup { i grad <}>(x) ■ ■ ̂~*L dx : <j> e Dr(y) \
Ua \y—x\ J

and

sup Í     grad 4>(x) ■ J   *   dx:<j>e Er(y) \ á A + vr(y).
Uo \y—x\ )

If y e B and G is open, then NUSy is a measure if and only ifvx,(y)<oo.

1.7. Remark. If it is necessary to specify the set G, we write nf(6, y) and v°(y)

instead of nr(6, y) and vr(y).

We postpone the proof of Proposition 1.6 to 1.11. First we establish two lemmas.

1.8. Notation. Iff is a function in R1 we denote by var [/; (a, b)] its variation on

(a, b) = R1 n {t : a<t<b}. Iff is known to be summable over every compact subset

in (a, b), we shall use var ess [f; (a, b)] to denote sup^. J* </>'(0/(0 dt, <p ranging

over all infinitely differentiable functions with compact spt <p <= (a, b) such that

Remark. It follows easily from the Riesz representation theorem and elementary

distribution theory that var ess [f; (a, b)] < co implies the existence of a function g

in (a, b) such that g=/a.e. in (a, b) and var [g; (a, è)] = var ess [/; (a, b)].

Clearly, var [/; (a, b)] — var ess [/; (a, b)] whenever / is continuous in (a, b).

1.9. Lemma. If cM is the characteristic function of a Borel set M^R1, then

var ess [cM; (a, b)] equals the number of hits of (a, b) on M.
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Proof. Let q stand for the number of all hits of {a, b) on M. If q < oo and

ax < • • ■ < aq are all the hits, then no {a,, aJ + 1) can meet both M and (a, b) — M in a

set of positive linear measure. It follows that either M or (a, b) — M is equivalent

with {Jk(a2k-Ua2k), where l^k, 2kSq. Consequently, var ess [cM; (a, b)]=q.

Conversely, if var ess [cM ; (a, b)] < oo, then there is a g with var [g; (a, b)] < oo such

that g=cM a.e. in (a, b).

Clearly, this implies q<oo.

1.10. Lemma. Let f be a bounded Baire function in Rm, y e Rm, 0^a<b^oo. For

der put

(1.4) fe(t)=f(y + te),       teRK

Then var ess [fe ; (a, b)] is a Baire function of the variable 6 on T and the integral

J  var ess [fe \ (a, b)] dHm _ x(0)

equals

v(a, b,f) = sup       f{x) grad <f>(x) ■   ?   *   dx,
¡i/   jRm \y — x\

4> ranging over all functions in D with

(1.5) spt^ c Rmr\{x:a < \x-y\ < b},       |#| á 1.

Proof. We may assume y = 0, b<oo. Using the notation from (1.4) we obtain

for any </>e D satisfying (1.5)

jRm f(x) grad <Kx)-^ dx = jr (£ fs(t)<Pe(t) dt} dH^id),

f feitWeit) dt Ú var ess [fe; (a, b)].
Ja

Assuming that we know already that var ess [fe; (a, b)] is measurable (7/m_i) on

T we get

v(a, b,f) á jr var ess [fe\ (a, b)] dH^^d).

It remains to prove that var ess [fe ; {a, b)] is a Baire function of d and

(1-6) £ var ess [fe; (a, b)] dH^d) è v(a, b,f).

To show this we first assume, in addition, that

(I). fe has a continuous derivative on (a, b) for every d e F and

sup {|/9'(0l : 6 e F, c < t < d} = K(c, d) < oo

whenever a<c<d<b.
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For every positive integer N we subdivide (a, b) by means of points

aK = al = a + k2~N(b-a),        1 ^ k < 2N.

Consider k < 2N - 2. Since sign [fe(ak + j) —fe(ak)] is a Baire function of 0, there are

functions <f>ks e D such that |^fcs| ̂  1 and

hm <pks(6) = sign [fe(ak + x) -fg(ak)]       a.e. (Hm _ ̂
5-* 00

on T. Further express the characteristic function of (ak, ak + ̂  as lims-. w pks,

where /3fcs are infinitely differentiable functions in R1 with

spt pks c (afc, ak + 1), \pks\ ^ 1,

and define

2N -2

«'*) = - 2 ^S(0W(O,     í^ o, ôer.
k = l

Then

■As G Ö, |^,| ^ 1, spt & c a- n {x : a < \x\ < b}.

Consequently,

v(a, b,f) ̂  J [£ ftitWJt) dt] dH^iff).

The sequence of integrals

r" 2i^;2 ra*+1

Ja )c = l Jofc

is dominated by (b — a)K(ai, a2" -i) and converges, as í —> co, to

2"-2

»*(*)= 2 i/i(«*+i)-/.(flfc)i

2"-2

2
k = l

a.e. (./Ym _ j) on Y. Hence we conclude

v(a,b,f)^ ^a^S)dHm.m-

Noting that oN(&) f var [f„; (a, b)] as TV-> oo we see that var [fe; (a, b)] is a Baire

function of d and (1.6) holds in this special case.

Let us now drop the additional assumptions (I) on /. For every positive integer

N we fix a symmetric infinitely differentiable function wN in R1 with

spt wN C (- 1/JV, 1/JV),  f    0JN(t) dt = 1
JR1
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and define/,, so th&t fNB=fe * «uj, (=the convolution of/9 and wN) on the positive

real axis,/jv(0)=0. Let aN=a+ljN, bN=b-l/N, 2jN<b-a. It follows from the

first part of the proof that

(1.7) £ var [fNe ; (a", ¿>»)] dHm . ¿0) = v(a», V, fN).

If <jßN is obtained from <ji in the same way as fN from /, then

</- e D, 101 á 1, spt 0 <= Pm n {x : a" < |x| < Z>"}

imply

<I>N g Z>, |0W| ^ 1, spt >/)N <=■ Rm n {x : a < |x| < b}

and

fi VMfsÁ!) dt = f PUMA) dt.
Ja Ja

Consequently,

(1.8) v(aN, bN,fN) ^ v(a, b,f).

The same argument shows that

(1.9) var ess [fNe; (aN, bN)] ^ var ess [fe; (a, b)].

It is easy to see that

lim inf var ess [fNe; (aN, bN)] ä var ess [fe; (a, b)],

which together with (1.9) yields

(1.10) lim var ess tfNe ; (a», bN)] = var ess [fe \ {a, b)].
AT-.oo

In particular, var ess [fe; (a, b)] is a Baire function of 6. (1.7), (1.8), and (1.10)

imply (1.6).

Remark. The above lemma could also be derived from general theorems on

functions, whose partial derivatives are measures ; cf. [FL], [KR], [P] on the subject.

Now it is easy to present the following.

1.11. Proof of Proposition 1.6. Let/be the characteristic function of G. By 1.9

and 1.10

var ess [f$; (0, r)] = nr(6, y),

vr(y) = ü(0, r,f).

If nr(6,y)<oo, then G n {y + td : 0<t<r} is equivalent (Hj) with a finite union
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of disjoint segments, whose end points are hits of {y + td : 0<t<r} on G and,

possibly, y and y + rO. Hence we conclude for <fi e Er(y)

i" feitWe(t) dt\ú\+ nr(6,y),       OeY,
Jo I

jjmdi(x)-(y-x)\y-x\-mdx ^ £ [l+nr(0,y)] dH^^O) = A + vr(y).

It remains to note that, in case y e B and G is open, NU8y is a measure if and only

if

sup {(4>, NU8yy : 4> e D, \$\ á 1} < oo.

1.12. Remark. Let us observe that, in case y e B and NU8y e C*(B),

(1.11) v„(y) Ú \\NUoy\\ Ï A + v„(y).

Now we are in position to answer the question raised in 1.2.

1.13. Theorem. NUp is a measure for every p. e C*(B) if and only if

(1.12) V = supino?) < co.
yeB

If this is the case, then

NU : p^ NUp

is a bounded linear operator on C*(B),

\\NU\\ ÚA+V

and (1.2) holds for every bounded Baire function </> on B. In particular,

NUp(M) =  f NU8y(M) dp(y)

for p e C*(B) and every Borel set M^B.

Proof. With every feowe associate a linear functional L^ over C*(B) defined

by

(p,L^ = (t,NUp),        psC*(B).

Denoting

P* = Gn spt if>,       .sv = sup |grad <¡i\,

we obtain from (1.1)

K/x, Lt}\ ^ s^A diam (B u P*)\\p\\

which shows that every L$ is bounded on C*(B). Let E=D n {</r : |</r| ̂ 1}. Then

NUp is a measure if and only if

sup (<p, NUp} < co.
ilrsE
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In particular, if NU¡x is a measure for every ¡x e C*(B), then the class of functionals

{L^}^e must be pointwise bounded on C*(B) and, by the uniform boundedness

principle,

sup IlLJI = K < co.

Employing (1.11) we get for every y e B

p.OO ^ sup <*, NU8yy S K.
teB

Conversely, if (1.12) holds, then (1.2) together with (1.11) imply

sup \<J,,NUvi>\ Z(A+V)M
llreE

for every pe C*(B). It is also easily seen that in this case (1.2) extends to any

bounded Baire function if/.

2. Double layer potentials.

2.1. Notation. Throughout this paragraph C<=Rm will denote a Borel set with a

compact boundary B. Given z e Rm we put

D(z) = D n {ip : z i spt </>}

and define

(2.1) W,(z) = f grad 0(x) • ̂ ^ dx,       0 6 D(z).
Jc \x—z\

If it is necessary to specify C we write W$ instead of W*. In case C has a smooth

boundary with exterior normal n the integral (2.1) reduces to

Í m(-^^äHm.1(y),
jb        \y~z\

which is the classical double-layer potential. If <b vanishes in some neighborhood of

B then there is a Q<^Rm with a smooth boundary such that

spt ip n C <= int ß,       clßc int C,

whence

H^(z) = W${z) = 0.

If z 0 P, we use this observation to extend ^(z) from Z)(z) to D defining

W»(z) = Wfa),

where 0 is an arbitrary function in D(z) coinciding with given if> e Din some neigh-

borhood of B. W$(z) may thus be considered as a distribution over D with support

in B (compare [D, Chapter III, p. 157]).
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For fixed >pe D, W^(z) is a harmonic function of z in Rm — B. Indeed, if O is an

open set with B n el O = 0, then there is a 4> e D coinciding with ifi in some neigh-

borhood of B and vanishing on O ; clearly,

W,(z) = Wi(z) =  f      grad ft*) ■ ̂̂  dx
Jc-o \x — z\

is a harmonic function of z in O.

Our main objective in this paragraph is to find necessary and sufficient geometric

conditions on C securing natural extendability of W* from D to broader class of

continuous functions and also "nice behaviour" (e.g., boundedness) of W^ near

B for each continuous >p.

2.2. Lemma. Fix z e Rm. Then

(2.2) v°,(z) < co

« a necessary and sufficient condition to secure

lim W^(z) = W¿z)

for every sequence of>pk e D(z) converging uniformly (as k -> 00) to <p e D(z). If (2.2)

holds then there is avze C*(B) such that

(2.3) W¿z) = jB m dv2(y),       4> 6 D(z),

(2.4) vz({z}) = 0,

(2.5) hi - «£(*)•

(2.3) together with any of the two conditions (2.4), (2.5) determine vz uniquely.

Proof. This follows at once from the equality

(2.6) vg(z) = sup {W¿z) : + S D(z), |^| f£ 1}

established in 1.6.

2.3. Remark. If (2.2) holds we extend W ■ ■ ■ (z) defining

Wf(z) = jBf(y)dvJ(y)

for any bounded Baire function fon B.

In order to present another integral representation for Wf(z) we introduce the

following.

2.4. Notation. Fix ze Rm and fleT.We put for />0

s(t;z, 8) = o(=±l)
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if there is a 8 > 0 such that

z + (t + oT)9eRm-C,       z + (r-<7T)0eC

for a.e. t e (0, 8); otherwise we set s(t; z, 8)=0.

Clearly, s(t; z, 0)^0 only if z+tO is a hit of {z+t0 : t>0} on C.

2.5. Lemma. If dS>(z)<oo then

(2.7) Wf(z) = f {2 Az+tW, z. *)) ¿tf.^tf)

/or a/y bounded Baire function f on B.

Proof. Let t&(z) <oo. If/e D(z) then

W/(z) = Jcgrad/(x).p^5i/x

= J" {£ S8/(z+rfl) í/í} dffm_ ¿0),

where

(2.8) C„ = {t : t > 0, z+t6 e Q, 8ef = 0-grad/.

Noting that n£(0, z) < oo imphes

f se/(z+tO)dt= 2f(z+tW! ; *> *)
Jc9 i>0

we obtain (2.7).

If {/k} is a pointwise convergent sequence of functions on B such that, for all

k, \fk\ ÚK and (2.7) holds with / replaced by/fc, then

2A(z + î0>(î;z, 0)   £Ä>£(0,z)
i>0

a.e. {77m_!} on T and, by the Lebesgue convergence theorem, (2.7) holds for

/=limfc/fc as well.

We conclude that (2.7) is valid for every bounded Baire function / vanishing at

z; in view of (2.4), vanishing at z is irrelevant.

2.6. Proposition. Let t>£,(z)<co. Denote by Kz and Lz the set of all 0 e T for

which there is an e = c(0) > 0 such that

H^z+tO : 0 < t < e} n C) = 0

and

H&z + tO : 0 < t < e}-C) = 0,
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respectively. Then Kz, Lz are measurable (Hm_1),

(2.9) Hm_1(Y-(KzuLz)) = 0

and vz(B) = Hm_1(Lz) or vz(B)= —//m_1(ÄrJ according as C is bounded or not. If

ip e D, then

(2.10) f gradftjO-ri^dx = W^-H^LMz).
Jc \x~z\

If Q is a convex Borel set, then

(2.11) \vz(B n Q)\ í A.

Proof. It is easily seen that

Yn{6: ríi(0, z) < co} <= Lz u Kz

whence (2.9) follows at once.

Fix now a 0 e Y with n£(0, z)<co. Let

(2.12) U <■••< t.

be all the points t e (0, co) with s(t; z, 0)#O (cf. 2.4). Clearly,

(2.13) s(ti+1; • • •) = -*(/,; ■ • •),      i ^ y < q

and s(í! ;•••)=! or s(ti ;••■)= — 1 according as 6 e Lz or 0 e Kz. If C is bounded,

then s(tq; ■■■)={, while i(rs; • ••)= — 1 m the opposite case. We conclude that

2(0)= 2s(';z>ö)
í>0

almost (Hm_1) equals the characteristic function of Lz if C is bounded, while

— 2 (0) almost equals the characteristic function of Kz in the opposite case.

Employing (2.7) with /= 1 we get the first part of our proposition.

Let now/be the characteristic function of a convex Borel set Q. Consider again

a fixed 0eY, n^,(0,z)<oo, and the corresponding sequence (2.12). If r¡ and tk

are the first and the last members of (2.12) with z+1¡0 e Q, respectively, then (2.13)

implies

2 /(z+í,OMí,;z, 0)  =   2s(tr,z,0)  SI,
j = l i = f

whence (2.11) follows by 2.5. If <¡> e D then we have with the notation from (2.8)

f   det/j(z + t0) dt = 2 >Kz + t0)s(f, z, 0)
Jcs t>0

for 8 e K¡. n {0 : ríi(0, z) <co}, while

f   de4>(z + t0) dt = 2 >Kz+t0)s(t; z, B)-x¡>(z)
JCg (>0
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for 0 e Lz n {0 : «£(0, z) < oo}. Hence

£ grad #*)• |3^S <k = £ (£ S90(z+i0) A) ¿#b-i(0)

= W4,{z)-Hm_¿Lz)Jj{z).

2.7. Lemma. Ler t)^(z) <oo and ¿¿ç/zne Lz as /n 2.6. // M<=T ¿j measurable

(Hm_1),Hm-1(M)>0and

AM = {z+t0 : 0eM,t > 0},

then

Hm(Qr(z) n C n AM) = Hm.-AL,r\M)

l*    ; r-o+     //m(Ür(z) n AM) Hm_x{M)

In particular, C has an m-dimensional density

dc(z) = Hm-¿LalA

at z.

Proof. Let c(0) have the meaning described in the definition of Kz, Lz in 2.6 and

put

KT = M n{0:0eKz, e{0) > r),

U = M n {0 : 0 e 7_z, e(0) > r}.

We have

HJO¿z) nCnAM)irV inn 7Ym_¿If),

Hm({Ür(z)-C) n AM) fc j»rV" inn H^^K*),

where inn//m_j stands for the inner (m—l)-dimensional Hausdorff measure.

Denoting

//.(ü,(z)nCnAM)

/Ím(í2r(z) n AM)

and noting that

K'\(KznM),      U\(LznM)

as r j 0, we obtain

liminf </r ̂  Hn.x(Lz n M)/Hm^(M),
T--.0 +

lim inf (1-4) ^ Ä»-i(A, n M^H^M),
r-.0 +

whence (2.14) follows by (2.9).
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2.8. Notation. P(C) will denote the perimeter of C defined by

P(C) = sup f div w(x) dx,
w    Jc

where w=[wu ..., wm] ranges over all vector-valued functions with m components

WjS D satisfying

(m \ 1/2

2wf)     = \w\ á 1.

(Further information on sets with finite perimeter may be found in [DG], [F3],

[FL], [MA].)
For M^Rm and zeFwe let

dist (z, M) = inf {|z-j| : y e M}.

2.9. Lemma. v1(z) is a lower semicontinuous function of z on Rm satisfying the

inequality

vl(z) ¿ i>(C)(dist (z, B))1 ~m,       ziB.

Proof. If K<vZ(z), then there is a <fie D(z) such that |«/r| S 1 and Wt(z)>K

(see (2.6)). Hence

lim infvg(y) ^ lim W>l>(y) = W<¡>(z) > K.
!/->z V-»z

Suppose now that z $ B, fix an arbitrary <¡>e D(z) with |^| S 1 and a positive

p < dist (z, B). Then there is a >J> e D, \<Jt\ ¿¡ 1, which coincides with tp in some neigh-

borhood of B and vanishes on Q„(z). Let us define w(z) = O (e i?m),

w(x) - ftx) ,   _*,       X # z,

and observe that |w| S p1_m,

grad ^W-/Jz^m - div w(x).

Consequently,

Wty(z) = Wftz) =  f div w(x) î/jc S pi-^C).

Remark. We see that vcm(z) is finite on Rm-B provided P(C) < co. The converse

is also true as it follows from the following

2.10. Proposition. If

m + l

2 i£(z,) < °o
j = l
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for an {m + \)-tuple of points zu .. .,zm + 1 in general position (i.e., not situated on a

single hyperplane), then

(2.15) P(C) < oo.

Proof. To prove (2.15) it is sufficient to show that

sup j j   dexji(x) dx : 4> e D, \>p\ S l| < oo

for  every   0 e I\   Fix   0 6 T.   Let   ny  denote  the  hyperplane   determined   by

{zk : k #J}. Since

there are a¡e D such that

and

in some neighborhood of B.

Noting that

pi1(pm-n/) = pm,

Uj n spt a, = 0

m+1

a(x)deJj(x) dx =      dei/ß(x) dx
Jc Jc

we see that it is sufficient to prove that

sup <     a/x)Sei/'(x) dx : ib e D, \i/j\ ^ 1 >■ < oo

for y'=l,..., OT +1. Consider, for instance, j= 1. If x £ spt au then *—z2,...,

x—zm+1 are linearly independent. Consequently,

0 = 2 a*(*) n£
x —zte

Zfe

where afc are infinitely differentiable in some neighborhood of spt a!. Extending

ak arbitrarily to Rm we get

/• m +1   /• _

«i(x)as</>(x) dx =  T      a^a^grad^x),--^ dx.
Jc fc = 2 JC I*- 2k\

Fix fce<2, m+l> and define P(x) = a1(x)aic(x). Then FeD(zk) and denoting

^T=max |P| we obtain for any >pe D with |0| ^ 1

f Fix) grad ft*) • r^fc d* = A + /2,
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where

h =  Í g™d(F(xMx))r^%dx S Kvg(zk),
Je \x — zk\

h = - f fa) grad ÍWA á*
Je \X — zk\

S  J   |gradF(x)|-|*-zfc|1-mí¿c < oo.(2)

2.11. Remark. It follows from 2.2, 2.9, and 2.10 that (2.12) is a necessary and

sufficient condition to secure continuous dependence (with respect to uniform

convergence) of Wi¡>(z) on ty for every z $ B. For this reason we agree to impose

(2.15) on C throughout the rest of the present paragraph.

Let us recall that 0 e Y is called the exterior normal of C at y in the sense of

Fédérer provided the symmetric difference of C and the half-space

Rmr\{x : (x-y)-0 < 0}

has /«-dimensional density 0 at y (cf. [FI]).

In what follows the term exterior normal is always to be interpreted in this sense.

We put nc(y) = n(y)= 0 if 0 is the exterior normal of C at y; otherwise n(y) denotes

the zero vector. The set of all y with n(j)#0 is called the reduced boundary of C

and will be denoted by Ê. It is known from [DG2] and [F3] that

and

J  div w(x) dx = J  w(y)-n(y) dH^^y)

for every vector-valued function w= [wls..., wm] with components w¡ 6 D.

2.12. Lemma. For every z e Rm

(2.16) vUz) =  f K^V' dH-^-
Jb    \y—z\

If u£(z) < oo and M^B is a Borel set, then

Jm   \y~z\

Proof. Fix z e Rm. Let >/> e D(z) and put w(z) = 0 (e Rm),

w(x) = </j(x) ,   _*,       x + z.

(2) The author is indebted to Herbert Fédérer for simplification of this proof.
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Then

WM = jc div w(x) dx = jB 4>(y) "(^^~Z) dHn-¿y)

and (2.16) follows from (2.6). Let now vcx(z)«x>. As we have just seen,

Is*.-1 *»*&$£*-*»
provided fe D(z); it is easily seen that this formula extends to any bounded Baire

function /.

The following result will be useful below:

2.13. Theorem. Let

Ve = sup {i£O0 : v e B}.

Then vcx{z)^A+ Ve for every z e Rm.

Proof. We may assume Ve < oo. Fix z e Rm — B and let d be an arbitrary number

less than vc^(z). Then there exist mutually disjoint closed parallelepipeds Ku ..., Kq

such that

2 \vz{B n K¡)\ > d.

Put o-j = sign vz(B n Kj) and consider the function

h(x) = 2 "PAß n K,),

which is harmonic on

Rm- U Br\Kj => Rm-B.

Fix an arbitrary y e B. If _y £ U/ = i ^ tnen

limn(x) = AQ0 ̂  ||vv|| i£ Fc.

In the opposite case we may assume that y e Ku so that

lim J "PAß n *,) = 2 ^v(5 n &) g ||vw|| =£ Kc

and, by Proposition 2.6,

sup \vx(B r\ Kx)\ g ^.
a:

We see that

lim sup h{x) ^ A + Fc.
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Noting that n(x)->-0 as |x|->co we conclude that h^A+Vc on Rm — B. In

particular, d<h(z)^A+ Ve.

2.14. Corollary. Ifr>0 and z e Rm, then

(2.17) Hm_ ¿O^z) r\Ê) ^ m(m + \)m(A + Vc)rm"\

Proof. To prove (2.17) we may clearly assume that z = 0. Noting that Ve is

invariant with respect to dilations of C we observe that it is sufficient to establish

(2.17) for r= 1 only. Let ei denote the point in Rm all of whose coordinates vanish

with the exception of the i'th one which is equal to m +1. We have then for 0 e Y

and yeQ. = Q.1(0)

2 \0-(y-e% > 1,
( = i

so that

i = l Jb

m

= (m+l)m 2 »S.(eO è m(m+l)m(A+Vc).
f = i

2.15. Theorem. Let C(B) denote the Banach space of all continuous functions f on

B with the norm ||/|| =sup \f\. If Wfis bounded on Rm-Bfor every fe C(B) then

(2.18) Ve < co.

//

Ct = Rmn{z: dc(z) = /}       (i = 0, 1)

and (2.18) holds, then Wf is bounded and uniformly continuous on each of the sets

C0, Cx and

(2.19) lim    Wf(z) = Wf(y)+A(\- dc(y))f(y)      foryeBndC,,
z-*y, zeCi

(2.20) lim    Wf(z) = Wf(y) - Adc(y)f(y)      for y e B n cl C0
z-*y, zeCo

whenever fe C(B).

Proof. If Wf(z) = (f, vzy is a bounded function of z on Q<=Rm for every/e C(B)

then, by the uniform boundedness principle, ¡^^^(z) is bounded on Q. In

view of 2.9, Dm(z) must be bounded on cl Q as well. For Q = Rm-Bwe get the

first part of our theorem. Assume (2.18) and fix y e B. If /= 1 on B then (2.19),
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(2.20) follow from 2.6, 2.7. It is therefore sufficient to prove (2.19), (2.20) assuming

feC(B), f(y)=0. For every k we have the decomposition f=fk+gk, where

fk e C(P) vanishes in some neighborhood of y in B and || gk || á 1 ¡k. Then Wfk is

continuous at y and | Wgk\ ̂ (A+ Vc)/k. We see that W/=limk_0C) Wfk is con-

tinuous at v. The rest is obvious.

3. The Fredholm radius of an operator.

3.1. Notation. As in the introduction, G will stand for a fixed open set with a

compact boundary B in Rm. We put C=Rm-G and write vT(y) = va(y) ( = v?(y)),

V= Ve (cf. 1.6, 1.7, (1.12), 2.13). We always assume

(3.1) V < oo.

In view of 1.13,

(3.2) NU: n^NUix

is a bounded linear operator on C*(B). By 2.7, G has an m-dimensional density

dG(y) at any y e Rm.

3.2. Lemma. Iff is a bounded Baire function on B then

(3.3) </, NU8yy = Ada(y)f(y) + Wcf(y),       y e B.

Proof. It is sufficient to prove (3.3) for/e D only. Employing 1.3, 2.6, and 2.7

we obtain

<f,NU8yy =  f grad/W-rJ^dx
Jc \y—x\

= ^/O0 + £grad/(x).p^;dx

= Ada(y)f(y)+Wcf(y).

3.3. Definition. If fe C(B) we define

(3.4) Wf(y) = </ NU8yy - \Af{y),       y e B.

3.4. Lemma.  Wfe C(B) whenever fe C(B). The operator

(3.5) W:f^Wf

is bounded on C(B) and the operator (3.2) is adjoint to \AI+ W, where I is the identity

operator on C(B). If fe C(B) and Cx has the meaning described in 2.15, then

(3.6) Wf(y)=     lim    wcf{z)-\Af{y),      yeBndC,,
z-*y; zeCi

Wf(y) = Wcf(y) + A(dG(y)-i)f(y)
(3.7)

=    lim    Wcf{z) + \ARy),       y e B.
z—y, zeG
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Proof. (3.7), (3.6) follow from (3.4), (3.3), and (2.19), (2.20). By (3.7), Wfe C(B)

for fe C(B). If vy has the meaning described in 2.2 and

(3-8) vy = A(da(y)-i)8y + Vy,

then

(3-9) Wf(y) = {fivy>,      feC(B),       y e B,

whence

(3.10) || W\\ = sup py\\ = sup (A\dG(y)-i\ +v„(y)).
yeB yeB

By 1.13, the formula (1.2) holds for any 0 e C(B). This together with (3.4) implies

(3.11) NU = (\AI+ W)*,

where (•••)* denotes the operator adjoint to ( ■ • ■ ).

3.5. Remark. In §4 we shall be engaged with the Neumann problem in the

following formulation: Given v e C*(B) find a p e C*(B) with NUp = v. By (3.11),

this problem reduces to solving the equation

(ÍAI+ W)*p = v.

In connection with this equation it is useful to know the Fredholm radius of W,

i.e., the reciprocal of

wW = inf ||ÏF-r||,
T

where T ranges over all compact operators on C(B) (cf. [RS]). Our main objective

in §3 is to express w W in terms of geometric quantities connected with G and

investigate relations between w W and regularity of B.

3.6. Theorem. Let IB denote the set of all isolated points of B and put E=B — IB

if IB is finite, E=B in the opposite case. Let Vr = 0 or

Vr = sup[A\i-da(y)\+vr(y)]
yeE

according as E— 0 or not and define

V0 = lim  Vr.
r->0 +

Then wW=V0.

Proof will be divided into two steps.

Step 1. We first prove that

(3.12) wW S VT

for every r > 0 satisfying

(3.13) Hm^(Ê n {z : \z-y\ =/•}) = 0       for all y,
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where Ê is the reduced boundary defined in 2.11. If R is the set of all r > 0 enjoying

(3.13) then (0, co) — R is at most countable, because spherical shells with different

radii meet each other in a set of //m_!-measure zero and Hm-10)<co. Hence

K0 = inf{Kr : reP}and

(3.14) wWg V0

will follow from (3.12). So let us fix re R. If IB is finite we assume, as we may,

r < dist (IB, E) = inf {dist (z, E) : ze IB}. Let cy denote the characteristic function

of B-(ßr(y) n E) and put

Wrf(y) = jBCyfd?y,      feC(B),

where vy is defined by (3.8). Absolute values of all the functions in

(3.15) {WTf:feC(B),\\f\\úl}

are bounded by supy6B ||v¡,|| ̂ iA + V. If f e C(B) and x, v are arbitrary points in

E with |x—y\ = dg%r, then we obtain from 2.12

WJ(x)- WTf(y) = J1{f)+J2Íf),

where

Jiif) =  f m[cx(z)-cy(z)] n('l'(Z7mX) dH^Jz),
Jb \z~x\

Uf) = ¡b f^y^y^-J^\ "(z) *-iW

Denoting

«(d) = sup Hm^[(cl nr+a(z)-nr-Áz)) n J]
z

we get for ||/|| ^ 1

IACOI ^ (^-"-«(d),

|/2(/)| ^(m+l)d(ir)-m.

Since r e R, an easy compactness argument yields

lim «(d) = 0.

We see that all the functions in (3.15) are equicontinuous on E; noting that B — E

is finite we conclude that they are equicontinuous on B as well and the operator

Wt:f-+Wtf

is compact. Hence

wW g: \\W-Wr\\.
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life C(B) then

Wrf(y) = Wf(y)

while (3.9) shows that, for y e E,

for ye B—E

(W- Wr)f(y) = jfdïy

with the integral extended over B n Clr(y). Consequently,

|| W- Wr\\ = sup \vy\(Clr(y) n B) = VT
yeE

and (3.12) is established.

Step 2. Now we are going to prove the inequality

(3.16) >W>   Vn

which is trivial if E= 0. Therefore we assume £# 0, so that E is infinite. A point

yeB will be termed a discontinuity for a p e C*(E) if p({y}) / 0. By the Radon

theorem, every compact operator on C(B) can be arbitrarily closely approximated

by operators of finite rank. If Q is such an operator, sending fe C(B) into

(3.17) Qf= %g*<f,mky,

where gk e C(B) and mk e C*(B), then every mk can be arbitrarily closely (in the

norm of C*(B)) approximated by mk e C*(B) having only a finite number of

discontinuities. Defining

«

5--- 2 Sk<---,mky
k = l

we see that the deviation \\Q— oil can be made as small as we want. It follows

from these observations that, in order to prove (3.16), it is sufficient to show that

(3.18) I »'-fill ^ Vo

for every Q of the type (3.17), where mk e C*(B) have only a finite number of

discontinuities each. Let us fix such a g and denote by K the (finite) set of all

yeB which represent a discontinuity for some of the measures mk (k= 1,..., q).

Every mk splits into mk having no discontinuities and a finite combination of Dirac

measures, to be denoted by m2. Since y is the only possible discontinuity for vy,

we have for y e B—K

*v~ ^gk(y)mk 2^HI+||2s*(>')w'

whence

\W- fi|| ^ sup | ¡>y- 2gk(y)ml   : y e E~K\
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Since the operator

/->¿f, *y- 2Sk(y)mi\
\ fc /

sends each/e C(B) into a continuous function of y we conclude that

533

ar{y) »»- 2^^m* (Qr(jO n P)

(3.19)

is a lower semicontinuous function of j for every r>0. Consequently,

|!lF-ß|| * sup{arO0:je£-tf}

= sup {ar(z) : zeE-{IBr\ K)}.

Consider now an arbitrary y e E C\ IB(~\ K and note that E n IB+ 0 implies

0 # Er\{lB-K) c £-(/B n A).

If

r < dist (/B n A:, £-(/b n A)),

then

E«*(M (000 n P) = |2 SfcOOmJ (£M>0 n IB) = 0,
(3.20) !k '*

«rW = I^KQrOO n /*) = i¿.

On the other hand, we have for any zeIB

\A á MQ-dG(z)82)|(Qr(z)nfí) + "z- 2^(z),w* (Qr(z) rsB) = ar(z),

because vz — ̂ kgk{z)mk has no discontinuities. Combining this with (3.20) we get

a,(y) á sup{ar(z) : z e P n (/„-/f)} ^ sup{ar(z) :ze£-(/Bn A)}.

We have thus for small r > 0

(3.21) sup{ar(z) :ze£-(/Bn #)} = sup{ar(>-) :je£}.

Note that

VT = sup |P,|(ür(j) n P).

If A/ = max{|gfc(x)| : x e B, l^kgq}, then

(3.22) sup {ar(j) : J e P} ^ Kr-M T sup |wí|(ür(j) <~> P)-
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Since m\(k=\,.. .,q) have no discontinuities,

lim sup |mi|(QrO0 r\ B) = 0.
r->0 +   yeB

Making r->0+ in (3.22) and using (3.21), (3.19) we arrive at (3.18).

Remark. The basic idea of the above proof goes back to J. Radon (cf. [RS]).

3.7. Lemma. Let us define Ê as in 2.11 and put

B* = Bn{y:\dG(y)-i\ < *}.

Then Ê is dense in B* (moreover, every ball of center in B* meets B in a set of positive

Hm^ ^measure) and

Hm^(B*-È) = 0.

Proof. If y e B* then there is an e > 0 such that

Hm(Qr(y) nG)> eHm(Qr(y)),

Hm(Çlr(y) nC)> eHjQ¿y))

for 0 < r < e. By the relative isoperimetric inequality for sets with finite perimeter

(cf. Theorem (4.3) in [MI]; general isoperimetric inequalities for currents may be

found in [FF, §6]) we conclude that

Hm-X(&r(y) nÊ)^ arm'\       0<r<e,

where a > 0 does not depend on r. Hence it follows by [F2, §3] that

Hm.1(B*-E) = 0.

3.8. Notation. For ze Rm, r>0 and 0 e Y we put

Qr(z, 0) = Q.r(z) n {x : (x-z)- 0 > 0}.

We denote by a(0, r¡) = arceos (Orj) the nonoriented angle enclosed by 0, -qeY.

It is easily seen that

a(0, rj) _ Hm(ilr(z, 0) Q ar(z, -rj))

K      } 2iT HJßr(z))

The symbol n will always have the meaning described in 2.11. The symmetric

difference of P, Q<=Rm will be denoted by P^ Q.

3.9. Lemma. Let zeÊ, 8=n(z). Then

Hm(ür(z, 0) n int C) + Hm(ar(z, -0)nG)ï Hm(QT(z)) v-j$-

Proof. Let

Hm(Qr(z, 0) n int C) Hm(£ir(z,-0)nG)

n < Hm(£iT(z))        '       y* < Hm(ilr(z))
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Put r+ = rn{1? :^.0>O}, r_ = rn{1? :r0<O}, S(p)={x : |x-z| =P} and define

K¡¡, Lz as in 2.6. There are pu p2 e (0, r) such that

(3.24) Hn. ¿Sip,) n nr(z, 0) n int C) > YlHm_ ̂ (pi)),

(3.25) Hm. ¿Sip,) n £L(*, - 0) n G) > y2Jr/m _ ̂ (p,)).

By virtue of 2.7

Hm^(Lz n r+) = ^ lim %Q(izvf 2? = 0,
0-0+       //„(ii^z, 0))

Hm_¿Lz n F_) = i¿ lim ^¿V^ffl^ » ^
A-.0+      //m(i2fl(z, -t/))

We see that Lz is equivalent (#m_i) with T_ and A^ is equivalent (//m_i) with

r+. If 77 eP2 and {z+/>r; : O<p<r}nG^0 then, with the notation from 1.6,

nr(r¡, z)~¿\ 1. Employing (3.25) we obtain

nT{r),z)dHm_-i{TÍ) > y2A.
JLz

Similarly, (3.24) implies

nr(v, z)dHm_1{r)) > YlA,
JKz

so that

vr(z) = J nr(r),z)dHm-1(r]) > (yi + y^A.

3.10. Lemma. Let N eT,ye Rm, r>0 and suppose that

(3.26) sup i>r(z) ̂  «o^l)

(3.27) HJßr(y, AT) H O á HÄ(Ür(j)),

(3.28) Ä»(0(y, -TV) n cl G) ^ K2.r7m(í2r(v)).

//"j = Mo + «i + M2<i. then for every y>s there is a 8>0 (depending on (y — s)r only)

such that

a{n{z), N) g-ny      for zeÊn £là(y).

Proof. Let y = s + 2e, e>0, and consider a 0 e T with a(N, 0)>yTr. We have by

(3.23)

Hm(ür(y, -N) n £lr(y, 0)) > h>HJO¿y)),

Hm(nr(y, N) n Qr(>>, -0)) > b>Hm(ßr{y)).
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Let us fix 8 > 0 small enough to secure

Hm(nT(z, ,) - Qr(y, ,)) < eHm(ür(y))

for \z—y\ < 8 and any -q e Y. We have then for z e Qô(y)

Hm(Qr(y, -N)n £2r(z, 0)) > isHm(Clr(z)),

Hm(Cïr(y, N) n £2r(z, -0)) > $sHm(Cir(z)),

whence we obtain on account of (3.27), (3.28)

HJQJz, 0) n int C) ^ Hm(Qr(z, 0) n Cir(y, -N))-Hja¿y, -N) n cl G)
(3.29)

> (Í5-K2)#m(í2r(z)),

/im(ßr(z, - Ö) n G) ^ //m(i2r(z, - 0) n £lr(y, N))
(3.30)

-Hm(nr(y, N)nC)> Gs-Ul)Hm(a¿z)).

Suppose now that z e Ê and 8 = n(z). Employing (3.29), (3.30) and Lemma 3.9 we

arrive at vT(z)>u0A, which violates (3.26).

3.11. Notation. Let PN stand for the orthogonal projection of Rm onto

Rm n {x : x-N=0}. With every a e (0, £) we associate B(a)'=B as follows. We let

y e B(a) if for every y e (a, %) there is a neighborhood ß of j in 5 and an N e Y

such that \PN(x)—PN(z)\^\x—z\ cos ny whenever x, zeQ. By Theorem 5.1 in

[MI] we get the following corollary of Lemma 3.10:

3.12. Corollary. If (3.26), (3.27), (3.28) hold and s = u0 + u1 + u2<\, then

y e B(s); moreover, for every y e (s, -J) there is a 8 > 0 (depending on r(y — s) only)

such that B n ¿l6(y)^B(y).

3.13. Theorem. If V0<\A then IB is finite and

(3.31) Hm-¿B-B(VolÁ)) = 0.

V Vo<\A then B=B(2V0¡A).

Proof. Let V0<$A. Then IB must be finite, B—IB = E<^B* and, by 3.7,

Hm_1(B—ß) = 0. To prove (3.31) it is therefore sufficient to show that

¿ «=*(*+$)

for every small e > 0. Fix j e j§, N=n(y) and e > 0, 3e + K0/U < £. We have then for

sufficiently small r > 0

¿UB&. N)nC)$ eHm(iir(y)),

Hm(ür(y, -N) n el G) = #m(Qr(j, -N)nG)

è *Hm(£ir(y)),

(3.32) Kr < Ko + £^.
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Employing 3.12 we get y e B(3e + V0/A). Suppose now that a=V0¡A<^ and fix

an r>0 with (3.32). By 3.9 we have for all v £P

HJO¿y, n(y)) n C) + Hm(Qr(y, -n(y)) n cl G) < (a+e)Hm(ür(y)).

By 3.12 there is a S>0 independent of y such that Q6(y) n B<=B(3e + 2d) for every

yeE.lt remains to note that Ê is dense in E by 3.7.

3.14. Corollary. IfV0<\A then

Um sup {p1-mi/m_1(Qe(j) n B) : y e B, 0 < P< r} g èm-i sec (2V0tt¡A),
1--.0 +

where bm-x denotes the volume of the unit ball in Pm-1.

3.15. Theorem. Let V0=0 (which means that W is compact). Then IB is finite

and E=B—IB is a surface of class C*.

Proof. For every e>0, e<\ there is an r>0 such that VT<eA. By 3.9 (note

also that Hm(B) = 0)

Hm(ÜT(y, n(y)) n C) + Hm(Clr(y, -n(y)) n cl G) < eHm(Ür(y))

for all y e Ê. Employing 3.10 we get a 8>0 depending on re only such that, for

every couple of points y, z e Ê, a(n(z), n(y)) ^ 3en whenever |v — z\<8. We see

that n is uniformly continuous on Ê. By 3.7, n extends to a continuous function N

on P=cl Ê and, for every y e E,

JN(z)dHm.1(z)

r"oV ií„-i(íírWn£)

with the integral extended over Qr(y) n E. Hence it follows by [DG3, Theorem

III] (see also definition of the reduced boundary presented in [DG3, p. 10]) that

E is a surface of class C1.

Remark. The main results of this paper (such as Theorem 1.13 or Theorem 3.6)

are expressed in terms of the quantity vr(y). In the definition of vr(y) one considers all

half-lines issuing at y, i.e., orthogonal trajectories of the level surfaces of the Green

function with a fixed pole at y. This suggests the possibility of generalizing these

results to the case of a Green space in the sense of [BC].

4. Boundary value problems.

Notation. We shall keep the notation and assumptions introduced in §3.

Besides that we always assume here that m > 2 (see Remark 4.10 below dealing with

m = 2). We shall start with investigation of solutions of the equations

(4.1) (IAI+W)f=0       over C(B),

(4.2) QAI+ W)*p, = 0       over C*(B).

C0(B) will denote the class of all/e C(B) satisfying (4.1) and C*(B) will stand for

N(y) =  Um
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the set of all p e C*(B) satisfying (4.2). We agree to use M as a generic notation

for a Borel set. If p is a signed Borel measure in Rm and R <=■ Rm is a fixed Borel set,

we define p n R by

P n R(M) = p(M nR),       M c j?"1.

Recalling the definition of vy presented in (3.8) we obtain from (3.9) that, for every

peC*(B),

(4.3) W*p(M) =  f vy(M) dp(y),        M e B.

It follows from (3.10) that

(4.4) \\W*\\ ÚÍA+V,

where V= Ve has been defined in 2.13.

4.1. Lemma. If pe C$(B) then \p\(IB) = 0 (see 3.6 for notation).

Proof. Let pe C$(B), zeIB and denote by/the characteristic function of {z}.

We have by 3.4, 1.13, and (3.3)

0 = NUp({z}) = jB (AdG(y)f(y)+ Wj(y)) dp(y).

It follows from (2.12) that Wcf=0, so that Ada(y)f(y)+Wcf(y) = Af(y) for all

yeB. Hence p({z})=0.

Remark. A refinement of the preceding argument may be used to show that,

for every p e Cq*(B), p n M is absolutely continuous with respect to //m_i n Ê

provided dG(y) > 0 for all y e M.

As it follows from 4.1, C$(B) contains only trivial measure in case B=IB. In

what follows we always exclude the trivial case of a finite B.

4.2. Lemma. Fix ze B, pe C*(B) and put for r>0

(4.5) Rt = Bn Cit(z),

(4.6) a(t) = Hm.1(Rt n Ê),

(4.7) ß(t) = \p\(Rt).

Let 0<p<8<A and suppose that

pn(Rá-Ri) = p.

Then
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Proof. Let g denote the, characteristic function of Ê n Rp. By 2.12 we obtain

for y e RA - Rd and MI=R0

\9y(M)\ = \vy(M)\ g   f g(x)\y-x\^mdHm^(x),
Jit

whence it follows easily by (4.3)

(4.9) |fFVI(P.)=   JJ g(x)\y-x\i-mdHm^(x)d\pi\(y).
BxB

Since

f ly-xH-rfMOOS F(t-\x\y-"dß(t)
Jb Jó

<_j(A)_ r ÄQdf

(4.9) imphes (4.8).

4.3. Lemma. P/x ze B, r>0 and put, with the notation from 4.2,

R = Rr(=üT(z)nB),

V(R) = sup{\vy\(R):yeR},

Q(R) = sup{y-Mp):0< p<r},

tf(P) = inf{F(ic)ft"-a+f2(JR)[(3r^î)m"1-l] : * > l}-

Define

W%p. = (ÎFV) HP,       P-e C*(P).

Per C£ denote the set of all p. e C*(B) enjoying

J(p) = JV ""MW <*/><»
and

(4.10) WV-K) = 0

and put

llíi||B = ¿2r2"m|líi|l+/0i)'       ^^

77zen p-e CB implies W*p. e C* and

\\WMb è K(R)hh.

Proof. Fix p. e C$ and &> 1. We have with the notation from (4.7)

(4.11) J(p) = jr0pl-™ß(p)dp.
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Let now 0<p<r/k and define

pD = pn RkD,      p" = p-p0.

In view of (4.3)

(4.12) ¡WgpA â V(R)ß(kP).

Employing 4.2 we obtain

(4.13) \W^\(RP) * A^ + (m-l)a(P) [^

On account of (4.12), (4.13) we get for 0<p<r¡k

pi-'lWgMR,) è V(R)P1-mß(kp)+Q(R) ^Nri_1 + (m- l)Q(R) £ M*.

while, by (4.3),

px-m\Wêp\(Rp) Ú V(R)P1-mß(r)       for r\k -¿ p < r.

Using (4.11) we obtain after simple calculation

J(Wh*p)=  ['k Pl-m\Wip\(RD)dp+[r  p*-m\Wtp\(R0)dp
Jo Jrlk

¿ m^r2-^V(R)(k^-2-l)+Q(R)[<^y'2-ijj

+j(p)(v(R)km-2+ßw[(^zr)ml-1] )•

Since, by virtue of (4.3),

||ÏFj!>| ^ V(R)ß(r),
we get finally

II WSpU = ¿2 r2"m|1 W*^ +J(W^

S \\p\\^V(R)k--2+Q(R)[l^y'1-lJj-

4.4. Notation. Let

gr - sup{pi-mHm^1(Q.D(z) nß): zeB,0 < p < r},       r > 0,

ßo = Um  Qr.
r-0 +

Further define V0 as in 3.6 and put

(4.14) Ko = inf{r0Â:m-2 + Ô0[(^î)m"1-l] : k > lj-
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In what follows we shall always assume that

(4.15) K0 < \A.

4.5. Remark. The inequality (4.15) implies

(4.16) V0 < i A.

Indeed, since P is infinite and V0<%A, (3.7) secures Hm-1(E)>0. It is known from

[DG2], [F3] that for (Hm.1) almost all y e Ê

Um /¿-"Am-xiAO') nß) = bm.1,
0-.0 +

where bm-x denotes the volume of the unit ball in Pm_1. Hence ß0=£>m-i and k

minimizing

^-+ôo[(^î)m"-l]

must satisfy

*>&[(Är-']*»"--f
which guarantees km~2>2.

On the other hand, if (4.16) holds, then 3.14 provides an estimate for Q0 in

terms of V0. Clearly, (4.15) is fulfilled whenever V0 is sufficiently small.

In view of (4.16) and 3.6, the Fredholm theory applies to the pair of adjoint

equations

UAI+W)f=g,

(ÍAI+ W)*p. = v.

4.6. Lemma. If p. e C^(B) then U\p\ (see the introduction for notation) is bounded

onB.

Proof. Define Vr and E as in 3.6 and fix r>0 and k> 1 such that

K= K2rA:"-2+ßr[(-^T)m"1-l] <\A,

r < dist(P, B-E).

Fix an arbitrary zeE and define P = £2r(z) r> B. We have then with the notation

from 4.3

V(R) Ik V2r,       Q(R) ï Ôr,

(4.17) K(R) g K <\A.

Let p. e C$(B), \\p.\\ S1 and put

P-o = p. n P,       p.0 = p.-p.0.
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In view of (4.2)

(4.18) \Apo+W*po= -iAp°-W *p°.

Restricting all measures occurring in (4.18) to R we obtain

(4.19) (I+2A-1Wh*)po = -2^"1iFBV°

where, of course, / is the identity operator. Employing 4.2 with 8 = r and A = r

+ diam B we obtain easily for 0 < p ̂  r/2

P1-m\W*p°\(Rp) ^ fir2mr1-m||/¿°|| ^ Qr2nrx'm.

On the other hand, we have for p > r}2

P1-m\W*p°\(R0) ^ 2m-1r1-m||ÍF*||-||/x°|| ^ 2m-1r1-m(iA+V),

so that

J(Wk*p°) ̂  2m~2r2-m(2Qr + iA+V).

Since

||ÎF«VII ^ II»"VII ̂\a+v

we arrive at

\WZp«\núyr,

where

yr = -^-^r2-m(\A+V) + 2m-2r2-m(2Qr + \A+V).

We see that W$p° e Cg. It is easily seen that Ci, equipped with the norm || • • • ||B,

is a Banach space. In view of (4.3) and (4.17)

\\wnRsK<iA.

Hence we conclude by virtue of (4.19) that p0 e C% and

II    II    < /i    2KV\j-x
\\Po\\r á 11—-j\    2A   y, = ar.

Since ar is independent of ze E, we have, in particular,

sup f p^-m\p\(ÇïD(z) r\B)dp < oo,
zeE  Jo

whence it follows easily

/•CO

sup       /31-m|/Lí.|(Qí,(z) nB)dp < co.
zeE  Jo
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Noting that

U\p,\(z) = j^jB\x-z\2'md\p,\(x)

= ¿2 f M(5n{* : \x-z\2'm > t})dt

= j" P1-m\p-\(ClP(z)nB)dp

we see that U\p.\ is bounded on P. Since, by 4.1, spt p,<^Eand B—Ehas a positive

distance from E, U\p.\ is bounded on P as well.

4.7. Notation. It follows easily from (4.16) and 3.13 that G has only a finite

number of components; their closures are mutually disjoint. We shall denote by

a(0^a<oo) the number of bounded components of G. G0 will stand for the

unbounded component of G (if any); the bounded components of G will be

denoted by Gu ..., Gq.

Employing 4.6 we obtain by standard reasoning the following.

4.8. Lemma. The dimension of C*(B) does not exceed q.

Proof. Let p. e C$(B). By 4.6, U\p.\ is bounded on P. Hence it follows that p.

has finite energy [B, p. 122] and

< ooÍ    |grad LV(x)|2 dx = a\ Up-(y) dp,(y)
Jrm Jb

(see [B, pp. 131, 132]). In particular, there are </>ke D such that

| grad (f>k(x) — grad Up.(x) \2 dx -> 0       as k -»■ oo.
Jb"

(4.2) means that NUp.=0 (see 3.4), so that

grad <f>k(x) • grad Up.(x) dx = 0

for each k; making i^-oowe obtain

|grad Ufi(x)\2 dx = 0.

L

I
We see that Up is constant on each G, and vanishes on G0. Next we prove the

following assertion:

(a) If Up- = 0 on G then p. = 0.

Indeed, let p = p.1 — p.2 be the Jordan decomposition of p. and assume that Up.x

and Up,2 coincide on G. Since G has a positive w-dimensional density at any

ze B, every fine neighborhood of z (in the Cartan topology) meets G (compare
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[B, p. 78, paragraph 2, §3 and p. 84, paragraph 6]) and we conclude from the

Cartan Theorem [B, p. 86; see also p. 84] that Upi(z)=Up2(z). Since Up1 and Up2

coincide on B, they must coincide on Rm, by the domination principle [B, p. 123].

We have thus Up = 0 on Rm, whence p = 0 [B, p. 122].

If q=0 then (a) completes the proof of 4.8. Assume now q>0. With every

p e Cô*(B) we may associate the ç-tuple c(p) = [ct(p),..., cg(p)], where ct(p) is the

value taken on by Up in Gj. The map

c: p-+c{p)

is an injection of C%(B) into R". Indeed, c(p) = 0 means that Up = 0 on G and (a)

implies p=0.

4.9. Proposition. Let f¡ denote the characteristic function of fr G¡(\^j^q).

Then {fu ... ,/„} is a basis in C0(B).

Proof. Let us fix./e(l,?> and put H=Rm — Gj. Employing 2.12 and 2.6 we

obtain for any z e Rm-cl G<=int H

Wcm - if (fr G,) = 0,

whence it follows by (3.6)

(ÍAI+ W)f = 0,

so that f e C0(B). Since the dimension of C0(B) coincides with the dimension of

Co*(B) which is known to be ¿q and/i, ...,/„ are linearly independent, the proof

is complete.

4.10. Remark. Combining the above proposition and Fredholm's theorems one

obtains Theorems 4.11-4.13 below.

If m=2 then 4.9 holds under more general assumptions on B. It is sufficient to

require that E (see 3.6) consists of mutually disjoint simple closed curves and

V0 < \A (compare [K3], where further references may be found).

4.11. Theorem. Let veC*(B). Then v = NUp for some peC*(B) if and only if

v(frGy) = 0,      jml,...,q.

Proof. This follows at once from 4.9 and the Fredholm Theorem.

4.12. Theorem. Let {fu...,/,} be a basis in C0(B). Given g e C(B) there are

fe C(B) and constants a¡ (j= 1,..., q) such that, for every yeB, Wf(x) tends to

Q

g(y)- 2 "¿¿y)

as x -»■ y, x 6 int C. The constants at are uniquely determined and f is determined

modulo C0(B).
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Proof. Let {pu ..., p„} and( {f,...,/,} be dual bases in C$(B) and C0(B),

respectively. Given g e C(B) we can find ak so that

r- 2 a^ili/ = 0

for ally; clearly, «k = <g, pky. Then

and the Fredholm Theorem yields an/e C(5) such that

(iAi+W)f=g- ¿«.A-Ik-
k = l

The rest follows from (3.6).

Standard reasoning yields also the following.

4.13. Theorem. Fix x¡e Gf(j=\,.. .,q). Given geC(B) there are feC(B)

(determined modulo C0(B)) and uniquely determined constants at such that, for every

yeB,

wf(x)+ 2 <M*-*,la-
i = i

tends to g(y) as x —> j, x e int C.

Proof. Define gk by

gk(x) = jj^g l^-^l2""-

Then <gfc, py=Up(xk) for every p e C*(B). It follows from (3.6) that

Wf+ 2ajgi(feC(B),ajeRi)
¡ = i

represents a solution of the Dirichlet problem for C and the boundary condition

g if and only if

(4.20) (iAI+W)f=g- ¿«,g,
i = i

on B. For the existence of an/e C(£) satisfying (4.20) it is necessary and sufficient

that

(s- 2«^Co(fi)) = 0'

i.e.,

(4.21) 2 «^K*/) = <s, **>>.     /* e c0*(fi).
i=i



546 J. KRÁL [December

We know from the proof of 4.8 (note also that C*(B) has dimension a) that

p.^[Up.(x1), -.., Up.(xq)]

is an isomorphism of C*(B) onto R". Consequently, (4.21) determines a,- uniquely.

The rest is obvious.

Remark. Results related to some of those proved in the present paper were

announced without proofs in [Kl] (for the plane), [BMS] and [MS] (for a domain

bounded by a simple closed surface in 3-space), [K2] (for a domain bounded by a

hyper-surface in w-space) and in Abstract 630-197, (Theorem 1.13), Notices

Amer. Math. Soc. 13 (1966).
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