
RINGS IN WHICH CERTAIN SUBSETS

SATISFY POLYNOMIAL IDENTITIES

BY

THOMAS P. KEZLAN

Let R be an associative ring and F a set of polynomials (each in some finite

number of noncommuting indeterminates) with integer coefficients. R will be

called an F-ring if and only if for every finite subset S of R there is an/in F which

vanishes identically on 5*. Thus certain kinds of rings can be characterized as F-

rings for appropriate choices of F: nil rings, with F the set of polynomials x"

for all positive integers n; locally nilpotent rings, with F the set of monomials

XxX2 ■ • • xn in n indeterminates for all n; nilpotent rings, with F the single mono-

mial XiX2 ■ ■ ■ xn for some n ; rings satisfying a polynomial identity, with IF finite

(or equivalently, with F containing a single polynomial); and so forth. In addition

to F-riwgs we shall consider rings satisfying a somewhat stronger property. R is

called an F +-ring if and only if for every finitely generated additive subgroup S of

R there is an /in IF which vanishes identically on S. Clearly every ^"+-ring is an

J^-ring. Also all subrings and homomorphic images of J^-rings are brings, and

similarly for 3P+-rings. This paper is concerned with determining conditions on

F which will ensure that every F-ring (or F +-ring) has nil commutator ideal (the

ideal generated by all commutators [a, b] = ab — ba). This intent is similar to that

of Drazin in [5] insofar as both are concerned with conditions under which, in a

given class of rings, the fact that the commutator ideal is contained in the Jacobson

radical implies that the commutator ideal is nil. Drazin's work is self-contained

(depending only on Zorn's lemma) but requires that every ring in the class be an

"/■ring" (cf. [5]), whereas here, rather than imposing conditions on our rings

individually, we instead confine our attention to classes defined in special ways,

i.e., as complete classes of ¡F- or <^"+-rings, and make use of some relatively

special properties of the Jacobson radical (whereas Drazin's arguments would

apply equally well to any radical not containing nonzero idempotents).

The commutator ideal of R is denoted C(R) and the Jacobson radical J(R).

The ring of n x n matrices over R is denoted Rn. R is said to be of characteristic 0,

written char (R) = 0, if and only if mx ^ 0 for every nonzero integer m and every

nonzero x in R. A linear polynomial means a polynomial which is linear in each of

its indeterminates; F will be called linear if and only if each member of F is

linear. We consider only sets !F of polynomials each of which is homogeneous in

each of its indeterminates. One final assumption about F: Note that if all coeffi-
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cients appearing in some member of IF are divisible by the same prime/), then any

ring of characteristic p is trivially an F-ring. To avoid this situation, we make the

assumption that every member of F has the integer 1 for at least one of its

coefficients.

Let / be a polynomial in (noncommuting) indeterminates xx, x2,..., xn with

integer coefficients. We denote by/the linear polynomial obtained from/by the

usual "linearization" process [10, p. 224], and [11, Lemma 2]. That is, if/is non-

linear in xx, say of degree d>\, define

(1)   My, z, x2, ...,xn) =f(y+z, x2,.. .,xn)-f(y, x2,. ..,xn)-f(z, x2,. ..,xn).

fx is then a polynomial in n+ 1 indeterminates and of degree d— 1 in both y and z.

This process leads to a sequence of polynomials f=f0,fx,.. .,fk—f, in which each

/ is obtained by "linearizing"/t-i ¡n some indeterminate by the process (1). For a

given set F of polynomials let F = {f \ fe F}.

Lemma 1. (i) Every F+-ring is an F-ring.

(ii) Every F-ring of characteristic 0 is an F+-ring (and hence an F-ring).

Proof, (i) follows easily from the "linearization" process. Let R be an #-ring

of characteristic 0 and S a finitely generated additive subgroup of R. There exists

/ in F such that / vanishes on the generators of 5 and hence on S. Inductively,

suppose that in the sequence /=/0,/i, • ■ .,/=/ obtained by "linearization" of

fifi vanishes on S, where 0<i^k. If/_i is a polynomial in r indeterminates

xx,..., xr, then without loss of generality, for some indeterminate xr + x,

Ji(Xx, . . ., Xr, Xr + i) = Ji-i(Xx, ..., xr + xT + x)— ji-X(Xx, ..., xr)—fi-x(xx,..., xr + x).

Let ax,..., a, be any r elements in S. Then

0 = f(ax, ...,ar, ar) = f,-t(ax,..., 2ar)-2fi-1(ax, ...,ar)

= (2i-2)f_1(ax,...,ar),

where d> 1 is the degree off _ x inxr. Since char (R) = 0, we have/ _ x(ax,.. ,,aT) — 0;

thus / _ ! vanishes on S. This proves inductively that / vanishes on S.

Lemma 2. Suppose every semisimple F-ring is commutative. If A is an algebra

over afield F and satisfies any of the following conditions, then C(A) is nil:

(i)   A is an F-ring with F finite;

(ii)   A is an F-ring with F linear;

(iii) A is an F+-ring and char (A) = 0.

Proof. Let c e C(A). Then

m

c = 2 (qiZi + OiZi + Zibt + rtZiSt),
i = i
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where the qt are integers, the ah bh rt, sit x¡, yt are in ¿, and z, = [x,, yt]. Let ¿0 be

the subalgebra of A generated by all at, ¿>¡, r,, s¡, x¡, y¡. If (i) holds, then ¿0 is a

finitely generated algebra satisfying a polynomial identity, and hence /(¿0) is a

nil ideal [1]. But AJJ(A0) is a semisimple ^"-ring and hence commutative by

hypothesis. Thus c ê C(A0)Ç:J(A0) which shows that c is nilpotent.

In cases (ii) and (iii) let K be an uncountable extension field of L, and consider

the tensor product algebra ¿0 <8>f K over K. If (ii) holds, then ¿0 <8>f K inherits

the F-r'mg property. If (iii) holds, then ¿0 is an Jr+-ring and hence by (i) of

Lemma 1 an #-ring. In this case ¿0 <8>f L is also an #-ring and by (ii) of Lemma

1, ¿o ®f K is an Jr+-ring. Thus if A satisfies one of conditions (ii) and (iii), then

¿o ®f K satisfies the same condition. Now ¿0 ®F K is a finitely generated algebra

over an uncountable field and hence /(¿0 <8>f K) is nil [2]. But, just as in case (i),

¿o ®f KjJ(A0 ®f K) is a semisimple F-r'mg and hence commutative. Thus

C(¿0 ®F K) is nil, whence so is C(A0) and since c e C(A0), c is nilpotent.

A special case (Lemma 3 below) of a lemma due to Amitsur (cf. [6]) yields the

results stated in Lemma 2 for arbitrary rings as well as for algebras over fields.

Lemma 3 also appears in [8]. Suppose char (L) = 0, and let M={(x, n) \ xe R; n/0,

an integer}. Given (xx, nx), (x2,n2) in M define (x1; «i)~(x2, n2) if and only if

n2x1 = /i1x2. This defines an equivalence relation on M; let R* be the set of equiv-

alence classes. Denote the equivalence class of (x, n) by [x, «]; in R* define addi-

tion and multiplication by

[xi, nj + [x2, n2] = [w2X! + nxx2, nxn2]   and    [x1; n{\ ■ [x2, n2] = [xxX2, nxn2].

R* is then a ring, in fact an algebra over the field of rational numbers. Also R

can be embedded in R* by means of the isomorphism a -*■ [a, 1], a e R.

Lemma (Amitsur). Let 3% be a class of rings, and suppose that for each R in 3%

there is given a subset Q(R)^R. Suppose further that

(i) for every R in & and every homomorphism d of R, Rd belongs to ai and

Q(R)d^Q(R8);
(ii) Q(R) is nil for all R in M whose characteristic is either 0 or a prime.

Then Q(R) is nil for every R in 01.

Lemma 3. Let P be a property defined on rings such that

(1) ifP(R) is true, then so is P(RjU)for every ideal U of R;

(2) if char (R) = 0 and P(R) is true, then so is P(R*);

(3) if A is an algebra over a field for which P(A) is true, then C(A) is nil.

Then for any ring R, ifP(R) is true, C(R) is nil.

Proof. Let 0t be the class of rings R with P(R) true and let Q(R) = C(R). Then

(i) of Amitsur's lemma clearly holds (using (1)). Thus it is only necessary to check

Amitsur's condition (ii). In characteristic 0, P(R) gives P(R*) by (2), and hence

C(R*) is nil by (3), whence C(R), which is embedded in C(R*), is also nil. In

characteristic/», of course R is already an algebra, and so C(R) is nil by (3).
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Lemma 4. Suppose char (R)=0. Then

(i)   if R is an F-ring, so is R*;

(ii) if R is an F+-ring, so is R*.

Proof. Suppose first that R is an F-ring, and let 5* be a finite subset of R*.

For each s* e S* choose one a e R for which there exists an integer «#0 such that

s* = [a, n], and let S be the (finite) set of a's chosen. There exists fe F which

vanishes on S. Suppose/is a polynomial in k indeterminates xx,..., xk, of degree

d¡ in xt; choose any k elements [ax, nx],..., [ak, nk] in S (where ax,...,ak are in

S). Then f([ax, nx],..., [ak, nk]) = [f(ax,..., ak), ní* • • • «g»] = [0, »?i • • • nfc] = 0*,

denoting the zero element of R* by 0*. Hence/vanishes on 5* which proves that

R* is an ^"-ring.

Now suppose that R is an F+-ring, and let S* be a finitely generated additive

subgroup of R*. Let T* be a (finite) set of generators of S*, and for each t* eT*

choose one a e R for which there exists an integer n^O such that [a, n] = t*. Let

T be the (finite) set of a's chosen, and let S be the additive subgroup of R generated

by T. There exists fe F which vanishes on S. Suppose / is a polynomial in k

indeterminates xx,..., xk and of total degree d; choose st,...,s$ in S*. There

exist ax,...,ar in T, nonzero integers nx,..., n„ and sequences {q\1)}Ti = x (1 új^k)

of integers such that

sf = 2 #[«,, »J (1 ¿ / £ it).
i = i

Then (where «¡ denotes omission of «,)

=/(2 $"«<. «A---.2 w*w*])
= AŒ, ?'(1)"l • ■ ■ "i • • ■ «rOl, «1 • • • "r], • • • > [2 ^'"l ••■"(••• «rûl, nx ■ ■ ■ /Ir])

=  [/(2 i«""1 ' ' ' "' ' ' ' "'•a" • • • ' 2 ^<k>Wl ' ' ' "' ' ' ' "röi)' "i " " ' "']

= [0, «í ■ • • «?]

= 0*.

Hence/vanishes on 5* which shows that /?* is an J^-ring.

Theorem 1. Suppose every semisimple F-ring is commutative. If R satisfies any

of the following, then C(R) is nil:

(i)    R is an F-ring with F finite;

(ii)   Ris an F-ring with fF linear;

(iii) R is an F+-ring and char (R) = 0.

Proof. In cases (i) and (ii) let P be the property of being an F-ring. Clearly,

(1) of Lemma 3 holds, Lemma 4 yields (2), and (3) follows from Lemma 2. In case

(iii) we have that R* is an Jr+-ring which is also an algebra over a field so that
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from (iii) of Lemma 2 we see that C(R*) is nil. Since R is embedded in R*,

C(R)^C(R*) is also nil.

At this point perhaps it should be mentioned that, although our main concern is

with the commutator ideal C(R), most of the preceding results (in fact all except

(i) of Lemma 2 and (i) of Theorem 1) go through for any ideal (or subset) Q(R)

satisfying ß(L)ös Q(R6), Q(R)*^Q(R*), and Q(A) ® KÇ Q(A <g> K).
We now give several applications of the foregoing theorems. An unsolved

problem in ring theory is the following: If the commutators in a ring are nilpotent,

is the commutator ideal nil? The answer is known to be yes when the index of

nilpotence is bounded [7, p. 29], [14]. The next theorem, at least in the characteristic

0 case, gives a result which is intermediate to the bounded index case and the

most general case.

Theorem 2. Suppose char (R) = 0. If for every finitely generated additive subgroup

S of R there exists a positive integer n such that (xy — yx)n = 0 for all x, y in S, then

C(R) is nil.

Proof. Let F be the set of polynomials (xy—yx)n («=1,2,...). Then R is an

^"+-ring, and since it is known that every semisimple J^-ring is commutative,

(iii) of Theorem 1 applies.

For x, y in R define ex(x, y) = [x, y] and ek(x, y) = [ek _ x(x, y), y] for k > 1. R is

called a K-ring if and only if for every x, y in R there exist integers k = k(x, y) and

n = n(x, y) such that ek(x, yn) = 0. L-rings have been studied in [6] and [12]. In

[12] it is proved that every /v-ring with k and n independent of y has nil commutator

ideal. The following gives an alternate proof of this result, and, in fact, a more

general theorem.

Theorem 3. Suppose that for every x e R and every finitely generated additive

subgroup S of R there exist integers k = k(x, S) andn = n(x, S) such that ek(x, yn)=0

for every y e S. Then C(R) is nil.

Proof. Let F be the set of polynomials ek(x, yn) for all positive integers k and

n, where x and y are indeterminates. We first show that R is an ^"+-ring. Let 5 be

a finitely generated additive subgroup of R, and let T be a finite set of generators

of S. For each aeT there exist integers k = k(a,S) and n = n(a,S) such that

ek(a, bn) = 0 for every b e S. Let

k = max {k(a, S) \ a e T},   n = J~[ {n(a, S)\ae T}.

Then ek(a, bn) = 0 for every generator aeT and every be S [12, Lemma 3]. But

the polynomial ek(x, yn) is linear in x; hence, ek(a, bn) = 0 for all a, b e S. Therefore

R is an Jr+-ring. Drazin has proved [6] that

(A) every L-ring of prime characteristic has nil commutator ideal,

(B) every semisimple L-ring is commutative.

Upon taking ^ to be the class of F + -rings, we see from Amitsur's lemma that it



1966] POLYNOMIAL IDENTITIES 419

suffices to consider only the cases of prime and zero characteristic. (A) above takes

care of the former, while in the latter case, (iii) of Theorem 1 and (B) yield the

desired conclusion.

We now prove two theorems, one having to do with the case in which F is

linear and the other with that in which F is finite, which give necessary and

sufficient conditions for every ^-ring to have nil commutator ideal.

Theorem 4. Suppose F is linear. Then the following are equivalent:

(i)   every F-ring has nil commutator ideal;

(ii) for every prime p the ring GF(p)2 of 2 by 2 matrices over GF(p) is not an

F-ring.

Proof. If (i) holds and GF(p)2 is an J^-ring for some prime p, then GF(p)2 is a

simple, nonnil, noncommutative ring whose commutator ideal is nil, an impossi-

bility. Thus (i) implies (ii).

Assume (ii) holds, and let R be an J^-ring.

Case I: R is a primitive ring. There exists a division ring A such that either

RxAn for some positive integer n, or for each positive integer m there is a subring

Sm of R and a homomorphism ¡f>m of Sm onto Am [10, p. 33]. If RgèA, then A2

inherits the property of being an J^-ring. This contradicts (ii) in case char (A) =p ^ 0,

so assume char (A) = 0. Then A contains a subring J isomorphic to the ring of

integers. The ring J2, as a subring of A2, is then an ^"-ring. But then for any prime

p, the ring GF(p)2, as a homomorphic image of J2 (under a natural homomorphism)

is an F-ring, a contradiction. Thus RxA, and hence every primitive J^-ring is a

division ring.

Case II: R is a division ring. Suppose R is noncommutative and let K=>Z be a

maximal subfield of R, where Z is the center of R. By a theorem of Nakayama and

Azumaya [7, p. 108], [15] R <g)z A" is a dense ring of linear transformations on R

as a vector space over K. But R <8>z K is an ^"-ring since F is linear, and hence by

Case I we have R ®z Kx K, and since R is embedded in R ®z K, R is commutative.

Therefore by Case II every division ^"-ring is commutative, and by Case I

every primitive ^"-ring is a division ring and hence commutative.

Case III : R is a semisimple ring. R is a subdirect sum of primitive (and hence

commutative) ^"-rings; thus R is commutative.

Case IV: R is any F-ring. Since every semisimple J^-ring is commutative and

F is linear, (ii) of Theorem 1 applies.

Theorem 5. Suppose that F is finite. Then (i) and (ii) of Theorem 4 are equivalent.

Proof, (i) implies (ii) as in Theorem 4. Assume (ii) holds. The proof that every

primitive #"-ring is a division ring is identical with Case I of the proof of Theorem

4. In Case II, since R satisfies a polynomial identity, R is finite-dimensional over

Z [11]. The dimension is, in fact, a square, say [R : Z]=n2. Furthermore

[R : K] = n, and R <g)z K, as a dense ring of linear transformations on R over K,
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is isomorphic to Kn. If Z is finite, then R, as a finite-dimensional vector space over

a finite field, is a finite division ring and hence commutative by Wedderburn's

Theorem. If Z is infinite, then it follows from a lemma of Amitsur [3] that R and

R <g>z K satisfy precisely the same polynomial identities. But then KnxR ®z K is

an ^"-ring. Unless n= 1, it follows, just as in Case I of the proof of Theorem 4,

that GF(p)2 is an ^"-ring for some prime/?, contradicting (ii). Thus «= 1 and R is

commutative. The semisimple case now follows as in Theorem 4, and the general

case reduces to (i) of Theorem 1.

We conclude with several applications of Theorems 4 and 5.

Theorem 6. If the commutators of R commute, then C(R) is nil.

Proof. Let F consist of the single polynomial

j(Xx, X2, X3, X4) =  [Xi, X2JI.X3, X4J — [X3, X4][Xj, X2J.

To prove the theorem we verify (ii) of Theorem 4 (or Theorem 5). This is easily

done by taking

Xl = (0   0)'      X2 = x* = (0   0)'      *3 = (1   o)1

Corollary. A division ring is commutative if its commutators commute.

More generally, using Theorem 5, we have

Theorem 7. If there exist fixed positive integers k and n such that all elements

of the form ek(x, yn) commute, then C(R) is nil.

Another consequence of Theorem 5 is a result which was proved in [13], namely,

Theorem 8. If there exist fixed positive integers k, n, andq such that (ek(x, yn))q = 0

for all x, v in R, then C(R) is nil.

In [9] Herstein considered, in turn, rings satisfying the identities (xy)n = xnyn

and (x+y)n=xn+yn for some fixed n> 1 and showed that in each case the com-

mutator ideal is nil. One could attempt generalizations of these theorems in

several ways ; for example, one could (a) let n depend on x and y or (b) assume the

identity holds, not for all elements x and y, but only for certain elements (e.g.,

commutators). The preceding theorems do not seem to yield an answer for (a);

however, (b) can be handled by Theorem 5. For that matter one could consider

rings satisfying any identity (e.g., (xy)n=ynxn for commutators x and y) not

satisfied by the ring of 2 x 2 matrices over the prime field with p elements (p any

prime) and conclude that the commutator ideal is nil.
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