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0. Introduction. An effective analogue of the theory of cardinal numbers was

created about ten years ago by J. C. E. Dekker. (See [1] and Dekker-Myhill [4].)

In it the only sets considered are subsets of the natural numbers and the only

functions considered are 1-1 partial recursive functions. In the classical theory a

cardinal number may be considered to be an equivalence class containing all sets

for which there is a 1-1 function mapping the set onto a given set. The Dekker

analogue of a cardinal number is an equivalence class on the set of all subsets of E

(E={0, 1, 2,...}) containing all sets a for which there is a 1-1 partial recursive

function/such that the domain of/includes a and the image of a under/is a given

subset of E. These equivalence classes are called recursive equivalence types, or

RETs. The collection of all RETs is denoted £2. The RET to which a set, a, belongs

is denoted <a>.

Addition is defined on the RETs in the following manner. If aç£ and ß^E,

a and ß are called recursively separated if there exist disjoint recursively enumerable

(RE) sets o) and 6 such that aÇw and ß£ 6. Let A and B be RETs. The sum of A

and B is defined to be the RET represented by a u ß where A = (a}, ¿?=</?>, and

a and ß are recursively separated.

We define A ÚB for RETs A and B if there is an RET C such that A + C=B.

The ¿ relation is a partial ordering of the RETs. If A ¿ B we say A is a predecessor

of B.

An RET is called an isol if it satisfies the additive cancellation law. The collection

of all isols is denoted A. Thus A e A if and only if for all RETs B and C, A + B

= A + C implies B=C. A subset, a, of E is called isolated if there is no 1-1 partial

recursive function / whose domain includes a and such that f(a) §¡ a. <a> e A if

and only if a is isolated. A subset of E contains no infinite RE subset if and only

if it is isolated. Thus A is the collection of equivalence classes of sets which do

not have infinite RE subsets. A is closed under addition and predecessor. The

assertions of this paragraph are proved in [4].

Dekker-Myhill [4, p. 114] define an ideal in A as a subsystem of A closed under

addition and predecessor. A sequence of ideals will be defined here in order to

discuss the results of this paper. Variables X, Y, Z, V, W range over A.
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Definition 0.1. I0={X : X is finite}.

For ordinals a, a > 0, the definition is continued by induction.

Pa = ÍX : X = Y+Z-+ Te U 4- V Ze U ¡A.
\ a'<a a'<a      j

Elements of Pa—U«'<«4' will be called a-order indécomposables; they are

indecomposable with respect to [Ja'<ttIa-.

Sa= fX:X= Y+Z&Zt U h-
\ a' <oc

^(3V)(3W)[Z = V+W& V$ U /«< &Wt{J Itt,]\.
L a'<a a'<a      JJ

Elements of Sa — {Ja.<a Ia. will be called a-order highly decomposable isols; they

are highly decomposable with respect to Ua'<aL-- L is the ideal generated by

Pa u Sa.

Definition 0.2. The following two definitions are made for each positive

ordinal a.

(a) X=a Y^(3V)(3W)[X+V= Y+ W& V e |J«<<. 4- & We U.<,U

(b) X^aY^(3Z)[X+Z=aY].
The main results of this paper are existence theorems for Pa — U„-<lt/e. and

Sa — {Ja-<a Ia. for countable ordinals a. Let c denote the power of the continuum.

Theorem 3.8 asserts that for each positive countable ordinal a there exists a set of

c a-order indécomposables which are pairwise a-incomparable. Theorem 3.15

asserts that for each positive countable ordinal a there exists a set of c a-order

highly decomposable isols which are pairwise a-incomparable. Theorem 4.1

asserts that for each positive countable ordinal a there exists an a-order highly

decomposable isol which is multiple-free with respect to =a: that is, there is a Z

such that for no n>\ is there an X satisfying nX=aZ. In view of Theorem

1.4, which asserts that every isol is in {Ja'<ai Ia- where wx is the first uncountable

ordinal, the first two existence results are as strong as possible.

The existence of c mutually incomparable first-order indécomposables and of c

first-order highly decomposable isols has been known at least since 1958. (See

Dekker [2, Tl] and Dekker-Myhill [4, pp. 112-113].) The existence of c mutually

incomparable first-order highly decomposable isols is an observation of Nerode

although the proof given below is not his.

1. Basic properties of the ideals /„.    The following result will be used frequently.

It is a consequence of Theorems 15(/) and 19 of Dekker-Myhill [4, pp. 80-81].

The refinement property. If At e A for /=1,.... n and Bf e A for j= 1,..., p and

Ax+ ■ ■ ■ +An = Bx+ ■ ■ ■ +BP, there exists a matrix (Ci>;)"= xv¡ = i of isols such that

¿i = Cul-\-i-ChP for i'=l,...,« and Bj = Cx,j-]-hCniJ for7=1,.. .,p.
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The relations satisfied by the elements C¡,y will often be indicated in the following

way:

Ci,i + C2>1 + • • • + CnA = Bx

+       + +

C-1,2 "1" ̂2,2 "t" ' " ' +Cn>2   =  X>2

+ + +

+ + +

h      h     •••ii

Lemma 1.1. \Ja-<aIa'=Pa n Sa.

Proof. Ç. Let Xela. for some a'<a. If ^= y+Z, then Yela, and Zela,

since 7a- is an ideal. Therefore, A' e F«. Further, IeS,, since the antecedent of the

defining condition of Sa is never satisfied.

2. Let XeSa-\Ja.<aIa.. Since X=Q+X, X$\Ja.<aIa; and le^, there

exist isols Fand ff such that X=V+W, Vf(J«'<«4'> and W${Ja.<aIa.. This

shows X $ Pa.

Notational remark. The equality of Lemma 1.1 may be used to shorten some

expressions. E.g., Pa—IJ„<<„/„< =Pa — Sa, and the latter form may be used when

the former is intended.

Lemma 1.2. ax«*.2^Iai ç/„2. U*-<«+i 4- = 4-

PrOOf.   Iai ÇUa'<«2 Ia^P«2 H Sa2^Ia2-

Lemma 1.3. [Ja><a Ia- is an ideal.

Proof. Clear from Lemma 1.2.

Theorem 1.4. IëA^ Xe\Ja.<01l Ia..

Proof. Let leA. Define

y = l.u.b. {a: a < cox&(3Y)[Y ^ X& YePa-Sa]}+l.

Note that if a is an element of the set occurring in the definition, a < y. Also,

y<u>x since there are only countably many predecessors of X. We will show

X e Sy, hence X e Iy. Suppose X= Y+Z and Z <£ Py n Sy. If Z= V+ W implies

VePyn Sy or WePy n Sy, then Z e Py-Sy and

ye{a :a < wx & (3 Y)( Y è X& YePa-Sa)}.

We conclude y<y. Hence the implication fails, and there are V and W such that

Z= V+ W and V £ Py n Sy and W$Pyn Sy. Therefore X e Sy.
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Lemma 1.5. Pa is closed under predecessor. I.e., Y^X&XePa-> YePa.

Proof. X=Y+Z for some Z. Let Y=V+W. Then X=V+(W+Z). Since

X e Pa, V e Pa n Stt, in which case there is nothing to prove, or ( W+Z) ePa n Sa.

In the latter case, since Pa n 5a is an ideal (Lemma 1.3), W ePa n S1,*. Therefore

TeLa.

Lemma 1.6. Sa is an ideal.

Proof. First we prove that Sa is closed under predecessor. Let Xx ±= X and X e Sa.

Then there is an X2 such that Xx + X2 = X. Now suppose Xx = Y+ZandZ^Par\Sa.

Then X=(X2+ Y) + Z and, since Xe Sa and Z $Pa n Sa, Z has the desired de-

composition. Therefore, Xx £ Sa.

Secondly, suppose Xx e Sa, X2 e Sa, and A^ + X2 = Y+Z, and Z$PaC\ Sa. By

the refinement property, there exist isols Yx, Y2, Zx, Z2 such that

Yx+Zx = Xx

+    +

r2+Z2 = X2

II      II

Y    Z

Since La o Sa is an ideal, Zx^Pac\ Sa or Z2^Par\ Sa. Zi$Pac\ Sa implies the

existence of V and W such that Zi=V+W, V$Par\ Sa, and 0-^ Pa n S,» since

Zt^Xi and Zt e 5a. Then Z = (Z3_¡+ V)+ W is a decomposition of the desired

form. We may conclude that (Xx + X2) e S^.

Lemma 1.7. A' e /„ //"ûwî/ o«/j if there is a finite set of isols Xx, ■ ■ ■, Xn, Z such that

each X¡ e Pa, Z e Sa and X= 2?_ i Xt + Z.

Proof. The ideal generated by any set is the collection of all predecessors of finite

sums of elements of the set. Thus Ia is the collection of all isols X for which there

are isols Ylt..., Yn, Z1;..., Zm such that each Yi ePa, each Z¡ 6 Sa, and

XÚ Yx+--- + Yn+Zx+---+Zm.

Since Sa is an ideal, Zx+ • • ■ +Zm=ZQ e Sa. By the refinement property, Xf^ Yx

+ ■ ■ ■ + Yn +Z0 implies the existence of isols Xx,..., Xn,Z such that X= Xx + ■ ■ ■

+ Xn+Z, Z^Z0, and each X¡^ Y¡. Since both Sa and Pa are closed under pre-

decessors, Z e S« and each X¡ e Pa. Hence, if X e Ia, X satisfies the conditions

specified in the lemma (i.e., -> is proved.). The converse is clear.

Theorem 1.8. If X e Ia, then there is a finite n such that any linear decomposition

of X includes at most n isols of Pa — Sa. More precisely, ifYHix Yt=X, then there

are at most n Vs for which Y¡ ePa — Sa.
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Proof. Let Xsla. By Lemma 1.7, there are isols Xx,..., Xn, Z such that

X= Xx+ ■ ■ ■ + Xn+Z, Ze Sa, and each Xt ePa. We claim that this n satisfies the

conditions of the theorem. To simplify notation, we prove an example in which

n = 2 and k = 2. Suppose X= Xx + X2+Z, each X¡ e Pa and Z e Sa. Suppose further

that X= Yx+ Y2+ Y3+ F4. We must prove that there are at most two i's such that

YiEPa — Sa. Equivalently we must show that there are at least two i's such that

Yi$Pa — Sa. By the refinement property, there exist isols YtJ such that

Tl,l+ ii,2+ íl,3+ 'i,4 =  Xx

+        +        +        +

Y2jX-\- Y2¡2+ r2l3+ Y2¡i = X2

+        +        +        +

-T 3,1 "F fa,2"l" f3,3"t" ^3,4   = Z

II II II II

Ti       Y2       Y3       Y*

Since XiePa, there is at most one j=j(i) such that YiJW$PanSa. Thus K

={1, 2, 3, 4} — {j(\),j(2)} has at least two elements. It suffices, to prove the theorem,

to prove that k e K implies Yk $Pa — Sa. Let k e K. Then Yi-k e Sa for i^2 since

YUkePanSaçSa. Y3ikeSa since Y3>k^Z and Ze Sa. Therefore, Yk= Yx>le

+ Y2¡k + Y3¡k is an element of Sa (Lemma 1.6), and so Yk <£ Pa — Sa.

Corollary of Definition 0.2(a). =„ is an equivalence relation. Addition is

well defined on the = „ equivalence classes.

Proof. Reflexivity and symmetry are clear. If ( Vx + Wx + V2 + W2) ePan Sa and

X1+V1= Y+ Wx and Y+ V2 = X2+ W2, then XX+V1+V2 = X2+ Wx+ W2 so =a

is transitive. Again, if (V1+W1+V2+ W2) ePa n Sa, XX+VX=YX+ Wx, and

X2+V2=Y2+W2, then

Xx + X2+Vx+V2= Yx+Ya+Wx+Wa,

so addition is well defined on = 0 equivalence classes.

Corollary of Definition 0.2(b). ¿¡a is a partial order.

Proof. We have only to show that ¿ a is antisymmetric. To do this we note that

X+Y=aX+Z^ Y=aZ. For if V e Pa n Sa and WePanSa and X+ Y+V

= X+Z+ W, then, since Xe A, Y+ V=Z+ W. To prove the corollary, suppose

Xx£aX2 and X2^aXx. Then there exist Zx, Z2 such that Xx+Zx = aX2 and

Xx = aX2+Z2. Therefore, Xx+Zx+Z2 = aX2+Z2 = aXx. Thus Z1+Z2 = a0. I.e.,

(Zj +Z2) ePan Sa. So ZxePan Sa and Xx = a X2.

Lemma 1.9. X+Z=aY& YePa^XePanSa v ZePanSa.
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Proof. Suppose X+Z=a Y, X$Pan Sa, and Z$Pan Sa. There exist V and

W, (V+W)ePanSa, such that X+Z+V=Y+W. Applying the refinement

property, there exist Xh Vu Zt such that

Xx+Zx+Vx = Y

+     +     +

X2+Z2+V2 = W

II      II      II

X    Z     V

Since X2-¿WePar\ Sa, X2EPar\ Sa. Since X$Pan Sa, Xx$Par\ Sa. Similarly

Zx$Par\Sa. Therefore (Zy + V{) i Pa n Sa. Thus Y = Xx + (Zx + Kj) is not an

element of Pa.

Corollary. X$Pa nSa&YePa& X^a Y^ X=a Y.

Proof. X+Z=a Y for some Z. By the lemma, Z=a0. Thus X=a Y.

Lemma 1.10. If XePa-Sa and each y¡ eLa and Afá«2?-i Yt, then there is an

i for which X=a Yt.

Proof. To simplify notation, we will prove the special case of « = 2. There exist

Z, V, W such that (V+ W) ePa n Sa and X+Z+ V= Yx+ Y2+ W. Applying the

refinement property, there exist Xt, Z¡, Vt satisfying

Xx+Zx+Vx= Yx

+     +     +

X2+Z2+V2= Y2

+     +     +

X3+Z3+V3 = W

II       II      II

X    Z     V

Since X3^ WePa n Sa, X3ePan Sa. Since XePa—Sa, there is exactly one i,

i=l or i=2, for which Xt^Pan Sa. Thus Xi=aX. By Lemma 1.9, since YtePa,

(Z(+ Vt) ePar\ Sa. Thus Xi = a T¡ and so X=a Yt.

Lemma 1.11. If A^2"=i Yt and, for each i, YiSPa — Sa, then either there is a

Z such that Z^XandZePa-Sa, or XePa n Sa.

Proof. Suppose X+ W= 2"= i Y¡. By the refinement property, there exist isols

Xit Wt such that for jgn, Xí+Wí= T, and such that Ar=2?=i Xt. By Lemma

1.5, for each i, XiePa. If, for each i, XteSa, then Z= 2?= i *te pa ^ Sa by

Lemmas 1.1 and 1.3. Otherwise there is an i for which X¡ ePa—Sa and, of course,

xax.
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2. Two constructions related to the sequence of ideals.

Notation. If a is a countable ordinal and a> 1, we will say that a( f a only if one

of the following two conditions is satisfied : a is a successor ordinal and, for all i,

0^i<u>, at=a—l; or a is a limit ordinal, a is the least upper bound of {^¡"o,

and for all i, 0^i'<<u, a(<ai+1.

If ß^E, ß=ßx u ß2, and there is a pair of disjoint RE sets, (a>, 6), such that

jSj^oi and j82Ç0, then we may write ß=ßx+ß2 or ß=ßx+ß2 since (w, 6). We call

ß the sum of ßx and ß2 in this case. More generally, if «2:2, 1 ̂ i<j^n implies

0( n 8j= 0, and ß^O^E and 0¡ is RE for i= 1,..., n, we may write

n "

U A = 2 A<=i        ¡=i
or

Û ]8i= ¿A    since {0,};^.
f=i ¡=i

If 8 ç /? and /? = 8 + (j8 — S), we may write S -^ ¿5 and call 8 a predecessor of /3.

{(x/> "Mlz^o is a sequence of pairs of disjoint RE subsets of Ex E containing all

such pairs and such that

(Xo, <£o) = ({2x : x e E} x E, {2x+1 : x e E} x F).

If S s F, we abbreviate 8 x {/} by 8*. Finally, if w is an RE subset of E x E, then

cuev and wod are disjoint RE sets such that oi = wev u cuod and whenever m n F'

is infinite both cuev n F' and cuod n Ei are infinite.

In the remainder of this section we assume that a¡ f a, a>l, and for each /,

Zi&Pai — Sai. We will describe and discuss two constructions from the sequence

{Z¡}(" 0. The first is designed to construct representatives of isols in Pa — Sa, the

second representatives of isols in Sa—Pa. Any isol which has a representative

resulting from the first construction, and only such an isol, will be, by definition,

an element of P[{Zj}]. 5[{Z¡}] is defined in the same manner, using the second

construction instead of the first.

An observation which will be used in Construction I is that given any countable

sequence of subsets of E, say {£/}"= 0, there is an infinite subset of F, say f, such that

for each/, f n £f is finite or $ n §f is finite. Dekker-Myhill [4, p. 102] give a proof

for the special case in which |/=a>/ is the/th set in an enumeration of all RE sets.

However their proof shows that the conclusion is valid for any countable sequence

of sets.

Construction I. For i e E, let £, be a representative of Z(. We first construct

a set 8, such that (i) S¡^^, <£,-8¡> ePa¡ n Sai, and (ii) if/á* and 8\^Xf u "A/,

then S{ n x/= 0 or 8\ n <¡i¡= <z. Let £¡,0 = £i- Construct £iin + i from £(>n in such a

way that (iii) £¡,n+i-<C,,n, and (iv) <£i,„-£¡,„+i> ePai n Sat according to the

following instructions. Initially, for f^i, say fis unsatisfied for i. At step n, n^O,
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let/be such that 0^/< i+ 1 and n=f (mod (i+1)). Iff has been satisfied for i at a

previous step or if l((£i>n)'£x/ u "A/)> let £i,n + i = f¡,n and go to step n+1. If/has

not been satisfied for i and (&,»)'£& u ifif, say /is satisfied for i and define £¡,n + i

according to the following:

(kn + x)' = tti.n)' n v,   if   ((£,.„)< n ^) e />„, n S0,

-(U"*/   if   ((W^^eP^o^,.

Exactly one of the two conditions must occur since

(Ü = (U^)+((WnW

and <(£(,„)*> eLai — S"^. Properties (iii) and (iv) are clearly satisfied. Now go to

step n +1. Observe that if / is satisfied for i at step n, then xr n (^¡.n-)' = 0 or

0; n (£,,„<)' = 0 for all n' >n by the construction and (iii). There are at most i+1

steps at which some / becomes satisfied for i. Let n be strictly larger than any n'

such that at step n' some / becomes satisfied for i. Define 8¡ = £V)B. S4 does satisfy

property (i) for £i-Si = 2?=o1 (£u-£i,, + i)> each <&,#-£u+i> eLai n 5«„ and

P«, n Sat ¡s an ideal. Property (ii) is satisfied by S¿ since 8\ ç yr u "A/ and /^ i

implies that / is satisfied for i, hence that property (ii) holds.

Define pf = {i : i^f& 8\^x/ u "A/}> ¿V = P/ n 0': X/ n $5e 0}■ Since i e pf implies

Si n X/ = 0 or <*i n ,Ar= 0 (property (ii)), observe £;^pf r\ {/' : i/i, n 8{= 0}. Thus

(v) pi n {i : ^ n «{/ 0}sP/ n |r.

Let I be a set indecomposable with respect to {£{}f=0. By this we mean that f

is an infinite set such that for each / £ n |, is finite or f n |; is finite. Define

j8 = U¡e? 8¡. ß is the result of this construction: that is, </?> represents a typical

element of L[{Z(}]. (We will see later that </3> e A.)

Lemma 2.1. If'<ß> = V+ W, there is a finite set p such that either V-¿^.leo Z( or

rV£Zte0Zt.

Proof. Since </3> = V+ W, there is a pair of disjoint RE subsets of L x L, (y/, </</)

for some/ such that ß = (Xfnß) + (i/,, n /3), <Y/ n #> = K, and <<A, n ß> = W. Since

jSçy, u 0r> £={*': '</} u z3/- By the definition of £, | n £, or £ n £r is finite.

Suppose first that | n ^ is finite. We see that

xr^ß=    U    (y/nsi)u   u   (x/nsi)

=        2       (X/nSi)+       2      (X/nSD      SÍnCe      Í^Wi«««,

«<     2     Si+    2    6<    since (x/.W

-<  2 B+ 2 ß for si^ a.

Thus  K=<X/nJ8>^2i</Zi + 2ie?n?/Zi.
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If i n |r is finite, then

i n {i : 0, n S| / 0} s {/ : / < /} u (£ n Pt n {i :>/>fn8\¿ 0})

S {i :i<f}u(ÇnPfn |,)   by property (v).

Since f n £f is finite, essentially the same argument as before shows that

Corollary. </?> e A.

Proof. If (|S)eß-A, then there exist V and W such that </3> = F+ W, Ve

Si-A, and IFe SI- A. But the lemma shows that if </3> = V+ W, then there is a

finite set p for which VS 2ieP Z. or W^ 2ieo Z¡. Since each Z. is in A, 2iefl Z, e A

and, therefore, V e A or IF e A.

Lemma 2.2. For any finite n, there exist isols Xx,..., Xn, Y, Yx,..., Yn such that

<j3> = XX+ ■ ■ ■ +Xn+Y and, for each i, there is a j such that j >n, Xt+ F. =Zy, and

Y i e Pa¡ n Sa¡. In particular, therefore, Xt e Paj — Saj.

Proof. The second statement follows from the first since Zte Paj — Saj. Let

jx,.. .,jn be distinct elements of £, each/(>w. Then

p-«£ + ••■•+«£+      U      «Í-
"       isi-Ui.M

By (i), t>} = 8] + ($ - S|) and <# - S^> e Paj n Sa¡. Thus, to prove the lemma, we may

let AW8*>, F,-.<í*-8*>, r=<Uteí-«,.M sÍ>. and, for each i the required

7 is 7V

Construction II. We first construct, for each i e E, a set 8f which is a subset of

F' and satisfies the following two conditions. First, there is a finite set of isols,

Rx, ...,Rn, Sx,...,Sn, R such that <Si> = JR1H-+Rn + R, R is finite, and, for

each/ 7?Í + 5Í=Z1 and iS, e Ftt( n iSai. Secondly, if/Si and 8,^^ u t/7, then either

Si n x,= 0 (8. n </>/= 0) or 8, n X/ev (8, n i/r/-ev) and 8, n X/p0d (8, n </>/#od) each

contain a predecessor in Fa, -S1«,.

Let

U fcnF)u U ftn£')-
{f-.fSt&XfnE1 is finite) {f-JUbt/nE1 is finite)

The construction will force S¡ to be disjoint from e¡. Forf^i, we will say that fis

excluded from / whenever "!(£' — e.Sy/ u "A/)- If/is excluded from i, let xr be

an element of (Ei — ei) n [(%f u >(if)]~. Let y.i = {x, : fis excluded from /}. The con-

struction will force /x¡ to be a subset of S¡. Define Fi = Ei — (ei u /x.). Since F¡

differs from F' by a finite set, F, is an infinite recursive set. We observe that (i) if
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f£ i then L¡Sx/ u 0/ unless/is excluded from /': that is, if/i= / and ~l(Lj£x/ u lA/)>

then / is excluded from i.

We next define a sequence of sets 8jn for n=0, 1,..., 8(/+1) inductively on n.

Inductively we show, as the sequence is defined, that for each n: (a) Si>n^L¡;

(b) Sin is a finite sum of sets Xx,..., Xm such that for each j there are sets v¡ and

Íj satisfying Ay + vy=£y, <i/y> sPai n Sat, and <£¡>=Zl; and (c) if (o>, 6) is a disjoint

pair of RE sets covering L¡ and a> n 8Un_x has a predecessor in Pa¡ — Sa¡, then

aj n 8tn also has a predecessor in Pai — Sai. We remark that (ii) if/is not excluded

from / and/^ /, then (xf, </>/) is a pair of sets satisfying the first condition of (c) as

are (x/,ev, X/,od u </-/), (x/,od, X/.ev u </>/), 0A/,ev, h.oa u X/)> and 0/>/-od, </-/-ev u X/).

Let 8i>0 = 0. Assume S18/ defined. Sie/? 8/+1. If/is excluded from i, let

°l.8/ + l = °i,8/ + 2 = • ■ • = oj8/ + 8 = 8i8/

and go to step 8(/+1)+1. If/ is not excluded from i, go to step (8/+ 1)(A). Step

(8/+ 1)(A). If Xf n L' is finite, let

8i,er + x = öi>8/ + 2 = 8,8/ + 3 = 8ief + i = 8(8/

and go to step 8/+5. If Xf n L< is infinite, go to step (8/+ 1)(B). Step (8/+ 1)(B).

If X/.ev n 8i>8/ has a predecessor in Pat-Sat, let 8ii8/ + 1 = 8i>8/ + 2 = 8¡>8/ and go to

step 8/+3. If xr.ev n S¡,8/ has no predecessor in Pa¡ — Sat, go to step (8/+ 1)(C).

Step (8/+l)(C). Let 8i>8/ + 1 = 8Ji8/-(8i>8/ n X/>ev). Go to step 8/+2. Since

si,8/ n X/,ev-< Si,8/, the required separating sets being (x/,ev> X/,od u </"/)> and since

8i8/ n X/ ev has no predecessor in Pat — Sai, we may apply (b) and Lemma 1.11 to

conclude <8i>8/ n x/,ev> e Pat n «S^,. We now verify conditions (a)-(c). (a) is clear.

To demonstrate (b), suppose Si8/ = A1+ • —|-Am, Ay+vy=£y, <vy> ePai n Sai, and

<£y>=Z¡. Then Sj>8/ + 1 = 2yn=i (Ay-(Ay n x/.ev))- Furthermore, for each/

A/ = (\ ~ (A/ n X/,ev)) + (Ay O X/,ev)      Since (x/,„d U </-/,X/,ev)-

Therefore :

(Ay-(Ay n X/.ev)) + ((Ay n X/.ev)+ "y) = £y.

To complete the proof of (b) we have only to show that <(Ay n x/.ev) + l'/> EPa, n ^a,-

Since Pa¡ n .£„, is an ideal and <vy> e Ltt| n S^,, it suffices to show <Ay n x/,ev>

eL„, n Sa,. Since <Sii8/ n x/,ev> e La, n 5",,,, it suffices to show

A/ n X/.ev ■< Si>8/ n X/,ev

Now

Si,8/ n X/.ev =  (Ay + U   M ° X/.ev
V       fc#/     /

= (Ay O X/.ev) + ((U   Afcjn X/.ev)
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and thus A, n x/.ev-^ Si8/ n xr.ev To demonstrate (c) suppose that (m, 8) is a pair

of disjoint RE sets covering Ft, that,

(iii) w n 8iM = (ßx n Sí>8/)+(Aj n 8(>8/) since (ßx, ß2),

and that <A n 8i8/> e Pat-Stti. It follows that

w n Sli8/+1 = (ßx n 8i>8/+1) + (j32 n 8ij8/+1)   since (ßx, ß2),

and because ßx u /322«> n S18/2co n 8i8/+1. To demonstrate (c) it suffices to

show that <ßx n 8,8/+1> e Pa( — Sai. Now

A n 8i>8, = (ßx n 8UBf+x) + (ßx n X/-ev n 8ii8/)

since (x/,od u <A/> X/,ev) and because 8t>8/s8i>8/+1 u (8t>8/ n x,,ev)- Since

<ft. n 8(>8/> eP„(-Sa„ <ft. n Sw+1> eFa,

by Lemma 1.5, and in order to prove <A o 8(>8/ + 1> £ £„, it suffices to prove

(ßi n Xf.ev n Si>8/> eFŒ( n Sat by Lemma 1.6. Now

X/.ev ^ 3i,e/ = (A n w n X/,ev n 8UBf) + ((ß2 u 0) n Xf,ev n Si>8/)

since (ßx nw,ß2u 6) and because (ßx n a>) u (/?2 u 0)2 8i8/2x/\ev n 8t>8/. (To

see the first inclusion we may argue as follows:

((ßx nw)u(ß2u 6)) n 8,..,

= ((ßx u ft u fl) n (« u ft, u 8)) n 8i>8/

= (ßx u ß2 u 8) n 8i>8/   because œ u 8 2 F¡ 2 Si>8/

= ((Ai uftO n Si>8/) u(9n 8i>8/)

= (a> n 8i>8/) u (0 n 8UBf)   by (iii)

= (co u 0) n 8<j8/ = 8i>8/.)

ßx n œ n 8i6f — ßx n 8(>8/   by (iii) because ßx n ß2 = 0.)

Therefore

Ai n w n Xf,ev n 8i>8/ = ftn x/.ev ^ 8,i8/ -^ x/,ev n si,s/-

Since <x/,ev r> S,i8/> e Fa, n £„,, we have <Ai n Xt,m n 8,.8/> e Fffi n Sa, and (c) is

proved.

Step 8/+2. Let À be a subset of x/,ev n F, such that <A>=Z¡. Such a A exists

since x/,ev n F¡ is an infinite RE set. Let 8<8/ + 2 = Si>8/ + 1 u A. Go to step 8/+3.

Note that 8i>8/ + 2 = 8i8/ + 1-|-A since (x/i0d u ^7, X/,ev)- (a) holds since 8i>8/ + 1^F¡ and

AsFj. (b) is immediate. To verify (c), suppose that (tu, 8) is a disjoint pair of RE

sets covering Ft and that

<" n st.8/+i = (A n 8uef+x)+(ß2 n 8tp8/+1)   since (ßx, ß2)
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where <ft n 8iiBf + 1}ePat-Sai. Then

o> n Si,8/+2 = cd n (8i-8/+1 u A)

= (i»n 8ii8/+1) u (a. n A)

- (Pi n Si>8/ + 1) u 0S2 n 5i>8/ + 1) u (co n A)

= (ßx n 81>8,+1) + ((0a n Sip8/ + 1) u (w n A))

since fjSi n (x/,od u 0r), ß2 u x/,ev)- This verifies (c).

Steps 8/+3 and 8/+4 are described by making two changes in the descriptions

of the steps labelled (8/+ 1)(B) through 8/+2. Each occurrence of 8/in the descrip-

tions is replaced by 8/+ 2, and x/.ev and x/,0d are interchanged. With these changes,

step 8/+3 is the step labelled step (8/+3)(B).

Steps 8/+5 through 8/+8 are described by making similar changes in the

descriptions of steps (8/+l)(A) through 8/+4. More precisely, each occurrence

of 8/is replaced by 8/+4, and xi and if>f are to be interchanged throughout the

descriptions of steps (8/+ 1)(A) through 8/+4; in particular, x/.ev is to be replaced

with 0/pev etc. With these changes, step 8/+5 is the step labelled step (8/+5)(A).

Finally, set 8¡ = 8i8(i + 1) u ^j = 8i8(, + 1)+/x, since (Ei — p.i, fj.t) and because

8i,8(i + D = Li by (a). We observe that 8¡ has the following properties.

(iv) There is a finite collection of sets Als..., Am, v1;..., vm, p such that mi 1

and S¡ = Xx + ■ • • + Am + p, p is finite, and, for each/ <Ay + v¡) =Z¡ and <vy> e Pa¡ n Sa¡.

This follows from (b) for Si8(i + 1), the finiteness of ¡xh and the observation that

8,2# 0 since 0 is not excluded from i.

(v) If/á/ and xr n E' (0, P. L') is finite, then X/ n S¡= 0 (<¡j, n 8,= 0). This is

proved by noting that S)8(1 + 1)sF(, hence S¡ n e¡= 0.

(vi) If/^í and /is excluded from /, then ~\(8i^Xf[J 'I'd- To see this recall

xs e p.t s 8¡ and xr $ xt u 0/-

(vii) IffSi and/is not excluded from i and xr n L* (0/ n L') is infinite, then

X/.ev n S, and x/,od n °t (0/,ev n S( and 0/jO(J n 8¡) each contain a predecessor in

Pai — Sa¡. Under the assumed conditions

X/.ev n Sw+2 and x/,od n Si-8/+4 (0/p6V n 8i-8/+e and 0Aod n 8ip8/+8)

each contain a predecessor in Pa¡ — Sa¡. It follows by property (c) that Si8(j + 1), and

hence S¡, also satisfy the conclusion.

Let i be an infinite isolated subset of L and let ß = {Jie( 8t. ß is the result of this

construction: that is, </S> represents a typical element of 5[{Z4}]. We note that since

| is isolated and each S¡ is isolated, ß is isolated so that <j8> e A.

Lemma 2.3. For any finite n, there exist isols Xx,..., Xn, Yx,..., Yn, Y such

that </3> = Xx + ■ ■ ■ + Xn + Y and for each i there is a j which is greater than n and

such that Xx+ Y{=Zt and y¡ e Paj n Saj.

Proof. The proof is immediate from (iv) since f is infinite.
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Lemma 2.4. T/'Zá </3> and Z$Pan Sa, then there exist isols V and W such that

Z= V+W,V$Pan Sa, and WfPan Sa.

Proof. If Z^<A>> then there exists a pair of disjoint RE subsets of ExE, say

(xf, 4>f), such that Z=<xy n ß} and ß^xr u </-,. Let ct={¿ : / ä/& x/ <"> S¡# 0}.

First we show that <r is not finite. Suppose that a is finite. Then

Xf ̂  ß =    U    (X/ ̂  S,) u (J (Xf n 8t)
te(&i<f fe<r

=      2    Cc/n8f)+2(x/n8l)
ie«rf</ ieff

<  2 8<+2s<-

We apply (iv) to see that each <8(> e /„, since <8¡> is in the ideal generated by Pa¡.

Thus each <Sj> ePan Sa by Lemma 1.1 since each a¡<a. By Lemmas 1.1 and 1.3,

any predecessor of a finite sum of elements of Pa n Sa is an element of Pa n Sa.

This, together with the above inequality gives <x/ n ß} e Pa n Sa contradicting the

assumption that Z$Pan Sa.

Since Xf n ß=(Xf.ev n A) + (x/.oa n A) it suffices, in order to prove the lemma, to

prove <x/,ev ^ A> $ Fa n Sa and <x/>0d ̂ ß}^Fan Sa. If i e f and /jS i, then / is

not excluded from i by (vi) since S¡^Uie{ SiSx/ u "A/- Furthermore, if / e a, then

X/ n Fl is infinite by (v). Therefore, the hypotheses of (vii) are satisfied whenever

i e a so that we may conclude that if i e a then both x/,ev n S¡ and x/,od n S(

contain a predecessor in Pa¡ — Sat. If o¡ = (a— 1)+1 is a successor ordinal we use the

fact that <r is infinite and Theorem 1.8 to conclude that <X/,ev n A^ $ ¡a-1 =Pa n Sa

and <x/,od n ßy <£ Pa n Sa. If a is a limit ordinal, then we argue by contradiction.

Suppose <x/.ev nß}ePan Sa=[Ja.<a /„-. Then for some «'<«, <x/>ev n ß} e Ia..

Since a is unbounded and «¡ f a, let 7 e <r be such that a¡ > a. By (vii) <x/,ev n A>

contains a predecessor in Pai — Sa¡ and thus <xr,ev n A> £ 4'- This contradiction

shows <x/.ev n ß) $Pan Sa- The same argument shows <x/,od n A> £ -P« n ^a-

Lemma 2.5. If Z-^ißy and ZePa n Sa, then there is a finite collection of isols

Xx,..., Xn, Vx,..., Vn, Y and indices /,...,jn such that Zá2?=i Xt+Y, Y is

finite, and, for each i, Xt+ Vl=Zj¡.

Proof. Since Z^ <j8>, there is a disjoint pair of RE subsets of Ex E, say (x¡, <A/),

such that Z = <x/ n ß} and ß^xt u "A/- If {'": X/ n S¡# 0} were infinite, we could

conclude that Z £ Pa n Sa by using (vii) and Theorem 1.8 as in the previous proof.

Thus {i : Xf n 8^ 0} = p is finite. By (iv) there exist sets Au, vuj, Pi such that

Si = Al,1+ • • ■ +Xi¡m¡+Pi, <Alií + víiy>=Zi and Pl is finite. Therefore

ZÚ 2 (f <Au> + <Pi>)
iep   \j = l /

= 2(î<Au>)+2</">-
iep   \] = 1 I        iep
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3. Some existence theorems.

Lemma 3.1. If a¡ f a, Z¡ e Ptti — Sa¡ for each i, and Z e L[{Zj}], then ZePa—Sa.

Proof. Z ePa follows immediately from Lemma 2.1 since Z¡ e PUt cL„. If a is a

successor ordinal, then since Z satisfies Lemma 2.2, it cannot satisfy Theorem 1.8

for a— 1 and thus Z ^ Ia_1 =Pa n Sa. If a is a limit ordinal, we see that Z$Par\ Sa

using Lemma 2.1 and an argument similar to that used in Lemma 2.4 to show that

<X/,ev C\ßy $PaCï Sa in case a is a limit ordinal.

Theorem 3.2. For each ordinal a, 0<a<a>1, Pa—Sa is not empty.

Proof. The proof is an induction on a. For a=l, the theorem is implied by

Theorem 43(b) of Dekker-Myhill [4, p. 102]. Assume now that a>l. Let {a¡}™=0

be a sequence of ordinals such that a¡ f a. By the inductive hypothesis there exists

a sequence of isols, {Zt}fL 0, such that, for each /, Z¡ e Pat — Sar Let Z e P[{Z{}]. By

the preceding lemma, Z e Pa—Sa.

The following lemmas lead to a strengthening of this result. Theorem 3.8

asserts that Pa—Sa is not only nonempty, but also contains a set of c isols any two

of which are a-incomparable.

Lemma 3.3. Ifat fa,Z,£ Ptti - Sa¡ for each i, B e P[{ZX}], Z^B,andZePan Sa,

then there is a finite set p such that Z^2ie/> Z¡.

Proof. Let {Z.}, Z, and B satisfy the hypotheses of the lemma. Let Y be such

that Z+ Y=B. By Lemma 2.1, there is a finite set p such that Z^~2ispZt or

T^2tepZi- If the latter then YePanSa since ~£i€B Z( e Pa n Sa. In this case

B=Z+ YePa n Sa by Lemmas 1.1 and 1.3 since ZePanSa by assumption.

This contradicts Lemma 3.1. Therefore Z^2ieo Z-

Definition. For XePx—I0 and lS«<a>x we define Pa[X] by induction on a.

Px[X]={X}.Fora>l,

PAX] = U P[{Zi}}-
a¡ia&ZiePa,[X]

For the next three lemmas we assume that X sLj—70-

Lemma 3.4. If Xa e Pa[X], then Xa e Pa-Sa.

Proof. The proof is by induction on a. For a= 1, the lemma is clear. The induc-

tive step is proved using Lemma 3.1. If Xa e Pa[X], then there is a sequence of

isols {Z¡}¡°= o and there is a sequence of ordinals {a.}," 0 such that a. f a, Xa e P[{Zt}],

and Zi&Pa\X] for each /'. By the inductive hypothesis, Z, ePai-Sar This shows

that the hypotheses of Lemma 3.1 are satisfied for Xa so that we may conclude

that XaePa-Sa.

Lemma 3.5. // Y¿Xa, XaePa[X], and YePx-I0, then Y=1X.
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Proof. The proof is by induction on a. For a=l, we have that Y+Z=X and

Y e Px—10 implies Z e I0 and Y= x X. Now assume XaeP [{Z¡}] where a, f a and

Z( ePa,[X] for each i. Suppose Y-¿Xa and YePx-I0. SincePxzPan Sa we may

apply Lemma 3.3 to prove the existence of a finite « such that Y^ 2"=i Z(. By the

refinement property there exist isols Yx,..., Yn such that Y^ZX for i= 1,..., n

and F=2?=i T¡. Since Ye Px — I0 there is exactly one V such that F4- $ I0. There-

fore Y=x Yv. Since F(. ̂ Z¡- £?„,,[!], we can apply the inductive hypothesis to

conclude that F¡.=jl Therefore Y= x X.

Lemma 3.6. If XttePa[X] and Z=aXa, then there is a Y such that Y=XX and

Y^Z.

Proof. Let X„ and Z be isols satisfying the hypothesis of the lemma. There exist

isols V and W in Pa n Sa such that Z+V=Xa+W. Applying the refinement

property, there exist isols Zx, Vx, Z2, V2 such that

zx+vx = xa

+   +

z2+v2 = w

II     II

Z     V

Since VePan Sa, VxePan Sa. Since Xa$Pan Sa by Lemma 3.4, Zx$Pan Sa.

If there were no Y such that YePx-I0 and Y^ZX, then we would have Zx e Sx

and thus ZxePan Sa. Therefore there is a y such that YePx—10 and Y¿ZX.

Since Zx ̂ Z and Zx ¿ Xa, Y^Z and Y¿ Xa. By Lemma 3.5, Y= x X.

Lemma 3.7. If XePx-I0, UePx-I0, and 1(X=XU), and if XaePa[X] and

UaePa[U],thenl(Xa = aUa).

Proof. Let X, U, Xa, Ua satisfy the hypothesis and suppose Xa = „ Ua. Then

there exist isols V and W in Pa n Sa such that Xa+ V=Ua+ W. Applying the

refinement property, there exist isols Xa¡1, Xa¡2, Vx, V2 such that

Xa¡1+Vx = Ua

+       +

xa,2+v2= w

II       II

xa     V

Since Xa<2 ̂  W and W e Pa n Sa, Xa¡2 ePan Sa. Therefore XaA = a Xa. By Lemma

3.6 there is an isol Y such that Y e Px -10, Y^ Xa¡1, and Y= x X. But YS XttA ̂  Ua

implies Y^Ua. Since YePx-I0, we may apply Lemma 3.5 to see that Y=x U.

Y= j X and Y= x U implies X= x U, contradicting the hypothesis.
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Theorem 3.8. For any ordinal a, 0 < a < ailt there exists a set of c isols in Pa — Sa,

any two of which are a-incomparable.

Proof. For a=l, this theorem is Corollary 1 of Theorem 44 of Dekker-Myhill

[4, p. 103]. Suppose 1 < a < a*!. Let 0 be a set of c indecomposable mutually

incomparable isols: i.e., 0 is a set satisfying the conclusion of the theorem for

a = 1. For each X e 0, let Xa be an element in Pa[X]. {Xa : X e 0} is a set satisfying

the conclusion of the theorem for a. For each X e 0, Xae Pa — Sa by Lemma 3.4.

If X and Y are elements of 0 and X=£ Y, then l(X=x Y) since A'=1 Y implies

X^ Y or Y-¿X. By Lemma 3.7 it follows that ~\(Xa = a Ya). Finally, the corollary

to Lemma 1.9 shows that Xa and Ya are a-incomparable.

We now consider the second construction of the preceding section and derive

existence theorems for Sa—Pa.

Lemma 3.9. Ifat f a, Z( e Pai — Sai for each i, andZe S[{Z¡}], then Z e Sa—Pa.

Proof. Ze Sa follows immediately from Lemma 2.4. The proof that Z$Par\ Sa

is exactly the same as the proof of the corresponding assertion in Lemma 3.1 using

Lemma 2.3 in place of Lemma 2.2.

Theorem 3.10. For each ordinal a, 0<a<a»1, Sa—Pa is not empty.

Proof. For a=l, the theorem is implied by Theorem 49* of Dekker-Myhill

[4, p. 112]. For a> 1, the theorem follows from the preceding lemma and Theorem

3.2.

The following definition and lemmas lead to Theorem 3.15, which is a strengthen-

ing of Theorem 3.10.

Definition. For X e Px —10 and 1 < a < ojj we define

sa[X] =      U      s[{zt}].

For the next three lemmas we assume that X ePx —10.

Lemma 3.11. If Xa e Sa[X], then Xa e Sa-Pa.

Proof. The proof is a direct application of Lemmas 3.4 and 3.9.

Lemma 3.12. If Y^ Xa, Xa e Sa[X], and YePx-IQ, then T=j X.

Proof. Let Y and Xa satisfy the hypothesis of the lemma. Assume Xa e S[{Zt}]

where a¡ f « and Z¡ ePa\X] for each /. Since YePa n Sa, by Lemma 2.5 there

exists a finite isol N and a finite sequence of indices/,.. .,jn (possibly with re-

petitions) such that yá2f=iZy, +N. Applying the refinement property, we may

decompose Y into a sum, 7=2"= o T¡ such that Y0^N and Tf^Zy( for />0.

Since YePx — Io, there is exactly one /' such that Yv $I0. j'VO since Y0^N and

Nel0. By Lemma 3.5, since Yv-¿Zh.ePg[X] where ß = ah„ Yv = xX. Since

Y=xYv, 7=il.
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Lemma 3.13. If Xae Sa[X\ and Z=aXa, then there is a Y such that Y=XX and

Y^Z.

Proof. The proof is the same as the proof of Lemma 3.6 using Lemmas 3.11

and 3.12 in place of Lemmas 3.4 and 3.5.

Lemma 3.14. If XePx-I0, UePx-I0, andl(X=xU), and if XaeSa[X] and

UaeSa[U],thenl(Xa^aUa).

Proof. Let X, U, Xa, Ua satisfy the hypotheses of the lemma and suppose

Xa^aUa. Then there exist isols Z, V, W such that VePanSa, WePan Sa,

and Xa+Z+ V=Ua+ W. By the refinement property there exist isols XaA, Xa¡2,

Zx, Z2, Ft, V2 such that

xaA+zx+vx = ua

+     +   +

xa,2+z2+v2 = w

II       II     II

xa    Z    V

Since Xat2^W und WePan Sa, Xa¡2ePa n Sa. Therefore Xa¡1 = aXa and, by

Lemma 3.13, there is an isol Y such that Y^Xa¡x and Y=XX. Since Xa_x^Ua,

Y^ Ua. Since YePx-I0 and Y^ Ua, Y=x U by Lemma 3.12. Therefore X=x U

contradicting the hypothesis.

Theorem 3.15. For any ordinal a, Q<a<mx, there exists a set of c isols in Sa — Pa

any two of which are a-incomparable.

Proof. For a=l, the result may be proved in the following way. If 8 is a re-

traceable set and <8> g <j8>, then 8 is Turing-reducible to ß. By Sacks [6, Chapter 2],

there exists a set of c mutually incomparable Turing degrees. By Dekker-Myhill

[3, pp. 364-365], each Turing degree except the lowest can be represented by an

isolated retraceable set. Since each infinite isolated retraceable set represents an

element of Sx — I0 (see Dekker-Myhill [4, Theorem 49*]), the theorem follows for

«=1.
For a > 1, the proof is similar to that of Theorem 3.8. Let 0 be a set of c indecom-

posable isols which are pairwise incomparable. For each Xe & let XaeSa[X].

{Xa : X e €>} is a set satisfying the conclusion of the theorem for a. For each

Xe 0, Xa e Sa-Pa by Lemma 3.11. If X and U are distinct elements of 0, then

1(X=X U) since X=x U implies X¿, U or í/á X. By Lemma 3.14, Xa and Ua are

a-incomparable.

4. Multiple-free highly decomposable isols.

Theorem 4.1. Let a be a positive countable ordinal. There exists a Z such that

ZeSa—Pa and for no natural number n, n>\, does there exist an X satisfying

nX=aZ.
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Leta¡ t a. Let {y4¡y} be pairwise incomparable elements of Lí — Zq for/= 0,1,2,...

and/=0,1,2,....

Modified Construction II. Modify Construction II of §2 in the following way.

If, at theyth step in the construction of 8¡ a representative of Z¡ is added to 8i>y_lf

instead add a representative of an element of Pa¡[Au]. The result of the modified

construction will be called a typical element of Sa[{Aiyj}].

For each / there exist sets p¡ and A¡_y and vtJ as j ranges over an appropriate

nonempty subset of {1,..., 8(/+l)} such that 8, = 2y A,_y + p¡, _o¡ is finite, and,

for each/ <AJy+vijy> ePa\AUJ] and (y^^y ePat.r\ Sar The proof is the same as

that of (iv) in Construction II. Let Ziy = <Aiy>. By Lemma 3.5, if A^ZU and

A e Px — Io, then A = x^tj- By Lemma 3.6, there is an A such that A ePx — I0 and

AÚZU.

(4.1) If Ze Stt[{A,j}], Y^Z, and YePan Sa, then there is a finite isol X and a

finite range of indices (i,j) such that Y-¿ 2 Zitj+X.

The proof is the same as the proof of Lemma 2.5.

(4.2) If Z e Sa[AUi], then Z e Sa-Pa.

(4.2) is established by the same chain of reasoning that proves Lemma 3.9.

Until the end of the proof of Lemma 4.3 let Z e ^[{/it,/}] and let the isols Z,_y

be related to Z in the way specified above.

Lemma 4.2. If a is a countable successor ordinal greater than 1, then for any

n>\ there is no Xsuch that nX= aZ.

Proof. In order to avoid notational complexity it will only be shown that 2

does not divide Z with respect to = „. The general proof is essentially the same.

Since a = (a—1)+1, each ZitjePa_x — Sa_x- Suppose 2X=aZ. Let V and W be

such that VePa n Sa, WePa n Sa, and 2X+ V=Z+ W. By Lemmas 1.2 and 1.8,

there exist V0,..., Vn, W'0,...,W'm such that V= 2f= o K W= 2f- o W\, V0 e Sa. u

W¡,eSa-x, V'iePa_x-Sa-1fori=l,...,n,and W'isPa_x-Sa.x for /=1,. ..,m.

Since there exist infinitely many Zu¡ and the Zij are pairwise (a- l)-incomparable

by the proof of Theorem 3.8, there exists a Zu which is (a— l)-incomparable with

each V\ and W\ for i>0. Let Zlty have this property. Let Z=Z(y+Z'.

(i) if A^Z' and A ePx—I0, then ~\(A = xAu). To see this suppose A satisfies

the antecedent. Then ^+Z(,y^Z'+Z¡,y=Z and ^+Z,,y s Ia-x=Pa n Sa. By (4.1)

there exist a finite set of pairs (/',/) and a finite isol Y for which

A+ZuZZZt^+Y.

ZtJ must be one of the Z?tf by Lemma 1.10 so that A£2,Zrj> + Y where the

summation is over the same range of (/',/) as before except for (i,j). By the

refinement property, there is an A' such that A' = xA and ^4'^Z¡.,y. for some

(i',j'). Therefore A' = xAv<r and thus A = xAViï. Since AVii- is incomparable with

Ai.h\A = xAu).
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Apply the refinement property to the equation 2X+ V=ZiJ+Z'+W obtaining

X1A + XXt2+Vx=Zu

+       +       +

-^2,1 "r -<*2,2 "r" ^2  == ^

(4.3) +       +       +

X3,x + X3,2+V3  =   W

II II II

XXV

Since ZijePa_x — Sa-x, exactly one of the isols XXtX, Xx¡2, Vx is (a— l)-equal to

Z(j. Since Zu is (a— l)-incomparable with every predecessor of V in Pa-X — Sa.x,

XXtX=a.x ZtJ or Arlf2=a_1 Zij. Assume the former with no loss of generality.

Apply the refinement property to the equation

■A^l,2 + -"2,2 + -^3,2  =   ■"* 1,1+ ^2,1+ ^3,1

obtaining

-*1,2,1 + -*2,2,1 + -A3,2,1   =   ^1,1

+ + +

■" 1,2,2 ""■ -<*2,2,2   *   -^3,2,2   ==   -i*2,l

(4.4) + + +

•* 1,2,3+ X2t 2,3 + A^3,2,3  =   X3¡x

II II II

X\,2 x2¡2 x3¡2

Again, exactly one of XXt2A, X2¡2¡1, X3¡2¡1 is (a— l)-equal to XXtX since XXwX

ePa_x — Sa-x. XX2X^ XX2 ePa_xn Sa_x sol(Arli2,i=(a-i)-Ai,i)- -^3,2,1 = -^3,2= "

and any predecessor of W in Pa-X — Sa-X is (a—l)-incomparable with Zu. Since

■*i,i""<«-i> Z.y> 1(^3,2.1 = (a-d^i,i)- Therefore Ar2,2>1 = (a_i)A'lil=((r_1) Zitj. By

Lemma 3.6, X2¡2il contains a predecessor A such that A = xAtJ. But X2r2wX-¿X2t2

ÚZ' and thus A ¿Z'. This contradicts (i) and proves the lemma.

Lemma 4.3. If a is a positive countable limit ordinal, then for any n>\ there is no

X such that nX=a Z.

Proof. Again it will only be shown that 2 does not divide Z with respect to = a.

Suppose 2X=a Z. Let V and W be such that VePa n S„ WePan S„ and

2X+ V=Z+ W. Then V+ We (Ja-<a h- Therefore V+Weltt. for some a <a.

Since Z satisfies an appropriately modified version of Lemma 2.3, there is an a"

and there is a pair (i,j) such that a <a" and Z¡jePa. — Sa~. Let a" and (i,j)

satisfy these properties. Let Z=ZtJ+Z'. As in the proof of (i) for Lemma 4.2,

it may be shown that (ii) if A^Z' and A ePx — I0, then ~\(A = XAU).

As in the proof of Lemma 4.2, apply the refinement property to the equation

2X+ V=Z,j+Z'+lV obtaining the equations (4.3). Since Z( ti e Pa~ - Sa~, exactly

one of Xx¡x, X1¡2, Vx is <x"-equal to Zu. Since Vx ̂  V, V e Ia., and /asFa- o Sa;

~\(Vx = a~ Zij). Assume without loss of generality that XXA = a~ Zit¡.



382 A. B. MANASTER [December

As in the proof of Lemma 4.2, reapply the refinement property to obtain (4.4).

Exactly one of ATi.a.i, X2,2,x, X3t2¡1 is a"-equal to Xltl since A,lile?,t.-50-.

\Xx,2,x = a-Xx,x) since X1¡2,xÉXx,2ePa~ n Sa.^. "lCäf3.a.i=<»-*i,i) since X3,2¡1

= ^3,2== W and WePa., n Sa~. Therefore X2¡2A = a- Arlil = a»Z(,y. By Lemma 3.6,

^2,2,i has a predecessor A such that A = xAu. Since X2¡2¡1úX2t2^Z', A^Z'.

This contradicts (ii) and proves the lemma.

Lemma 4.4. There exists an isol Z such that ZeSx-Px and for any n > 1 there is

no X such that nX= x Z.

Proof. Define X" 8 to be the «-fold Cartesian product of 8 with itself for S s L

and n> 1. Let {<u¡}í*Lo be the set of all infinite RE subsets of L. For fixed n, n> 1,

let {/„,i}¡°lo be the set of all 1-1 partial recursive functions whose domain is a

subset of Xn E and includes X" 8 for some infinite 8. If ß and S are subsets of L,

define ß = j 8 if and only if there exist finite sets p and /j. such that ß u p = 8 u p..

To prove the lemma it suffices to prove the existence of a set satisfying (4.5),

(4.6), and (4.7).

(4.5) For each pair (n, i) of natural numbers with n> 1, there is no set 8 such

that/B,1(X'lS) = 1^

(4.6) For each/, "l(co,£j8).

(4.7) For each /, a>, n ß is infinite.

(4.6) implies <(8> e A, (4.7) implies </3> e Sx-Pit and (4.5) implies that <(S> is

multiple-free with respect to =x.

(4.5) may be replaced by (4.8).

(4.8) For each pair (n,i) of natural numbers with n>\ there are infinitely

many pairs of natural numbers (x, y) satisfying (iii) /n>i(x, y, x,..., x) e ß and

fn,i(y, x,x,...,x)$ß. To see that (4.8) implies (4.5) suppose /Bli(Xn 8) = ij8 for

some ß satisfying (4.8). Let p and p, be finite sets such that/n,j(X" 8) u p=ß u p..

Of the infinitely many pairs (x, y) satisfying (iii), fn¡i(x, y, x,..., x) e p for only

finitely many. Hence there are infinitely many pairs (x, y) satisfying (iii) such that

{x, y} s 8. Of these infinitely many pairs /,jf(y, x, x,..., x) e ¡i for only finitely

many. Therefore there are infinitely many pairs (x, y) satisfying (iii) and such that

fn.i(y, x, x,..., x)eß. This contradiction shows that it suffices to prove the

existence of a set, ß, satisfying (4.6), (4.7), and (4.8).

Let y be a function mapping L onto {(n, i):n> 1} in such a way that the inverse

image of (n, i) is infinite for each (n, i) with n > 1. Let m be a function mapping

L onto L in such a way that the inverse image of / is infinite for each / 6 L. To

construct ß define a sequence of pairs of sets (ßk, 8k) by induction on k. Let

y80 = S0 = 0. Assume inductively that ßk_x n 8k_x= 0, ßk-x u 8fc_! is finite, and,

foraUfc'<A:-l,j8fc.ç/î,.. + 1and8k.ç8lt. + 1.IfA: = 3/+l,let)8k = /3fc_1,8fc = 8k_1u{z}

where z ew, n ßk_x. If /c = 3/+2, let 8k = 8k_x, ßk=ßk-x u iz) where

zewmmr\[(ßk_1uSk^x)]  ■
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If k = 3/ and / > 0, let ßk=ßk _ x u {f„tl(x, y,x,..., x)} and let

Sfc = Sfc_! u {/»,,(>>, x, x,..., x)}

where («, 0=7(0 and {/,,,(*, y, x,..., x),fn¡l(y, x, x,..., x)} n (ßk_x u 8k_x)= 0.

Note that in each of the three cases the inductive assumption remains satisfied.

Define j8=|J*.oAf
ß n (U"=o Sfc)= 0 since ßk n 8k= 0 and ßkSßk + x and 8ks8fc+1 for all fc. The

definition of S3i + 1 shows that ß satisfies (4.6) for i. The definition of A¡ + 2 for

the infinitely many / such that m(l) = i shows that ß satisfies (4.7) for i. Finally the

definitions of ß3l and 83l for the infinitely many positive / such that j(l) = (n, i)

show that ß satisfies (4.8) for any (n, i) with n> 1.

Proof of Theorem 4.1. For «=1, apply Lemma 4.4. For a>l, Theorem 3.8,

(4.2), and either Lemma 4.2 if a is a successor ordinal or Lemma 4.3 if a is a limit

ordinal imply the result.
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