HIGHER-ORDER INDECOMPOSABLE ISOLS

BY
ALFRED B. MANASTER(Y)

0. Introduction. An effective analogue of the theory of cardinal numbers was
created about ten years ago by J. C. E. Dekker. (See [1] and Dekker-Myhill [4].)
In it the only sets considered are subsets of the natural numbers and the only
functions considered are 1-1 partial recursive functions. In the classical theory a
cardinal number may be considered to be an equivalence class containing all sets
for which there is a 1-1 function mapping the set onto a given set. The Dekker
analogue of a cardinal number is an equivalence class on the set of all subsets of E
(E={0, 1, 2,...}) containing all sets « for which there is a 1-1 partial recursive
function f such that the domain. of fincludes « and the image of « under fis a given
subset of E. These equivalence classes are called recursive equivalence types, or
RETs. The collection of all RETs is denoted 2. The RET to which a set, «, belongs
is denoted <{o).

Addition is defined on the RETs in the following manner. If « < E and SSE,
o and B are called recursively separated if there exist disjoint recursively enumerable
(RE) sets w and 8 such that «=w and B<6. Let 4 and B be RETs. The sum of 4
and B is defined to be the RET represented by « U B where 4=<«), B={B), and
« and B are recursively separated.

We define 4 < B for RETs 4 and B if there is an RET C such that A+ C=B8.
The = relation is a partial ordering of the RETs. If 4 < B we say A is a predecessor
of B.

An RET is called an isol if it satisfies the additive cancellation law. The collection
of all isols is denoted. A. Thus 4 € A if and only if for all RETs Band C, A+ B
=A+C implies B=C. A subset, «, of E is called isolated if there is no 1-1 partial
recursive function f whose domain includes o and such that f(e)Ee. {«) € A if
and only if « is isolated. A subset of E contains no infinite RE subset if and only
if it is isolated. Thus A is the collection of equivalence classes of sets which do
not have infinite RE subsets. A is closed under addition and predecessor. The
assertions of this paragraph are proved in [4].

Dekker-Myhill [4, p. 114] define an ideal in A as a subsystem of A closed under
addition and predecessor. A sequence of ideals will be defined here in order to
discuss the results of this paper. Variables X, Y, Z, ¥V, W range over A.
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DEeFINITION 0.1. I,={X : X is finite}.
For ordinals ¢, « >0, the definition is continued by induction.

P, = {X: X=Y+Z— Yea'gal“' \% ZEM,I“'}'

Elements of P,—|Ju <o I,» Will be called «-order indecomposables; they are
indecomposable with respect to (U, <o Io--

Sa={X:X= Y+Z&Z¢ U I,

>@VEWZ=V+W& V¢ L & We ) L]}

Elements of S, —|J <4 I- Will be called «-order highly decomposable isols; they
are highly decomposable with respect to | Ju <o Iov- I, is the ideal generated by
P,US,.

DerINITION 0.2. The following two definitions are made for each positive
ordinal e.

@) X=, Yo @V@MX+V=Y+W&VeUrcaler &WeE Up<el]

b) X2, Ye>@A2)[X+Z=,Y].

The main results of this paper are existence theorems for P,—\_J. <o I, and
Se—U e <« I for countable ordinals «. Let ¢ denote the power of the continuum.
Theorem 3.8 asserts that for each positive countable ordinal o there exists a set of
¢ a-order indecomposables which are pairwise a-incomparable. Theorem 3.15
asserts that for each positive countable ordinal o there exists a set of ¢ a-order
highly decomposable isols which are pairwise o-incomparable. Theorem 4.1
asserts that for each positive countable ordinal « there exists an o-order highly
decomposable isol which is multiple-free with respect to =,: that is, there is a Z
such that for no n>1 is there an X satisfying nX=, Z. In view of Theorem
1.4, which asserts that every isol is in | J, <o, J- Where w, is the first uncountable
ordinal, the first two existence results are as strong as possible.

The existence of ¢ mutually incomparable first-order indecomposables and of ¢
first-order highly decomposable isols has been known at least since 1958. (See
Dekker [2, T1] and Dekker-Myhill [4, pp. 112-113].) The existence of ¢ mutually
incomparable first-order highly decomposable isols is an observation of Nerode
although the proof given below is not his.

1. Basic properties of the ideals /,. The following result will be used frequently.
It is a consequence of Theorems 15(/) and 19 of Dekker-Myhill [4, pp. 80-81].

The refinement property. If A;€ A for i=1,...,nand B, € Afor j=1,...,pand
A+ ---+A,=B;+ - - + B, there exists a matrix (C; ;)}-,}-; of isols such that
A;=Ci 1+ ---+Cfori=1,...,nand B;=C, ;+---+C, ,forj=1,...,p.
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The relations satisfied by the elements C; ; will often be indicated in the following
way:

C1'1+C2.1+ cee +Cn,1 = Bl

+ o+ +
Ci2+Co 2+ +Cho = By
+ o+ +
+ o+ +

Cipt+Copt+---+Chp =B,
] ] el
Al A2 e An

LEMMA 1.1. U <o Io=P, N S,..

Proof. <. Let Xe I, for some o' <a. If X=Y+Z, then Yel, and Z€el,
since I, is an ideal. Therefore, X € P,. Further, X € S, since the antecedent of the
defining condition of S, is never satisfied.

2. Let XeS,— Uy <ol Since X=0+X, X ¢ o <o I, and X € S,, there
exist isols ¥ and W such that X=V+ W, V¢ ), <o I, and W ¢ Jy <o L. This
shows X ¢ P,.

Notational remark. The equality of Lemma 1.1 may be used to shorten some
expressions. E.g., P,—\Jo <o I =P,—S,, and the latter form may be used when
the former is intended.

LemMMA 1.2, oy <ey > I, S 1. Uw <as1 Io=1,.
Proof. I, SUw <ay lor SPay N Sy, S 1,
LEMMA 1.3. Uy <o 1o is an ideal.

Proof. Clear from Lemma 1.2.
THEOREM 1.4. Xe A - XeUu <o, 1o
Proof. Let X € A. Define

y=lubfe:ie<w &AY)Y S X& YeP—S,+1.

Note that if « is an element of the set occurring in the definition, «<y. Also,
y<w; since there are only countably many predecessors of X. We will show
XeS,, hence Xel, Suppose X=Y+Z and Z¢ P, N S,. If Z=V+ W implies
VeP,NnS,or WeP,NS, then ZeP,—S, and

ye{e:a < w; &AYNY £ X & YeP,—S,)}.

We conclude y <y. Hence the implication fails, and there are ¥ and W such that
Z=V+Wand V¢P,nNS,and W¢P,N S,. Therefore X € S,.
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LemMA 1.5. P, is closed under predecessor. ILe., Y= X & X€ P,— Y€ P,.

Proof. X=Y+Z for some Z. Let Y=V+ W. Then X=V+(W+Z). Since
XeP, VeP,N S, in which case there is nothing to prove, or (W+Z)e P, N S,,.
In the latter case, since P, N S, is an ideal (Lemma 1.3), We P, N S,. Therefore
YeP,.

LEMMA 1.6. S, is an ideal.

Proof. First we prove that S, is closed under predecessor. Let X; < X'and X € S,,.
Then there is an X, such that X; + X, = X. Now suppose X;=Y+ZandZ¢ P, N S,.
Then X=(X,+ Y)+Z and, since X€ S, and Z ¢ P, N S,, Z has the desired de-
composition. Therefore, X; € S,. :

Secondly, suppose X; € S,, X, €S,, and X;+X,=Y+Z, and Z¢ P, N S,. By
the refinement property, there exist isols Y;, Y, Z;, Z, such that

Y14+Z = X,
+ o+
Yo+Zs = X,
T
Y Z

Since P, N S, is an ideal, Z, ¢ P, N S, or Z, ¢ P, N S,. Z, ¢ P, N S, implies the
existence of ¥ and W such that Z,=V+ W, V¢ P, N S,, and W¢ P, N S, since
Z,2X;, and X, € S,. Then Z=(Z;_;+V)+ W is a decomposition of the desired
form. We may conclude that (X; + X3) € S,.

LeEMMA 1.7. X € I, if and only if there is a finite set of isols X1, . . ., X,, Z such that
each X;e P,, Z€e S, and X=2"_, X;+Z.

Proof. The ideal generated by any set is the collection of all predecessors of finite
sums of elements of the set. Thus I, is the collection of all isols X for which there
areisols Yy,..., Y,, Z,, ..., Z, such that each Y, e P,, each Z; € S,, and

X2+ + Y42+ 42,

Since S, is an ideal, Z,+ - - - +Z,=Z, € S,. By the refinement property, X< Y,
+ -+ Y, +Z, implies the existence of isols X}, ..., X,, Z such that X=X+ ---
+X,+Z, Z<Z,, and each X,;<Y,. Since both S, and P, are closed under pre-
decessors, Z € S, and each X; e P,. Hence, if XeI,, X satisfies the conditions
specified in the lemma (i.e., — is proved.). The converse is clear.

THEOREM 1.8. If X € I, then there is a finite n such that any linear decomposition
of X includes at most n isols of P,—S,. More precisely, if 212f Y,=X, then there
are at most n i’s for which Y; € P,—S,,.
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Proof. Let Xel,. By Lemma 1.7, there are isols Xi,..., X;, Z such that
X=X,+---+X,+Z,Z€c S,, and each X, e P,. We claim that this n satisfies the
conditions of the theorem. To simplify notation, we prove an example in which
n=2and k=2. Suppose X=X,+ X, +Z, each X, € P, and Z € S,. Suppose further
that X=Y,+ Y,+ Y5+ Y,. We must prove that there are at most two i’s such that
Y, € P,—S,. Equivalently we must show that there are at least two i’s such that
Y, ¢ P,—S,. By the refinement property, there exist isols Y; ; such that

Y1,1+ Y1.2+ Y1,3+ Y1,4 =X
+ o+ o+ o+

Yoi+ Yoot Yy5+ Yy = Xp
+ o+ o+ o+

Ysut+ Ysot Yss+ Y5 =2
] i ] I

Y, Y. Y Y,

Since X, € P,, there is at most one j=j(i) such that Y, ;, ¢ P, N S,. Thus K
={l, 2, 3, 4} —{j(1), j(2)} has at least two elements. It suffices, to prove the theorem,
to prove that k € K implies Y, ¢ P,—S,. Let k € K. Then Y, , € S, for i<2 since
Y, r€P, NS, =8, Y3,€S, since Y3,<Z and Ze€S, Therefore, Y=Y,
+ Y, .+ Y5, is an element of S, (Lemma 1.6), and so Y, ¢ P,—S,.

CoRrOLLARY OF DEFINITION 0.2(a). =, is an equivalence relation. Addition is
well defined on the =, equivalence classes.

Proof. Reflexivity and symmetry are clear. If (V,+ W+ Vy+ W,) € P, N S, and
X,+Vi=Y+W,and Y+ Vo,=X,+ W,, then X, + Vi 4+ Vo=Xo+ Wi+ W,y 50 =,
is transitive. Again, if (Vi+ W+ V,+Wy)eP, N S,, X;+V,=Y,+W;, and
Xo+ Vo= Yo+ W,, then

X1+X2+ V1+ V2 = Y1+ Y2+ W1+ W2,

so addition is well defined on =, equivalence classes.
COROLLARY OF DEFINITION 0.2(b). <, is a partial order.

Proof. We have only to show that =, is antisymmetric. To do this we note that
X+Y=,X+Z—Y=,Z. For if VeP, NS, and WeP, NS, and X+Y+V
=X+Z+ W, then, since Xe A, Y+ V=Z+ W. To prove the corollary, suppose
X:=5.X, and X,=<,X;. Then there exist Z;, Z, such that X;+Z,=,X, and
X1=4X2+Z,. Therefore, X;+Z,+Zy=,X3+Z,=,X,. Thus Z,+Z,=,0. l.e.,
(Z,+Z;)eP,nS,.S0Z,eP, NS, and X; =, X,.

LeMMA 19. X+Z=,Y& YeP,—-> XeP, NS, VZeP, NS,
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Proof. Suppose X+Z=,Y, X¢P,NS,, and Z ¢ P, N S,. There exist V and
W, V+W)eP, NS, such that X+Z+V=Y+ W. Applying the refinement
property, there exist X;, V;; Z; such that

X, +Z+V =Y
+ + +
Xo+Zo+ Vo= W
oo
X z v

Since X;=WeP,NS,, XoeP,NS,. Since X¢ P,NS,, X,¢P,NS,. Similarly
Z,¢P,NS,. Therefore (Z,+V,)¢P, NS, Thus Y=X;+(Z,+V;) is not an
element of P,.

COROLLARY. X¢P, NS, & YeP, & XS, Y—> X=,7Y.
Proof. X+Z=, Y for some Z. By the lemma, Z=,0. Thus X=, Y.

LemMma 1.10. If Xe P,— S, and each Y, € P, and X=,>%_, Y,, then there is an
i for which X=,Y,.

Proof. To simplify notation, we will prove the special case of n=2. There exist
Z, V, Wsuch that (V+W)eP, NS, and X+Z+V=Y,+ Y,+ W. Applying the
refinement property, there exist X;, Z;, V; satisfying

X1+Zl+ V1 = Y1

+ + +
X2+Zg+ Vg = Yz
+ + +

X3+Za+ V3 =W
Il i n
X Z v

Since X;=WeP, NS, XseP,NS, Since X e P,—S,, there is exactly one i,
i=1 or i=2, for which X; ¢ P, N S,. Thus X;=,X. By Lemma 1.9, since Y, € P,,
(Z+V)eP, NS, Thus X;=,Y,and so X=,7%,.

LemMma 1.11. If X<37., Y, and, for each i, Y, € P,—S,, then either there is a
Z such that Z< X and Z € P,—S,, or Xe P, N S,.

Proof. Suppose X+ W=73}?_, Y,. By the refinement property, there exist isols
X;, W; such that for i<n, X;+ W,=Y,; and such that X=>7., X;. By Lemma
1.5, for each i, X;eP,. If, for each i, X, € S,, then X=3"_; X;e P, N S, by
Lemmas 1.1 and 1.3. Otherwise there is an i for which X; € P,— S, and, of course,
X=X
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2. Two constructions related to the sequence of ideals.

Notation. If o is a countable ordinal and « > 1, we will say that «; { « only if one
of the following two conditions is satisfied: « is a successor ordinal and, for all i,
0<i<w, y=0a—1; or « is a limit ordinal, « is the least upper bound of {e;};2,,
and for all §, 0Zi<w, y<oy,;.

If B€E, B=pB; U B, and there is a pair of disjoint RE sets, (w, ), such that
B1Sw and B, <0, then we may write =4, + B, or =8, +B; since (w, §). We call
B the sum of B, and B, in this case. More generally, if n=2, 1 <i<j<n implies
0,n 0,= gz, and By 6,<E and 6, is RE for i=1, ..., n, we may write

or
n . n .
4L=J1 B = Z Bi since {6},

If §=B and B=8+(B—3), we may write <8 and call § a predecessor of B.
{(xs» ¥1)}7 0 is a sequence of pairs of disjoint RE subsets of E x E containing all
such pairs and such that

(xos ¥o) = {(2x : x € E}x E,{2x+1 : x€ E} X E).

If 8 E, we abbreviate 8 x {i} by &'. Finally, if w is an RE subset of E x E, then
wey and wyy are disjoint RE sets such that w=we, U wyq and whenever w N E!
is infinite both we, N E! and weq N E! are infinite.

In the remainder of this section we assume that «; 4 «, «>1, and for each i,
Z,e P,,—S,,. We will describe and discuss two constructions from the sequence
{Z} 0. The first is designed to construct representatives of isols in P,—S,, the
second representatives of isols in S,—P,. Any isol which has a representative
resulting from the first construction, and only such an isol, will be, by definition,
an element of P[{Z;}]. S[{Z}] is defined in the same manner, using the second
construction instead of the first.

An observation which will be used in Construction 1 is that given any countable
sequence of subsets of E, say {£,}7- o, there is an infinite subset of E, say £, such that
for each f, £ N ¢, is finite or £ N £, is finite. Dekker-Myhill [4, p. 102] give a proof
for the special case in which £, =w; is the fth set in an enumeration of all RE sets.
However their proof shows that the conclusion is valid for any countable sequence
of sets.

ConsTRUCTION 1. For i€ E, let {; be a representative of Z,. We first construct
a set §; such that (i) §;<{;, <{;—8) € Py, N S,,, and (ii) if f<i and 8{=x, U ¢,
then 8 N x,= @ or 8 N ;= 3. Let {; o={;. Construct {; ,,, from {; , in such a
way that (iii) &;n41<U0in and (iv) {{n—Cin+1) € Py, N Sy, according to the
following instructions. Initially, for f<i, say f is unsatisfied for i. At step n, n=0,
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let f be such that 0= f<i+1 and n=f (mod (i+ 1)). If f has been satisfied for i at a
previous step or if (L)' Sx; Y ¥y), let {; ne1=0;,n and go to step n+1. If f has
not been satisfied for i and ({; ,)'S x; U 4, say fis satisfied for i and define {; , .,
according to the following:

Ginsd)' = G Nxy if ((Ln)! DY) EP, NSy,
= (gi.n)‘ N 51’! if ((Ci,n)i N Xf) € Pa; N Sa:"

Exactly one of the two conditions must occur since

) = (Gun) N x)+(Gn) N Yy

and {(¢,n)") € P,,— S, Properties (iii) and (iv) are clearly satisfied. Now go to
step n+ 1. Observe that if f is satisfied for i at step n, then x; N ({; ,)'=2 or
;N (&)= o for all n’ >n by the construction and (iii). There are at most i+1
steps at which some f becomes satisfied for i. Let n be strictly larger than any »’
such that at step n’ some f becomes satisfied for i. Define 6;=¢, ,. 8, does satisfy
property (i) for §,—38=323728 ({i;—Cis+1)s €ach (& ;=0 41D € Py N Sy, and
P, NS, is an ideal. Property (ii) is satisfied by &; since dj<Sy, U ¢, and f<i
implies that fis satisfied for i, hence that property (ii) holds.

Define p;={i: iz f & i<y, Y s}, &=p, N {i : x, N 8# 3}. Since i € p, implies
8 N x;=@ or & N Y,= @ (property (ii)), observe £, <p; N {i : Y, N 8= z}. Thus
W) pr i gy N 8 # TSP, NES

Let £ be a set indecomposable with respect to {£,}7- . By this we mean that ¢
is an infinite set such that for each f, £ N & is finite or ¢ N ¢, is finite. Define
B=Jice 8. B is the result of this construction: that is, {8)> represents a typical
element of P[{Z;}]. (We will see later that {(8) € A.)

LeEMMA 2.1. If {B>=V+ W, there is a finite set p such that either V<3,,Z; or
W=2ie0 Zi

Proof. Since {B)>=V+ W, there is a pair of disjoint RE subsets of E x E, (x;, ¥;)
for some f, such that B=(x, N B)+ W, N ), <xy N B>=V, and {P; N B>=W. Since
BSx; Y iy, £S{i:i<f} U p,. By the definition of £, ¢ N &, or £ N &, is finite.

Suppose first that £ N &, is finite. We see that

xxNB= U @n&dHu U N8
ie&ny

i< f&ie
= > WM+ > N since {E%hcsieany
i< f&ie& ie&ngy
< > &+ 2 8 since (x;, ¥)
i< f&ied iegndy
< > U+ > 4 forsi<L
i< f&ie& ie&nsy

Thus V=4 N B> S3i<s Zi+ 2icens, Zi.
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If ¢ N ¢, is finite, then

Enfizg,nd# sycsliti<flUuEnpe nii:y; N8 # 2})
S{i:i<flu(np nE) by property (v).

Since ¢ N &, is finite, essentially the same argument as before shows that

ws > Z.

1edngy
COROLLARY. {B> € A.

Proof. If (8> € Q— A, then there exist ¥ and W such that {g)=V+W, Ve
Q — A, and We Q—A. But the lemma shows that if {8)=V+ W, then there is a
finite set p for which V<3,.,Z, or W=<3,,Z;. Since each Z,isin A, J;, Z;€ A
and, therefore, V€ A or W e A.

LEMMA 2.2. For any finite n, there exist isols X, ..., X,, Y, Y1, ..., Y, such that
By=X1+ -+ X,+ Y and, for each i, there is a j such that j>n, X,+ Y,=Z,, and
Y € Py, N S,,. In particular, therefore, X, € Po,—S,,.

Proof: The second statement follows from the first since Z, e P,,—S,,. Let
J1s - - ., Jn be distinct elements of £, each j,>n. Then

=84 ... 480 St
B (U iee-(kﬁ).....ln) !
By (i), {j= 8]+ (¢} — 8}) and <L} — &) € P,, N S,,. Thus, to prove the lemma, we may
let X;=<8}, Y,=<{}i—8, Y= Usee-0y,....1m» 8, and, for each i the required
Jjis ji.

CoNsTRUCTION II. We first construct, for each i € E, a set 8, which is a subset of
E* and satisfies the following two conditions. First, there is a finite set of isols,
R, ...,R,, Si,..., S, Rsuch that <§;>=R,+---+R,+R, R is finite, and, for
each j, R;+S,=Z, and S; € P,, N S,,. Secondly, if f<iand 8, S x, U ¥, then either
8 Nx;=0 (8N y=03) or & N xsev (8 N Py ev) and 8 N xy0a (8 N Py,0a) €ach
contain a predecessor in P, —S,,.

Let

& = U (xs NEYH Y U ;0 EY.

{f:f S1&xsNE! is finite} (f:f S1&¥ O E! is finite)
The construction will force §; to be disjoint from ¢, For f<i, we will say that f'is
excluded from i whenever WE!—¢ Sy, U ;). If fis excluded from i, let x, be
an element of (Et—¢&) N [(x; Y ¥,)]~. Let u;={x, : f'is excluded from i}. The con-

struction will force u; to be a subset of 8. Define F,=FE'—(e; U p;). Since F;
differs from E* by a finite set, F; is an infinite recursive set. We observe that (i) if
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f=ithen F,=x,; U ¢, unless fis excluded from i: that is, if f<i and W(F,Sx, Y ¢;),
then fis excluded from i.

We next define a sequence of sets §, , for n=0, 1,..., 8(i+1) inductively on n.
Inductively we show, as the sequence is defined, that for each n: (a) §; ,S F;;
(b) 8., is a finite sum of sets Ay, .. ., A, such that for each j there are sets v; and
{; satisfying A;+v,=;, {v;> € Py, N Sy, and {{;>=Z,; and (c) if (w, ) is a disjoint
pair of RE sets covering F, and w N §; ,_; has a predecessor in P, —S,,, then
w N 3§, , also has a predecessor in P, —S,,. We remark that (ii) if fis not excluded
from i and f<i, then (x;, ¥,) is a pair of sets satisfying the first condition of (c) as

are (Xs,evs Xr,0a Y ¥1)s (X1,005 Xr,ev Y ¥1)s (1,095 Pr,0a Y X1)s a0A (1,005 Pr,ev Y X1)-
Let 8, o= &. Assume 9§, g, defined. Step 8f+1. If fis excluded from i, let

8t.af+1 = 8!,8!4-2 == 81,8I+8 = si.af

and go to step 8(f+1)+ 1. If fis not excluded from i, go to step (8f+ 1)(A). Step
@f+ 1)(A). If x; N E' is finite, let

8!.8!+1 = 81.8/+2 = 81,8/+3 = 8!.8!+4 = st,sf

and go to step 8+ 5. If x, N E* is infinite, go to step (8f+ 1)(B). Step (8f+ 1)(B).
If x;.ev M 8,8, has a predecessor in P,,—.S,,, let 8; g;,1=25; g7.2=25;8; and go to
step 8f+3. If x; v N 8,5, has no predecessor in P,, — S,,, go to step (8f+1)(C).

Step (8f+1)(C). Let 8 g;+1=25: 8, —(81,8r N Xr.ev)- GO to step 8f+2. Since
8;.8r N Xr.ev<8,8s, the required separating sets being (x;.evs Xr.0a Y ¥7), and since
81,81 N Xr.ev has no predecessor in P, —S,,, we may apply (b) and Lemma 1.11 to
conclude {8;,g; N Xs,ev) € Py, N Sy,. We now verify conditions (a)—(c). (a) is clear.
To demonstrate (b), suppose 8, g, =A;+ - - - + A, Nj+v;=L;, (v;> €Py, N S,,, and
&»=2Z,. Then & g;.1=27-1 (A;—(A; N Xy.ev)). Furthermore, for each j,

A== N X)) +(A; N Xp6v)  sinCE (X100 Y Py, X7,ev)-
Therefore:
A=y N xpe) +H((A O xpe) +vp) = L.

To complete the proof of (b) we have only to show that {(A; N x;,ev) + ;> € Py, N Sy,
Since P, N S,, is an ideal and <{v;) € P, N S,,, it suffices to show <{A; N x; e
€ P, N S,,. Since {85 N x1,ev) € Py, N Sy, it suffices to show

A0 Xpov < B18r N Xyoev-
Now

81,80 O Xrov = ()‘1'*' kL#J’ Alc) N Xz,ev

=X Nxrew)t+ ((kL#Jj )‘k) N Xf.ev)
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and thus A; N ;< 8; g N Xr.ev- TO demonstrate (c) suppose that (w, 6) is a pair
of disjoint RE sets covering F;, that,

(iii) @ N &, 5, =(B1 N 8;,8))+ (B2 N 3y7) since (B, B2),
and that (B, N 8, g;) € P,,—S,,. It follows that

o N8 g1 = (BN 8 grs1)+(BaN 8 g41) since (B, Ba),

and because B; U B;2w N § 2w N d; 4,,,. To demonstrate (c) it suffices to
show that {8, N 8 gs,1) € Py, —S,,. Now

BN 8 gr = (BrN & g741)+(Br N xprov N S187)

since (xy,0a Y ¥y, X1,ev) and because 8 g, S 8; g741 Y (81,87 N Xy,ev)- Since

By N 867 €Py—Ss, {Pr N 8 g741) EP,,

by Lemma 1.5, and in order to prove {B; N 8, g,.1) ¢ S,, it suffices to prove
<B1 N Xs.ov N 81,81 € Py N Sy, by Lemma 1.6. Now

Xrov N 8igr = (B N @ N xp00 N 8y 5)+((Ba YV ) N xp 00 N By5y)

since (B; N w, B U 0) and because (B, N w) U (B U 0)28; 5,2 x1,0v N 8;67. (TO
see the first inclusion we may argue as follows:

BriNa)VU(BU ) N3y g
=((BLYBVO)N(wUBUO) NS g
=(B,UB U Ny because w U 0 2 F 2 85
= ((B1 Y B2) N 8;,7) U (0.0 3, 8)
= (@0 8,) U (BN 85 by i)
= (@Y 0) N g = d8.)

ﬁl NwN 85,8{ = Bl N 34.3, by (iii) because Bl N ﬁg = Q-)

Therefore
BiN @D xpew N 8 gr = B1 N Xpoov N 1,87 < Xriov N S.8r

Since {xs,ov N 81,8r) € Py, N Sg,, We have (B N xs.ev N 8,8, € Py, N S,, and (¢) is
proved.

Step 8f+2. Let A be a subset of x; .y N F; such that {A>=Z,. Such a A exists
since x;,ey N F; is an infinite RE set. Let 8, g7, 2=285,+1 U A. Go to step 8f+3.
Note that §; g, 2=25; g7 +1+ A since (x7,0a Y ¥y, Xr.ev)- (2) holds since §; g, .., = F; and
ACF,. (b) is immediate. To verify (c), suppose that (w, 0) is a disjoint pair of RE
sets covering F; and that

@ N gy = (BN S grs1)+(BaN 8 5r41) since (By, B2)
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where {8; N 8; g;41) € Py, —S,,. Then

wNSgria=wN(d541YA)

(N3 gr41) V(wNA)

=B1N3des) V(BN i) V(wNA)
=(B1N 8 8r+1)+(Bz N 8i,5741) Y (0 N X))

since (B N (X7.0a Y ¥5), B2 U x5.ev)- This verifies (c).

Steps 8+ 3 and 8f+4 are described by making two changes in the descriptions
of the steps labelled (8 1)(B) through 8f+2. Each occurrence of 8fin the descrip-
tions is replaced by 8f+2, and y; v and x, .4 are interchanged. With these changes,
step 8+ 3 is the step labelled step (8f+ 3)(B).

Steps 8f+5 through 8f+8 are described by making similar changes in the
descriptions of steps (8/+1)(A) through 8f+4. More precisely, each occurrence
of 8f is replaced by 8f+4, and y, and i; are to be interchanged throughout the
descriptions of steps (8f+ 1)(A) through 8+ 4; in particular, y,, .y is to be replaced
with ¢, ., etc. With these changes, step 8f+5 is the step labelled step (8/+ 5)(A).

Finally, set 8,=8 gu+1y Y pi=08; g4+t since (E'—p;, ;) and because
8, 84+1)S Fi by (a). We observe that 8, has the following properties.

(iv) There is a finite collection of sets Ay, ..., An, vy, ..., vy, p such that m=1
and 8;=2A,+ - - - + A, +p, pis finite, and, for each j, (A;+v;>) =Z,and {v;> € P, N S,,.
This follows from (b) for 8, g;+1), the finiteness of u;, and the observation that
8, o # @ since 0 is not excluded from i.

(v) If f<iand x; N E* (Y, N EY) is finite, then x, N ;=& (Y, N §,= &). This is
proved by noting that §; g1, S Fj, hence §; N ;=g

(vi) If f<i and f is excluded from i, then 1(8;<x,; U ;). To see this recall
x; € <SS and x; ¢ x; U iy

(vii) If f<i and f is not excluded from i and x, N E! (; N E?) is infinite, then
Xr.ev N 8 and ;.00 N 8 (Pr.ev N 8, and P, 4 N ;) each contain a predecessor in
P,,—S,,. Under the assumed conditions

Xr.ev 0 81,8742 and X700 N 818744 (Pr,ev N 818746 AN Py 0a N 3y 57 46)

each contain a predecessor in P, —S,,. It follows by property (c) that 8; g1y, and
hence §,, also satisfy the conclusion.

Let ¢ be an infinite isolated subset of E and let 8=|_ic; 8;. B is the result of this
construction: that is, {8) represents a typical element of S[{Z;}]. We note that since
¢ is isolated and each §; is isolated, B is isolated so that {(8) € A.

LeEMMA 2.3. For any finite n, there exist isols X, ..., Xp, Y1,..., Yo, Y such
that {B)=X1+---+ X,+ Y and for each i there is a j which is greater than n and
such that X,+Y,=Z;and Y, € P,; N S,,.

Proof. The proof is immediate from (iv) since £ is infinite.
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LEMMA 2.4. If Z<{B> and Z ¢ P, N S,, then there exist isols V and W such that
Z=V+W,V¢P,NS,and W¢ P, NS,

Proof. If Z <{B), then there exists a pair of disjoint RE subsets of E x E, say
(Xf’ 1/‘[), Such that Z=<Xf N B> and ng, v l/’f. Let 0’={i : igf& Xr N 8‘# Q}.
First we show that o is not finite. Suppose that o is finite. Then

xxNp= U (ansd)ug s N 3

{ed&i<f

= > (x,ns,>+‘2(xmso

ied&i<f

< > s+ 8.

ied&i<f ieo

We apply (iv) to see that each {8,) € I, since {§;> is in the ideal generated by P,,.
Thus each ¢{§,> e P, N S, by Lemma 1.1 since each «; <. By Lemmas 1.1 and 1.3,
any predecessor of a finite sum of elements of P, N S, is an element of P, N S,.
This, together with the above inequality gives {x; N B> € P, N S, contradicting the
assumption that Z ¢ P, N S,,. .
Since x; N B=(xs,ev N B)+(x1.0a N B) it suffices, in order to prove the lemma, to
prove {xs.ev N B> ¢ P, NS, and {xs,0a N B ¢ P, N S,. If i€ £ and f<i, then fis
not excluded from i by (vi) since 8; S| Jies 8;<x; Y ;. Furthermore, if i € o, then
xs N E' is infinite by (v). Therefore, the hypotheses of (vii) are satisfied whenever
i€ o so that we may conclude that if i€ o then both ., N §; and x;0a N &
contain a predecessor in P,, —S,,. If e=(a—1)+1 is a successor ordinal we use the
fact that o is infinite and Theorem 1.8 to conclude that {x; e, "N B> ¢ I,_; =P, N S,
and <{xs,0a N B> ¢ P, N S,. If « is a limit ordinal, then we argue by contradiction.
Suppose {xs.ev N B> € Py N Sy=Jw <o I»- Then for some o’ <a, {xs,ov N B € I
Since ¢ is unbounded and o; 1 «, let j € o be such that «;>a’. By (vii) {x/,ev N B>
contains a predecessor in P, —S,, and thus {x;,.y N B) ¢ L. This contradiction
shows <{x;.ev N B) ¢ P, N S,. The same argument shows <{x;,0a N B> ¢ P, N S,.

LeMMA 2.5. If Z={B) and Z € P, N S,, then there is a finite collection of isols
Xy, ..oy Xo, Vo, ..., Vi, Y and indices j,, . . .,Jj, such that Z<37 s Xi+Y, Y is
finite, and, for each i, X,+V,=Z,,.

Proof. Since Z <{B), there is a disjoint pair of RE subsets of E x E, say (x;, ¥,),
such that Z={x, N B> and Bcyx, U ;. If {i : x, N §;# @} were infinite, we could
conclude that Z ¢ P, N S, by using (vii) and Theorem 1.8 as in the previous proof.
Thus {i : x; N 8,# F}=p is finite. By (iv) there exist sets A, v, ; p; such that
=N+ A, +pi Ny s+, =2Z; and p; is finite. Therefore

Z s ‘EZD (§ <)‘£.1>+<Pt>)

j=1

= iezp (% O‘t,j)) + ; <P>-

j=1
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3. Some existence theorems.
LemMa 3.1. If oy} @, Z, € P, — S, for each i, and Z € P[{Z}}], then Z € P,—S,,.

Proof. Z € P, follows immediately from Lemma 2.1 since Z, € P,, < P,. If a is a
successor ordinal, then since Z satisfies Lemma 2.2, it cannot satisfy Theorem 1.8
forao—1andthusZ ¢ I,_,=P, N S,. If « is a limit ordinal, we see that Z ¢ P, N S,
using Lemma 2.1 and an argument similar to that used in Lemma 2.4 to show that
{xs.ev N BY> ¢ P, NS, in case « is a limit ordinal.

THEOREM 3.2. For each ordinal «, 0 <a<w,, P,— S, is not empty.

Proof. The proof is an induction on «. For «=1, the theorem is implied by
Theorem 43(b) of Dekker-Myhill [4, p. 102]. Assume now that «>1. Let {«}%,
be a sequence of ordinals such that «; 4 «. By the inductive hypothesis there exists
a sequence of isols, {Z;};2,, such that, for each i, Z, € P, —S,,. Let Z € P[{Z}}]. By
the preceding lemma, Z € P,— S,.

The following lemmas lead to a strengthening of this result. Theorem 3.8
asserts that P,— S, is not only nonempty, but also contains a set of ¢ isols any two
of which are a-incomparable.

LemMa 3.3. If o, t @, Z, € P, — Sy, for each i, Be P[{Z}), Z<B,and Ze€ P, N S,,
then there is a finite set p such that Z< >, Z,.

Proof. Let {Z;}, Z, and B satisfy the hypotheses of the lemma. Let Y be such
that Z+ Y=B. By Lemma 2.1, there is a finite set p such that Z< 3., Z; or
Y=<3, Z;. If the latter then Ye P, N S, since D, Z;€ P, N S,. In this case
B=Z+YeP,N S, by Lemmas 1.1 and 1.3 since Z€ P, N S, by assumption.
This contradicts Lemma 3.1. Therefore Z<>,, Z,.

DEFINITION. For X € P, —1I, and 1 S«<w,; we define P,[X] by induction on e.
P,[X]1={X}. For a>1,

P[X] = U P[{Z}].

ajt a & Z1€Pq[X]

For the next three lemmas we assume that X € P, —I,.
LeEMMA 3.4. If X, € P,[X], then X, € P,—S,.

Proof. The proof is by induction on «. For «=1, the lemma is clear. The induc-
tive step is proved using Lemma 3.1. If X, € P,[X], then there is a sequence of
isols {Z;};> , and there is a sequence of ordinals {e;};>, such that «; 1 o, X, € P[{Z}],
and Z, € P, [X] for each i. By the inductive hypothesis, Z; € P,, — S,,. This shows
that the hypotheses of Lemma 3.1 are satisfied for X, so that we may conclude
that X, € P,—S,.

LEMMA 3.5. If YS X,, X, € P,[X], and Y € P, — 1, then Y=, X.



1966] HIGHER-ORDER INDECOMPOSABLE ISOLS 377

Proof. The proof is by induction on «. For =1, we have that Y+Z= X and
Y eP,—1I, implies Z€ I, and Y=, X. Now assume X, € P[{Z;}] where &} « and
Z, e P,[X] for each i. Suppose Y= X, and Y € P, —I,. Since P, =P, N S, we may
apply Lemma 3.3 to prove the existence of a finite n such that Y<3>7_, Z,. By the
refinement property there exist isols Y;,..., Y, such that Y;<Z, for i=1,...,n
and Y=3}_, Y,. Since Y € P, — I, there is exactly one i’ such that Y;. ¢ I,. There-
fore Y=, Y,. Since Y <Z; € P, [X], we can apply the inductive hypothesis to
conclude that Y;. =, X. Therefore Y=, X.

LemMMA 3.6. If X, € P,[X] and Z=, X,, then there is a Y such that Y=, X and
Y=<Z.

Proof. Let X, and Z be isols satisfying the hypothesis of the lemma. There exist
isols ¥ and W in P, N S, such that Z+ V= X,+ W. Applying the refinement
property, there exist isols Z,, V;, Z,, ¥V, such that

Zi+V, = X,
+ +
ZoAVa=W
(R
z v

Since VeP, N S,, VP, N S,. Since X, ¢ P, NS, by Lemma 3.4, Z, ¢ P, N S,.
If there were no Y such that Y e P,—1I, and Y<Z,, then we would have Z, € S,
and thus Z, € P, N S,. Therefore there is a Y such that Ye P,—1I, and Y<Z,.
Since Z,£Z and Z, £ X,, Y<Z and Y=< X,. By Lemma 3.5, Y=, X.

LemMmA 3.7. If XePy—1,, Ue Py—1,, and (X=,U), and if X, € P,[X] and
U, € P,[U], then W(X,=,U,).

Proof. Let X, U, X,, U, satisfy the hypothesis and suppose X,=,U,. Then
there exist isols ¥ and W in P, N S, such that X,+ V=U,+ W. Applying the
refinement property, there exist isols X, ;, Xy, 2, V1, V5 such that

Xer+Vy=U,
+ o+
Xpot Vo= W
TR
X, V

Since X, ,<Wand WeP, N S,, X, 5 € P, N S,. Therefore X, ; =, X,. By Lemma
3.6 there is anisol Ysuchthat Ye P,—1,, Y< X, ,,and Y=, X.But Y=< X, ,=<U,
implies Y< U,. Since Y € P, —I,, we may apply Lemma 3.5 to see that Y=, U.
Y=, X and Y=, U implies X=, U, contradicting the hypothesis.
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THEOREM 3.8. For any ordinal o, 0 <o < w,, there exists a set of ¢ isols in P,— S,,
any two of which are o-incomparable.

Proof. For «=1, this theorem is Corollary 1 of Theorem 44 of Dekker-Myhill
[4, p. 103]. Suppose 1<a<w,;. Let ® be a set of ¢ indecomposable mutually
incomparable isols: i.e., ® is a set satisfying the conclusion of the theorem for
a=1. For each X € 0, let X, be an element in P,[X]. {X, : X € ©} is a set satisfying
the conclusion of the theorem for «. For each X €0, X, € P,— S, by Lemma 3.4.
If X and Y are elements of ® and X# Y, then 1(X=, Y) since X=, Y implies
X=Y or YSX. By Lemma 3.7 it follows that 1(X,=,, Y,). Finally, the corollary
to Lemma 1.9 shows that X, and Y, are e-incomparable.

We now consider the second construction of the preceding section and derive
existence theorems for S, —P,.

LemMA 3.9. If oyt o, Z, € Py, — Sy, for each i, and Z € S[{Z}}), then Z € S,—P,,.

Proof. Z € S, follows immediately from Lemma 2.4. The proof that Z ¢ P, N S,,
is exactly the same as the proof of the corresponding assertion in Lemma 3.1 using
Lemma 2.3 in place of Lemma 2.2.

THEOREM 3.10. For each ordinal ¢, 0 < « < wy, S, — P, is not empty.

Proof. For «=1, the theorem is implied by Theorem 49* of Dekker-Myahill
[4, p. 112]. For « > 1, the theorem follows from the preceding lemma and Theorem
3.2.

The following definition and lemmas lead to Theorem 3.15, which is a strengthen-
ing of Theorem 3.10.

DEerINITION. For X € P, — I, and 1 <e<w, we define

SolX1= U SHZ]

@yt a&Zi€Py [X]
For the next three lemmas we assume that X € P; —I,.
Lemma 3.11. If X, € S,[X], then X, € S,—P,.
Proof. The proof is a direct application of Lemmas 3.4 and 3.9.
LEMMA 3.12. If Y= X,, X, € S.[X], and Y € P,— I, then Y=, X.

Proof. Let Y and X, satisfy the hypothesis of the lemma. Assume X, € S[{Z;}]
where o, 4 « and Z, € P, [X] for each i. Since Y € P, N S,, by Lemma 2.5 there
exists a finite isol N and a finite sequence of indices j, .. ., j, (possibly with re-
petitions) such that Y<3>7_, Z; + N. Applying the refinement property, we may
decompose Y into a sum, Y=37_, ¥; such that Yo=<N and Y,=Z, for i>0.
Since Y € P, —I,, there is exactly one i’ such that Y, ¢ I,. i’ #0 since Y, <N and
Nel, By Lemma 3.5, since Y, <Z,. €Ps[X] where B=a,., Y,.=;X. Since
Y=Y, Y= X.
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Lemma 3.13. If X, € S,[X]and Z=, X,, then there is a Y such that Y=, X and
Y=Z.

Proof. The proof is the same as the proof of Lemma 3.6 using Lemmas 3.11
and 3.12 in place of Lemmas 3.4 and 3.5.

LEMMA 3.14. I_fXEPl—Io, UEPI—Io, and -I(X=1 U), and l_'f X¢6Sa[X] and
U, € S [U], then 1(X,<,U,).

Proof. Let X, U, X,, U, satisfy the hypotheses of the lemma and suppose
X, =<.U,. Then there exist isols Z, V, W such that VeP,NS,, WeP, NS,
and X,+Z+V=U,+ W. By the refinement property there exist isols X, 1, X¢ 2,
Z,,Z,, Vi, V, such that

Xo1+Z,+V, = U,
+ o+ +
Xpo+Zo+Vo=W
I ] I
X, Z V

Since X, ,<W and WeP,NS,, X42€P, NS, Therefore X, ,=,X, and, by
Lemma 3.13, there is an isol Y such that Y< X, ; and Y=, X. Since X, ;= U,,
YSU,. Since YeP,—1I,and YSU,, Y=, U by Lemma 3.12. Therefore X=, U
contradicting the hypothesis.

THEOREM 3.15. For any ordinal o, 0 < « < w,, there exists a set of c isols in S,— P,
any two of which are a-incomparable.

Proof. For «=1, the result may be proved in the following way. If 8 is a re-
traceable set and {8) <{B, then & is Turing-reducible to B. By Sacks [6, Chapter 2],
there exists a set of ¢ mutually incomparable Turing degrees. By Dekker-Myhill
[3, pp. 364-365], each Turing degree except the lowest can be represented by an
isolated retraceable set. Since each infinite isolated retraceable set represents an
element of S, —I,, (see Dekker-Myhill [4, Theorem 49*]), the theorem follows for
a=1.

For «> 1, the proof is similar to that of Theorem 3.8. Let ® be a set of ¢ indecom-
posable isols which are pairwise incomparable. For each X € O let X, € S,[X].
{X,: Xe @} is a set satisfying the conclusion of the theorem for «. For each
Xe0®, X,eS,—P, by Lemma 3.11. If X and U are distinct elements of ©, then
1(X=, U) since X=, U implies X< U or U< X. By Lemma 3.14, X, and U, are
a-incomparable.

4. Multiple-free highly decomposable isols.

THEOREM 4.1. Let « be a positive countable ordinal. There exists a Z such that
ZeS,—P, and for no natural number n, n>1, does there exist an X satisfying
nX=,Z.
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Let o t «. Let {4, ;} be pairwise incomparable elements of P, — I, fori=0, 1, 2,. ..
and j=0,1,2,....

MopbirieD CoNsTRUCTION II. Modify Construction II of §2 in the following way.
If, at the jth step in the construction of §; a representative of Z, is added to §; ;_,,
instead add a representative of an element of P, [4; ;]. The result of the modified
construction will be called a typical element of S,[{4, ;}].

For each i there exist sets p; and A;; and v»;; as j ranges over an appropriate
nonempty subset of {1,...,8(+1)} such that §,=>, A, ;+p;, p; is finite, and,
for each j, <A, ;+v; ;> € Py [4;,;] and {v; ;> € P, N S,,. The proof is the same as
that of (iv) in Construction II. Let Z, ;=<X;;>. By Lemma 3.5, if A<Z,; and
A eP,—1I,, then A=, A4, ;. By Lemma 3.6, there is an 4 such that 4 € P,—1I, and
AZ2Z,,.

@4.1)If Z € S,[{A4;}), Y=Z, and Y€ P, N S,, then there is a finite isol X and a
finite range of indices (i, j) such that Y=Y Z, ;+ X.

The proof is the same as the proof of Lemma 2.5.

42 If Ze S,[A4;,), then Ze S,—P,.

(4.2) is established by the same chain of reasoning that proves Lemma 3.9.

Until the end of the proof of Lemma 4.3 let Z € S,[{4, ,}] and let the isols Z, ,
be related to Z in the way specified above.

LeMMA 4.2. If « is a countable successor ordinal greater than 1, then for any
n>1 there is no X such that nX=,Z.

Proof. In order to avoid notational complexity it will only be shown that 2
does not divide Z with respect to =,. The general proof is essentially the same.
Since a=(«—1)+1, each Z, ;e P,_,—S,_;. Suppose 2X=,Z. Let ¥ and W be
such that Ve P, N S,, We P, N S,, and 2X+ V=Z+ W. By Lemmas 1.2 and 1.8,
there exist Vg, ..., Vo, We, ..., Wy suchthat V=37_, Vi, W=3>", Wi, V{€S,_1,
Wo€Se 1, Vi€EPy_1—Sy_1fori=1,...,nand W;eP,_,—S,_, fori=1,...,m.
Since there exist infinitely many Z, ; and the Z, ,; are pairwise («— 1)-incomparable
by the proof of Theorem 3.8, there exists a Z; ; which is (¢« — 1)-incomparable with
each V| and Wj for i>0. Let Z, ; have this property. Let Z=Z, ;+Z’.

() if ASZ' and A € P,—1I,, then (4=, A4, ;). To see this suppose A4 satisfies
the antecedent. Then A+Z, ;<Z'+Z, ;=Z and A+Z, ;€ I,_,=P, N S,. By (4.1)
there exist a finite set of pairs (i’, j') and a finite isol Y for which

A+Z,, £ 57y 4+ Y.

Z,; must be one of the Z, ;, by Lemma 1.10 so that A<3 Z, ,,+ Y where the
summation is over the same range of (i’,j’) as before except for (i, j). By the
refinement property, there is an A’ such that A'=;4 and A'<Z, ; for some
@i, j'). Therefore A’=, A ; and thus A=, A, ;. Since A;,; is incomparable with
Ai; (A=1 4,
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Apply the refinement property to the equation 2X+ V=Z, ;+Z’+ W obtaining
Xia+ X+ Vi =2,

+ + o+
X2.1+X3.2+ Vg = Z’
4.3) + 4+ o+

X3,1+X3'3+ Va = W
] ] ]
X X |4

Since Z; ;€ P,_; —S,_1, exactly one of the isols X; ;, Xj 4, Vi is (x—1)-equal to

Z,,. Since Z; ; is («— 1)-incomparable with every predecessor of ¥ in P,_; —S,_;,

Xi1=q-12Z;;0r X;,3=4-1 Z; ;. Assume the former with no loss of generality.
Apply the refinement property to the equation

X120+ X2+ Xp3 = X110+ X514+ X5

obtaining

X121+ X211 X551 = X11

+ o+ o+

Xy,3,2F Xa,3,2+ X322 = X1
44) MO

Xi,2,8+ Xa,3,3+ X3,23 = X33

] ] ]

Xi2 Xz X

Again, exactly one of X, ;, X331, Xa2,1 is (¢x—1)-equal to X, since X, ,
€Py_1—Sa-1. X1,21SX1,3€Pe_ 1N Sy_1501(X1,2,1=(a-1) X1,1)- X3,21S X352 W
and any predecessor of W in P,_,;—S,_; is (x— 1)-incomparable with Z, ;. Since
X11=@-1 Zi,5p W(Xs3,2,1=a-1) X1,1). Therefore X 21=(-1 X1,1=@-1 Zi1;- By
Lemma 3.6, X, . ; contains a predecessor 4 such that A=, 4; ;. But X; 5 <X,
=Z’ and thus 4 <Z’. This contradicts (i) and proves the lemma.

LemMMA 4.3. If « is a positive countable limit ordinal, then for any n>1 there is no
X such that nX=, Z.

Proof. Again it will only be shown that 2 does not divide Z with respect to =,.
Suppose 2X=, Z. Let V and W be such that VeP, N S,, We P, N S,, and
2X+V=Z+W. Then V+ W e Uy <o I». Therefore V+ W € I,. for some o' <.
Since Z satisfies an appropriately modified version of Lemma 2.3, there is an «”
and there is a pair (i, j) such that «’<e” and Z, ; € P,-—S,~. Let «” and (i, j)
satisfy these properties. Let Z=Z, ;+Z’. As in the proof of (i) for Lemma 4.2,
it may be shown that (ii) if A<Z’ and 4 € P, —I,, then (4=, 4, ).

As in the proof of Lemma 4.2, apply the refinement property to the equation
2X+V=2Z, ;+Z’'+ W obtaining the equations (4.3). Since Z, ; € P,-— S,-, exactly
one of X;,;, X; 0, Vi is «"-equal to Z, ,. Since V1<V, Vel,, and I,, S Py N S,-,
A(Vi=q Z,,;). Assume without loss of generality that X; .=, Z; ;.



382 A. B. MANASTER [December

As in the proof of Lemma 4.2, reapply the refinement property to obtain (4.4).
Exactly one of X g3, X321, X321 is «”-equal to X, since X;,; € Pyo—Spn.
T(X1,2,1=4¢ X1,1) since Xj51SX;3€Pe N Sere N X5,2,1=0 X1,1) since Xj 5
X3 2=W and We P, N S,.. Therefore X, 3 1=¢" X1,1=0¢"Z; ;. By Lemma 3.6,
X;,5,1 has a predecessor A such that 4=, A4, ;. Since X;,,,SX;,5Z', ASZ'.
This contradicts (ii) and proves the lemma.

LEMMA 4.4. There exists an isol Z such that Z € S, — P, and for any n>1 there is
no X such that nX=,Z.

Proof. Define X" 8 to be the n-fold Cartesian product of 8 with itself for s < E
and n> 1. Let {w;}{2, be the set of all infinite RE subsets of E. For fixed n, n>1,
let {f,.}20 be the set of all 1-1 partial recursive functions whose domain is a
subset of X" E and includes X" & for some infinite 8. If 8 and & are subsets of E,
define 8=, § if and only if there exist finite sets p and p such that U p=8 U p.

To prove the lemma it suffices to prove the existence of a set satisfying (4.5),
(4.6), and (4.7).

(4.5) For each pair (n, i) of natural numbers with n> 1, there is no set § such
that £,,,(X" 8) = B.

(4.6) For each i, W(w;<p).

(4.7) For each i, w; N B is infinite.

(4.6) implies {B) € A, (4.7) implies (8> € S, — P,, and (4.5) implies that {B) is
multiple-free with respect to =,.

(4.5) may be replaced by (4.8).

(4.8) For each pair (n, i) of natural numbers with n>1 there are infinitely
many pairs of natural numbers (x, y) satisfying (iii) f, (x, y, x, ..., x) €8 and
Jai(¥, X, x, ..., x) ¢ B. To see that (4.8) implies (4.5) suppose f, (X" 8)=, 8 for
some B satisfying (4.8). Let p and p be finite sets such that f,, (X" 8) U p=8U p.
Of the infinitely many pairs (x, y) satisfying (iii), f,.(x, », %, . . ., X) € p for only
finitely many. Hence there are infinitely many pairs (x, y) satisfying (iii) such that
{x, y}=38. Of these infinitely many pairs f, (y, x, X, ..., x) € p for only finitely
many. Therefore there are infinitely many pairs (x, y) satisfying (iii) and such that
Jai(¥s X, x,...,x)€B. This contradiction shows that it suffices to prove the
existence of a set, B, satisfying (4.6), (4.7), and (4.8).

Let j be a function mapping E onto {(n, i): n> 1} in such a way that the inverse
image of (n, i) is infinite for each (n, i) with n> 1. Let m be a function mapping
E onto E in such a way that the inverse image of i is infinite for each i€ E. To
construct B define a sequence of pairs of sets (B, 8;) by induction on k. Let
Bo=208,= @. Assume inductively that B,_, N §,_,= &, Br_, U 8,_, is finite, and,
forallk’<k—1,B, SBi+1 and 8, S8, 1. Ifk=3I+1,let B, =P -1, 8, =8;_1 U {z}
where ze w, N B, _,. If k=3142, let 8,=8,_,, B =PBr-1 U {z} where

Z€wnpy N[(Br-1Y 1]
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If k=3/and />0, let B,=Bk-1 Y {fn.i(x, ¥, X, ..., x)} and let
8k = S V{fai(y, X, x,..., %)}

where (n, i)=j(l) and {f,.((x, ¥s X, . . .3 X)y fu Py X, X, .., X O (B—1 Y 8_1)= 2.
Note that in each of the three cases the inductive assumption remains satisfied.
Define =g~ -

BN (U= 8)= o since B, N 8,= & and B <SPy, and 8, < 8y, for all k. The
definition of 8., shows that B satisfies (4.6) for i. The definition of B3 ., for
the infinitely many / such that m(/)=i shows that B satisfies (4.7) for i. Finally the
definitions of By and & for the infinitely many positive / such that j(/)=(n, i)
show that B satisfies (4.8) for any (n, i) with n> 1.

Proof of Theorem 4.1. For «=1, apply Lemma 4.4. For a«>1, Theorem 3.8,
(4.2), and either Lemma 4.2 if « is a successor ordinal or Lemma 4.3 if « is a limit
ordinal imply the result.
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