INDUCED FIBRATIONS AND COFIBRATIONS(*)

BY
T. GANEA

Introduction. It is well known that any map is homotopically equivalent to a
fiber map, i.e., to the projection of the total space on the base in a fibration.
Simple examples, however, reveal that there are maps which fail to be homo-
topically equivalent to any inclusion of a fiber in the total space, and the problem
of characterizing the maps which are equivalent to such inclusions was first raised
in [14]. By the first remark, the map under consideration may be assumed from
the beginning to be a fiber map p: F — B, and the problem is thus converted into
that of characterizing the fibrations p which are equivalent to induced fibrations.
There are two immediate necessary conditions: the fiber F of p must have the
homotopy type of some loop space QY, and the inclusion i: F — E must map the
generalized homotopy group #(X, QF) into the center of =(X, QF) for any space
X; the latter is a mild generalization of the well known fact that the boundary
operator in the homotopy sequence of a fibration £ — B — Y maps w,(Y) into the
center of ,(E). The first result in this direction is due to Serre and asserts that p is
an induced fibration if B is 1-connected and F has a single nonvanishing (Abelian)
homotopy group. This result was generalized [6], [12], [17], [15] to allow F to have
at most m— 1 nonvanishing homotopy groups in consecutive dimensions provided
it has the homotopy type of a loop space and B is (m — 1)-connected. In the first two
sections of this paper we give results which allow F to have 2m—1 nonvanishing
homotopy groups in consecutive dimensions provided B is (m— 1)-connected and
F has the homotopy type of a loop space under a homotopy equivalence fulfilling
a certain condition which involves the ““operation” of QB on F. In case F has m
nonvanishing homotopy groups in consecutive dimensions, the sufficient condition
in order that p be induced is expressed by means of the vanishing of a certain
Whitehead product; this result answers a question raised in [15]. Dually, any map
is homotopically equivalent to an inclusion 4 — X having the homotopy extension
property, but few maps are equivalent to identification maps resulting by shrinking
to a point such a subset 4 of X. This leads to the problem of characterizing the
cofibrations 4 — X which are induced by maps of some space Y into 4. Our
results extend the range of applicability of some previous results [8], [12] by
imposing an additional condition which involves the ‘‘cooperation” of the
suspension £4 on the cofiber C obtained from X by shrinking 4 to a point; the
condition is conveniently expressed in terms of the Hopf invariant of a cofibration
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INDUCED FIBRATIONS AND COFIBRATIONS 443

discussed in [7, §4]. As an application, we prove by means of induced cofibration
techniques the main result in [4] which asserts that an (n— 1)-connected H'-space
X of dimension <3n—3 is equivalent to a suspension; our proof eliminates the
assumption made in [4] that the homology of X is finitely generated.

In principle, the methods used in this paper could be developed so as to yield
results even if the fiber F had more than 2m— 1 nonvanishing homotopy groups or
if, dually, the cofiber C had larger dimension than allowed in the theorems below.
However, the degree of complexity of the additional sufficient conditions which
then appear is rapidly increasing and the results obtained do not seem to lead to
effective computations.

The author is grateful to I. Namioka for helpful discussions, and to the referee
for several suggestions which have led to improvements in the presentation.

1. Induced fibrations. All spaces in this paper are provided with a base-point
denoted by *, and all maps and homotopies are assumed to preserve base-points.
A triple

F FL>sE2>B

is a fibration if p has the covering homotopy property for all spaces and F=p~(*);
i is the inclusion map. For any map f: X — Y we denote by Y U, CX the space
obtained by attaching to Y via fthe reduced cone over X; however, the subscript f
will frequently be omitted. A point in CX is denoted by sx (s € I, x € X); the map
x — lx embeds X as base in the cone, and 0X U I is identified to the vertex.
Consider the diagram

T X—1L Y g z
YUCX
© £
EuCF
F: F— E

where J is any triple with g o f==x, # is a fibration, and k and r extend g and p by
mapping the cones to the base-points. We shall repeatedly use the

LeMMA 1.1. Suppose h,: X — E is a homotopy satisfying ho=io ¢, hy=¢ o f, and
let ¢ be induced by e, p, h,. If there is a map B such that r o $=~B o k, then there are
maps ¢, and &, satisfying ¢,~¢, &, ~e¢, and yielding strict commutativity in the
diagram

xLsy i,z
LT
F >E2>B
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Proof. Let M be the reduced mapping cylinder of £, let j: X — M be the standard
embedding given by j(x)=(0, x), and let g: M — Y U CX shrink to a point the
subset j(X) of M. The map ¢ is given [19] by

#(») = «(y) and 4(sx) = 2s¢(x) if 0=2s =1,
= hyy_o(x) if 1 S2552

Then, pop=rc ¢ oq provided u: M — E is given by

u(l,y) = «(y) and us,x) =iep(x) if 0=2s=1,
= th_l(x) if ]. § 2S é 2.

Let H,: YU CX— B satisfy Hy=ro¢, Hy=Bok. Since p has the covering
homotopy property, there is a homotopy p;: M — E with po=r, pou,=H,oq.
Define &;=p, | 1 x Y. Then, &;~¢ and p o ¢; =8 o g. Define

dt: X—FE by dt(x) = [lvm(o, x) if 0 =< 2t § 1,
—mQi—1,x) if 1s2<2

Since g oj=* and k(CX)=%, one has pod,=+ and there results a homotopy
@;: X — F with iop,=d,. Then, iop,=¢,0f and iopy=io¢p so that po=¢ and
1P,

For any fibration # we may construct a sequence of fibrations

FoF2>E2>B (k20

as follows: F =%, ri..: E, U CF, — B extends p, by mapping the cone to the
base-point, and p, ., results by converting r, ., into a homotopically equivalent
fiber map. Let X * Y be the join of X and Y taken as an identification space of the
Cartesian product X x I'x Y; a point in the join is denoted by (1—s)x @ sy and
1% @ 1+ serves as base-point. The following fact is proved in [7, 1.1 and 1.2]:

PROPOSITION 1.2. If E and B have the homotopy type of CW-complexes, then there
is a homotopy equivalence Fy, * QB — F.. ;.

COROLLARY 1.3. Suppose that B is (m— 1)-connected, F is (n— 1)-connected, and
that m(Y)#0 only if 2<q<n+(k+1)m—1(mz1,n21). For any map g: E, —> Y
with g o i,~0 there is amap f: B— Y with fo p,~g.

Proof. Since g o i,~0, g extends to a map h: E, U CF, — Y. The connectivity
of the join and 1.2 imply that r,., is (n+(k+ 1)m)-connected, and an obvious
obstruction argument yields a map fsatisfying f o r, ., ~h.

In any fibration & the loop space QB operates [5] on the fiber F through a map
p: Fx QB — F. The Hopf construction yields the composite

H:F+QB-L>3(FxQB) 2>>F
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in which X is the reduced suspension functor and V shrinks to a point the two
ends of the join and the segment through the base-point so that

V((l —s)x @ Sw) = s, (x’ w)>'

We describe two fibrations # and &' over the same base as equivalent if there is
a homotopy equivalence ¢: E — E’ such that p’ o e=p; there exists then a homotopy
inverse &’ of e such that p o ¢'=p’. A fibration & is induced if there is a space Y and
amap f: B— Y such that # is equivalent to the fibration strictly induced by ffrom
QY—PY— Y, ie., to the triple

M QY —> W = {(b, 1) € BXPY | f(b) = 7(1)} —> B

where PY is the space of paths in Y emanating from %, QY is the loop space,
l(w)=(*, w), and w(b, n)=b; it then follows that F has the homotopy type of QY.
The map R below is given by R{s, w)=w(s).

THEOREM 1.4. Let F: F—>E-"> B bea fibration in which E and B have the
homotopy type of CW-complexes. Suppose that B is (m— 1)-connected and that
m(F)#0only ifn<q<n+2m—2, where m=1 and n2 1. If there is a space Y and a
homotopy equivalence 0: F — QY such that the composite

V) F+xQBEssFr 2 5oy sy
is nullhomotopic, then & is induced by some map f: B— Y.

Proof. Consider the diagram

i

F E EUCF— B

Lol

QY2 s PY— s PYUCQY- 2> Y

in which A is the inclusion, 7#(y)=7(1) and #(CQY)==x, &(E)=x*, and ¢ is induced
by ¢, 6, and any homotopy connecting A o § with 0 i. Let o: E U CF — XF shrink
E to a point, and let —o stand for o followed by the map <s, x) - {1l —s, x);
let —7: PY VU CQY —ZQY be similarly defined. Then,

3 20o(—0) ~(—7)od and Ro(—7)~ =
According to [7, 1.4], H is homotopic to the composite
Fx QB—v—>F1£—>E1—:‘—->EU CF2s3F

in which v is the homotopy equivalence in 1.2 and u is the homotopy equivalence
obtained when converting r; into p; so that p; ~r; o u. Therefore, it follows from
(3) and (2) that modouoi, o v~0, hence modouoci;~0, and 1.3 with k=1
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yields a map f satisfying fo p,~m o ¢ ou, hence for,~mo . As a consequence,
1.1 yields the strictly commutative diagram on the left

F—>E- 2B F—sE_".B
N A
QY —>PY—>Y Qvytsw-2 B

with 6,~0, and the result follows upon applying the five lemma for homotopy
groups in the strictly commutative diagram on the right, where g(a) = (p(a), ¢1(a)).
We derive the often proved [6], [12], [17], [15]

COROLLARY 1.5. If B is (m—1)-connected and w(F)#0 only if nSq<n+m-—2,
where m=2 and n= 1, and if there is a homotopy equivalence 0: F — QY, then #
is induced by some map f: B — Y.

Proof. Fx QB is (n+m—1)-connected and w,(Y)=0 if g=n+m so that (2) is
certainly nullhomotopic.

REMARK 1.6. The homotopy equivalence F— QY resulting in 1.4 and 1.5 from
the fact that & is induced by f: B— Y is homotopic to the original homotopy
equivalence 6: F— QY.

Note that 1.5 is trivially true if m=1:F is then contractible, p is'a homotopy
equivalence, and & is induced by the map B — *.

In the preceding arguments we have implicitly used the well-known fact (see
e.g. [17]) that F has the homotopy type of a CW-complex if £ and B do. Actually,
the following slightly stronger result holds:

PROPOSITION 1.7. Let & be a fibration in which E and B have the homotopy type
of CW-complexes. Then, there exists a strictly commutative diagram

F.F>E-2 B

S
|#|: |F] -~ |E| - |B]|

in which i, e, B are homotopy equivalences, the bottom row is a fibration, |B| is a
CW-complex, and (|E|, | F|) has the homotopy type of a CW-pair.

Proof. Select homotopy equivalences ¢': E— E’ and 8': B— B’, where E’ and
B’ are CW-complexes. There exists a cellular map p’: E' — B’ with p’ o '~8' o p.
Its reduced mapping cylinder | B| is a CW-complex in which E’ and B’ are embedded
as subcomplexes by inclusions p”: E’ — |B|and 8": B' — | B| satisfying p"~B" o p'.
Since 8” is a homotopy equivalence, so is the composite 8=8" o 8. Let

|E| = {Ae|B|"| A1) e p"(E)}

be the mapping track of p”, and define £"(a’)(s)=p"(a’), r(A)=A(0). Then,
¢": E'— |E| is a homotopy equivalence, r is a fiber map, and r o ¢”=p". One has
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roe”oe’~Bop and there results a map & satisfying e~e"oe’ and roe=gop.
Hence, ¢ is a homotopy equivalence; since so is 8, the induced map ¢ is also a homo-
topy equivalence. The last statement follows immediately from [16, Theorem 3].

2. Principal fibrations. A fibration % : F— E — B is principal if there are
maps ¢ and ¢ such that the diagram

1x4 0Oxp

FxF FxE *XB
@ l l‘*
' F—: E—" B

strictly commutes and ¢ is an H-structure on F, i.e.,p | FV F~V : Fv F — F where
V is the folding map. This is the definition given in [18] with the third condition
omitted. The maps ¢(w;, wy) =w; +w, and ¢(w, (b, 7)) =(b, w+7), where + stands
for path multiplication, obviously convert the strictly induced fibration (1) into a
principal one; moreover, the action of QY on W is homotopy associative, i.e.,

$olpx)xdo(1x9).

LeMMA 2.1. If F is a principal fibration, then homotopy-commutativity holds in
the diagram
FxQB——1x%  SsFxF

14 (4

where p is the operation, ¢ the H-structure, and d=p | * x QB.

Proof. The top row in (4) is the Cartesian product of the two fibrations
F— F— * and #. Therefore, it is a fibration and, by [5, 3.8], commutativity in
(4) implies homotopy-commutativity in the square of the diagram

(Fx F)x Q(x x B)—2* >Fx QB
FxQB 1x0 S FxF e F

where 7 is the operation in the product fibration. Inspection of the operation in a
Cartesian product of fibrations reveals that 7 is homotopic to the map (x, y, *, w)
— (x, p(y, @)). The result follows upon defining a(x, w)=(x, *, *, w) so that
Toa~]1xdand (px1)oax~l.

A map 0: F— QY is primitive with respect to ¢ if homotopy-commutativity
holds in the diagram

FxFX2>QyxQY
5 |- |
F—> Qv
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where u is the loop multiplication. Unless the contrary is explicitly stated, we shall
consider primitivity with respect to the H-structure ¢ in a principal fibration.

THEOREM 2.2. Let % : F— E— B be a fibration in which E and B have the
homotopy type of CW-complexes. Suppose that B is (m— 1)-connected and that
w(F)#0 only if n<q<n+2m—2, where mz1 and n2 1. If ¥ is principal, and if
there is a space Y and a primitive homotopy equivalence 0: F — QY, then F is
induced by some map B — Y.

Proof. Consider the diagram
F+xQB—>3(FxQB) -2 >3F

iO‘W 12(0 x¥) 120

QY+ QY > E(QYxQY) 2> 2QY 2> ¥

where =00 0. The first square obviously commutes. Since & is principal and 6
primitive, the second square homotopy-commutes by 2.1 and (5). According to
[7, 2.4], the bottom composite is nullhomotopic. Therefore, the composite (2) is
nullhomotopic and the result follows from 1.4.

We now turn to the study of conditions which guarantee that a fibration is
principal. Recall that for any two spaces 4 and Z, the set 7,(4, Z) of based homo-
topy classes of maps 4 — QZ is a group under the multiplication induced by loop
multiplication. We shall also need the sequence

(©) QX+ QY 25> XpY—> XV Y > Xx Y25 X# Y

in which J is the inclusion, X # Y results from X x Y by shrinking to a point the
subset XV Y, and Q is the identification map. The space X b Y is the fiber of J,
constructed as in (1), and it can readily be identified to PXx QY U QX x PY; the
projection L is then given by L(£, ) =(£&(1), 7(1)). The map W is given by

W((1=5)¢ @ sm) = (éminc1,2- 251 Mvincas, 1))

where {,(t)={(ut) for any path {, and arguments based on the results in [16]
reveal that W is a homotopy equivalence if X and Y have the homotopy type of
CW-complexes [7, p. 302].

The next result is, essentially, equivalent to [10, 3.1 and 3.2]; the proof we give
is slightly shorter and does not require X and Y to be l1-connected as in [10].

PROPOSITION 2.3. For any map f: X — Y of spaces having the homotopy type of
CW-complexes, the following two conditions are equivalent:
(i) The homomorphism f,: m,(A, X) — m,(A, Y) induced by f maps the first group
into the center of the second for any space A;
(ii) The composite
Xpy—sxvyr 2 yvyr-Y v
is nullhomotopic.
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Proof. Let y: QXx QY — QY be the commutator map given by (£, 1)
=(fo é+n)+(—fo £—n), where + and — stand for loop multiplication and inver-
sion. There is a map y': Z(QX# QY) — Y such that 9’ « Q is homotopic to the
adjoint Z(QX x QY) — Y of y [7, p. 313]. As shown in [7, 5.1], there is a homotopy
h: QX * QY — Y satisfying

hy ~Vo(fv )eLoW  and hy ¥~y oZQoV,

where V is the map described after 1.3. Since ZQ o ¥V is a homotopy equivalence,
one has h; ~0 if and only if y~0. Since W is a homotopy equivalence, the result
follows upon noting that (i) holds if and only if y~0.

If the conditions in 2.3 are fulfilled, we say that f maps QX into the center of
QY; this certainly happens if

(J) QY is homotopy-commutative (e.g., if Y is an H-space), or if

() f is nullhomotopic.

THEOREM 2.4. Let F:F—>E-2>B bea fibration in which E and B have the
homotopy type of CW-complexes. Suppose that B is (m—1)-connected and that
7(F)#0 only if nSq<n+2l—-2, where I=Min(m,n) and m=2, n22. If i maps
QF into the center of QE, then  is principal and induced in each of the following
cases:

(i) 7 (B)=0forq=n+l,

(i) 7(B)=0 for q=n+2l—1 and there is a map T': QB — QE such that
Qpol=1.

Proof. Consider the diagram

FvFXSFE v E—Ls(FvE)U C(F b E)—>Fx E—>B

v veo(ivl) g

14

<

where the cone is attached by means of L, j is the inclusion, k is the obvious exten-
sion of J: FV E— Fx E, and P(x, a)=p(a) for x € F, a € E. Since QF maps into
the center of QE, the composite V o (iv 1) o L is nullhomotopic and there results a
map g yielding strict commutativity in the triangle. Therefore, pogoj=Pokoj
and, by [19, 4.5], there is a map

@) B:Z(Fb E)— B with Pok~(pog)B rel. Fv E,

where T denotes the operation on the right of #(2(F b E), D) on =((FV E)
U C(Fb E), D) for any space D. Since Z(F b E) is (n+I— 1)-connected, g is null-
homotopic if (i) holds, hence

®) B~poe,
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where e: Z(F h E) — E is the constant map; if (ii) holds, (8) is certainly valid for
some &, Let go=gTe; then,

&) gooj=gcj and Pokx~pog, rel. FV E,

where the second relation follows from (7) and (8). Since p is a fiber map, g,
extends to a homotopy

g:(FV E)YUC(FhE)—>E with pog, =Pok and pog,od= %,

where d=jo (1vi), and there results a homotopy V,: FvF— F satisfying
ioV,=g,od so that, by (9), V,=V. Hence, we obtain the strictly commutative
diagram

Fv F-2s(Fv E)UCFbE)—>(FV E)YUC(FhE)UCEFV F)—> B

Vi ['2% G

F ! E >EUCF —. B

where G is induced by g, and V,, S and r extend P o k and p by mapping the cones
to the base-point, and V,~V. Next, since k is (n+2/— 1)-connected and, clearly,
7(E)=0 if g=n+2/—1, an obvious obstruction argument yields a map 7 in the
diagram

Fv FXl FxE (FxE)U C(F Vv F)—> B
A I |
F—' E EUCF— B

and a homotopy H,:(Fv E)U C(Fb E)— E satisfying H,=g, and H,=7o k.
Let hy=H,o d so that hy=io V; and h;=no k o d, let ¢ be induced by 7, V,, A,
and let R extend P by mapping the cone to the base-point. Let

Y:(Fv EYOC(FhEYUC(FvV F)y—»(FXxE)YUC({FV F)

be the map induced by k. Obviously, S=Ro¥; also, it is easily seen that
¢ o ¥ ~G. Therefore, rod o ¥~Ro¥. Since k is (n+2/—1)-connected, so is ¥
by the five lemma and, since 7, (B)=0 if g = n+ 2/, a classical obstruction argument
reveals that r o $~ R. Therefore, 1.1 applied to the preceding diagram yields a
strictly commutative diagram

Fv FX% FxE-L > B

R

F E-2 B

with V'~V hence V'~V, and ' ~%. Since F x F is the fiber of P, V' extends to a
map ¢: Fx F— F such that iop=7"o (1 xi), and & is proved to be principal.
Since /< n, it follows from [13] that there is a space Y and a primitive homotopy
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equivalence F— QY and, since /Sm, it follows from 2.2 that & ‘is an induced
fibration.

COROLLARY 2.5. Suppose that w(B)#0 only if m=qs=n+m-—1 and that
m(F)#0 only ifnSq<n+m—1, where n=m22. If the Whitehead product pairing
W:m (F) @ wp(E) —> my o m—1(E) induced by i vanishes, then F is principal and
induced.

Proof. The homomorphism D,,,_; of (n+m—1)-dimensional homotopy
groups induced by the composite

D:FhE—>FVESsEVE-YSE

is well known to vanish if and only if W=0. Since Fp E is (n+m—2)-connected
and 7,(E)=0 for g=1 and for ¢ = n+m, an easy obstruction argument reveals that
D is nullhomotopic if and only if D, ., _;=0, and the result follows from 2.4(i).

REMARK 2.6. It is easily seen that the conditions imposed on i in 2.4 and, hence,
on Win 2.5 are necessary for # to be induced without any connectivity assumptions.

Under appropriate conditions, 2.5 extends by one unit the range of applicability
of 1.5. The case n>m of 2.5 applies to the study of Postnikov decompositions of
spaces, and strengthens the result in [15, 5.6].

ExaMPLE 2.7. Consider the fibration S*!— S%'*! — CP’, where CP’ is the
complex projective r-space. It is well known, and it also follows from 1.5, that the
fibration is induced. Hence we obtain a triple $*"*! -~ CP"— K(Z, 2) which we
may regard as a fibration; as usual, K(=, n) stands for an Eilenberg-MacLane
space. Let X (n) result by killing off the homotopy groups of X in dimensions >n.
We examine the fibrations

F 8% 2r+14+q)—> CP'2r+1+q9)—>K(Z,2) for 0<q =2
According to 1.5, %, is certainly induced. Let
W:mg +1(S* 1Y) @ my(CPT) — a4 o(CPY)

be the Whitehead product pairing. If r is even, W is nonvanishing [1] so that, by
2.6, # ,is not induced wheng = 1. If ris odd, W=0[1] so that, by 2.5, #, is induced;
moreover, it is easily seen that Q5% *1(2r+ 3) maps into the center of QCP"(2r+3)
so that, by 2.4, also %, is induced.

The next two examples show that the connectivity assumptions in 2.4(i) are the
best possible.

ExAMPLE 2.8. Let F=CP? (5); then, QF is homotopy-commutative but F fails
to be an H-space [2, 3.10]. Hence, the fibration F— F — * is not induced; all
conditions in 2.4(i) are fulfilled except that m(F)#0 only if n<q<n+2/—1.

ExaMPLE 2.9. Let Q be the additive group of rationals and let n=4 be even.
Then K(Q,n—1) and the Moore space K'(Q, n—1) have the same homotopy
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type. Therefore, by (6), K(Q, n) b K(Q, n) has the homotopy type of K(Q, 2n—1)
and, by 1.5, the fibration

K(Q,2n—-1) > K(Q,n) v K(Q, n) > K(Q, n)x K(Q, n)
is induced. The resulting fibration

K(Q,n) v K(Q, n) > K(Q, m)x K(Q, n) > K(Q, 2n)

is not induced since K(Q, n)v K(Q, n) is not an H-space [9]; all conditions in
2.4(i) are fulfilled except that = (B)#0 only if mSg<n+1.

We close this section by giving a simple proof of a known result on fibrations
of aspherical spaces, i.e., spaces with vanishing homotopy groups in dimensions
22; a semisimplicial proof can be found in [11, 5.4].

THEOREM 2.10. Let F: F—> E-"> B bea fibration in which all spaces have the
homotopy type of aspherical CW-complexes. If the homomorphism iy: m(F) — =,(E)
maps w,(F) into the center of m,(E), then F is induced by some map of B into an
Eilenberg-MacLane space K(m,(F), 2).

Proof. Since m,(F) lies in the center of m=,(E), the function ¢,: = (F)x =, (E)
— m,(E) given by é,(u, v)=i,(w)+v is a homomorphism. Therefore, since E is
aspherical, there is a map ¢: Fx F— E which induces ¢,. Obviously, one has
10 $1=(0xp), so that, since B is aspherical, the right-hand square in (4) homo-
topy-commutes. Since p is a fiber map, we may assume that it strictly commutes.
There results a map ¢ which is an H-structure on F since the homomorphism
@1: 7 (F)xm(F) — m(F) is the identity on each factor. Since F may carry at
most one H-structure, any homotopy equivalence F — QK(m;(F), 2) is primitive,
and the result follows from 2.2.

3. Induced cofibrations. A triple €: A4 “sxLscCisa cofibration if d is an
inclusion map with the homotopy extension property and C results from X by
shrinking the subset 4 to a point; f is the identification map. For any map
f: X— Y we denote by E; and F; the mapping track and the fiber of f given, as
in (1), by

E ={(x,meXxY'| f(x) = n()}, F,={(x,n)eXxPY|f(x)=n(l)};

the map h: X — E; given by h(x)=(x, 5,) with ,(s)=f(x) is a homotopy equiva-
lence, and the map p: E; — Y given by p(x,n)=n(0) is a fiber map satisfying
peoh=f. If fis a fiber map, the map f~1(x) > F; defined by A is a homotopy
equivalence, so that the introduction of F; causes no real ambiguity. In any triple
€ satisfying f o d=x, the map d lifts to the map e: 4 — F; given by e(a)=(d(a), *).
The dual of 1.1 may now easily be formulated and proved noting that the mapping
track is dual to the mapping cylinder.
For any cofibration ¢ we may construct a sequence of cofibrations

%k:_AdL)XkL)Ck (kz0)
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as follows: €, =%, e, 41 : A— Fy,, lifts d, to the fiber F,,, of f;, and dj ., , results
by converting e, ., into a homotopically equivalent cofiber map. If X and 4 have
the homotopy type of CW-complexes, we may use the Blakers-Massey theorem
to compute the connectivity of every e,.

PROPOSITION 3.1. Suppose that A is (n— 1)-connected, C is n-connected, and that
Y is a CW-complex of dimension <n+(k+1)(m—1), where m=2, n=1. For any
map . Y — X, with fi, o f=O0 there is a map g: Y — A with d, o g~f.

Proof. Since f, of~0, fliftstoamap h: Y— F ;. Since e, , , is (n+(k+ 1)(m—1))-
connected, the restriction on the dimension of Y yields a map g: ¥ — 4 satisfying
€c+1°8~h.

The result in 1.2 suggests, by duality, that the homotopy type of C, ., is deter-
mined by those of C, and £A4. However, an example due to M. G. Barratt [7, 3.5]
disproves this conjecture. Nevertheless, according to [7, 4.1], there is an (N—1)-
connected map 7 : C; - Q(C h £A4), where N=m+n+ Min(m, n).

COROLLARY 3.2. If Hy_(Y) is free and H,(Y)=0 for q= N— 1, then for any map
f:Y— X, with T of)0f~0 there is amap g: Y — A with d, - g~f.

Proof. Let Z and ¢: Y — Z result by shrinking to a point the 1-skeleton of Y.
Then, Z is 1-connected and, since N=4, Hy_4(Z) is free and H(Z)=0forg=zN—1
so that Z has the homotopy type of a CW-complex of dimension < N—2. Since X;
is 1-connected, there is a map $: Z — X; with ¢ o p~f and, since Q(C h ZA) is at
least 2-connected, J o f; o ~0. Since dim Z<N-2, f; o y~0 and, by 3.1 with
k=1, there is a map y:Z—> A4 with d, o y~y. The map g results by setting
g=v°9

In any cofibration %, the suspension X4 cooperates [S] on the cofiber C through
amap 7: C— CvZA. The Hopf invariant of € [7, §4] is the composite

#:QC 25> Q(C v Z4) = Q(Ch =4)

where, with the notation introduced in (6), the homotopy class of T: Q(Xv Y)
— Q(X b Y) is uniquely determined by the equation QL o T+ M o QJ~1 in which

M: QXxY)— QX Vv Y) isgivenby M(& n)(s) = (*, 7(2s))
= (§(2s—1), %).
We describe two cofibrations € and %’ over the same cobase A as equivalent if
there is a homotopy equivalence é: X — X' satisfying £ o d=d’; there exists then a
homotopy inverse ¢ of ¢ satisfying &' o d’=d. A cofibration ¥ is induced if there is

a space Y and a map g: ¥ — A such that % is equivalent to the cofibration strictly
induced by g from Y — CY — XY, i.e., to the triple

(10) A—>AU,CY->3Y
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in which the first map is the obvious inclusion and the second shrinks 4 to a point;
it then follows that C has the homotopy type of Y.

For any 1-connected CW-complex K we write dim K=<n to indicate that H,(K)
is free and H(K)=0 if g>n. The map S below is given by S(y)(s)=<1—s, y>.

THEOREM 3.3. Let
€ 42> xLsc
be a cofibration in which (X, A) is a CW-pair. Suppose that A is (m— 1)-connected,
C is n-connected, and dim C=n+m+ Min(m, n)—1, where m=2, n=> 1. If there is
a CW-complex Y and a homotopy equivalence 8: XY — C such that the composite

(11) Y25 0572 ac X Q(Ch 24)
is nullhomotopic, then ¥ is induced by some map g: Y — A.

Proof. Dualize the proof of 1.4 noting that, according to [7, 4.1], # is homotopic
to the composite

QChEA) <2 C, <~ x, <~ F, <> ac

in which 0(w) = (*, w) and u is the homotopy equivalence obtained when converting
e, into d, so that d;~u o e;.
We derive the known [8], [12]

COROLLARY 3.4. If A is (m—1)-connected, C is n-connected, dim CSn+m
(m=2,nz=1), and if there is a homotopy equivalence 0: XY — C, then € is induced
by some map g: Y — A.

Proof. Q(C b XA4)is (n+m—1)-connected and HY(Y; G)=0forall Gifg=n+m
so that (11) is certainly nullhomotopic.

ReMARK 3.5. The homotopy equivalence £ Y — C resulting in 3.1 and 3.4 from
the fact that % is induced by g: Y — A is homotopic to the original homotopy
equivalence 0:2Y — C.

The next result was first obtained in [4] by means of an elaborate argument which
requires X to have finitely generated homology. The proof we give dispenses with
this assumption and relies only on 3.4 and on a result in [4] concerning homology
decomposition. Recall that X is an H’-space if there is a map ¢: X — XV X such
that the composite Jop : X — X'x X is homotopic to the diagonal map A. A
map 0:XY — X is primitive with respect to ¢ if homotopy-commutativity holds
in the diagram

xvx<lsrsyvsey

(12) Iw T where (s, y> = ({25, y), *)
X—2" 5y = (*,<{2s—1,»)

defines the comultiplication on the suspension.
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PROPOSITION 3.6. Let X be an (n— 1)-connected CW-complex such that H,, _5(X)
is free and H,(X)=0 for g>3n—3 (n21). If X is an H'-space, then there is a CW-
complex Y and a primitive homotopy equivalence 6: XY — X.

Proof. Let E; be the mapping track of J: Xv X — Xx X. As is well known,
inspection of the fibration induced by A: X — X x X from E; — X x X reveals that
there is a map I yielding homotopy-commutativity in the diagrams

QX TOX 1 >3IQX v IQX
(13) / \ T 1
X———x X—% sxvyx

where R{s, w)=w(s) and v is the comultiplication. Now, if n=1, then X is
contractible; for, the fundamental group of an H'-CW-complex is always free
(non-Abelian) and H,(X)=0 then implies =,(X)=0. Let n=2. Let W be the
(3n—4)-skeleton of QX with inclusion f: W — QX; QX may be assumed to be
a CW-complex according to [16]. Since Zf is (3n— 3)-connected and H(X; G)=0
for all G if g>3n—3, there is a map y: X —>XW such that =foy~T. Con-
sider the cofibration

14 X1sEw—3Iwu,Ccx

and note that RoZXZfoy~1 so that y4 is monomorphic in both homology and
homotopy. Since R is (2n—1)-connected, I' and hence y are (2n—2)-connected,
and it follows that ZW U CX is (2n—2)-connected; also, the homology sequence
of (14) reveals that H(ZW U CX)=0 if ¢>3n—3. Since any (p— 1)-connected
CW-complex K with Hj,_,(K) free and H(K)=0 for g22p has the homotopy
type of a suspension if p=2, W U CX has the homotopy type of some suspension
24 and 3.4 now implies that (14) is induced by some map ¢: 4 — X. Hence, we
obtain a cofibration in the top row of the diagram

Y

A— s x W
T
(15) WwW—" s4ls40,CWIssWw

ok

FAswlswu,cF2s3sFr—2 5w
As in [3, p. 443] we may assume A to be 1-connected, and 3.4 then readily implies
that this cofibration is, in turn, induced by some map «. Hence, there are homotopy
equivalences 4 and 7 yielding commutativity in the upper squares, where g is the
inclusion and o shrinks 4 to a point. Moreover, by 3.5,

(16) 7~ 1.
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Next, let F be the fiber of « with projection i, let j be the inclusion, let r be the
obvious extension of «, and let o shrink W to a point. There results a map k yielding
homotopy-commutativity in its two adjacent squares, where — 1<{s, w)={1—s, w)
(see, e.g., [7, 1.6]). By the Serre theorem, r is homology (3n— 3)-connected and the
five lemma implies the same for k. Next, the result on homology decomposition
given in [4, 2.1] yields a connected CW-complex Y and a map ¢: Y — F such that
0'=hokoZé : XY — X induces isomorphisms of homology groups in all dimen-
sions. Since XY and X are 1-connected, 6’ is a homotopy equivalence and so is also
0=10' o (—1). Finally, in order to prove that 8 is primitive it clearly suffices to
prove it for A o k o (—1). But homotopy-commutativity in (15) yields

yohoko(=1)~qoZi

and the result follows from (16), (13), and the primitivity of £f and Zi with respect
to comultiplication.

REMARK 3.7. The second result in [4]is also valid without assuming any homology
to be finitely generated; for, the map ¢ used in the proof of Theorem B in [4] has
the right connectivity according to [7, 4.1]. Also, the method of proof used in 3.6
above yields an alternative proof of Lemma 3.6 in [3].

4. Principal cofibrations. A cofibration €: 4 — X — C is principal if there are
maps ¢ and ¢ such that the diagram
1vf ovd

CcvC CvxX xV A
| I
C ! X ? A

strictly commutes and ¢ is an H’-structure on C. A strictly induced cofibration is
principal. From now on we shall only consider primitivity with respect to the H'-
structure ¢ in a principal cofibration.

LemMA 4.1. If € is a principal cofibration, then homotopy-commutativity holds in
the diagram
Cv EA<—“”7C vC
C

where T is the cooperation, ¢ the H'-structure, and o the composite

C->CvidZ>34
in which pr is the projection.

THEOREM 4.2. Let €: A — X — C be a cofibration in which (X, A) is a CW-pair.
Suppose that A is (m— 1)-connected, C is n-connected, and dim C £n+m+ Min(m, n)
—1, where m=2, n=1. If € is principal and if there is a CW-complex Y and a
primitive homotopy equivalence 0: LY — C, then € is induced by some map Y — A.
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Proof. With y=0 o 6, the diagram

QCHhIA) < QC v ZA) <= _QcC

Qe bw QO vY) Tne
QEYHEY)«—QEY VEY)«r QSY «— ¥
homotopy-commutes. The bottom row is nullhomotopic by [7, 4.1]. Therefore,

(11) is nullhomotopic and 3.3 implies the resulit.

We now turn to the study of conditions which guarantee that a cofibration is
principal. Recall that for any two spaces Z and B, the set =,(Z, B) of based homo-
topy classes of maps XZ — B is a group under the multiplication induced by
suspension comultiplication.

PROPOSITION 4.3. For any map f: X — Y of spaces having the homotopy type of
connected CW-complexes, the following two conditions are equivalent:

(i) The homomorphism f*: = (Y, B) — m(X, B) induced by f maps the first group
into the center of the second for any space B,

(ii) The composite

X2 xx X yxx 2 Y# X2 5 QX(Y # X),

where S(z)(s)=<s, z), is nullhomotopic.

The proof is similar to that given in [10, 4.1]. Note that conditions 2.3(ii) and
4.3(ii) are not precise duals, owing to the presence of the map S in the latter.

If the conditions in 4.3 are fulfilled, we say that f maps ZX into the cocenter of
XY, this certainly happens if

(G) X is homotopy-commutative (e.g., if X is an H'-space), or if

(i) fis nullhomotopic.

THEOREM 4.4. Let
€: A 2, X LA C

be a cofibration in which (X, A) is a CW-pair. Suppose that A is (m— 1)-connected,
C is n-connected, and that dim C<n+Min(2m—1, 2n), where m=2, nz 1. If f
maps ZX into the cocenter of 2C, then € is principal and induced in each of the
following cases:

(i) dim A<n+Min(m—1, n),

(ii) dim A <n+Min(2m—2, 2n) and there is a map I':ZX —3XA such that
IoXd=1.

Proof. Dualize the proof of 2.4 noting that comparison of dim X with the
connectivity of S in 4.3(ii) implies that the composite

X2 xxxlsoxx2sc#x
is nullhomotopic.
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We derive the following supplement of 3.4, in which the pairing of the co-
efficient groups is given by the natural isomorphism

77'n+1(C) ® ”m(X) _)"n+m+1(c# X)
resulting from the Kiinneth formula and the Hurewicz isomorphism.

COROLLARY 4.5. Suppose that A is (m—1)-connected, C is n-connected,
dim Asn+m—1, and dim C=n+m+1, where n=2m—1 and mz2, nz2. If the
cup-product pairing

H™" X C; my41(C)) @ H™M(X; mu(X)) = H™ ™ (X 74 m 4 1(C # X))
induced by f vanishes, then € is principal and induced.

Proof. Since n=2, the dimension assumptions in 4.4(i) are fulfilled, and it

remains to show that f maps 2.X into the cocenter of XC. Hence, by 4.3, it suffices
to prove that the composite

1 Q

b X2 xxx s oxx C#X

is nullhomotopic. Since C# X is (n+m)-connected and dim X<n+m+1, one
has ¢ ~0 if and only if $"*™*+! maps the fundamental class of C # X into 0. The
fundamental class clearly lies in the image of

H"Y(C;m,41(C)) @ H™X; mn(X)) = HM ™ HC # X; T4 ms1(C # X)),
and the result follows from the interpretation of the cup-product in terms of the
diagonal map.
REMARK 4.6. It is easy to see that the condition imposed on f'in 4.4 is necessary
for € to be induced under no further assumptions; since the map S in 4.3(ii)

induces epimorphisms of cohomology groups in all dimensions, it follows that also
the vanishing of the cup-product pairing

H*(C; G') ® H¥(X; G")— H*(X; G) for any pairing G' ® G —> G

of Abelian groups is necessary for € to be induced.
A dual of [15, 5.6] is expressed by the next result which follows from 4.5 and 4.6
noting that f induces an epimorphism of (n+1)-dimensional cohomology groups.

PROPOSITION 4.7. Let X be an (m—1)-connected CW-complex of dimension
Sn+m+1, and let A be its n-skeleton, where n=m=2. Then, the cofibration

A= xLsc
is induced if and only if the cup-product pairing H**(X;G") @ H™X; G")
— H™*™*Y(X; G) vanishes for any pairing G' ® G" — G of Abelian groups.

We conclude by invoking a classical example in order to show that the condition
on dim A4 in 4.4(i), even though quite restrictive, is the best possible.
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ExAMPLE 4.8. Let A=S"7, X=5* and let d be the Hopf map, so that C is the
quaternionic projective plane. Then, f maps X into the cocenter of ZC since X
is homotopy-commutative (see (j) after 4.3) and all conditions in 4.4(i) are fulfilled
except that dim 4 = n+Min(m— 1, n)+ 1. The cofibration is not induced since C
has a nonvanishing cup-product with coefficients Z, and, therefore, fails to have the
homotopy type of a suspension.
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