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Introduction. It is well known that any map is homotopically equivalent to a

fiber map, i.e., to the projection of the total space on the base in a fibration.

Simple examples, however, reveal that there are maps which fail to be homo-

topically equivalent to any inclusion of a fiber in the total space, and the problem

of characterizing the maps which are equivalent to such inclusions was first raised

in [14]. By the first remark, the map under consideration may be assumed from

the beginning to be a fiber map /» : E-> B, and the problem is thus converted into

that of characterizing the fibrations /» which are equivalent to induced fibrations.

There are two immediate necessary conditions : the fiber F of p must have the

homotopy type of some loop space Q Y, and the inclusion i: F-> E must map the

generalized homotopy group tt(X, £2F) into the center of ir(X, OF) for any space

X; the latter is a mild generalization of the well known fact that the boundary

operator in the homotopy sequence of a fibration E^y Ti ̂  Y maps tt2( Y) into the

center of ttx(E). The first result in this direction is due to Serre and asserts that /» is

an induced fibration if B is 1-connected and F has a single nonvanishing (Abelian)

homotopy group. This result was generalized [6], [12], [17], [15] to allow Fto have

at most m — 1 nonvanishing homotopy groups in consecutive dimensions provided

it has the homotopy type of a loop space and Ti is (m— l)-connected. In the first two

sections of this paper we give results which allow F to have 2m—I nonvanishing

homotopy groups in consecutive dimensions provided B is (m— l)-connected and

F has the homotopy type of a loop space under a homotopy equivalence fulfilling

a certain condition which involves the "operation" of Q.B on F. In case F has m

nonvanishing homotopy groups in consecutive dimensions, the sufficient condition

in order that /» be induced is expressed by means of the vanishing of a certain

Whitehead product; this result answers a question raised in [15]. Dually, any map

is homotopically equivalent to an inclusion A -*■ X having the homotopy extension

property, but few maps are equivalent to identification maps resulting by shrinking

to a point such a subset A of X. This leads to the problem of characterizing the

cofibrations A -> X which are induced by maps of some space Y into A. Oui

results extend the range of applicability of some previous results [8], [12] by

imposing an additional condition which involves the "cooperation" of the

suspension 2/1 on the cofiber C obtained from X by shrinking A to a point; the

condition is conveniently expressed in terms of the Hopf invariant of a cofibration
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discussed in [7, §4]. As an application, we prove by means of induced cofibration

techniques the main result in [4] which asserts that an («-l)-connected 77'-space

X of dimension ^ 3« — 3 is equivalent to a suspension ; our proof eliminates the

assumption made in [4] that the homology of X is finitely generated.

In principle, the methods used in this paper could be developed so as to yield

results even if the fiber F had more than 2«i — 1 nonvanishing homotopy groups or

if, dually, the cofiber C had larger dimension than allowed in the theorems below.

However, the degree of complexity of the additional sufficient conditions which

then appear is rapidly increasing and the results obtained do not seem to lead to

effective computations.

The author is grateful to I. Namioka for helpful discussions, and to the referee

for several suggestions which have led to improvements in the presentation.

1. Induced fibrations. All spaces in this paper are provided with a base-point

denoted by *, and all maps and homotopies are assumed to preserve base-points.

A triple

F:F-^E-^B

is afibration if p has the covering homotopy property for all spaces and F=p~1(*);

i is the inclusion map. For any map/: X-> Y we denote by F uf CX the space

obtained by attaching to F via/the reduced cone over X; however, the subscript/

will frequently be omitted. A point in CA" is denoted by sx (s e I, x e X) ; the map

x-+lx embeds X as base in the cone, and OXu I* is identified to the vertex.

Consider the diagram

jr.-    X—-—y Y---*Z

\     X
FuCA"

EkjCF

if / ^Vw

F:    F-Í—>E-2-^B

where &~ is any triple with g °f= *, !F is a fibration, and k and r extend g and p by

mapping the cones to the base-points. We shall repeatedly use the

Lemma 1.1. Suppose ht: X'-*■ E is a homotopy satisfying h0 = i °<p, «i = e °/, and

let <f> be induced by e, <p, «¡. If there is a map ß such that ro<f>~ßok, then there are

maps fx and ei satisfying <px-<P, ei —e, ond yielding strict commutativity in the

diagram

X-!-+ Y-^Z

\<pi       Ui ß
|| I
F^E-^B
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Proof. Let M be the reduced mapping cylinder of/ let j: X -> M be the standard

embedding given by y(x) = (0, x), and let q: M -y Y u CX shrink to a point the

subset j(X) of M. The map 4> is given [19] by

4>(y) = e(y)   and   0(îx) = 2jç>(x)       if   0 £ 2* á 1,

= «2S-iW   if   1 ^ 2s ^ 2.

Then, /» ° /¿=r ° 4> °<7 provided /¿: M-*■ F is given by

Ml.jO = e(>0   and   m(í, x) = io<p(x)     if   0 ^ 2s ^ 1,

= n2s_i(x)   if   1 ^ 2s Ú 2.

Let T7(: Yu CX^ B satisfy H0=ro4>) Hx—ß<>k. Since /» has the covering

homotopy property, there is a homotopy pt : M -y E with /¿0 = >-,p ° Pt = Ht ° q.

Define ex = px\ Ix Y. Then, ex~e and p ° ex=ß° g. Define

dt: X^yE   by   dt(x) = p2t(0, x) if   0 g 2í g 1,

= /^r-Lx)   if   1 ^ 2r ^ 2.

Since q°j=* and k(CX) = *, one has p°dt = * and there results a homotopy

<p(: X^y F with i°<pt = o'i. Then, i°<p1 = e1 °/and i°<p0 = i°<p so that <p0= <p and

9»i-<P-
For any fibration ^" we may construct a sequence of fibrations

&k:Fk±+Ek^-*B       (k^O)

as follows: &0=^, rk + x: Fk u CFfc -> Ti extends pk by mapping the cone to the

base-point, and pk + x results by converting rk + x into a homotopically equivalent

fiber map. Let X * Y be the join of X and Y taken as an identification space of the

Cartesian product Xxlx Y; a point in the join is denoted by (1 —s)x ® sy and

^* ©-£* serves as base-point. The following fact is proved in [7, 1.1 and 1.2]:

Proposition 1.2. IfEandBhave the homotopy type of'CW-complexes, then there

is a homotopy equivalence Fk * Q.B -y Fk + X.

Corollary 1.3. Suppose that B is (m—l)-connected, F is (n-l)-connected, and

that TTq(Y)^0 only if2^q^n + (k+l)m-l (m^l,n^l). For any map g : Ek^ Y

with g ° ik~0 there is a mapf: Ti->- Y withf°pk~g.

Proof. Since g ° /fc ~ 0, g extends to a map h: Ffc u CFk -> Y. The connectivity

of the join and 1.2 imply that rk+x is (n + (/V+l)nj)-connected, and an obvious

obstruction argument yields a map/satisfying/o rk + x~h.

In any fibration & the loop space Ü.B operates [5] on the fiber F through a map

p: Fx Q.B -> F. The Hopf construction yields the composite

H:F*ilB -^-y S(Fx Q7i) ̂ y SF
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in which Z is the reduced suspension functor and V shrinks to a point the two

ends of the join and the segment through the base-point so that

V((l-s)x®sw) = (s,(x,oJ)).

We describe two fibrations ÍF and IF' over the same base as equivalent if there is

a homotopy equivalence e: £->- E' such that// ° e=p; there exists then a homotopy

inverse e of e such that p ° e =p'. A fibration F is induced if there is a space Y and

a map/: B -»■ F such that^ is equivalent to the fibration strictly induced by/from

QF-^PF-^ F, i.e., to the triple

(1) ClY-^ W = {(b, v)eBxPY\ f(b) = ,(1)} -% Z7

where FF is the space of paths in F emanating from *, £2 F is the loop space,

l(ai) = (*, cu), and w(b, T¡)=b;it then follows that F has the homotopy type of OF.

The map 7? below is given by 7?<s, <«> = co(s).

i p
Theorem 1.4. Let IF: F—> E —► B be a fibration in which E and B have the

homotopy type of CW-complexes. Suppose that B is (m-l)-connected and that

■nq(F) t¿ 0 only ifn^q^n + 2m — 2, where m ^ 1 and « ä 1. If there is a space Y and a

homotopy equivalence 6: F-> Í2F such that the composite

(2) F*ilB-^Z,F^Z,ÜY-^-* Y

is nullhomotopic, then IF is induced by some map f: B->Y.

Proof. Consider the diagram

F ——>E-> E u CF   n    > B

Be d, f

Y V V T

Q.Y-^PY-^fuCOF^U Y

in which A is the inclusion, 7r(^) = i?(l) and 7r(COF) = *, e(E) = *, and <f> is induced

by e, d, and any homotopy connecting À o d with e o ¡. Let a: Z? u CF^-ÏZFshrink

Z? to a point, and let -a stand for o followed by the map <s, x> -> <1— s, x};

let - t : F F u CQ F -> SÍ2 F be similarly defined. Then,

(3) Söo(-a) ~ (-t)o<^   and   Z?°(-t)~tt.

According to [7, 1.4], 77 is homotopic to the composite

F* QB^Fx -^-* Ex^EKJ CF^zZF

in which v is the homotopy equivalence in 1.2 and u is the homotopy equivalence

obtained when converting rx into px so that /?! ~ rx ° w. Therefore, it follows from

(3)  and (2) that Tr°<f>°u°ix° v~0, hence ir»^«» i^O, and 1.3 with A: = 1
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yields a map/satisfying f ° px^-tr ° j¡ ° u, hence / ° r^ ~ 7r o <£. As a consequence,

1.1 yields the strictly commutative diagram on the left

F-^—>E^-^B F—^E—^B

' ' > ' ' ' ' ' Y

OF—>PY—>Y QY-^W-^—>B

with Ox — 0, and the result follows upon applying the five lemma for homotopy

groups in the strictly commutative diagram on the right, where g(a) = (p(a), ex(a)).

We derive the often proved [6], [12], [17], [15]

Corollary 1.5. If B is (m— l)-connected and ttq(F)^0 only if n^q^n + m — 2,

where m^2 and «^ 1, and if there is a homotopy equivalence 6: F^>Q.Y, then F

is induced by some map f: B-+ Y.

Proof. F* Ü.B is (n + m-l)-connected and 7r,(F) = 0 if q^n+m so that (2) is

certainly nullhomotopic.

Remark 1.6. The homotopy equivalence F ^> OF resulting in 1.4 and 1.5 from

the fact that F is induced by /: B -» F is homotopic to the original homotopy

equivalence 6: F-> OF.

Note that 1.5 is trivially true if «i= 1 :F is then contractible, p is a homotopy

equivalence, and F is induced by the map B -> *.

In the preceding arguments we have implicitly used the well-known fact (see

e.g. [17]) that F has the homotopy type of a CW-complex if E and B do. Actually,

the following slightly stronger result holds :

Proposition 1.7. Let F be a fibration in which E and B have the homotopy type

of CW-complexes. Then, there exists a strictly commutative diagram

F: F—^—>E-^-B

* e B

\*\:\F\-U\E\¿-+\B\

in which fa. e, ß are homotopy equivalences, the bottom row is a fibration, \B\ is a

CW-complex, and (\E\, \F\) has the homotopy type of a CW-pair.

Proof. Select homotopy equivalences e' : E -*■ È' and ß' : B -> B', where £" and

B' are CW-complexes. There exists a cellular map p' : E' -> B' with p' ° e'~ß' °/>.

Its reduced mapping cylinder |Z?| is a CW-complex in which £" and B' are embedded

as subcomplexes by inclusions p" : £" -> |Z?| and ß" : B' -> |Z?| satisfying p"~ß" ° p'.

Since ß" is a homotopy equivalence, so is the composite ß=ß" ° ß'. Let

|Zs|={Ae|Z?nA(l)e/,"(ZT)}

be the  mapping track  of p",  and  define  e"(a')(s) =p"(a'),  r(A) = A(0).  Then,

e": E' -*■ \E\ is a homotopy equivalence, r is a fiber map, and r o e" =p". One has
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r o e" o e'~ß op and there results a map e satisfying e~e" ° e' and roe=ß°p.

Hence, e is a homotopy equivalence ; since so is ß, the induced map 4> is also a homo-

topy equivalence. The last statement follows immediately from [16, Theorem 3].

2. Principal fibrations.   A fibration F-.F-^-E^-B is principal if there are

maps 4> and <p such that the diagram

(4)

.-,      „   l«i        _      _   Oxp
FxF-yFxE->-*x7i

^B

strictly commutes and <p is an 77-structure on F, i.e., <p | Fv F~ V : Fv F -> F where

V is the folding map. This is the definition given in [18] with the third condition

omitted. The maps <p(u>x, a>2) = (DX + w2 and 4>(<^, (b, r¡))-=(b, <o + r¡), where + stands

for path multiplication, obviously convert the strictly induced fibration (1) into a

principal one; moreover, the action of Q Y on IF is homotopy associative, i.e.,

4>°(<px l)~4> ° (1 x4>).

Lemma 2.1. If'IF is a principal fibration, then homotopy-commutativity holds in

the diagram

FxFlB- ->FxF

where p is the operation, <p the H-structure, and d = p \ * x Q.B.

Proof. The top row in (4) is the Cartesian product of the two fibrations

F->F-> * and ¿F. Therefore, it is a fibration and, by [5, 3.8], commutativity in

(4) implies homotopy-commutativity in the square of the diagram

(FxF)x£2(* xTi)    "<1   >FxQB

FxQB -^ FxF ■+ F

where r is the operation in the product fibration. Inspection of the operation in a

Cartesian product of fibrations reveals that r is homotopic to the map (x, y, *, w)

-> (x, p(y, to)). The result follows upon defining a(x, u>) = (x, *, *, w) so that

t o a~ 1 xd and (yx 1) ° a~l.

A map 9: F-+QY is primitive with respect to <p if homotopy-commutativity

holds in the diagram

FxF-^-yCiYx£lY

(5)

QY
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where p is the loop multiplication. Unless the contrary is explicitly stated, we shall

consider primitivity with respect to the 77-structure 93 in a principal fibration.

Theorem 2.2. Let IF: F^ E^ B be a fibration in which E and B have the

homotopy type of CW-complexes. Suppose that B is (m—l)-connected and that

TTq(F)^0 only if n^q^n + 2m — 2, where m^ 1 and «^ 1. If F is principal, and if

there is a space Y and a primitive homotopy equivalence 9: F-> ÎÎ7, then IF is

induced by some map B-> Y.

Proof. Consider the diagram

V Zo
F * Í1B-y S(Fx ÜB) ——» ZF

9»*

ay*í2y-!U£(Qyxííy)-^2Qy-^ y

where 4>=9 °d. The first square obviously commutes. Since IF is principal and 9

primitive, the second square homotopy-commutes by 2.1 and (5). According to

[7, 2.4], the bottom composite is nullhomotopic. Therefore, the composite (2) is

nullhomotopic and the result follows from 1.4.

We now turn to the study of conditions which guarantee that a fibration is

principal. Recall that for any two spaces A and Z, the set irx(A, Z) of based homo-

topy classes of maps A -> FlZ is a group under the multiplication induced by loop

multiplication. We shall also need the sequence

(6) FIX* Qy-^-> Xh Y^y X V  Y-^-* Xx Y-?-> X# Y

in which J is the inclusion, X§ Y results from Jxyby shrinking to a point the

subset Zv y, and Q is the identification map. The space X b Y is the fiber of J,

constructed as in (1), and it can readily be identified to PXx Q. Y u Q.XxPY; the

projection L is then given by L(£, r¡) = (f(l), *?(1)). The map W is given by

W((l -S)£ ® Sq)   =  (¿Mln(1.2-2S), ??Mln<2S,l>)

where £„(/) = £(hí) for any path £, and arguments based on the results in [16]

reveal that IF is a homotopy equivalence if X and Y have the homotopy type of

CW-complexes [7, p. 302].

The next result is, essentially, equivalent to [10, 3.1 and 3.2]; the proof we give

is slightly shorter and does not require X and Y to be 1-connected as in [10].

Proposition 2.3. For any map f: X-y Y of spaces having the homotopy type of

CW-complexes, the following two conditions are equivalent:

(i) The homomorphism fx : ttx(A, X) -> ttx(A, Y) induced by f maps the first group

into the center of the second for any space A ;

(ii) The composite

x\) Y-^yX\Y!-^ yvr-% y

is nullhomotopic.
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Proof. Let y:OA"xOF->OF be the commutator map given by y(|, 77)

= (/o f+t)) + (—/o ¿¡—r¡), where + and — stand for loop multiplication and inver-

sion. There is a map y : S(OA"# O F) -*■ F such that y' o Eg is homotopic to the

adjoint S(0 A'x OF) -*■ F of y [7, p. 313]. As shown in [7, 5.1], there is a homotopy

«t:OA'*OF^ F satisfying

«o ~ Vo(/v l)oLo H/       and       hx~y'°2^Q°V,

where V is the map described after 1.3. Since £g ° F is a homotopy equivalence,

one has «!~0 if and only if y~0. Since IF is a homotopy equivalence, the result

follows upon noting that (i) holds if and only if y~0.

If the conditions in 2.3 are fulfilled, we say that / maps O A' into the center of

O F; this certainly happens if

(j) O F is homotopy-commutative (e.g., if Y is an H-space),   or if

(jj) / w nullhomotopic.

i p
Theorem 2.4. Let F: F—> E —> B be a fibration in which E and B have the

homotopy type of CW-complexes. Suppose that B is (m—l)-connected and that

'!Tq(F)¥'0 only if n^q^n + 21—2, where l=Min(m,n) and m ̂ 2, «^2. If i maps

OF into the center of OF, then F is principal and induced in each of the following

cases :

(i)   nq(B) = Ofarq^n + l,

(ii) 7ra(5) = 0 for q^n+2l—l and there is a map Y:Q.B^-QE such that

O/? o r = l.

Proof. Consider the diagram

F V F-^F V E—^(F VE)U C(F b E)-jL+Fx E-^B

>4 Y p

F-»•   E->B

where the cone is attached by means of L,j is the inclusion, k is the obvious exten-

sion of J: Fv E ->- Fx E, and P(x, a) =p(a) for xe F, ae E. Since OF maps into

the center of OF, the composite V o (/v 1) ° L is nullhomotopic and there results a

map g yielding strict commutativity in the triangle. Therefore, p ° g °j=P ° k °j

and, by [19, 4.5], there is a map

(7) ß:lZ(F\>E)-+B       with       P ° k ~ (p o g)rß   rel. F V E,

where t denotes the operation on the right of tt(£(F b E), D) on tt((Fv E)

u C(Fb E), D) for any space D. Since Z(Fb E) is (« + /- l)-connected, ß is null-

homotopic if (i) holds, hence

(8) ß~p°E,
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where e: S(Fb E)-yE is the constant map; if (ii) holds, (8) is certainly valid for

some e. Let g0=£Te; then,

(9) go°J = g°J and F ° k ~ p o g0    reí. F V E,

where the second relation follows from (7) and (8). Since /» is a fiber map, g0

extends to a homotopy

gt: (F V E) u C(F b 2?) -> E   with   /» ° ̂  = P <> k   and   p°gt° d = *,

where d=j°(lvi), and there results a homotopy Vt:FvF^yF satisfying

i»Vt=gt° d so that, by (9), V0 = V. Hence, we obtain the strictly commutative

diagram

F v F-1+ (F V E) u C(Fb F)—► (F v F) u C(Fb F) u C(F v F)^-> Ti

»i

-> F ^FuCF -*2?

where G is induced by gx and V1; S and r extend ?«<: and p by mapping the cones

to the base-point, and V^V. Next, since k is (n + 2/—l)-connected and, clearly,

T7,(F)=0 if a ^ n + 2/—1, an obvious obstruction argument yields a map r¡ in the

diagram

■* (Fx E) u C(F V F) -?-». Ti
fco d

F V F-yFxE

Vl

->F- -> F u CF - Ti

and a homotopy 77( : (Fv F) u C(F b E) -> F satisfying H0=gx and Hx=r¡ o k.

Let n( = 77( ° d" so that h0 = i° Vx and hx=i) ° k <> d, let <£ be induced by ij, V1( Af,

and let 7? extend F by mapping the cone to the base-point. Let

Y: (F V £) u C(Fb F) u C(F v F) -> (Fx F) u C(F v F)

be the map induced by k. Obviously, S=R°X¥; also, it is easily seen that

4> o Y~C7. Therefore, r ° <¿ « Y~R ° T. Since fc is (n+2/- l)-connected, so is Y

by the five lemma and, since ttq(7í) = 0 if q S: n+2/, a classical obstruction argument

reveals that r°<^~T?. Therefore, 1.1 applied to the preceding diagram yields a

strictly commutative diagram

„ „   kod       _      _     P _,
FV F-yFxE-yB

^E -y B

with V'~ V\, hence V'~ V, and r¡'' ~i¡. Since Fx Fis the fiber of P, V extends to a

map <p: Fx F^y F such that / ° <p = V ° (Ix i), and F is proved to be principal.

Since I en, it follows from [13] that there is a space Y and a primitive homotopy
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equivalence F-> OF and, since l£m, it follows from 2.2 that F is an induced

fibration.

Corollary 2.5. Suppose that 77,(5)#0 only if m^q^n + m-l and that

77,(F) ̂  0 only ifn^q^n + m—l, where n ï: m ̂  2. If the Whitehead product pairing

W:nn(F) ® 77m(F)->77n + m_1(F) induced by i vanishes, then F is principal and

induced.

Proof. The homomorphism Dn+m_x of (n + m- l)-dimensional homotopy

groups induced by the composite

D:F\>E-!-+F V £-^>£v E—^-> F

is well known to vanish if and only if W=0. Since Fb E is (« + m — 2)-connected

and tt,(F)=0 for g= 1 and for q = n + m, an easy obstruction argument reveals that

D is nullhomotopic if and only if Dn + m_x=0, and the result follows from 2.4(i).

Remark 2.6. It is easily seen that the conditions imposed on i in 2.4 and, hence,

on IF in 2.5 are necessary for F to be induced without any connectivity assumptions.

Under appropriate conditions, 2.5 extends by one unit the range of applicability

of 1.5. The case n>m of 2.5 applies to the study of Postnikov decompositions of

spaces, and strengthens the result in [15, 5.6].

Example 2.7. Consider the fibration S1 -+S2r+1 -> CPr, where CPT is the

complex projective r-space. It is well known, and it also follows from 1.5, that the

fibration is induced. Hence we obtain a triple S2r+1 -> CPr -* 7v(Z, 2) which we

may regard as a fibration ; as usual, K(n, n) stands for an Eilenberg-MacLane

space. Let AX«) result by killing off the homotopy groups of X in dimensions > «.

We examine the fibrations

Fq: S2r + 1(2r+ 1 +q) -* CPr(2r+l +q) -> K(Z, 2)   for   0á?S 2.

According to 1.5, F0 is certainly induced. Let

W: 772r + x(S2r + l) ® 772(CF0 -> 772r + 2(C7")

be the Whitehead product pairing. If r is even, W is nonvanishing [1] so that, by

2.6, F"q is not induced when q ̂  1. If r is odd, W= 0 [1] so that, by 2.5, Fx is induced ;

moreover, it is easily seen that OS2r + 1(2r+3) maps into the center of QCPr(2r+3)

so that, by 2.4, also F2 is induced.

The next two examples show that the connectivity assumptions in 2.4(i) are the

best possible.

Example 2.8. Let F=CP2 (5); then, OF is homotopy-commutative but F fails

to be an 77-space [2, 3.10]. Hence, the fibration F^-F^~* is not induced; all

conditions in 2.4(i) are fulfilled except that 77a(F)^0 only if«á^^«+2/— 1.

Example 2.9. Let Q be the additive group of rationals and let « ̂  4 be even.

Then K(Q, n-l) and the Moore space K'(Q, n-l) have the same homotopy
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type. Therefore, by (6), K(Q, n) b K(Q, n) has the homotopy type of K(Q, 2n- 1)

and, by 1.5, the fibration

K(Q,2n-l)-+ K(Q, n) V K(Q, n) -> K(Q, n) x K(Q, n)

is induced. The resulting fibration

K(Q, n) V K(Q, n) -> 7v(ß, «) x K(Q, n) -> K(Q, 2ri)

is not induced since K(Q, n)v K(Q, n) is not an 77-space [9]; all conditions in

2.4(i) are fulfilled except that 77,(7?)^0 only if mgqân + l.

We close this section by giving a simple proof of a known result on fibrations

of aspherical spaces, i.e., spaces with vanishing homotopy groups in dimensions

^2; a semisimplicial proof can be found in [11, 5.4].

Theorem 2.10. Let F: F—> E—> Ti be a fibration in which all spaces have the

homotopy type of aspherical CW-complexes. If the homomorphism ix : ttx(F) -*■ ttx(E)

maps ttx(F) into the center of irx(E), then F is induced by some map of B into an

Eilenberg-MacLane space K(ttx(F), 2).

Proof. Since ttx(F) lies in the center of ttx(E), the function 4>i '• ""îCO x ttx(E)

-> ttx(E) given by 4>iiu, v) = ix{u) + v is a homomorphism. Therefore, since E is

aspherical, there is a map 4>- FxE^- E which induces 4>i- Obviously, one has

Pi ° 4>i = i^xP)i so that, since Ti is aspherical, the right-hand square in (4) homo-

topy-commutes. Since /» is a fiber map, we may assume that it strictly commutes.

There results a map <p which is an TT-structure on F since the homomorphism

<px : ttx{F) x ttx(F) -y irx(F) is the identity on each factor. Since F may carry at

most one T7-structure, any homotopy equivalence F -> Q.K(ttx(F), 2) is primitive,

and the result follows from 2.2.

3. Induced cofibrations. A triple <€: A —>■ X—* C is a cofibration if d is an

inclusion map with the homotopy extension property and C results from X by

shrinking the subset A to a point; / is the identification map. For any map

/: X^ y we denote by E, and Ff the mapping track and the fiber of/given, as

in (D, by

E, = {(x, r¡) eXxY'\ f(x) = i,(l)},   F, = {(x, ,) e XxPY \ f(x) = r¡(l)};

the map h : X -> Ef given by n(x) = (x, r¡x) with r¡x(s) =/(x) is a homotopy equiva-

lence, and the map p:E¡^- Y given by p(x, r¡) = i¡(0) is a fiber map satisfying

/»°n =/. If / is a fiber map, the map /" x(*) -> F, defined by n is a homotopy

equivalence, so that the introduction of Ff causes no real ambiguity. In any triple

^ satisfying/° d=*, the map a" lifts to the map e: A-> F, given by e(a) = (d(a), *).

The dual of 1.1 may now easily be formulated and proved noting that the mapping

track is dual to the mapping cylinder.

For any cofibration % we may construct a sequence of cofibrations

Vk-KA±+Xu^-*Ch       (U0)
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as follows: ^0="^, ek + 1 : A-+ Fk + 1 lifts dk to the fiber Fk+1offk> and dk + 1 results

by converting ek + 1 into a homotopically equivalent cofiber map. If X and A have

the homotopy type of CW-complexes, we may use the Blakers-Massey theorem

to compute the connectivity of every ek.

Proposition 3.1. Suppose that A is (m— l)-connected, C is n-connected, and that

Y is a CW-complex of dimension ^n + (k+l)(m— 1), where w^2, h¡>1. For any

map f: Y-> Xk with fk °f^0 there is a map g: F->- A with dk ° g~f.

Proof. Since/co/^O^liftstoamap«: Y^Fk+1. Sinceek+1 is (n+(k+l)(m-l))-

connected, the restriction on the dimension of F yields a map g:Y^-A satisfying

ek+1og~h.

The result in 1.2 suggests, by duality, that the homotopy type of Ck+1 is deter-

mined by those of Ck and zZA. However, an example due to M. G. Barratt [7, 3.5]

disproves this conjecture. Nevertheless, according to [7, 4.1], there is an (N—l)-

connected map ¡F: Cx -> 0(C b 2/1), where N=m+n + Min(m, «).

Corollary 3.2. IfHN _2(F) is free and 77,(F)=0 forq^N'—1, then for any map

f: F-s- Xx with F °fx °/~0 there is a map g: Y^- A with dx ° g—fi

Proof. Let Z and <p: Y'->Z result by shrinking to a point the 1-skeleton of Y.

Then, Zis 1-connected and, since N^4, HN-2(Z) is free and Hq(Z)=0 for q^N— 1

so that Z has the homotopy type of a CW-complex of dimension £N—2. Since Xx

is 1-connected, there is a map <¡j: Z -> Xx with ifi o <p~/and, since 0(C b zZA) is at

least 2-connected, F °fx° <p~0. Since dimZ^N-2, fx ° </»~0 and, by 3.1 with

&=1, there is a map y:Z^*/I with dx°y~fa The map g results by setting

g=y °<p-

In any cofibration <€, the suspension IZA cooperates [5] on the cofiber C through

a map t: C-> Cm IZA. The Hopf invariant oftf [7, §4] is the composite

Oi T

FC: OC-% 0(C V HA) —> 0(C b 2/1)

where, with the notation introduced in (6), the homotopy class of T: 0(A"v Y)

-> 0(A" b F) is uniquely determined by the equation OF o T+M ° 0/~ 1 in which

M : n(Xx Y) -> Q(X V Y)    is given by    M(i, r¡)(s) = (*, v(2s))

= (i(2s-l),*).

We describe two cofibrations <€ and fé" over the same cobase A as equivalent if

there is a homotopy equivalence £ : A"^ A" satisfying f o d=d'; there exists then a

homotopy inverse £' of f satisfying f o d' = d. A cofibration # is induced if there is

a space F and a map g: Y^- A such that ^ is equivalent to the cofibration strictly

induced by g from Y^ CY~>zlY, i.e., to the triple

(10) A-+AugCY-+!ZY
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in which the first map is the obvious inclusion and the second shrinks A to a point;

it then follows that C has the homotopy type of S Y.

For any 1-connected CW-complex K we write dim K^n to indicate that Hn(K)

is free and 77,(70=0 if q>n. The map S below is given by S(y)(s) = (l-s, y}.

Theorem 3.3. Let
<ë:A-^X-i-*C

be a cofibration in which (X, A) is a CW-pair. Suppose that A is (m—F)-connected,

C is n-connected, and dim C^n + m + Min(m, n)—l, where m^2, n^ 1. If there is

a CW-complex Y and a homotopy equivalence 9:1. Y'-> C such that the composite

(ii) y-^asy-^QC^QtcbS/i)

is nullhomotopic, then & is induced by some map g: Y'-*■ A.

Proof. Dualize the proof of 1.4 noting that, according to [7, 4.1 ], Jf is homotopic

to the composite

Q(C b T.A) <¿— Cx J^- Xx «-^- Fx *-i- ac

in which d(u>) = (*, w) and u is the homotopy equivalence obtained when converting

ex into dx so that dx~u ° ex.

We derive the known [8], [12]

Corollary 3.4. If A is (m—l)-connected, C is n-connected, dim C^n + m

(m^2, n^ 1), and if there is a homotopy equivalence 9:liY^y C, then % is induced

by some map g: Y-> A.

Proof. 0(C b 2/Í) is (n + m- l)-connected and 77a(y; G) = 0 for all G if q^n + m

so that (11) is certainly nullhomotopic.

Remark 3.5. The homotopy equivalence HY -> C resulting in 3.1 and 3.4 from

the fact that W is induced by g: Y->A is homotopic to the original homotopy

equivalence 0: E y-^- C.

The next result was first obtained in [4] by means of an elaborate argument which

requires X to have finitely generated homology. The proof we give dispenses with

this assumption and relies only on 3.4 and on a result in [4] concerning homology

decomposition. Recall that X is an 77'-space if there is a map <p: A"-> Xv X such

that the composite J°<p:X-^-XxXis homotopic to the diagonal map A. A

map 9: S Y -y X is primitive with respect to <p if homotopy-commutativity holds

in the diagram

iv i^srv sy
A A

(12) „ , where   v(s, y} = «,2s, y), *)

x<_i_s y =(*,<2s-i,j>»

defines the comultiplication on the suspension.
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Proposition 3.6. Let X be an (n-l)-connected CW-complex such that H3n_3(X)

is free and Hq(X) = 0far q > 3« - 3 (« è 1). If X is an H'-space, then there is a CW-

complex Y and a primitive homotopy equivalence 6: 2 Y-> X.

Proof. Let E¡ be the mapping track of /: X\ X -^- XxX. As is well known,

inspection of the fibration induced by A: Ar->- A"x A'from E¡^> Xx A" reveals that

there is a map Y yielding homotopy-commutativity in the diagrams

^-yzZax v 20AT

B V B

where 7?<s, o>> = cu(s) and v is the comultiplication. Now, if «=1, then X is

contractible; for, the fundamental group of an 77'-CW-complex is always free

(non-Abelian) and 7F1(Ar)=0 then implies 771(A') = 0. Let n^2. Let W be the

(3« — 4)-skeleton of Q.X with inclusion/: W-^ QX; O A" may be assumed to be

a CW-complex according to [16]. Since 2/is (3« — 3)-connected and H"(X; G) = 0

for all G if <7>3«-3, there is a map y.X^zZW such that 2/oy~r. Con-

sider the cofibration

(14) X-^zZW—>I,WurCX

and note that 7? o 2/<> y~ i so that y* is monomorphic in both homology and

homotopy. Since 7? is (2«—l)-connected, Y and hence y are (2« — 2)-connected,

and it follows that 2 W u CX is (2« - 2)-connected ; also, the homology sequence

of (14) reveals that 77,(2 Wu CX)=0 if q>3n-3. Since any (p-l)-connected

CW-complex K with H2v_x(K) free and Hq(K)=0 for q^2p has the homotopy

type of a suspension ifp S: 2,2 W u CA" has the homotopy type of some suspension

2/4 and 3.4 now implies that (14) is induced by some map £: A -*■ X. Hence, we

obtain a cofibration in the top row of the diagram

A——> X—->Z,W
A. A

h 1)

(15) W—->A-^AKJaCW-^HW

FJ-+ WJ_+ W^CF-^+ZF—-—>HW

As in [3, p. 443] we may assume A to be 1-connected, and 3.4 then readily implies

that this cofibration is, in turn, induced by some map a. Hence, there are homotopy

equivalences h and 77 yielding commutativity in the upper squares, where g is the

inclusion and o shrinks A to a point. Moreover, by 3.5,

20A"

(13)

20A"-

rî

Af-

iló) 77-1.
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Next, let F be the fiber of a with projection i, let j be the inclusion, let r be the

obvious extension of a, and let o- shrink Wto a point. There results a map k yielding

homotopy-commutativity in its two adjacent squares, where — l<s, w> = <l-s, w>

(see, e.g., [7, 1.6]). By the Serre theorem, r is homology (3n —3)-connected and the

five lemma implies the same for k. Next, the result on homology decomposition

given in [4, 2.1] yields a connected CW-complex y and a map 4>- Y ̂  F such that

9' = h° k °2,4> : *LY -y X induces isomorphisms of homology groups in all dimen-

sions. Since S y and Xare 1-connected, 9' is a homotopy equivalence and so is also

9 = 9' o(-l). Finally, in order to prove that 9 is primitive it clearly suffices to

prove it for h ° k ° (-1). But homotopy-commutativity in (15) yields

y ° h ° k ° ( — 1) ~ Tiolli

and the result follows from (16), (13), and the primitivity of 2/and Si with respect

to comultiplication.

Remark 3.7. The second result in [4] is also valid without assuming any homology

to be finitely generated ; for, the map 4> used in the proof of Theorem B in [4] has

the right connectivity according to [7, 4.1]. Also, the method of proof used in 3.6

above yields an alternative proof of Lemma 3.6 in [3].

4. Principal cofibrations. A cofibration ^ : A -y X -> C is principal if there are

maps 4> and <p such that the diagram

CvC<      lv/      CvZc      ovd     *vA

C <-'--X<---A

strictly commutes and <p is an 77'-structure on C. A strictly induced cofibration is

principal. From now on we shall only consider primitivity with respect to the 77'-

structure <p in a principal cofibration.

Lemma 4.1. If ^ is a principal cofibration, then homotopy-commutativity holds in

the diagram

C V S/i<-m--¡C V C

\ /
c

where r is the cooperation, <p the H'-structure, and u the composite

in which pr is the projection.

Theorem 4.2. Let (€: A -y X ̂ ¡~ C be a cofibration in which (X, A) is a CW-pair.

Suppose that A is (m — l)-connected, C is n-connected, and dim C^n + m + Min(m, n)

— 1, where m ^2, n^ 1. If 'S is principal and if there is a CW-complex Y and a

primitive homotopy equivalence 9:'ZY^ C, then tf is induced by some map Y-> A.
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Proof. With </i = a o 6, the diagram

0(C b HA) +^— 0(C V 2/1) <-^— OC

me b *) £5(9 v*)

0(2Fb2F)^-0(2Fv 2F)^02F^- F

homotopy-commutes. The bottom row is nullhomotopic by [7, 4.1]. Therefore,

(11) is nullhomotopic and 3.3 implies the result.

We now turn to the study of conditions which guarantee that a cofibration is

principal. Recall that for any two spaces Z and B, the set tt^Z, B) of based homo-

topy classes of maps 2Z -> B is a group under the multiplication induced by

suspension comultiplication.

Proposition 4.3. For any map f: X—> Y of spaces having the homotopy type of

connected CW-complexes, the following two conditions are equivalent:

(i) The homomorphism f1 : tt1(F, B) -> tt^A", B) induced by f maps the first group

into the center of the second for any space B;

(ii) The composite

X-^*XxX^-> YxX-?-+ Y # X-?-+0¡L(Y # X),

where S(z)(s) = (s, z>, is nullhomotopic.

The proof is similar to that given in [10, 4.1]. Note that conditions 2.3(ii) and

4.3(h) are not precise duals, owing to the presence of the map S in the latter.

If the conditions in 4.3 are fulfilled, we say that / maps zZX into the cocenter of

2 F; this certainly happens if

(j) 2X is homotopy-commutative (e.g., if X is an H'-space),   or if

(jj) fis nullhomotopic.

Theorem 4.4. Let
d f':A—>X —

be a cofibration in which (X, A) is a CW-pair. Suppose that A is (m—l)-connected,

C is n-connected, and that dim C^« + Min(2w—1, 2«), where m^2, w2il. Iff

maps zZX into the cocenter ofZC, then ft is principal and induced in each of the

following cases :

(i)  dimA^n + Min(m— 1, «),

(ii) dim A ̂  « + Min(2m — 2, 2«) and there is a map  r:2A"->2,4 such  that

roi,d=i.

Proof. Dualize the proof of 2.4 noting that comparison of dim X with the

connectivity of S in 4.3(h) implies that the composite

I^IxJ^>CxI^C#I

is nullhomotopic.
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We derive the following supplement of 3.4, in which the pairing of the co-

efficient groups is given by the natural isomorphism

T» + l(C)  ® TTm(X) -^TTn + m + x(C#X)

resulting from the Künneth formula and the Hurewicz isomorphism.

Corollary 4.5. Suppose that A is (m—l)-connected, C is n-connected,

dim A^n+m — 1, and dim C^n+m + l, where n^m-l and m^2, n^2. If the

cup-product pairing

77" + 1(C; irn + x(Q) ® H"(X; nm(X)) -* H" + ™ + \X; irn + m + x(C# X))

induced by f vanishes, then ^ is principal and induced.

Proof. Since n^2, the dimension assumptions in 4.4(i) are fulfilled, and it

remains to show that/maps SX into the cocenter of SC Hence, by 4.3, it suffices

to prove that the composite

4>: X-^ Xx X^-+ Cx X-^-y C# X

is nullhomotopic. Since C§X is (n + w)-connected and dim A^n + m+l, one

has 4>-0 if and only if ^n+m+1 maps the fundamental class of C# X into 0. The

fundamental class clearly lies in the image of

77" + 1(C; TTn + x(C)) <g> H"(X; irm(X)) ~y 77" + m + 1(C# X; 7rn + m + 1(C# X)),

and the result follows from the interpretation of the cup-product in terms of the

diagonal map.

Remark 4.6. It is easy to see that the condition imposed on/in 4.4 is necessary

for I, to be induced under no further assumptions; since the map S in 4.3(ii)

induces epimorphisms of cohomology groups in all dimensions, it follows that also

the vanishing of the cup-product pairing

T7*(C; G') ® H*(X; G") -> H*(X; G)       for any pairing   G' <g> G" -^ G

of Abelian groups is necessary for # to be induced.

A dual of [15, 5.6] is expressed by the next result which follows from 4.5 and 4.6

noting that/induces an epimorphism of (n+l)-dimensional cohomology groups.

Proposition 4.7. Let X be an (m—l)-connected CW-complex of dimension

^n+m +1, and let A be its n-skeleton, where n^m^2. Then, the cofibration

A-^yX^—yC

is induced if and only if the cup-product pairing Hn+1(X; G') ® Hm(X; G")

-*■ Hn+m+1(X; G) vanishes for any pairing G' (g> G" -+G of Abelian groups.

We conclude by invoking a classical example in order to show that the condition

on dim A in 4.4(i), even though quite restrictive, is the best possible.



1967] INDUCED FIBRATIONS AND COFIBRATIONS 459

Example 4.8. Let A = S7, X=S*, and let d be the Hopf map, so that C is the

quaternionic projective plane. Then,/maps 2A" into the cocenter of 2C since 2A'

is homotopy-commutative (see (j) after 4.3) and all conditions in 4.4(i) are fulfilled

except that dim A = « + Min(m — 1, «) +1. The cofibration is not induced since C

has a nonvanishing cup-product with coefficients Z2 and, therefore, fails to have the

homotopy type of a suspension.
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