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Introduction. We are interested in the coalgebra structure of cocommutative

Hopf algebras. Over an algebraically closed field a cocommutative Hopf algebra K

with antipode is of the form 77 ® Y(G) (as a coalgebra) where Y(G) is the group

algebra of G the group of grouplike elements—elements of K where dg=g ® g

—and 77 is the unique maximal sub-Hopf algebra of K containing one grouplike

element, namely 1. If the characteristic of the field is zero then 77 is isomorphic to

the universal enveloping algebra of its primitive elements—elements where

dx=l ®x+x ® 1—which form a Lie algebra. These results of Kostant prompt

the present study of 77 when the characteristic is not zero.

We do not insist the field be algebraically closed but merely that the unique

simple subcoalgebra of our Hopf algebra is the 1-dimensional space spanned

by the unit. In this case the subalgebra generated by the primitive elements

is a restricted universal enveloping algebra but not necessarily the entire Hopf

algebra. A necessary and sufficient condition for 77 to be primitively generated is

that for all a' e 77' (the dual to 77 which has a natural algebra structure) where

<a', 1>=0 then a'p=0, p the characteristic of the field. When the field is perfect

77 modulo the left ideal generated by the primitives (the ideal is actually two-

sided) with its vector space structure altered is isomorphic to a sub-Hopf algebra

of 77.

The main results come from the study of divided powers. °x, xx,..., *x is a

sequence of divided powers if for « = 0,..., t, cf(nx) = 2"=o *x ® n_ix; in character-

istic zero if x is primitive, letting ix=xi/¡! gives an infinite sequence of divided

powers. We prove a generalization of the Birkhoff-Witt theorem in which divided

powers replace ordinary powers.

The results obtained here on Hopf algebras and divided powers are used in an

extension of Galois theory to include all finite normal field extensions. A Hopf

algebra replaces the Galois group. The Hopf algebra is the group algebra of the

Galois group in case the field extension is separable. If the extension is purely

inseparable the Hopf algebra has only one grouplike element. These results will

appear in a subsequent paper.

In the area of algebraic groups divided powers are of interest since certain

infinite sequences of divided powers correspond to oneparameter subgroups.
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When C is a cocommutative coalgebra C is a commutative algebra which

determines a scheme A"=SpecC. The requirement that C have one grouplike

element is equivalent to C being a local augmented algebra or X being a local

scheme with a unique section Spec k -y X, where k is the ground field. We have not

chosen to follow the geometric approach since our techniques are fundamentally

coalgebraic and since in the last section we study coanticommutative graded Hopf

algebras with one grouplike element which arise in algebraic topology.

Over an algebraically closed field a coanticommutative graded Hopf algebra K

which has an antipode is of the form F ® F(G) (as a coalgebra) where G is the

group of grouplike elements and F is a unique maximal sub-Hopf algebra with one

grouplike element; thus we are studying F. F contains a unique maximal evenly

graded sub-Hopf algebra T7. If E is the exterior algebra on the space spanned by the

odd primitive elements then F is isomorphic to 77 ® E as a coalgebra. This last

section with the previous section implies F= ®y Cy as a coalgebra (where each Cy

is a coalgebra) when the even primitives of F satisfy the nested basis condition of

Theorem 3. This is always the case if F is of finite type. Moreover, each Cy can be

given an algebra structure by which it is a Hopf algebra and the result F= ®y Cy

as a coalgebra does not depend upon the algebra structure of F being associative.

Thus we have a generalization of the dual to Borel's theorem.

1. By Hopf algebra we mean a vector space TT over the field k of characteristic

p; where p:k^H, m : 77 ® 77-► T7 give TT an algebra structure; e:H^k,

d: H -y H ® H give 77 a coalgebra structure and e, d are algebra (liomo)mor-

phisms.

If C is a coalgebra and c e C we will write 2w %> ® c(2) to denote dc(c),

2(o c(i) ® c(2) ® c(3) denotes (I ® dc)dc(c), etc. Let /: C ©■ • • © C^ V be an

n-linear map which induces the linear map /: C ® • • • ® C -> V. We write

2(o/(C(D, • • •, c(n)) to denote/(2(o c(U ® • ■ • ® c(n)).

If C is a coalgebra, A an algebra then Hom(C, A) has a natural algebra structure;

if / g € Hom(C, A), f* g=mA ° (f ® g) o dc, the unit is pAec. Often we identify

k with its image under pA in which case e = ec is the identity of Hom(C, A). In

particular C = Hom(C, k) is an algebra. C is a left C'-module where

a'c = 2 cm(a', c(2)>,
(c)

for a' eC, ce C. This action satisfies (fl'b', c> = (a', b'■ c> and

(1) d(a'-c) = 2%) ®a'-cm.
(c)

Until §5 we assume all coalgebras and Hopf algebras under discussion are co-

commutative, i.e., 2(o %) <8> c(2) = 2(o c(2) ® c(1) for all ceC.ln this case C is a

commutative algebra.

C is called split if all nonzero minimal subcoalgebras are 1-dimensional. The

subcoalgebras of C are precisely the C submodules. Cyclic submodules are finite
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dimensional; thus, when k is algebraically closed the simple submodules are

1-dimensional and C is split.

C is called coconnected if it is split and has a unique 1-dimensional subcoalgebra.

In this case we can uniquely identify the 1-dimensional coalgebra with k as follows:

let c be a nonzero element of the 1-dimensional coalgebra, then e(c)#0 and we

identify 1 with c/e(c). d(l)= 1 ® 1 in C so this identification preserves the coalgebra

structure of k.

Assume C is coconnected, in C let M= Io (the subspace of elements orthogonal

to 1). Filter C by G-(uf*+1)0, i'=0, 1,.... Note C0 = k.

(2) d(Cn) c J d ® C„_„
o

and if C is a Hopf algebra CjC;c CJ+i. By induction on the rank of the tensor d(c)

it follows C=CJ Cj. If 0/ d(c) is of rank 1 then c¡e(c) is grouplike; hence, cek=C0.

Suppose we have shown that if d(c) is of rank « then ceCn-x; let ceC where

i/(c) is of rank «+1. c=2(C> ca)e(ci2X) implies d(c) — c ® 1 is of rank n. For a' eJi

we have a' • 1 = 0 and with ( 1 ) this implies d(a! ■ c) is of rank less than « +1 ; hence,

fl'-ceC-i. Thus for ai,.. .,a;+1 e^, <a'r • -a; + 1, c> = <ai- • .<4 a; + 1-c>=0

and c e Cn.

x e C is called primitive if ö"(x)=x ® 1 +1 ® x. In this case x e d and e(x)=0.

Letting L denote the space of primitive elements and C+ =Ker e, then

(3) L = dnC+       and       C1 = k@L.

If C is a Hopf algebra F is a Lie algebra under [x, y]=xy—yx and if p>0, L is a

restricted Lie algebra.

Let 77 be a coconnected Hopf algebra. Note p:k-^H, the unit, is the unique

coalgebra morphism of k to H. If p=0 let U denote the universal enveloping

algebra (u.e.a.) of L.lfp>0 let Udenote the restricted u.e.a. (r.u.e.a.) ofL. {/has

a natural Hopf algebra structure induced by the (restricted) Lie algebra morphisms

L -*■ L ® L, x -*■ (x, x) ; L -> &, x -> 0. [7 is a split cocommutative coconnected

Hopf algebra where L(U)=L. By the universal property of C7 there is an algebra

morphism y : U -*■ 77 which is a Hopf algebra morphism. That y is injective follows

from:

Lemma 1. Let C be a coconnected coalgebra, D a coalgebra and fa. C -> D a

coalgebra morphism. <f> is injective if and only iffaL is injective.

Proof. Assume <f>\L is injective. Being a coalgebra morphism e^(L)=0, efal)= 1,

hence by (3) faCx is injective. By induction we assume <j>\Cn is injective and so

(<f> ® fa) | (Cn ® Cn) is injective. Suppose ceCn+1C\ Ker <£, then since

d(c) = 1 ® c+c ® 1 + Y,       YeCn® Cn,

it follows 0 = dfac) = (4>®fa)d(c) = (<p®<p)(Y). This implies F=0, hence c=0.

The converse is clear.   Q.E.D.
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We identify U with its image in 77 so we have that the subalgebra of 77 generated

by L is the (r.)u.e.a. of L. We shall show 7/=T7when/» = 0; it follows from Theorem

3. When /»Owe shall show that U=(H'F(Jt))° where F: TT' -*• TT', a' -y a'v is

the Frobenius morphism and H'F(Jt) is the ideal generated by F(.Jt). Proofs of the

above utilize the following technique which "picks-out" subspaces of a co-

connected coalgebra.

Let C be a coconnected coalgebra, for 0 < n e Z let

d*:C->C*+1\      c^2c(1)®---®c(n+1)
(c)

(where Ximl signifies X ® • • • ® X, m copies of X). Let d° = 7. Also, if we let

E=I-e and 8n = £[B+11</B then

(4) <ai, c> = <ai, E(c)},

(5) <a! - ■ ■ a'n, c> = <a! ® - • ■ ® a'n, 8" - \c)\

where ai,..., a'n e Jt, ceC. The equation Cn = Ker 8n follows from (5) and

Cn=(Jtn+1)°. Moreover, 8n-1(Cn)<^LM follows from (2) and (3).

If F is a subspace of C let Vn = V n Cn. Let TL denote the tensor algebra on L,

V0 is {0} or k so we can consider F0<=7X; also, we can consider 8i_1(Ki)c7X.

With V we associate TLV = V0 ® (©? 8i'\Vi))<^TL.

Lemma 2. Let C be a coconnected coalgebra and V<= W subspaces of C, then

V=Wif and only if TLV = TLW.

Proof. Suppose TLV = TLW then V0 = W0. Say by induction we have Vn = Wn,

let w e Wn + X. Choose ve Vn+X where 8n(v) = 8n(w). 0 = 8n(w—v) implies (w — v) e Wn

= Vn; hence, w e Fn + 1. The converse is clear.    Q.E.D.

We introduce notation to simplify discussion of symmetric tensors in TL. Let

IF be a vector space, TW the tensor algebra of W and Sn the symmetric group on n

letters. For n > 0, Wlnl is an Sn module where s ■ (wx ® • • • ® wn) = (wXs ® • • • ® wns),

seSn, wx,...,wne W. Let S(wx ® • • • ® wn) e WM^TW denote the sum of the

elements in the orbit of wx ® • • • ® wn.

Let G be an ordered set and for each yeG let 0Se,eZ. The vector (ey)yeG

will be denoted e. Let \e\ =2 cy; this is a well defined nonnegative integer or in-

finity. Let e\ = \~[ey\ and if/is another vector let e+/be the vector with the y

component ey+f. Let

be (e+f)\¡e\f\. We write e</if each ey<fy, e|/if each ey divides/,, and e\fif it is

not true that e\f. For O^n eZ let n be the vector with each component equal to n.

For {wr}yeGc W and e where \e\ =n>0, let Swe denote S(- ■ • ® wlyr} ®• • •), if

|e|=0 let Swe = l. Finally, if W is an algebra let we be the ordered product

n wyv. Note that if {wy}yeG is a basis for W then {Swe | n= |e|} is a basis for the

symmetric tensors of degree n in TW.
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2. Unless otherwise stated all Hopf algebras under consideration will be assumed

to be coconnected.

Lemma 3. Ifp>0, then U=(H'F(J¿))°. If{ly}yeG is a basis for L, then TLU has a

basis

(6) {Sl° \e<p}.

Proof. First we show U<=(H'F(Jf))°. Consider 77' as an 77 module by

(a' -b, c} = (a', be}, a! e 77', b, ce H. The elements of L act as derivations of 77';

thus if lx,.. .,lneL, a' e 77', b' e JÍ, then

<a'(b'p),lx---ln> = <(a'-l1)(b'p),l2---ln}

and by induction on « this is zero.

The elements of (6) are linearly independent, let V be the space they span. By

Lemma 2 we are done if we show TL^-^jt^c-V^-TLu. Let x e (H'F(Jt))n. By

cocommutativity and coassociativity Sn_1(x) is a symmetric tensor of degree «,

so S'1~1(x) = 2 \Sfi, Xtek, \et\=n. Suppose we do not have e¡<p. Yet{dy}yeG<^J(

be dual to {/,}, then det e H'F(Ji) and by (5), <dei, x> = A¡; which shows A¡=0 and

TL{a>Fijr»<><=V.
For any e<p where \e\=n, we have Ie¡el e Un and 8n-1(/e/e!) = 5/e, so V^TLU.

Q.E.D.
As a corollary we see <7= 77 if and only if F(J() = 0.

The last formula in the proof of Lemma 3 follows from the combinatoric result :

Lemma 4. £7s/«g the above notation let xe Hn and y e Hm where 8n ~ \x)

= 2 KSle> and 8m~1(y) = 2 TiSlfi, A,, r¡ ek; then

8n+m-\xy) = 2 W*     W*+/'.

We include no proof.

Since 77 is not necessarily primitively generated the ideal generated by L is not

necessarily 77+ . The two-sided ideal generated by the primitives is characterized

in the following.

Lemma 5. We assume p>0.

(1) LH=HL = F(H')°.
(2) Let {ly}yeG be a basis for L, V the space with basis {Sle | p\e) and W the space

with basis {Sle \p\e}; then, TLH = (TLH n V) © (TLH n IF).

(3) TLLH = TL„nV.

Proof. First we prove (2) and show TLH n Fc TLLH by proving for any x 6 77n

there is a v e (LH)n where Sn ~ 1(v) e V and 8" " 1(x -v)eW. We proceed by induc-

tion on t where 8B-1(x)=ZÍ \Sle¡. If r=0, then S"-1(A-) = 0e W. Say f¿l, if

8"-1(x) ^ IF then for some i—say i=t—p\et. We identify Lln~n with Lln-1] ® k

so that by (1) and (4)

(7) 8n'2(a'-y) = (Z["-1] ® a')8n-\y),
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where a' eJt and y e Hn. Let eit y denote the y-component of et. Since p\et there is

77 £ G where p\ety, let ny denote the vector whose y-component is n and all other

components are zero. By (7) 8B~2(oV*) = 2i KSl6''1", where {dy}<=Jt is dual to

{/y} and X'i is zero if ein—0 and A, otherwise. By Lemma 4, 8n~1(ln(dJl-x))

= 21 \ei¡nSlei, so if ln(dn-x)\et%n = veLH, then

8n-\x-v) = 2 \(^—^Asie'
1 \    &t,n    I

and we have completed the induction. (Note 8n~'í(v) e V.)

Second we show LH<= F(H')°. Let T7' be an 77 module as in the proof of Lemma

3. <a'p,/n> = <(a'p)-/, n>=0, where a' e 77', leL, heH, since the elements of F

act as derivations.

To conclude, by Lemma 2 it suffices to show TLF(Wf <= TLH n V<= TLLH. The

right hand containment has already been verified, we show TLFiH,f <= V. Let

x e F(H')° where 8n~1(x) = 2 \Sle' and suppose for some j,p\e¡. Then dei e F(H')

and 0=<o"ei, x> = Ay, which implies SB_1(x) e V.

The "mirror" proof shows HL=F(H')°.   Q.E.D.

FT7is a Hopf ideal, i.e., LTTis a two-sided ideal and d(LH)<=LH ® 77+77 ® LH;

hence, H\LH has the structure of a Hopf algebra. In the next section we demon-

strate T7/FT7 is isomorphic to a sub-Hopf algebra of TT with its vector space structure

altered, when k is perfect.

3. In this section we assume/» > 0 and k is perfect. F is/»-linear by which we mean

F(a' + b') = F(a') + F(b') and F(Aa') = ApF(a') for a',b'eH', Xek. The transpose

map F':H"-+H" is defined by <a', F'(/»")> = <F(a'), ¿>">1,p. F' is l//»-linear.

Considering 77^77" we shall show F'(T7)<=TT by explicitly describing F'|77. Let

F denote F'|77 and let {ny}yeG be a basis for 77. For heH, dp~1(h) is a symmetric

tensor in T7[p], so dv-\h) = 2 \Shei where |e,| =/». For any a' e 77', (F(a'), «>1/p

= 2 Ai'^a't"1, 5ne<>1,p = 2j Ai1'"<a'Cp], 5,npK.>>1'p = 2, Ai'^a', ny(i)>, where

j = {i\ei= Pym}.

Thus

(8) F(n) = 2 Af/P«y(i).

a"F=(F® V)d since F is a ring homomorphism. V is a ring homomorphism

because the following diagram is commutative :

77' -^-»- (77 ® 77)'

v=f     (v®vy

77' ̂ ^ (77 ® TT)',

(V ® F)' is the Frobenius morphism in (T7 ® T7)'.
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Theorem 1. There is a unique Ijp-linear Hopf algebra morphism V:H^-H

where V'=F, Ker V=LH and Im V=({a' e H \ a'p=0})°.

Proof. We have already proved the first statement. Clearly, Ker F= (Im F)°

which is L77 by Lemma 5; the last statement is merely that Im F=(KerF)°.

Q.E.D.
Let Fn denote V- ■ V (n times), the 1//Alinear Hopf algebra morphism from 77

to 77 and let F" denote the map F- ■ F (n times), the transpose map to F". If

x e V(H) we say x has coheight « (the elements of Ker Fn are said to have

(Frobenius) height «). We let F°°(77) denote f|" Vn(H). Elements of Fa)(77) are

said to have infinite coheight. These elements form a subalgebra and also a sub-

coalgebra since F°°(Z7) = (Uf Ker Fn)° and (J? Ker Fn is a two-sided ideal in 77'.

Thus V'X,(H) is a sub-Hopf algebra of 77. Let Lt=L n F'(77), i=0, 1,..., oo; each

L, is a restricted Lie algebra.

Lemma 6. Let {ly}yeGo be a basis for L0 and let Gq^Gj^ •• • =>Gn where {ly}yeGi

is a basis for L¡, i'=0, 1,..., «. For yeG0 let (y) eZ be maximal such that y e G(y).

Suppose heHm and Sm-1(«) = 2 \Sl\ 0#A( e k; then (ir)<n implies e{_„<pM+1,

for all i.

Proof. Let {d^^a^Ji be dual to {/,,} where we have chosen dn to lie in

Ker F(n) + 1. Then 0=(4)p(")+ ' and A, = <</*<, «> imply e,.„</><*>+1.   Q.E.D.

4. Divided powers.

Example. Suppose 77 is a Hopf algebra and p=0. Let xeL and let "x denote

xn/n!, «=0, 1,.... We have if(nx) = 23 '* ® n~*x.

For arbitrary p a finite or infinite sequence of elements °x, *x,... e H is called a

sequence of divided powers of 1x if for each «, if(nx) = 28 *x ® n~'x. An element

"x lying in such a sequence is called an «th divided power of 1x. Since Z7 is co-

connected °x=l and xxeL. A simple induction shows e('x)=0 for fèl. Also,

'x e 77, for all i. If p>0 then V(nx) = nlpx if p\n and zero otherwise. For 0<e eZ,

let |e|| eZ be defined by/i||e|1 ̂ e<^llell + 1. If we have a sequence of divided powers

°x,..., ex, it follows that lx= F!lel!(plle"x) and so *x has coheight ||e||.

Theorem 2. Assume p > 0, k is perfect and 1x is primitive. 1x has coheight « if

and only ifthere is a sequence ofdivided powers °x, 1x,.. .pn + 1 '1x,farn = 0,1,.. .,oo.

Theorem 3. If k is arbitrary assume L has a basis of the form {ly}yeGai where

G« is ordered and °ly, ly = Hy,.. .is an infinite sequence of divided powers; or if p>0

and k is perfect assume L has a basis of the form {/y}yeGo where G0 => Gj =>•••=> G*,,

G0 is ordered, {ly}yeG¡ isabasisfor Lt(i = 0, 1,..., oo) and °ly, ly=1ly,- ■ ■p<r)+1~1ly

is a sequence of divided powers. Then the monomials ei/yi • • -emlym where

yx < ■ ■ ■ < ym, 0 ^ e( <piy>) +1 and 0<meZ, form a basis for 77.

In Theorems 2 and 3 °x,..., p"+ ' ~ 1x denotes an infinite sequence if n = oo.

The symbol (y) denotes oo if y e C, otherwise (y) eZ is maximal where y e G(y);
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if (y) = 00 then pM+1 denotes oo. Theorem 2 will be proved by means of the

following Extension Lemma whose proof is complicated.

Lemma 7. Assume p > 0, k is perfect and we are given a sequence of divided powers

°x,..., t~1x satisfying: ex has coheight n-\\e\\ for l^e<t and t<pn+1; then there

is a lx of coheight n— \t\ such that °x,...,tx is a sequence of divided powers.

Proof. We proceed by induction on n and on t. Note by the induction hypotheses

if 1y eLm and m<n then °y, xy can be extended to a sequence of divided powers

°y, 1y,..., pm + * ~ 1y. If m=n we can extend to °y, 1y,...,' ~ ly. The first step of the

proof is to show there is an element *x' of coheight n— \\t\\ where 8t~1(tx') = 1xia.

(When n = 0 let tx'=xtltl.) When n=ï 1 this step is difficult and we must first find

pnx' where 8pn-1(p"x') = 1x[p"].

Let ze Hm where Vn(z) = 1x. Choose a basis {/y}y6Go for L as in Lemma 6. We

can write 8m_1(z) = 2îi A¡S/e< where \e¡\=mfor each i. If pn\m, then/»"fe, for any i.

If pn\m then S(m/pn)-1(FB(z)) = 2/ Ál'^Sl6'1*", where J={i\pn\el} and since

Vn(z) = 1x it follows we can assumepn\ei if m>pn. (Note thatFn(Jt)^Jtvn implies

Vn(Hp*-x)<=k and so m^/»\) Say m>pn, then p"\eM. So for some 4, pn\eM^; if

(4)<n, then by Lemma 6, ¿ = <?M,(i,</»<'*)+1 and by induction on n there is a ¿»

divided power, "lé, of lé. If (4) = n then eM¡é=apn + b, 0<b<pn; l0eLn.x

(Ln<=Ln-x) so by the induction on n there is bllt), a b divided power of lé.

By (7) iterated and Lemma 4,

8"-\%(dl-z)) = f\i^b*yi\

(See the lines following (7) for greater detail on this point.)

0   (mod/»),Cr)
so if

then

y = %(d%-z) U)'

■«-?»-T»-['-(V)/r»]*
and Vn(z—y) = 1x, since Vn(ble)=0. Thus by descending induction on M we can

assume m =pn.

We can write Spn-1(z) = 1x[pni + 2îr \Slf', where for each i, |/| =pn. Since

\x = Vn(z) = *x+ 2 Wr(i)>

where J={i \ /=/»B(f)}, we can assume that/_y </»", for all i and y. Moreover, by a

slight modification of Lemma 6, if (y)<n then/>y </»<y) + 1. By the induction on n
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we have f'-*lr, an/y divided power of ly. If w = ~2í A, \~la r*-rln then by Lemma 4,

8J">-\z-w) = 1xlp"K Let p"x'=z-w.

Let plx'=Vn-'(pnx'), then 8p'-1(p'x') = 1xlp'i and PV has coheight n-j, for

7=0, 1, ...,n.  Write  t in the form  t=anpn+an-xpn~1-\-\-axp+a0, where

0ga(</». Note, ||r| is the maximal i where a^O. t\¡(pn^a*- • -(/»0!)°o^0 (mod p),

so that if we set

fx' = ((/»B!)°»- ■ •(/»°!)a°/i!) f] (P'*')°S
o

then by Lemma 4, 8' " 1(ix') = 1xCH ; also, fx' has coheight n — || t \. This concludes the

first step.

For the vector a = (ax, a2,...) let n(a) be the maximal n where an^0 and oo if no

such n exists. Let Ialx denote aix ® a2X ®- • • ® a»x if n(a)=n is finite and each

at < t. The second step of the proof is to use lx' to begin a descending induction proving

there is sx' of coheight n— \\t\\ where 8s_1(sx') = 2ae¿ Col*> A={a \ n(a)=s, |a| = r,

a>0}, s=t, t-l,...,2.

Suppose we have such sx', 2<s^t, we shall construct s_1x'. Consider 8s-2(sx')

= 2aeB[0]^+ Y, YeH+ls~" and B={a \ n(a)=s-l, \a\ = t, a>0}. We now show

YeL ® T7+[s"2]. Since Ker 81 = HX it suffices to show that

(E<S)E<^ 7[s-2])(í7 ® Ils~2i)(Y) = 0,

or that

(E ® E ® Ils~2ï)(d ® 7ts-21)(8s-2(sx')) = (E^E<S> Ils~^)(d ® 7[5-21)(2 [al*V
\oeB I

The left hand side is

(E®E® 7[s-2])(d ® 7ts-21)(FCs-1])(d,s-2(sx')) = E™ds-\sx') = 8s -\*xT)

which is equal to the right hand side. (In the preceding calculation we used the

identity (F ® E) dE=(E ® E)d.) Thus 7eL®77+ts-2] and by symmetry

FeF[s_11, which means Y can be written ~2.x X¡Slei, where |e,|=s— 1. Note

ej¡y^0 implies (y)^n— \\t\\ since sx' and 1x,..., i_1x have coheight n— \\t\\.

We now show that when (4>)<n and e¡^0 then e,>i</»(*)_B+lltll+1. Suppose

not, so that for some 4> and some7—say7=1-—0^e1>i^/»(*)"B+lt"+1 (^/»). Since

I $ has coheight less than (4>) + l we can choose {dy}y^a¡¡^Jt dual to {/,} where

<7((,eKerF<*)+1. Then FB-|lill(^<*)"n+l""+1)=0. Choose ze H where Vn~m(z)=sx'

and let

a' = (n^i-)(^*-p<*>"" + "i"+i).
VyeG /

0 = (Fn-mrdg*>-» + in+i^Fn-m(ß'yzyllp

(*) = (Fn-m(dei), z>1/p= <dei, V>

= Aj-r-/..-®^!.*]®...^ M*\
\ aeB /

= K+ 2 *»<«*»» °1X>- ■ -<¿*. a"(a)*>>
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for appropriate \aek and where C={a | «(a) = e1-(J„ \a\ út—((s—l) — ex,$), a>0}.

Uov/e\er,pm+ 1>t implies (pim-n + m + 1)(pn-i,p)) +(ex,^-ex,^)>t; we are assuming

ex,^pw-n+m + í and clearly s-l^elty, thus, (ex^)pn-w + ((s-l)-e1,<l,)>t or

(ex,4,)pn~w>t-((s-l)-ex,t). This implies for each term in the right hand

summation at (*) at least one a¡ is less than/?""'*'. For such a¡, a¡x has coheight

(fa)+ 1 since a'x has coheight «- ||a¡|| and ||¿zc|| Sn-(fa — 1. Thus <</,¿, a<x> = 0; all

the terms in the right hand summation vanish ; it follows Ax = 0 and we can assume

that if (fa) < « and 0 J= eJA then (e}^)pn ~ m <pl<tl) +1. By the induction on « there is an

element u which is an (ejA)pn'm divided power of lé, then v%= Vn~m(u) has

coheight «— ||r || and is an eiA divided power of l#.

If (fa)=n there is v^ an ejf0 divided power of l0 which has coheight «- ||eJ>oi||.

Such a vé exists since eíf(í ̂  s — 1 < r so we can apply the induction hypotheses.

v% has coheight «- ||r|| since eiA<t.

When eJi0=O let i£h1. Define j>, = nUGîi y=Ii ^y¡ and •-V^'x'-y.

Then ""V has coheight «- ||i|| and by Lemma 4, 8s-2(s-1x') = 2aes [a]*-

We have completed the descending induction step on s which leads to 2x' of

coheight n— ||i|| where S(2x') = 2i_1 ix ® t~ix. Defining (x to be 2x'—e(2x') gives

the desired element.   Q.E.D.

Proof of Theorem 2. Clearly the existence of the sequence of divided powers

implies xx has the desired coheight.

Conversely when xx has coheight neZ, Lemma 7 guarantees °x, xx can be

extended to a sequence of divided powers °x, 1x,..., ""+ l ~ 1x.

The infinite case is proved as follows: Let K denote V'(H). K' is naturally

isomorphic to 77'/((J Ker F'). Thus the Frobenius morphism on K' is injective

which implies its transpose, the V map of K, is surjective and all elements of K have

infinite coheight in K. Thus for xx a primitive element in K the sequence °x, 1x

can be extended to an infinite sequence of divided powers lying in K by Lemma 7.

Q.E.D.
Proof of Theorem 3. First we show the monomials span 77+ . Let « e 77^, then

Sm-!(«) = 2 XtSle>. For k perfect, é?Íi(í,</><<m+1, by Lemma 6. Let x¡ be the ordered

product Fleo €tvly and j=2 \xi- By Lemma 4 8m_1(j) = 8m"1(«) and by Lemma 2

the space spanned by the monomials is 77 +.

We now show independence. For yeG0 let Cy be the subcoalgebra of 77 spanned

by the sequence of divided powers of ly. Given yx < ■ ■ ■ < yn we have the coconnected

coalgebra C=Cn ® • • • ® Cy„ and L(C) has a basis

{1 ® • • • (g> 1 ® ln ® 1 (g • • • <g> 1 | ln is in the i-place, i = 1,..., «}.

The map C -> 77, Xi ® • • • <g> xn -> Xj • ■ • xn is a coalgebra morphism which is

injective on L(C); hence, by Lemma 1 is injective.   Q.E.D.

Theorem 3 should be interpreted as a coalgebra structure theorem; it says

/f = <g>G0 Cy There are Hopf algebras over a perfect field where L does not have a

basis of the form assumed in Theorem 3.
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5. Graded Hopf algebras.   Throughout this section we assume p ^ 2.

We shall now consider coanticommutative coconnected Hopf algebras. An

exterior algebra is such a Hopf algebra. In an exterior algebra on the vector space

F, F corresponds to the primitive elements and V lies in the odd-graded part.

Note that an evenly graded Hopf algebra will be a Hopf algebra in the sense of the

previous sections. Theorem 4 of this section implies that a coanticommutative

coconnected Hopf algebra has the coalgebra structure of the tensor product of an

exterior Hopf algebra with an evenly graded Hopf algebra.

Z2 is the field of two elements. We shall consider vector spaces graded with

respect to the additive group of Z2. If X and Y are two such spaces then X ® Y

is graded over Z2 in the usual fashion. Let T: X ® Y -> Y ® X, be the map

x ® y -*■ (— l)uy ® x, where x e X', y e Y}. Fis the graded twist map. If Xand Y

are graded (co) algebras then (X ® Y) is a graded (co) algebra, we use the graded

twist map in defining the structure onl® Y. F is a graded Hopf algebra if it is

simultaneously a graded algebra and a graded coalgebra and d and e are graded

algebra morphisms. A graded coalgebra is coanticommutative if Td= d. It is split

if it is coanticommutative and all simple subcoalgebras are 1-dimensional. Let C

be a graded split coalgebra, C is the graded algebra where C'° = (C0)' and

C'1 = (C1)'. C is an anticommutative algebra, i.e., mT=m.

C is coconnected if it contains a unique 1-dimensional subcoalgebra. As before

we identify this coalgebra with k. A:<=C° by coanticommutativity. When C is

coconnected it is filtered as before, and the same results hold for the filtration.

Also, Cn=(Cn n C°) © (Cn n C1). The definition of primitive elements remains

unchanged; L=L° ©Z,1, where V=L n 0. If C is a Hopf algebra L is a graded

Lie algebra ; L° is a Lie ideal which is a restricted Lie algebra if p > 0. Lemmas 1

and 2 hold for graded coalgebras.

If IF is Z2-graded and s e Sn is the transposition (i, i'+1), as an operator on

WM let s be the map Z"'11 ® T ® /t»-*-« This extends to give IF[n] the structure

of an Sh module. The elements fixed under the action of 5« are called the symmetric

tensors of degree «. For an ordered set G and {wy}yeG<= IF, Swe is defined in the

same manner as before, the only difference being the new action of Sn on IF[n].

By coanticommutativity and coassociativity, 8n~1(Cn) consists of symmetric

tensors of degree «.

Let F be a graded coconnected Hopf algebra, within F° lies a unique maximal

coalgebra which is an algebra by maximality; hence, F° contains a unique maximal

Hopf algebra Z7.

Theorem 4. Let {/y}yeGl be a basis for L1, let Cy be the coalgebra spanned by 1

andly, order Gx- Fis isomorphic to H ® (®Cl Cy) as a coalgebra; an isomorphism is

given by the map h ® /n ® • • • ® lYn -» «/n • • ■ lyn, where he H and yx< • • • <y„.

(Recall the coalgebra structure o/(®Gl Cy) is the coalgebra structure on the tensor

product of graded coalgebras; hence, is isomorphic to .'V coalgebra structure of the

exterior algebra on L1.)
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Proof. The above map is a coalgebra morphism and by Lemma 1 is injective.

Let M be the image of the map, the space spanned by the monomials hlYl ■ ■ ly„,

we shall show TLM = TLF which by Lemma 2 implies M=F. First we must show

TLH = TLF n T(L°). (We are considering T(L°)<=TL<=TF.) Clearly, TLH<=TLF

n T(L°), suppose xe Fn where 8B_1(x) e T(L°). We show by descending induction

on s that there is y, e F where 8B - \ys) = 8n~ ̂ x) and 8s(ys) e H[s+1]. Let yn _ x = x,

it has the desired properties. Suppose we have ys, s>0, we consider 8s_1(ys) e F[sl.

Since (8®7[s-1I)8s-1(js) = Ss(js)eT7[5+1], it follows S8"1^) e(Ker 8) ® F'5"11

+ 8-1(T7®77) ®77[s-1]. We have S - \H ® 77) = 77 © L\ Ker 8=L©k and

Im 8s~1<=F+ls} so 8s'1(ys)eL ® F+[s-1] + T7+[s]. By symmetry we have S5"1^)

eLM + 77+[s].

Let {/y}yec0 be an ordered basis for L°. Let G—G0 u Gx, G has ordering induced

by the ordering of G0 and Gx and G0<GX. For the vector e = (ey)yeG, let ei be the

vector (ey)yeGi, i=0, 1.

Write 8s-1(>'s) = 2i \Sle<+ Y, where ye77 + M and t is minimal. If f = 0,

à*~\y») e77+[sl and we can let ys-x=ys. Otherwise if r^O, for some maximal

4> e Gx, ejtil^0, say j=t, by coanticommutativity eiy = 0 or 1 for y e Gx, so et¡<¡) = l.

Let a'eF'1 where <a',/y> = S(i,,y, then by (7), 8s-2(a'-js) = 2 A^SZ^-V. So

5"W7X)=SVi^ and ^(^-(a'-j^^l-1 ^(1-^)5/'«+F, this
contradicts the minimality of t; hence, /=0. The induction step on s completed,

we arrive at y0 where SB-1(j>0) = Sn~1(x) and 8°(y0) e H; the latter implies y0 e H.

We have TLH = TLF n T(L°).

Now we show TLM = TLF. Let xeFn and 8B-1(x) = 21 A,5/e«. We induct on t.

If r=0 then OeM and 8n-1(0) = 8B-1(x). Assume r^l. In the expression for

8B_1(x) choose/ where r= |(«j)11 is maximal—say7=i. Let {íiy}yeGl cf1 be dual to

{/y}yeGl and let a' = d^1. By (7), 8B - * - \a' - x) = 2/ \Sl^\ where J={i \ (ety = (etf}.

By the preceding paragraph there is heH where SB~r"1(n) = 8'1"r~1(a'-x). Let

w=hlie^eM. Then SB-1(w) = 2/A¡5/e< and 8B-1(x-w) = 2ir1 T,S/e< for appro-

priate t¡ 6 k. Thus we are done by the induction on t.   Q.E.D.
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