ELEMENTARY DIFFERENCES BETWEEN THE ISOLS
AND THE CO-SIMPLE ISOLS(%)

BY
LOUISE HAY(®)

1. Introduction. Let E denote the nonnegative integers. For o, B<E, « is
recursively equivalent to B if there is a 1-1 partial recursive function p with
a<domain p and p(«)=p8; the equivalence class of « is denoted by <{a). A set « is
isolated if it has no infinite recursively enumerable (r.e.) subset. The equivalence
classes of isolated sets are called isols, and their collection is denoted by A. The
elements of A can be considered an “effective” analogue of the Dedekind finite
cardinals; their properties were extensively studied by Dekker, Myhill, and Nerode
(see, e.g., [2] and [6]). Isols () of sets « such that o is r.e. are called co-simple
isols, and their collection is denoted by A,. The system A, was shown in [3] to
exhibit much of the behavior of A; this presumably reflects the “effectiveness”
common to the definitions of recursive equivalence and recursive enumerability,
which makes it possible in many instances, given the existence of an isol with
certain properties, to construct an r.e. set « such that {«’) has the required prop-
erties. The question of whether there exist elementary differences between A and
A, was left open in [3]. It is the purpose of this paper to exhibit differences in the
first-order theories of addition and multiplication of A and A,.

More precisely, let L denote a first-order functional calculus based on identity,
addition, and multiplication, with individual variables x;, x5, ..., X, y, z,... and
logical symbols (3), (V), A, vV, =, 2. Given a system (M, +, -), a formula
B(xy, ..., x,) of L whose only free variables are x;, . . ., x, and elements X, ..., X,
of M, we say B(Xy, ..., X,) is true in M if, when the quantified variables are inter-
preted as ranging over M, the result is a true statement in the theory of (M, +, -).
The first-order theories of (A, +, -) and (A,, +, -) are both expressible in L, and
we propose to exhibit a class of (closed) sentences {S;} of L which are true in A
but false in A,. We shall follow the usual practice of identifying E with the finite
elements of A and A, and of thus considering the system (E, +, -) as a subsystem
of (A, +, ) and (A,, +, *).

To define the sentences S, we shall require a formula of L which defines E in A
and in A,, i.e., a formula with one free variable which, when interpreted in A and
A, respectively, is true of exactly the finite elements of those systems. Such a
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formula is given for A in [2], by the fact that the finite isols are exactly those
comparable (under =) to all other elements of A. It will be shown that this is also
true in A, so that the same formula can be used to define E in A,. The proof of
this fact will constitute Part 3 of this paper.

2. The sentences S,. Let Py, P,,... be the sequence of positive primes. If
0: E — E is any function and X is an isol, we follow [1] in calling the sequence
{0(n)} the characteristic of X if, for all n,

Pi™|X and not P{™*i|X.

It is proved in [1] that for each 6, there is an isol X having {6(n)} as its characteristic.
It will be shown that this fact is expressible by a sentence S, of L when 8 is arith-
metically definable. It will also be shown that for a large class of such §, no X e A,
has {6(n)} as its characteristic. Then for such 6, S, will be true in A but false in A,.

THEOREM 1. Corresponding to each arithmetically definable function 6: E — E
whose representing predicate is not expressible in both 5-quantifier forms in the
arithmetic hierarchy, there is a sentence Sy of L which is true in (A, +, -) but false
in (A, +, ).

Proof. We shall henceforth assume that a formula of L written B(xy, ..., X,)
contains no free variables other than x,, ..., x,,. Let 8: E— E be arithmetically
definable, and let R,(m, n) be its representing predicate. There is thus a prenex
formula By(y, z) of L such that, for all m, ne E,

(D1) m = 0(n) <> Ry(m, n) <> By(m, n) is true in E.

Let h: Ex E — E be the recursive function with representing predicate S(k, m, n)

defined by
Sk, m,n) & k = h(m, n) < k = P;.

By the arithmetic definability of recursive relations, there is a prenex formula
C(x, y, z) of L such that for all k, m, n€ E,

(D2) S(k, m, n) <> C(k, m, n) is true in E.
(D3) Let Fin(x) denote the following formula of L:
(V)E)(x+z =y V y+z = x).

A conjunction Fin(x;) A - - - AFin(x,,) will be abbreviated by Fin(xy, . . ., X,).
(D4) For any prenex formula B(x,, . . ., X,) of L, define a corresponding formula
BE(xy, . . ., x,) of L by induction on the number of quantifiers, as follows:
(a) If B(xy,..., x,) has no quantifiers, let

BE(xy, ..., Xp) = B(X1,. ..y Xm)-

(b) If B(xy,...,Xxp) is (VP)C(x1,. .., Xm, ¥) and CE(xy,..., X, y) has been

defined, let
BE(xl, LR xm) = (Vy)(Fln(y) > CE(xla cees Xmy y))'
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(©) If B(xy,...,xn) is (Y)C(xy,..., Xm, ¥) and CE(x,,..., x,, y) has been
defined, let
BE(xy, . . . Xn) = @y)Fin(y) A CE(xy, . . ., Xms ¥))-

The definition of BE(x,,...,x,) evidently serves to restrict the range of the
quantifiers in B(xy, . . ., x,) to {y|Fin(»)}.

In terms of the formulas introduced in (D1)~(D4), let 44(x) be the following
formula of L:

(VP)(V2)(Vu)(Vo)[(Fin(y, z, u, v) A B(p,2) A C5(u,y,z) A CE(v, y+1,2))
S (@)X =) A =(Et)(x = )]

Finally, let S, be the sentence (3x)A4(x). It remains to show that:
(1) S, is true in A.
(2) S, is true in A, only if Ry(m, n) is expressible in both 5-quantifier forms.

LemMaA 1.1. Let X € A. Then Fin(X) is true in A if and only if X € E.
Proof. This is shown in [2, p. 103].

LeMMA 1.2, Let B(x,, . . ., Xy) be a prenex formula of L, and let X,, ..., X, € E.
Then B(X,, ..., X,) is true in E if and only if BE(X,, ..., X,,) is true in A.

Proof. By induction on the number of quantifiers in B(xy, ..., xn):
(a) If B(xy,..., x,,) has no quantifiers, then since (E, +, -) is a subsystem of
(A, +, -), the following are equivalent:
(al) B(Xy,..., X,) is true in E,
(a2) B(Xy,..., X,) is truein A,
(a3) B%(X,,..., X,)is true in A.
(b) Assume that B(x, ..., x,) is (V¥)C(x4, . . ., X, ¥) and that the lemma holds
for C(x,,. .., Xn, y). Then by Lemma 1.1, the following are equivalent:
(bl) B(X,,..., Xp)is truein E,
(b2) forall Y€ E, C(X,,..., X, Y)is true in E,
(b3) for all Ye E, CE(Xy,..., Xn, Y)is truein A,
(b4) (VY)(Fin(y)>CE(X4, ..., Xp, p)) is true in A,
(bS) BE(X,,..., X,)is true in A.
(c) Similarly if B(x, ..., xn) is AY)C(x4, . . ., Xm, ¥).

LemMA 1.3. Let X € A. Then {8(n)} is the characteristic of X if and only if Ay(X)
is true in A.

Proof. By (DI) and (D2), Lemma 1.2, and Lemma 1.1, the following are
equivalent:

(1) {6(n)} is the characteristic of X,

(2) forallZe E, Y=0(Z) and U=P% and V=P%** together imply

[AXX = tU) A =2 @t)X = tV)]
is true in A,
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() for all ¥, Z, U, VeE, [B(Y,Z)AC(U, Y,Z)AC(V, Y+1,Z)] true in E
implies [(A)(X=tU)A —~(3t)(X=1¢V)] true in A,

(4) forall Y, Z, U, VeE, [BE(Y,Z)ACEU, Y,Z)A CE(V, Y+1,2Z)] true in A
implies [(A)X=tU)A -~ (3t)(X=1V)] true in A,

(5) forall Y, Z, U, Ve A,

[Fin(Y, Z, U, V) A BE(Y,Z) A CE(U, Y,Z) A CE(V, Y+1,Z)]

true in A implies [F)(X=tU)A = (Ft)(X=tV)] true in A,
(6) Ag(X) is true in A.

LEMMA 1.4. (a) If Xe A,, Ye A and (At)(Y+t=X) is true in A then Y€ A,.
(b) If X e A,and U € E, then (3t)(X=1tU) is true in A if and only if it is true in A,.

Proof. Part (a) is Theorem 56(b) of [2]. For (b), assume that X € A, and U€ E.
One direction is trivial. Now assume that for some Te A, X=TU. If U=0, then
X=0. If U>0, then X=T+(U-1)T, so that by (a), T€ A,. In either case,
(At)(X=1tU) is true in A,.

LEMMA 1.5. Let X € A,. Then Fin(X) is true in A, if and only if X € E.

Proof. Assume X € E and Y € A,. We require some Z € A, such that X+Z=Y
or Y+Z=X.Nowby Lemma 1.1, thereisaZ € Asuchthat X+Z=Yor Y+Z=JX.
In the first case Z € A, by Lemma 1.4(a); in the second case, X€ F and Z= X
implies Z € Ec A,. Thus in either case, Z € A, and Fin(X) is true in A,.

The converse will follow from Theorem 2 of Part 3, in which it is proved that
X € A,—E implies Fin(X) is false in A,.

LeEMMA 1.6. Let B(x, ..., X») be a prenex formula of L, and let X, ..., X, € E.
Then B(Xy, ..., Xp) is true in E if and only if BE(X,, ..., Xy) is true in A,.

Proof. Exactly like the proof of Lemma 1.2, replacing use of Lemma 1.1 by use
of Lemma 1.5. '

LEMMA 1.7. Let X € A,. Then {6(n)} is the characteristic of X if and only if
Ay(X) is true in A,

Proof. By Lemma 1.4(b), (D1), and (D2), Lemma 1.6, and Lemma 1.5, the
following are equivalent:
(1) {6(n)} is the characteristic of X,
(2) for all Ze E, Y=0(Z) and U=P% and V=P;** together imply
[A)X =tU) A =@A)X = tV)]
is true in A,
(3) forall Ze E, Y=0(Z) and U=P} and V'=P3;** together imply
[GO(X = tU) A 2@FD)(X = V)]
is true in A,
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@) forall Y,Z, U, VeE, [BE(Y,Z)ACE(U, Y,Z)ACE(V, Y+1, Z)] true in A,
implies [At)(X=tU)A —(Ft)(X=1tV)] true in A,

(5) Ay(X) is true in A,.

We now introduce some recursion-theoretic notation. This will be largely
informal, and such formalism as we use derives from [4]. The notation ( ), (E),
&, v, —, — of a first-order predicate calculus will be used for notational con-
venience, and is not to be confused with the formal symbolism of L. Let g, g4, . . .
be a Kleene enumeration of all partial recursive functions of one variable. If
w,=range q,, then wy, wy,... is an enumeration of all r.e. sets and if X e A,,
then X={w,) for some e; we call e an index of X. Let p,, p,, ... be an effective
enumeration of all 1-1 partial recursive functions, given by a recursive function g
such that p, ~q,, for each k. We note that

(A1) z = pi(x) & z = qgeo(x) < (Ey)Ti(g(k), x, y) & z = U(p)),
(A2) &) = {B) > (Ek)(« < domain p, & pi() = f)
o [x)xea v (E2)(z = pu(x) & z€B))
& (2)zef Vv (Ex)xea & z = p(x)))].
LemMA 1.8. Let Q(a, b, m, n) denote the number-theoretic predicate:
{way = Ppt-{wp).
Then Q(a, b, m, n) is expressible in form EAEA in the arithmetic hierarchy.

Proof. We show that a defining expression for Q(a, b, m, n) in terms of quantifiers
and recursive predicates can be brought to EAEA prenex form by means of the
Tarski-Kuratowski algorithm described in [7]. Let A be the recursive function
defined by h(m, n)=P% and, for i € E, let

B ={23" | xe wp},
Bo.mn = Bo Y+ - -V Brgmymy-1-
Then (B> ={w;) for each i, so that {B, n .>=Px-{wy> and
0(a, b, m, n) > {wgy = Pr-{wp)> = {Bo,m,n
> (ER)[(x)(x € wa V (E2)(z = pu(x) & z € By,m,n))
& (2)(z €Bymn V (Ex)(x €Wz & z = py(x)))].

by (A2). Now x € w, has E form, since w, is r.e., z=p,(x) has E form, by (Al),
and z € By, ;m,n > (Eu)(Ev)(v € wy & u<h(m, n) & z=2"3"), which can be brought to
form EA. Thus Q(a, b, m, n) has form

E[A(EV E(E & EA)) & A(AE Vv E(A & E))]
which by the algorithm can be reduced, in sequence, to

E[A(E v EA) & A(AE v EA)), E[AEA & (AE v AEA)), EAEA.
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LEMMA 1.9. Let X € A,, and assume that {6(n)} is the characteristic of X. Then the
representing predicate of 0 is expressible in both 5-quantifier forms in the arithmetic
hierarchy.

Proof. Let X={w,> have characteristic {6(n)}, and let Ry(m, n) be the repre-
senting predicate of 0, i.e.,

Ry(m, n)<>m = 8(n) for allm, ne E.
Then, since the characteristic of X is uniquely determined,

Ry(m,n) > PP|X & —Pp+iX
« (EY)YeA(X = Pf’:lY) & —‘(EY)YEA(X = P'r:l+l Y)
o (EY)yen,(X = PIY) & —(EY)yer,(X = PI*1Y),

by Lemma 1.4(b)

o (Eb)(way = Prkwy)) & —(ED)(way = PRt iwy))
< (Eb)Q(a, b, m,n) & (b)—Q(a, b, m+1, n),

which by Lemma 1.8 has form E(EAEA) & A(AEAE) which reduces to
EAEA & AEAE. As is well known, this form is recursive in the 4-quantifier form
of highest degree, or, equivalently, can be written in both 5-quantifier forms.

Proof of Theorem 1. Let 6 be any arithmetically definable function whose
representing predicate Ry(m, n) is not expressible in both 5-quantifier forms.
Then:

(1) By [1, Theorem T1] there is an X € A which has {6(n)} as its characteristic.
By Lemma 1.3, this implies 4,(X) is true in A, so that S, is true in A.

(2) Assume S, is true in A,; then for some X € A,, 4,(X) is true in A,. By
Lemma 1.7, this implies {6(n)} is the characteristic of X, from which it follows by
Lemma 1.9 that Ry(m, n) is expressible in both 5-quantifier forms. Since this is a
contradiction, we conclude that S, is false in A,.

ReMARK. The sentences Sy chosen for Theorem 1 are merely illustrative of a
type of sentence which can serve to distinguish between the first-order theories of
(A, +, -)and (A,, +, -). Theorem T1 of [1], which was applied above, is a special
case of the “extended Chinese remainder theorem for isols” [5, Theorem 4.5].
Other instances of the latter could be similarly used to yield elementary differences
between A and A,.

3. First-order characterization of E in A,. It remains to show that the finite
isols are the only elements of A, comparable to all other elements of A,. This
requires the direct construction of r.e. sets, for which the natural tool is the
“priority” method in its various manifestations [8]. A scheme for adapting this
method to the construction of co-simple isols was described in [3]; unfortunately
it does not appear to be sufficiently general to handle the present case.
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THEOREM 2. Assume X € A,—E. Then there is a Y € A, such that X£ Y and
Y£X.

Proof. The recursion-theoretic notation is that introduced for the proof of
Lemma 1.8. We assume an effective procedure for simultaneously generating all r.e.
sets, and denote by w} the finite set of elements of w, generated at stages r<u. Let
Ry, Ry, ... be a partition of E into infinite disjoint recursive sets. We adopt the
following notation for purposes of abbreviation:

) o < = « = domain p, and p,() < B.
Thus () ={B) only if (Ek)(«<;f).

ﬂfg(X) =1+ U((:u'y)y§tT%(g(k)’ X, )’))> if (Ey)yétT%(g(k)a X, y)9
= 0 otherwise,

@

pi(x) = mi(x)—1, if #f(x) > 0,
= 0 otherwise.

©)

Pt is thus a recursive function whose value corresponds roughly to the result of
performing ¢ steps in the computation of p,(x). It is evident that #%(x) and pi(x)
are bounded, nondecreasing functions of ¢ and that

lim, p(x) = pi(x), if x € domain p,,

= 0 otherwise.

Now assume X € A,—E, so that X =<w,)> where w; is immune. Instructions will be
given for generating an r.e. set y which will satisfy the following *‘requirements, ”’
for each k:

(1) w, infinite > w, N y# @,

(2¢) not y' <, wy,

(3,) not w,<y'.

This will evidently give Y={y'> € A,, with Y£ X and X£ Y. We will define by
simultaneous induction on ¢, recursive functions F(k, t), G(k, t), and H(k,t), and
will generate y by putting into it at each stage ¢ the values F(k, t), G(k, t), H(k, t)
for k<t. The gist of the construction is as follows: To satisfy requirement (2,),
we try to keep in ' some x for which p,(x) ¢ w,; to satisfy requirement (1,), we
try to put into y an element of w,; and to satisfy requirement (3,), we try to put
into y the number p,(z) for some z € w;. These are evidently conflicting requirements,
and we resolve this conflict by the following device:

At stage ¢, we “tag” the least x € R, —v'~! for which it appears that p,(x) ¢ wi,
and put into y, G(k, t)=the next larger element of R, —y'~1. The fact that wy is
immune and that hence there is no infinite r.e. sequence {x;} such that p,(x;) € w;
for all i, will insure that (i) only finitely many elements of R, are ever “tagged,”
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(i) for some ““tagged” x € Ry, pi(x) ¢ w, and x is never put in y, and (iii) R, N 9’
is finite.

Since the ““naive > attempts at satisfying requirements (1,) and (3,) described above
would interfere with the termination of the “tagging” process, we modify them
slightly as follows: The value of F(k, t) represents an attempt to put into y an
element of w,—|J;sx R;, and that of H(k, t) an attempt to put into y, p,(z) for
some z € w, for which pu(z) ¢ | <, R;. These attempts will fail only if (1)
wi S Ussk Ry or (2) p(wa) SUj<k Ry In the first case, w, Ny’ S(U;sc R) N Y
which is finite, so that either w, is finite or w, N y# @ ; in the second case,
P(wa) Ny’ =(U,<x R;) Ny’ which is finite, so that either p,(z) is undefined for
some z € w, or p,(z) € y for some z € w,. Thus in either case, the relevant require-
ment is satisfied anyway.

We proceed to the formal construction and the proof (by induction on k) that
all requirements are eventually satisfied. Define F(k, t), G(k, t), H(k, t) and auxil-
iary recursive functions n(k, t), r(k, t), x(i, k, t), z(i, t), v(k, t), s(k, t) as follows:

Stage 0. For all k and i, let F(k,0)=G(k, 0)=H(k, 0)=n(k, 0)=r(k, 0)
=x(i, k, 0)=z(i, 0)=v(k, 0)=s(k, 0)=0. Let y°={0}.

Stage t>0. For k>t and all i, let F(k,t)=G(k,t)=H(k,t)=n(k,t)=r(k, 1)
=x(i, k, t)=v(k, t)=s(k, t)=0.

(a) For0sk=t,let

v=uvk,t) = (p.v),,gt((wfc— UR =2 &v= 0) vwi— UR;# Q),
72k 15k
Fk,t) = (p.x)((wz— jszkR, =g & x= 0) vV xEwl— ngij’)'
(b) For0sk=t, let
X(O, k3 t) = (/“x)(x € Rk_‘yt-l)’
x(i+1,k,t) = (ux)(x > x(i, k, t) & xe€ R, —y'"1) i=0,1...,
n = nk,t) = (pi)s(=ix@, k, t) = 0 v (ahx(i, k, t) > 0
& pix(i, k,t)ewt) vi=1t),
Gk, t) = x(n+1,k, t) if #ix(n, k,t) =0V (ztx(n, k,t) >0
&p%cx(n, k,t)ew,)
= 0 otherwise.
(c) Let
(0, t) = (uz)(z ¢ we),
z(i+1,0) = (u2)(z > z(i, ) &z¢wh) i=0,1,...,
H(0, t) = piz(0, t).
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For 0<k=<t, let
=rk,t) =1+ 1+n(j, 1)),
r=rk 1) ;( %))
s =sk,t) = (p.i);g,(ﬂfcz(i, ty=0v (ﬂfcz(i, t) >0 & piz(i, t) E;ﬂk R;) Vi= r),

H(k, t) = plz(s, t) if nhz(s, t) > 0 & phz(s, 1) e jﬂk R;,
= 0 otherwise.

Finally, let y*=y*"1 U (Uys: {F(k, 1), G(k, t), H(k, 1)}).
ReMARK. The following easily verified facts are noted here for future reference:
(R1) z(i, t) and x(i, k, t) are strictly increasing functions of i.
(R2) F(j, t)#0— F(j, t) € Nk<s Re-
(R3) H(j, t)#0— H(j, t) € Nk<s Re-
(R4) (G(j, )#0 & n=n(j, 1)) — (mix(n, j, ) =0V pix(n, j, t) € wp).
(RS) G, t)#0— G(j, t) € R,
LemMA 2.1. For each k,
(a) lim, F(k, t) exists,
() if we—Ujsk Ri# @, then w, N y# &
Proof. Case 1. w,—\ ;s Rj= 9.
Then for all ¢, w},—|J,;sx R;= 9, so that v(k, t)=F(k, t)=0. This proves (a), and
(b) holds trivially.
Case 2. Otherwise. Let

t* = (#t)(t zk & wi— R, # g),
13k
x* = (;Lx)(xewfc'— %R, .

Then for all 12 t*, v(k, t)=1t* and F(k, t)=x*, which proves (a). Part (b) follows
since x* e w, and x*=F(k, t*) e y"' <v.

LemMma 2.2. (a) lim, H(O, ¢) exists,

(b) not we<o7'.

Proof. Let z* =(uz)(z € w,), so that (z),.,.(Et)(z € wh). Let

t* = (ut)(2).<~(z € Wﬁ)

Then for all t=¢*, z(0, t)=2z*.

Case 1. z* ¢ domain p,. Then wh(z*)=0 for all ¢, so that for all t>¢*, H(0, ¢)
=mh(z*)=0, which proves (a). Part (b) holds since z* € w/, implies w; ¢ domain p,,.

“Case 2. Otherwise. Then for some u, #§5(z*)>0 and p§(z*)=po(z*). Let u*
=max(t*, u). Then for all 2 u*, H(0, t)=ph(z*) =po(z*), which proves (a). Part (b)
holds since z* € w;, while py(z*)=H(0, u*) e y*'<y.

In the following, c(«) denotes cardinality «.
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LeMMA 2.3. If lim, H(j, t) exists for all j<k, then

(a) lim, n(k, t) exists,

(b) (R, Ny )=1+lim, n(k, t),

(c) not v'<; wy.

Proof. This will be divided into steps (2.3.1)-(2.3.5), each of which has as

hypothesis
lim, H(j, t) exists for all j < k.

(2.3.1) There is a stage u> k such that
(X)[(x € Ry & (Et)>u(Ej)(x = F(j, 1) V x = H(j, 1))) > x € y"]
(i.e., after stage ¥ no new elements of R, are added to y to satisfy requirements
(1,) or (3;) for any j.)
Proof. Let u be chosen so large that forallj<kand allt=u,
H(j,t) = lim, H(j,t) = H; (which exists by the hypothesis),
F(j,t) = lim, F(j, t) = F; (which exists by Lemma 2.1).
If x=0, the conclusion holds trivially since x € y* for all u. If x#0, x € R, and
(x=F(j, t)v x=H(j, t)) then by (R2) and (R3) it follows that k = j, while by choice
of u, t>u implies
x=F(,t)=F;=F(,uVv x=H(j,t) = H; = H(j, w.
This, together with j <k <u, implies x € y*.

Let u,=the least u satisfying (2.3.1). We define by simultaneous induction on ¢
two partial recursive functions #,(i) and f,(i), as follows:

1(0) = we+1,  fil0) = (ux)(x € R —y").

Now assume that for all j <, #,(j) and f,(j) have been defined.
Case 1. (Et)(t>t,(i—1) & (j); <((7t.f:(j) > 0 & p.fi(j) ¢ wh)). Then define

t,(i) = the least such ¢,
Sfili) = (px)(x > fili—1) & x € Ry—y%P~).

Case 2. Otherwise. Then #,(i) and f,(i) are undefined. It is evident that #, and f,
are strictly increasing functions of i, that f,(i)>i for all i € domain ¢,, and that
domain 7, =domain f is an initial segment of E.

Let o, denote this common domain,

(2.3.2) o, is finite and nonvoid.

Proof. o,# @ since £,(0) and 1,(0) are defined, so that 0 € o,,. We will show that
if o, is infinite, then w), has an infinite r.e. subset. Now if o, is infinite, then o, =E
and f,(i) is defined for all i € E. We claim the following then hold:

(@) pifi(i) is defined for each i € E,

(b) pifi(i) e w, for each i€ E.
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To prove (a), assume that p,f,(i*) is undefined for some i*. Then for all ¢,
L f.(i*)=0, so that for i=i*+1, Case 1 of the definition of f,(i) fails to occur and
fi(0) is undefined, contradicting the assumption that ¢,=E. To prove (b), assume
that for some i*, p,fi.(i*) € w,. Then for all sufficiently large ¢, #%f,(i*)>0 and
Prfili*) € we. Let

t* = (ut)t > (%) & mfili*) > 0 & pifili*) € wa).
Now i* <t (i*)<t*, and t> 1, (t*—1)>t*—1 —> t2t*, so that

@O > t(t*—1) = (E)s<e(pifiJ) € W)

Thus for i=t*, Case 1 above fails to occur and fi(¢*) is undefined, again contra-
dicting the assumption that o, =E.

The set {p, fi(i) | i € E} is evidently r.e.; it is infinite because of (a) and the fact
that p, is 1-1 and f; strictly increasing; and by (b), it is a subset of w,. Hence o
being infinite is inconsistent with the hypothesis that w; is immune.

Let M, denote the largest element of o,.

23.3) (EDsea(filj) ¢ domain p, v pifi(j) € wa).

Proof. Assume not. Then for all j<M,, f.(j)€domain p, and p.fi(j) ¢ w,.

Choose t > t,(M,) so large that =%, f,(j) > 0 for all j< M,. Then for this ¢, we have
Dism (@ fil(G) > 0 & plfi(i) ¢ we),

so that Case 1 of the definition of f,(i) occurs for i=M,+1. Then M, +1€ay,
which is a contradiction.

Let my= (1) seq, (fi(J) ¢ domain pycV picfi(j) € wa).
(2.34) Dizm(Dezt(DisixUs ks 1) = fil§))
(i.e., for all sufficiently large ¢,

Re—y'=r = {i0), ..., i), x(i+1, k, ), x(i+2, k, 1), .. .}).

Proof. By induction on i and t—#,(i):
(ap) For t=1,(0), we have

Si(0) = (ux)(x € Ru—y"*)
= x(09 k, uk+ 1) = x(os k’ tk(o))'
(by) Now assume that f;(0)=x(0, k, ¢) for some ¢ = ¢,(0). Then
Sl0) = (ux)(x € Ry—y'~1)
and, since R,—y'<R,—y'"%, proving f(0)=x(0, k, t+1) reduces to showing
that £,(0) ¢ y*—*~1. Assume otherwise. Then £,(0) € | J,<; {F(J, t), G(j, t), H(j, 1)}
Case 1. (E);s(f0)=F(j, t)Vf0)=H(j, 1)). Then, since fi(0)€ R, and
t21,(0) > u, we deduce from (2.3.1) and the definition of u, that f,(0) € y* =9¢~1,
which contradicts the induction hypothesis.



438 LOUISE HAY [June

Case 2. Otherwise. Then (Ej);<(f.(0)=G(j,t)). Now Oey*~' and f(0)
=x(0, k, t) € R,—y*~! implies f;(0)#0, so that by (RS), f,(0)e R, Since
R;N R,= g for j#k, this implies j=k. So f.(0)=G(k, t)=x(n+1, k, t) where
n=n(k,t)=0. Then by (R1), f(0)=x(n+1,k, t)>x(0, k, t)=£,(0), which is a
contradiction.

Now assume that 0<i<m, and that the statement holds for i—1, i.e., that
ezt - D1 <ixU, k, 1) =£0)))-

(a;)) For 1=¢(i), recall that x(i, k, t)=(ux)(x>x(i—1,k,t) & xe€ R,—y*~?).
Since (i) > t,(i— 1), the induction hypothesis yields x(i— 1, k, t)=f,(i— 1), so that

xG, k, 10) = @X)(x > fili=1) & x € Re—y®-1) = £,(i)

by definition of f,(i).
(b;) Now assume that x(i, k, t)=f,(i) for some ¢ t,(i). Then

£il) = @x)(x > x(i—1,k, 1) & x€ Re—y'"Y)
= (px)(x > fi(i—1) & xe R,—»'"Y)

by the induction hypothesis (on i) and the fact that = #,(i) > #,(i— 1). Then to prove
that f,(i)=x(, k, t+1) it again suffices to show that f,(i) ¢ y*'—y*~1. Assume the
contrary; then

Sili) € !Ug {F(U, 1), GG, 1), H(j, 1)}

Case 1. (Ej);=(fil()=F(, t)Vf(i)=H(j, t)). Then since t=t,(i)> t,(0)=u, we
obtain as in (b,) above that f,(i) € y*x =y*~1, which is a contradiction.

Case 2. Otherwise. Then (Ej);<.(f.(i{)=G(j, t)). Again as in (b,) above, we con-
clude that j=k and that f.(i))=G(k, t)=x(n+1, k, t) where n=n(k, t). From
fild=x(, k, t) we then deduce i=n+1 or n(k, t)=i—1. By (R4) above, G(k, t)
=f,(i)#0, which, together with the induction hypothesis that

f;C(l_ 1) = X(l— 19 ka t) = x(n, k’ t)3

implies that =% fi,(i—1)=0v pl. f,(i— 1) € w%,. We show this leads to a contradiction.
Now by definition of #,(i), #i*“fi(i— 1) > 0 and, since =%, is a nondecreasing function
of ¢, t2 1,(i) implies = fi,(i—1)>0. It follows that p, fi(i—1)=pLfi(i—1) € wLSw,;
then by definition of m,, m,<i—1, which contradicts the assumption that
0<i=<m,. This completes the induction and the proof of (2.3.4).

(@) lim, n(k, t) = m,
(®) R Ny = {£0), ..., filmy)}
Proof. (2.3.4) for i=m, yields

(DNssmOeztemoxUs &, 1) = fil(7)-

(2.3.5)



1967] DIFFERENCES BETWEEN ISOLS AND CO-SIMPLE ISOLS 439

Recall that my, = (ui)(f(i) ¢ domain p, V p,.fi.(i) € w,), and choose v so large that
(i) =fil(j)>0for 0=j<my,
(i) vzt(m)>my,
(iii) if f(m;) € domain p,, then =} f,.(m,) >0 and p}. f.(m,) € w}.
It is then evident from the definition of n(k, t) that n(k, t)=m, for all t=v, which
proves (a). To prove (b), note that by (2.3.4), v = t,(m,) implies

(j)lémk(t)tév(f;c(j) = x(ja ka t))s

so that {f;(0),..., fim)}<=Nizv Ri—7'=( e Rk—7y'=R. N y'. To prove the
converse inclusion, assume xe€ R, Ny'. Then xe R,—y"~!, which implies
x=x(j, k, v) for some j. But it is easily seen by induction on p that if

x = x(m,+p+1,k,v) then x=Gk,v+p)ey’*? < y.

So x=x(j, k, v) € R, —y only if j<m,, in which case x € {f(0),. . ., fi(m.)}.

Proof of Lemma 2.3. Part (a) follows from (2.3.5a). Part (b) follows from
(2.3.5b). To prove (c), note that by (2.3.5b), fi.(m,) € ¥’ while by definition of m,,
either f.(m,) ¢ domain p, or p,fi.(m;) € w,.

LEMMA 2.4. Assume that 0<k and that for all j<k, lim, n(j, t)=m;, exists and
¢(R; Ny )=14+my. Then

(a) lim, H(k, t) exists,

(b) not wa<y'.

Proof. Let R=1+3,.; 1+m;andlet z,,.. ., z; be the least R+ 1 elements of w,.
Choose v so large that

D Oezo(Ns<uln(j, )=my),

(i) (2).:22,(zE W, —>2zEW,).
Then (#);>(i)isr(r(k, £)=R & z(i, t)=z)).

Case 1. (i);<z(z; € domain p, & p(z)) € UJ,<x R;). Let

v* = (ut)e> o(Disr(milz) > 0).

Then for all £=v*, s(k, t)=R and H(k, t)=0, which proves (a). To prove (b), note
that the hypothesis implies that
c((iLJkR,) ('\'y) = c(jL<)k (R,ny)) = > 1+m; = R.

i<k

But {p.(z0), - .., pi(zz)} is an (R+1)-element subset of | J;<. R;, which then
cannot be contained in y’, i.e., for some z; € wg, pi(z)) € y.

Case 2. Otherwise. Let i* =(ui);<z(z; ¢ domain p, V p(z)) € (Ny<k R)-

Subcase 2.1. z,. ¢ domain p,. Let v*=(ut);>,()i<p(7i(z)>0). Then for all
t2v*, s(k, t)=i* and #kz(i*, t)=0, so that H(k, ¢)=0, which proves (a). Part (b)
holds, since z,. € w}, so that w,¢ domain p,.

Subcase 2.2. Otherwise. Then z,. € domainp, and p(z.) €( )<k R} Let
v* =(ut);> y(D)ise(7h(z)) > 0). Then for all t=>v*, sk, t)=i* and H(k, t)=pi(z:),
which proves (a). Part (b) follows since z;. € w, while p,(z;.)=H(k, v*) e y" Sy.
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LEMMA 2.5. For each k, the following hold.
(Ax) not wa<,y',

(By) not y' <y wi,

(Co) lim, H(k, t) exists,

(Dy) lim, n(k, t) exists,

(Ex) c(R, N y)=1+1lim, n(k, t).

Proof. By induction on k. Lemma 2.2 gives (A,) and (C,). Lemma 2.3 then gives
(Dy), (E,), and (B,), which completes the base step. Now assume 0<k and that
(A)), By, (Cy), (D)), and (E,) hold for all j<k. Then (C;) and (A,) follow by
Lemma 2.4, which by Lemma 2.3 implies (D,), (E,), and (B,). The conclusions thus
hold for all k.

LEMMA 2.6. ¥’ has no infinite r.e. subset.

Proof. Let w, be an infinite r.e. set.

Case 1. w,<=\J;<x R;. Then w, N y'<J,sx (R; N ¥") which by parts (D) and
(E) of Lemma 2.5 is a finite union of finite sets. So w;, Ny’ is finite, which implies
W Ny# .

Case 2. Otherwise. Then w,—(J,s. R,# @, which by Lemma 2.1(b) implies
W, Ny# .

End of proof of Theorem 2. Let X=<{w,)> € A,— E. The set y constructed above is
evidently r.e., since effective instructions were given for generating it. Let
Y=<{y'); then by Lemma 2.5(A) and (B), Y£ X and X£ Y. By Lemma 1.1, this
implies Y ¢ E, so that o’ is infinite. Then by Lemma 2.6, ' is immune and Y € A,.
This completes the proof of the theorem.

Note that the instructions for generating y are uniform in a, so that an index of
Y can be effectively computed given one of X i.e., there is a recursive function h
such that if X={w;> € A,—F and Y={wyq,>, then Y € A, and Y is incomparable
to X. In [3], a sequence X;, X,,... of elements of A, is called r.e. if there is a
recursive function f'such that X;=<{wj,» for each i € E, and a G6del number of fis
called an index of {X;}. A set P of elements of A, is called productive if there is a
recursive function f such that if { X} is an r.e. sequence of elements of P with index
e, then {wj,,»> € P—{X;}. Using standard methods of ‘interweaving priorities,”
the techniques of Theorem 2 can be modified so as to effectively produce, given
an r.e. sequence {X;} S A,—E, an element Y € A, which is incomparable to X; for
each i. This leads to a proof of

THEOREM 3. Every maximal set of mutually incomparable elements of A,—E is
productive.
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