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1. Introduction. Let E denote the nonnegative integers. For a, j8e£, a is

recursively equivalent to ß if there is a 1-1 partial recursive function p with

a £ domain p and p(a)=ß; the equivalence class of a is denoted by <a>. A set a is

isolated if it has no infinite recursively enumerable (r.e.) subset. The equivalence

classes of isolated sets are called isols, and their collection is denoted by A. The

elements of A can be considered an "effective" analogue of the Dedekind finite

cardinals; their properties were extensively studied by Dekker, Myhill, and Nerode

(see, e.g., [2] and [6]). Isols <<x> of sets a such that a is r.e. are called co-simple

isols, and their collection is denoted by A2. The system A2 was shown in [3] to

exhibit much of the behavior of A; this presumably reflects the "effectiveness"

common to the definitions of recursive equivalence and recursive enumerability,

which makes it possible in many instances, given the existence of an isol with

certain properties, to construct an r.e. set a such that <a'> has the required prop-

erties. The question of whether there exist elementary differences between A and

A2 was left open in [3]. It is the purpose of this paper to exhibit differences in the

first-order theories of addition and multiplication of A and A2.

More precisely, let L denote a first-order functional calculus based on identity,

addition, and multiplication, with individual variables xly x2,..., x,y, z,... and

logical symbols (3), (V), A, V, -i, =>. Given a system (M, +, ■), a formula

B(xx,..., xn) of L whose only free variables areXx,...,xn and elements Xlt..., Xn

of M, we say B(Xt,..., Xn) is true in M if, when the quantified variables are inter-

preted as ranging over A7, the result is a true statement in the theory of (M, +, • ).

The first-order theories of (A, +, • ) and (A2, +, • ) are both expressible in L, and

we propose to exhibit a class of (closed) sentences {S0} of L which are true in A

but false in A2. We shall follow the usual practice of identifying E with the finite

elements of A and A2 and of thus considering the system (E, +, ■ ) as a subsystem

of (A, +, -)and(A2, +, •).

To define the sentences Se we shall require a formula of L which defines E in A

and in A2, i.e., a formula with one free variable which, when interpreted in A and

A2 respectively, is true of exactly the finite elements of those systems. Such a
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formula is given for A in [2], by the fact that the finite isols are exactly those

comparable (under ^) to all other elements of A. It will be shown that this is also

true in A„ so that the same formula can be used to define F in A2. The proof of

this fact will constitute Part 3 of this paper.

2. The sentences Se. Let P0, Px,... be the sequence of positive primes. If

9: £-> E is any function and X is an isol, we follow [1] in calling the sequence

{0(n)} the characteristic of X if, for all n,

PenM\X   and not   Pe„M + 1\X.

It is proved in [1] that for each 9, there is an isol X having {9(n)} as its characteristic.

It will be shown that this fact is expressible by a sentence Ss of L when 9 is arith-

metically definable. It will also be shown that for a large class of such 9, no X e Az

has {0(n)} as its characteristic. Then for such 9, Se will be true in A but false in A2.

Theorem 1. Corresponding to each arithmetically definable function 9:E->E

whose representing predicate is not expressible in both 5-quantifier forms in the

arithmetic hierarchy, there is a sentence Se ofL which is true in (A, +, ■) but false

in (As, +, •).

Proof. We shall henceforth assume that a formula of L written B(xx,..., xm)

contains no free variables other than xx,..., xm. Let 9: E^ E be arithmetically

definable, and let Re(m, n) be its representing predicate. There is thus a prenex

formula Be(y, z) of L such that, for all m, ne E,

(Dl) m = 9(n) <-> Re(m, ri) <-> Be(m, n) is true in E.

Let h: Ex F-> E be the recursive function with representing predicate S(k, m, n)

defined by
S(k, m,ri)<^k = h(m, «)<-»& = P™.

By the arithmetic definability of recursive relations, there is a prenex formula

C(x, y, z) of L such that for all k,m, ne E,

(D2) S(k, m, n) <-> C(k, m, n) is true in E.

(D3) Let Fin(x) denote the following formula of L :

(Vy)(3z)(x + z = y V y + z = x).

A conjunction Fin(Xi) A • • • A Fin(xm) will be abbreviated by Fin(x1;..., xm).

(D4) For any prenex formula T7(x1;..., xm) of L, define a corresponding formula

BE(xx,..., xm) of L by induction on the number of quantifiers, as follows:

(a) If B(xx,..., xm) has no quantifiers, let

BE(xx,..., xm) = Ti(xi,..., xm).

(b) If T7(x1(..., xm) is Viy)C(xx, ...,xm,y) and  CE(xx, ...,xm,y) has been

defined, let
BE(xx,..., xm) = (V>-)(Fin(j) = CE(xx, ...,xm, y)).
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(c) If B(xx, ...,xm) is (3y)C(xx, ...,xm,y) and  CE(xx, ...,xm,y) has been

defined, let

BE(xx, ...,xm) = (3y)(Fin(y) A CE(Xl, ...,xm, y)).

The definition of BE(xx, ■ ■ ■, xm) evidently serves to restrict the range of the

quantifiers in B(xu ..., xm) to {j'IFin(j)}.

In terms of the formulas introduced in (D1)-(D4), let Ag(x) be the following

formula of L:

(Vy)(Vz)C1u)(Vv)[(Fin(y,z,u,v) A BE(y,z) a CE(u,y,z) a CE(v,y+l,z))

=5 ((3t)(x = tu) A -i(3t)(x = tv))].

Finally, let Sg be the sentence (3x)Ae(x). It remains to show that:

(1) Se is true in A.

(2) Sg is true in A2 only if Re(m, n) is expressible in both 5-quantifier forms.

Lemma 1.1. Let Xe A. Then Fin(Ar) is true in A if and only if X e E.

Proof. This is shown in [2, p. 103].

Lemma 1.2. Let B(xx, ■ ■ ■, xm) be aprenex formula ofL, and let Xx,..., Xme E.

Then B(Xlt..., Xm) is true in E if and only if BE(Xx, ■.., Xm) is true in A.

Proof. By induction on the number of quantifiers in B(xx,..., xm) :

(a) If B(xx,..., xm) has no quantifiers, then since (£,+,•) is a subsystem of

(A, +, • ), the following are equivalent :

(al) B(XX,..., Xm) is true in E,

(a2) B(Xx,..., Xm) is true in A,

(a3) BE(Xx,..., Xm) is true in A.

(b) Assume that B(xlt..., xm) is (Vy)C(xlf..., xm,y) and that the lemma holds

for C(xx,..., xm,y). Then by Lemma 1.1, the following are equivalent:

(bl) Z*(A\,..., Xm) is true in E,

(b2) for all Ye E, C(Ar1, ...,Xm,Y) is true in E,

(b3) for all YeE, CE(A"1,..., Xm, Y) is true in A,

(b4) Ciy)(Fin(y)^CE(Xx, ...,Xm, y)) is true in A,

(b5) BE(Xx,..., Xm) is true in A.

(c) Similarly if B(xlt..., xj is (3y)C(xx, ...,xm, y).

Lemma 1.3. Let Xe A. Then {0(n)} is the characteristic of X if and only ifAe(X)

is true in A.

Proof. By (Dl) and (D2), Lemma 1.2, and Lemma 1.1, the following are

equivalent:

(1) {0(n)} is the characteristic of X,

(2) for all ZeE,Y= 0(Z) and U=PYZ and V=PYZ + 1 together imply

[(3t)(X=tU) A ^(30(A"= tV)]

is true in A,
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(3) for all y, Z, U, VeE, [Bg(Y,Z)A C(U, Y,Z)aC(V, y+l,Z)] true in E

implies [(3t)(X=tU)A ^(3t)(X=tV)] true in A,

(4) for all y, Z, U, Ve E, [BE(Y,Z)/\ CE(U, Y, Z)hCE(V, Y+1, Z)] true in A

implies [(3t)(X=tU)A -n(3t)(X = tV)] true in A,

(5) for all Y,Z, U,VeA,

[Fin(Y,Z, U, V) A T7f(y,Z) A CE(U, Y,Z) A CE(V, y+l,Z)]

true in A implies [(3t)(X=tU)A -i(3t)(X=tV)] true in A,

(6) Ae(X) is true in A.

Lemma 1.4. (a) IfXeAz, Ye A and (3t)(Y+t=X) is true in A then YeAz.

(b) IfXe A2 and VeE, then (3t)(X= tU) is true in A if and only if it is true in A2.

Proof. Part (a) is Theorem 56(b) of [2]. For (b), assume that Xe Az and VeE.

One direction is trivial. Now assume that for some F6 A, X=TU. If U=0, then

JST=0. If U>0, then X=T+(U-l)T, so that by (a), FeA2. In either case,

(3r)(Jr=ft7)istruein A2.

Lemma 1.5. Let Xe A2. Then Fin^) is true in A2 if and only ifXe E.

Proof. Assume Xe E and Ye A2. We require some Ze A2 such that X+Z= Y

or Y+Z=X. Now by Lemma 1.1, there is aZe A such that X+Z= Y or Y+Z=X.

In the first case Ze A2 by Lemma 1.4(a); in the second case, Xe E and Zf¿X

implies Z £ Fs A2. Thus in either case, Z £ A2 and Fin(Y) is true in A2.

The converse will follow from Theorem 2 of Part 3, in which it is proved that

X e A2 - E implies Fin^) is false in A2.

Lemma 1.6. Let B(xx,..., xm) be a prenex formula ofL, and let Xx,..., Xme E.

Then B(XX,..., Xm) is true in E if and only if BE(XX,..., Xm) is true in A2.

Proof. Exactly like the proof of Lemma 1.2, replacing use of Lemma 1.1 by use

of Lemma 1.5.

Lemma 1.7. Let XeAz. Then {9(n)} is the characteristic of X if and only if

Ae(X) is true in A2.

Proof. By Lemma 1.4(b), (Dl), and (D2), Lemma 1.6, and Lemma 1.5, the

following are equivalent:

(1) {9(n)} is the characteristic of X,

(2) for all ZeE, Y= 9(Z) and £/=P| and V=PYZ + 1 together imply

[(3t)(X= tU) A -n(3t)(X = tV)]

is true in A,

(3) for allZEF, Y=9(Z) and U=PYZ and V=PYZ + 1 together imply

[(3t)(X= tU) A -^(3t)(X= tV)]

is true in A,,
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(4) for all F, Z, U,VeE, [BE(Y, Z)A CE(U, Y, Z)aCe(V, Y+1, Z)] true in A2

implies [(3t)(X=tU)A ^(3t)(X=tV)] true in A2,

(5) Ae(X) is true in A2.

We now introduce some recursion-theoretic notation. This will be largely

informal, and such formalism as we use derives from [4]. The notation ( ), (E),

&, V, -i, -> of a first-order predicate calculus will be used for notational con-

venience, and is not to be confused with the formal symbolism of L. Let q0, ?i,...

be a Kleene enumeration of all partial recursive functions of one variable. If

wk = range qk, then w0, Wx,. ■ ■ is an enumeration of all r.e. sets and if X e A2,

then A"=<wé> for some e; we call e an index of X. Let p0,Px, • • • be an effective

enumeration of all 1-1 partial recursive functions, given by a recursive function g

such that pk~qg(k) for each k. We note that

(Al) z = pk(x) <-> z = qgCk)(x) <-> (Ey)(T{(g(k), x,y) & z = U(y)),

(A2) <«> = <lß}+->(Ek)(a c domain pk & pk(a) = ß)

<-> [(x)(xea' V (Z?z)(z = Mx) & zeß))

& (z)(z e j8' v (£x)(;c e a & z = /jfc(x)))].

Lemma 1.8. Let Q(a, b, m, n) denote the number-theoretic predicate:

«> = />„m-<^;>.

Then Q(a, b, m, n) is expressible inform EAEA in the arithmetic hierarchy.

Proof. We show that a defining expression for Q(a, b, m, n) in terms of quantifiers

and recursive predicates can be brought to EAEA prenex form by means of the

Tarski-Kuratowski algorithm described in [7]. Let « be the recursive function

defined by h(m, n)=Pm and, for i e E, let

j8, = {2<3* | x e w'b},

ßb.m.n = Po ^' ' "^ Pft(m,n)-1.

Then <ßu = <w'0} for each i, so that <ßb,m,n>=Pm«> and

Q(a, b, m, n)^{w'a} = P*-<w'*> = <ß».m.n>

«-► (Ek)[(x)(x e wa V (Ez)(z = pk(x) & z e &.„,„))

& (z)(ze/3;.m,n V (Ex)(xew'a & z= pk(x)))].

by (A2). Now xewa has ZÍ form, since wa is r.e., z=pk(x) has Zs form, by (Al),

and z e j3j,>mn <-> (Eu)(Ev)(v ew'D & u< h(m, n) & z = 2"3"), which can be brought to

form Ziy4. Thus ß(a, è, «i, n) has form

£[^(Zi V E(E & Z?^)) & ^(^£ V E(A & £))]

which by the algorithm can be reduced, in sequence, to

E[A(E V EA) & A(AE V EA)],   E[AEA & (¿Z? v AEA)],   EAEA.
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Lemma 1.9. Let Xe Az, and assume that {9(n)} is the characteristic of X. Then the

representing predicate of 9 is expressible in both 5-quantifier forms in the arithmetic

hierarchy.

Proof. Let X=(w'ay have characteristic {9(n)}, and let Re(m,n) be the repre-

senting predicate of 9, i.e.,

RB(m, n) <-y m = 9(n)       for all m, ne E.

Then, since the characteristic of X is uniquely determined,

R¿m,n)++PS\X & -^P^+1\X

<-> (EY)YeA(X = PZY) & -n(EY)YEA(X = PS*1!*)

~(EY)Yehi(X = P™Y) & -1(EY)YeAz(X = Pr1Y),

by Lemma 1.4(b)

^(Eb)(Wa> = Fn"'<w0» & -n(Eb)((w'ay = Fnm + 1<w0»

<-> (Eb)Q(a, b, m, ri) & (b)—¡ Q(a, b, m+1, n),

which by Lemma 1.8 has form E(EAEA) & A(AEAE) which reduces to

EAEA & AEAE. As is well known, this form is recursive in the 4-quantifier form

of highest degree, or, equivalently, can be written in both 5-quantifier forms.

Proof of Theorem 1. Let 9 be any arithmetically definable function whose

representing predicate Re(m, n) is not expressible in both 5-quantifier forms.

Then:

(1) By [1, Theorem TI] there is an Xe A which has {9(n)} as its characteristic.

By Lemma 1.3, this implies Ag(X) is true in A, so that Se is true in A.

(2) Assume Se is true in A2 ; then for some X e A2, Ae(X) is true in A2. By

Lemma 1.7, this implies {9(ri)} is the characteristic of X, from which it follows by

Lemma 1.9 that Re(m, n) is expressible in both 5-quantifier forms. Since this is a

contradiction, we conclude that Sg is false in A2.

Remark. The sentences Se chosen for Theorem 1 are merely illustrative of a

type of sentence which can serve to distinguish between the first-order theories of

(A, +, •) and (A2, +, •). Theorem TI of [1], which was applied above, is a special

case of the "extended Chinese remainder theorem for isols" [5, Theorem 4.5].

Other instances of the latter could be similarly used to yield elementary differences

between A and A2.

3. First-order characterization of E in A2. It remains to show that the finite

isols are the only elements of A2 comparable to all other elements of A2. This

requires the direct construction of r.e. sets, for which the natural tool is the

"priority" method in its various manifestations [8]. A scheme for adapting this

method to the construction of co-simple isols was described in [3]; unfortunately

it does not appear to be sufficiently general to handle the present case.



1967] DIFFERENCES BETWEEN ISOLS AND CO-SIMPLE ISOLS 433

Theorem 2. Assume Xe Az-E. Then there is a Fe A2 such that X$ Y and

Y$X.

Proof. The recursion-theoretic notation is that introduced for the proof of

Lemma 1.8. We assume an effective procedure for simultaneously generating all r.e.

sets, and denote by wk the finite set of elements of wk generated at stages t^u. Let

R0, Rx,.. be a partition of E into infinite disjoint recursive sets. We adopt the

following notation for purposes of abbreviation :

(1) a -<kß = a ç domain^ and/^fa) s ß.

Thus <«>^<i8> only if (Ek)(a<kß).

wfc) = 1 + U((py)yâtTl(g(k), x, y)),   if (Ey)yílT\(g(k), x, y),

= 0   otherwise,

pï(x) = 4(*)-i,  if 4(x) > o,

= 0   otherwise.

pk is thus a recursive function whose value corresponds roughly to the result of

performing t steps in the computation of pk(x). It is evident that tTk(x) and pk(x)

are bounded, nondecreasing functions of t and that

limf pk(x) = pk(x),   if x e domain pk,

= 0   otherwise.

Now assume Xe Az — E, so that X=(w'a) where w'a is immune. Instructions will be

given for generating an r.e. set y which will satisfy the following "requirements,"

for each k :

(lk) wk infinite -> wk n y# 0,

(2k) not y'<kw'a,

(3k) not w'a<ky'.

This will evidently give Y= <y'> e A2, with Y$ X and X$ Y. We will define by

simultaneous induction on t, recursive functions F(k, t), G(k, t), and H(k, t), and

will generate y by putting into it at each stage t the values F(k, t), G(k, t), H(k, t)

for k ^ t. The gist of the construction is as follows : To satisfy requirement (2k),

we try to keep in y' some x for which pk(x) $ w'a; to satisfy requirement (lfc), we

try to put into y an element of wk ; and to satisfy requirement (3k), we try to put

into y the number pk(z) for some z e w'a. These are evidently conflicting requirements,

and we resolve this conflict by the following device :

At stage t, we "tag" the least xe Rk-yt~1 for which it appears thatpk(x) $ w'a,

and put into y, G(k, r) = the next larger element of Rk-yt'1. The fact that w'a is

immune and that hence there is no infinite r.e. sequence {xt} such that pk(x¡) e w'a

for all i, will insure that (i) only finitely many elements of Rk are ever "tagged,"
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(ii) for some "tagged" x e Rk, pk(x) $ w'a and x is never put in y, and (iii) Rk n y

is finite.

Since the "naïve" attempts at satisfying requirements (lk) and (3k) described above

would interfere with the termination of the "tagging" process, we modify them

slightly as follows: The value of F(k, t) represents an attempt to put into y an

element of wk—{JjÉk R¡, and that of T7(A:, t) an attempt to put into y, pk(z) for

some z e w'a for which pk(z) $ [Ji<k R¡. These attempts will fail only if (1)

Wk^UiSk R, or (2) pk(w'a)ç\Jj<k Rt. In the first case, wk n /£(U/s* R¡) n y'

which is finite, so that either wk is finite or wk n y^ 0 ; in the second case,

pk(w'a) n y'^i\Jj<k Rj) n y which is finite, so that either pk(z) is undefined for

some z e w'a or /»fc(z) e y for some z e w'a. Thus in either case, the relevant require-

ment is satisfied anyway.

We proceed to the formal construction and the proof (by induction on k) that

all requirements are eventually satisfied. Define F(k, t), G(k, t), H(k, t) and auxil-

iary recursive functions n(k, t), r(k, t), x(i, k, t), z(i, t), v(k, t), s(k, t) as follows :

Stage 0. For all k and i, let F(k, 0) = G(k, 0) = H(k, 0)=n(k, 0)=r(k, 0)

=x(i, k, 0)=z(i, 0) = v(k, 0)=s(k, 0)=0. Let y°={0}.

Stage t>0. For k>t and all i, let F(k,t) = G(k,t) = H(k,t)=n(k,t)=r(k,t)

=x(i, k, t) — v(k, t)=s(k, i)=0.

(a) ForOg/tgi, let

v = v(k, t) = 0u»W(m4- }J Rí = 0  & v = 0) V wl- Jj7?y ̂  0),

F(fc, 0 = (px)l{wt- [J^Rj = 0   & x = 0) V xe wg- JJ7?A.

(b) ForO^ik^i, let

x(0, k, t) = (px)(x e Rk-yt~1),

x(i+1, k, t) = ipx)(x > x(i, k,t) & xe Rk-yt~1)       i = 0, 1,...,

n = n(/t, i) = (pQtiMxft fc, i) = 0 v (4x(i, /t, i) > 0

& /»U(i, ^, i) e w'0) V i = i),

G(k, t) = x(n +1, fc, i)   if 7rix(n, M) = 0 V (^(n, k, t) > 0

&pix(n,k, t)ewa)

= 0   otherwise.

(c) Let

z(0, t) = (pz)(z i wa),

Z(Í+ 1,0  = ÍPZ)(Z > Z(i, t) & Z $ Wa) i = 0, 1, ...,

T7(0, 0 = PU(0, t).
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For0<A:áí, let

r = r(k,t) = 1+ 2(1+"(7,0),
i<k

s = s(k, t) = (pi)iir{^U(i, t) = 0 V MM!, t) > 0 & pkz(i, t) e Q7?;) V i = r\,

H(k, t) = pkz(s, t)   if 77Íz(í, í) > 0 & pkz(s, t)eÇ\ R'h
}<k

= 0   otherwise.

Finally, let y^y1^ u (\Jk±t{F(k, t), G(k, t), H(k, /)}).

Remark. The following easily verified facts are noted here for future reference :

(Rl) z(i, t) and x(i, k, t) are strictly increasing functions of i.

(R2) F(j, t)¥=0^ F(j, t)e(-]k<i R'k.

(R3) 77(7, 0#0 -* H(j, t) e C]k<j R'k.

(R4) (G(j, 0^0 & «=«(/ /)) -> Hx(n,j, t)=0vp{x(n,j, t) e wj).

(R5) G(7,í)^0^G(y,í)6^.

Lemma 2.1. For each k,

(a) limt F(k, t) exists,

(b) ifwk-{JjSk Rjï 0, then wkc\y+®.

Proof. Case 1. wk — ljysfc R¡= 0.

Then for all t, w{-{JjSk R¡= 0, so that v(k, t)=F(k, t)=0. This proves (a), and

(b) holds trivially.

Case 2. Otherwise. Let

t* = (pt)(t ^k & wi- y^Rj # 0),

x* = (px^xew^- (J 7{A.

Then for all ^r*, u(A:, t) = t* and F(A:, i)=;c*, which proves (a). Part (b) follows

since x* e wk and x* = F(k, t*) ey''cy.

Lemma 2.2. (a) lim( 77(0, t) exists,

(b) not w'a<0y'.

Proof. Let z* = (pz)(z e w'a), so that (z)z<z.(Et)(z e w'0). Let

t* = (pt)(z)2<2.(zewta).

Then for all t^t*, z(0, t) = z*.

Case 1. z* i domainp0. Then tto(z*)=0 for all /, so that for all tZt*, Z7(0, 0

=7r'0(z*)=0, which proves (a). Part (b) holds since z* e w'a implies w'a^ domain p0.

Case 2. Otherwise. Then for some u, nol(z*)>0 and pl(z*) =Po(z*)- Let u*

= max(r *, u). Then for all t ̂  u*, 77(0, t) =p0(z*) =/?0(z*), which proves (a). Part (b)

holds since z* e w'a while p0(z*) = H(0, u*) e yu'<^y.

In the following, c(a) denotes cardinality a.



436 LOUISE HAY [June

Lemma 2.3. T/lim¡ T7(/ 0 exists for allj^k, then

(a) limt n(k, t) exists,

(b) c(Rk n y') = 1 + lim( n(k, t),

(c) noty'<kw'a.

Proof. This will be divided into steps (2.3.1)—(2.3.5), each of which has as

hypothesis
lim( 77(7> 0 exists for ally á k.

(2.3.1) There is a stage u>k such that

(x)[(x e Rk & (Et)t>u(Ej)(x = F(j, t) V x = H(j, t))) -> x £ y«]

(i.e., after stage w no new elements of T?fc are added to y to satisfy requirements

(It) or (3,) for any/)

Proof. Let « be chosen so large that for all j^k and all r ̂  w,

#(/ 0 = lim¡ HÜ, 0 = d   (which exists by the hypothesis),

F(j, t) = lim( F(7, t) = Fj     (which exists by Lemma 2.1).

If x=0, the conclusion holds trivially since xeyu for all u. If x^O, xe Rk and

(x=F(j, 0 V x=T7(/ 0) then by (R2) and (R3) it follows that k £j, while by choice

of u, t>u implies

x = F(/ 0 = Ft = F(j, u) V x = H(j, t) = H, - T7(/ «).

This, together withyá/r-c«, implies x e y".

Let wfc=the least u satisfying (2.3.1). We define by simultaneous induction on t

two partial recursive functions tk(i) and/fc(i), as follows:

tk(0) = uk+l,      fk(0) = (px)(x e Äfc-y"*).

Now assume that for all/< /, tk(j) and fk(j) have been defined.

Case 1. (Et)(t>tk(i- l) &(j)j<iHÁ(J)>0 &pífk(j) f wa)). Then define

4(0 = the least such t,

fk(i) = Oxx)(x > A(i-l) & XET^-yV»-!).

Caie 2. Otherwise. Then ?fc(i) and fk(i) are undefined. It is evident that tk and /.

are strictly increasing functions of i, that tk(i) > i for all i e domain tk, and that

domain tk = domain/, is an initial segment of E.

Let ok denote this common domain,

(2.3.2) ok is finite and nonvoid.

Proof. <7t7¿ 0 since/c(0) and rfc(0) are defined, so that 0 e ok. We will show that

if ok is infinite, then w'a has an infinite r.e. subset. Now if ok is infinite, then ok = F

and fk(i) is defined for all i e E. We claim the following then hold:

(a) pkfk(i) is defined for each i e E,

(b) Pkfkij) e < for each i e F.
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To prove (a), assume that pkfk(i*) is undefined for some i*. Then for all t,

7rfc/fcO'*) = 0, so that for i = i'* +1, Case 1 of the definition of fk(i) fails to occur and

fk(i) is undefined, contradicting the assumption that ak = E. To prove (b), assume

that for some i*, pkfk(i*)ewa. Then for all sufficiently large t, ■ntkfk(i*)>0 and

Pkfk(i*) 6 wi. Let

t* = G**X' > tk(i*) & «£/*(**) > 0 & pifk(i*) e wi).

Nowi'*<ífc(i'*)<í*, and t>tk(t*-l)>t*-I ^ t^t*, so that

(t)(t > tk(t*-1) -> (Ej)i<t.(pkfk(j) e wi)).

Thus for i*=r*, Case 1 above fails to occur and fk(t*) is undefined, again contra-

dicting the assumption that ak=E.

The set {pkfk(i) | i e E} is evidently r.e. ; it is infinite because of (a) and the fact

that/»,,; is 1-1 and/fc strictly increasing; and by (b), it is a subset of w'a. Hence o-k

being infinite is inconsistent with the hypothesis that w'a is immune.

Let Mk denote the largest element of ak.

(2.3.3) (Ej%ck(fk(j) $ domainpk V pkfk(j) e wa).

Proof. Assume not. Then for all j^Mk, fk(j) e domain pk and pkfk(j)$wa.

Choose t > tk(Mk) so large that Trkfk(j) > 0 for ally'á Mk. Then for this t, we have

(JUuMcfnU) > 0 & pif^iwi),

so that Case 1 of the definition of fk(i) occurs for i = Affc+l. Then Af^+l eok,

which is a contradiction.

Let mk = (pj)i^k(W) i domain pk vpkfk(j) e wa).

(2.3.4) (OiSmÁOm.MaÁxÜ, K t) = fk(j))

(i.e., for all sufficiently large t,

Rk-y'-1 = {fk(0), ■ ■ ■ ,fk(i), x(i+1, k, t), x(i+2, k, t),...}).

Proof. By induction on i and t — tk(i) :

(a0) For i=rfc(0), we have

A(0) = (px)(xeRk-y-«)

= x(0,k,uk+l) = x(0, k, tk(0)).

(b0) Now assume that/fc(0) = x(0, k, t) for some rä tk(0). Then

fk(0) = (px)(xeRk-yt-i)

and, since Rk-yt<=:Rk—yi~1, proving fk(0)=x(0, k, t+ 1) reduces to showing

that/,(0) ^ y'-y'"1. Assume otherwise. Then/k(0) e {Jut {F(j, t), G(j, t), H(j, t)}.

Case l.(EJUt(fk(0) = F(j,t)yfk(0) = H(j,t)). Then, since fk(0)eRk and

t^tk(0)>uk we deduce from (2.3.1) and the definition of uk that/fc(0) eyut£yf_1,

which contradicts the induction hypothesis.
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Case 2. Otherwise. Then (Ej)jit(fk(0) = G(j,t)). Now OEy'"1 and /fc(0)

=x(0, k, t)eRk-yt~1 implies /fc(0)^0, so that by (R5), fk(0)eR¡. Since

RjC\Rk=0 for j^k, this implies j=k. So fk(0) = G(k, t) = x(n+ I, k, t) where

n=n(k, 0^0. Then by (Rl), fk(0)=x(n+ 1, k, t)>x(0, k, t)=fk(0), which is a

contradiction.

Now assume that 0<i^mk and that the statement holds for i—1, i.e., that

it)títk«-iÁJ)i<i{x{J, K t)=fk(j)).
(a,) For l = tk(i), recall that x(i,k,t) = (px)(x>x(i-l,k,t) & xeRk-yt~1).

Since tk(i)> tk(i— 1), the induction hypothesis yields x(i— l,k, t) =fk(i— 1), so that

x(i, k, tk(i)) = (px)(x >fk(i-l) & XE7vk-y M»-*) =/,(;)

by definition of fk(i).

(b() Now assume that x(i, k, t)=fk(i) for some t^tk(i). Then

A(0 = ipx){x > x(i-l,k,t) & xe Rk-yt~1)

= (/xx)(x > A(i-l)  & XE^-y'"1)

by the induction hypothesis (on i) and the fact that t ̂  tk(i) > tk(i-1). Then to prove

that fk(i) = x(i, &, r+1) it again suffices to show that fk(i) ^yt — yt~1. Assume the

contrary; then

fk(i)e{J{F(j,t),G(j,t),H(j,t)}-

Case 1. (Ej)tsi(fk(i)=F(j, t)vfk(i) = H(j, t)). Then since t^ tk(i)> tk(0) = uk we

obtain as in (b0) above that fk(i) e y^^y1'1, which is a contradiction.

Case 2. Otherwise. Then (F/')ysi(/c(z) = G(7, 0)- Again as in (b0) above, we con-

clude that j=k and that fk(i) = G(k, t)=x(n+1, k, t) where n=n(k,t). From

fkij) = x{i, k, t) we then deduce i=n+ 1 or n(k, t) = i-1. By (R4) above, G(k, t)

=fkii) 7e 0, which, together with the induction hypothesis that

fkii- O = ■*('- L k, t) = x(n, k, t),

implies that irkfk(i— l)=0v/»'fc/c(i— 1) e wa. We show this leads to a contradiction.

Now by definition of tk(i), Trkwfk(i— 1) > 0 and, since irk is a nondecreasing function

of t, t ̂  tk(i) implies irkfk(i -1 ) > 0. It follows that />fc/fc(i -1 ) =pkfk(i -1 ) e w(0 ç wa ;

then by definition of mk, mk^i—l, which contradicts the assumption that

0 < i ií ffîfc. This completes the induction and the proof of (2.3.4).

(a) lime n(k, t) = mk,
(2.3.5)

(b) Rk^y' = {fk(0),...,fk(mk)}.

Proof. (2.3.4) for i=mk yields

iÍ)iSmJ,t)tit^mk){x{j, k, t) = fk(j)).
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Recall that mk=(pi)(fk(i) i domainpkVpkfk(ï) e wa), and choose v so large that

(0   «lMJ)>0for0£j<mk,

(ii)  v^tk(mk)>mk,

(iii) iffk(mk) e domain pk, then nvkfk(mk) > 0 and plfk(mk) e wva.

It is then evident from the definition of n(k, r) that n(k, t)=mk for all t^v, which

proves (a). To prove (b), note that by (2.3.4), v^tk(mk) implies

U)iSmk(t)av(fk(j) = x(j, k, t)),

so that {fk(0),...,fk(mk)}^Ç\t±vRk-yt=p[tRk-yt=Rkc\y'. To prove the

converse inclusion, assume xe7?fcny'. Then xeRk—yv'1, which implies

x=x(j, k, v) for some/ But it is easily seen by induction on/? that if

x = x(mk+p+1, k, v)       then       x = G(k, v+p) e yv+p s y.

So x=x(j, k,v)eRk-y only if;gmk, in which case x e {/.(0),..., fk(mk)}.

Proof of Lemma 2.3. Part (a) follows from (2.3.5a). Part (b) follows from

(2.3.5b). To prove (c), note that by (2.3.5b), fk(mk) e y while by definition of mk,

either fk(mk) £ domain pk or pkfk(mk) e wa.

Lemma 2.4. Assume that 0<k and that for all j<k, lim(n(/ t)=m¡ exists and

c(Rjr\y')=l+mj. Then

(a) limt H(k, t) exists,

(b) not w'a<ky.

Proof. Let 7? = 1 + 2/ < k l + m¡ and let z0,..., zB be the least 7? +1 elements of w'a.

Choose v so large that

(0  (t)tiv(j)j<k(n(j>t) = mf),

(Ü) (z)2sZs(z ew0-»zew£).

Then (íWOíSbW/V, t) = R & z(i, t)=zi).

Case 1. (i)lâR(zte domainpk & pk(z() e \Jj<k Rj). Let

V*  = (pt)t>v(l)iSR("k(z,)  > 0).

Then for all fàv*, s(k, t) = R and H(k, t)=0, which proves (a). To prove (b), note

that the hypothesis implies that

c{{lJkRi)ny') = c(U(Riny')) = 2l+mi = R.

But {pk(z0), ■. ■,Pk(zR)} is an (7?+l)-element subset of {Jj<kRj, which then

cannot be contained in y', i.e., for some z¡ e w'a, pk(z{) e y.

Case 2. Otherwise. Let i* = (pí\sr(zí $ domainpkVpk(z¡) e f]j<k R'}).

Subcase 2.1. z¡. ̂  domainpk. Let v* = (jj.t)t>v(i)i<i.(tTk(zi)>0). Then for all

t^v*, s(k, t) = i* and 7r^z(i'*, f)=0, so that H(k, t)=0, which proves (a). Part (b)

holds, since z¡. e w'a, so that w'a ̂ domain pk.

Subcase 2.2. Otherwise. Then z(. e domainpk and pk(zi.)eÇ\}<kR'j. Let

v* = (pt)t>v(ï)tsA"k(Zi)>0). Then for all t^v*, s(k,t) = i* and H(k,t)=pk(zi.),

which proves (a). Part (b) follows since z,. e w'a while /?k(z¡.) = 77(A:, v*) e y"' £y.
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Lemma 2.5. For each k, the following hold:

(Ak) not w'a<ky',

(Bfc) noty'<kw'a,

(Ck) lim¡ T7(A:, 0 exists,

(Dk) limf n(k, t) exists,

(Ek) c(Rk n y')= 1 +limt n(k, t).

Proof. By induction on k. Lemma 2.2 gives (A0) and (C0). Lemma 2.3 then gives

(D0), (E0), and (B0), which completes the base step. Now assume 0<k and that

(At), (B;), (Cy), (F)}, and (E¡) hold for all j<k. Then (Ck) and (Ak) follow by

Lemma 2.4, which by Lemma 2.3 implies (F)k), (Ek), and (Bk). The conclusions thus

hold for all k.

Lemma 2.6. y has no infinite r.e. subset.

Proof. Let wk be an infinite r.e. set.

Case 1. wk^\Jj<k Rj. Then wk n y'£{Jf¿k (R¡ n y') which by parts (D) and

(E) of Lemma 2.5 is a finite union of finite sets. So wk n y' is finite, which implies

Wfc Hy# 0.

Case 2. Otherwise. Then wk — {Jj¿kR¡^0, which by Lemma 2.1(b) implies

wkC\y¥=0.

End of proof of Theorem 2. Let X= <wó> e Az — E. The set y constructed above is

evidently r.e., since effective instructions were given for generating it. Let

Y=(y'y; then by Lemma 2.5(A) and (B), Y^X and Z$ Y. By Lemma 1.1, this

implies y <£ E, so that y is infinite. Then by Lemma 2.6, y is immune and Y e A2.

This completes the proof of the theorem.

Note that the instructions for generating y are uniform in a, so that an index of

y can be effectively computed given one of X; i.e., there is a recursive function n

such that if X= (w'a} e A2 - E and Y = <vv¡,<a)>, then Y e Az and Y is incomparable

to X. In [3], a sequence Xx, X2,... of elements of A2 is called r.e. if there is a

recursive function/such that Xi = iw'fif; for each i e E, and a Gödel number of/is

called an index of {Xt}. A set P of elements of A2 is called productive if there is a

recursive function/such that if {A',} is an r.e. sequence of elements of F with index

e, then (w'fie)} eP-{X^. Using standard methods of "interweaving priorities,"

the techniques of Theorem 2 can be modified so as to effectively produce, given

an r.e. sequence {I,}çA2-£, an element Ye Az which is incomparable to Xt for

each i. This leads to a proof of

Theorem 3. Every maximal set of mutually incomparable elements of Az—E is

productive.
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