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1. Introduction. If X and Y are separable metric spaces and /: X-*- Y is a

map, the branch set B, is the set of points at which / fails to be a local homeo-

morphism. The map / is called proper if for each compact set W<^ Y, f~ \ W) is

compact; in particular, if X is compact then/is proper. A proper map/: X-> Y

is called monotone if for each y e Y, f~l(y) is connected (it may be empty). Most

authors require that a monotone map be onto, but we consider the more general

situation (only) in (2.1) and (2.2).

Part of the interest in monotone maps is due to the monotone-light factorization

theorem [32, pp. 141-142] proved independently by Eilenberg and Whyburn: If

/ : X-> Y is proper and Y is locally compact, then there exists a unique factoriza-

tion f=hg, where g is monotone (onto) and « is light (i.e., for each y e Y,

dimf~1(y) f¿ 0). If X and Y are differentiable «-manifolds, and /: X-+ Y is

differentiable, a natural question thus arises—under what conditions can g and «

also be chosen to be differentiable? If / is C3, then one condition is that

dim (Z?r)^«-3; in fact, « is a diffeo-covering map in this case [8]. In an effort to

answer this question more generally, and to characterize the map g of [8] more

fully, it seems worthwhile to study the differentiable monotone maps/ : Mn -> Nn

on «-manifolds (without boundary).

A contractible, compact «-manifold with simply-connected boundary is called a

homotopy n-cell. A compact subset A of an «-manifold Mn is acyclic if it has the

integral Cech cohomology groups of a point; A is homotopy cellular if there exist

homotopy «-cells Ak<^Mn such that (~]kAk = A and Ak + 1(=-'mt(Ak); it is cellular

[3] if, in addition, each Ak is an «-cell. If Mn and N" are «-manifolds without

boundary, a proper map/ : M" -* Nn is acyclic (resp., homotopy cellular, cellular)

if, for each y e Nn,f~1(y) is acyclic (resp., homotopy cellular, cellular).

Standing hypothesis. Whenever the statement of a theorem refers to a Cm map

/without specifying its domain and range, it is understood that/: Mn^Nn is

proper, where Mn and Nn are Cm connected (separable) n-manifolds without boundary

(«i = 0,l,...).

The main theorem of this paper, proved in (4.4) and (4.6), is:
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1.1. Theorem, (a) If f is Cn monotone and dim(B,)<n¡2, or

(b) iff is Cn acyclic and dim(Bf) g n-2,

then fis homotopy cellular; ifn^=3, 4, or 5, then fis cellular.

In fact the sets Ak may be chosen to be Cn manifolds. Examples are given

((2.5), (2.12), (2.14), and (4.5)) to show that the hypotheses on dim(B,) are required.

The simplicial analog is trivially true (4.8).

The factorization theorem of [8] thus implies:

1.2. Corollary. If f is Cm (m^n^4) and dim(77;)<n\2, then there exists a

unique factorization f=hg, where g : Mn -> Kn is a Cm homotopy cellular map

(cellular if n=£4, 5), Kn is a Cm manifold, and h : Kn -y Nn is a Cm diffeo-covering

map.

For «=1,2, and 3 (1.2) is easily seen to be false.

The results in this paper all deal directly with differentiable monotone or quasi-

monotone maps (§2), with two exceptions. In §5 a question of Hopf about essential

maps of S3 into S2 is answered (the monotone map involved is, of course, the

Hopf fibering). And a theorem on quasi-monotone maps (2.6) leads naturally to

(1.3), stated below and proved in (2.10).

If / : Mm -y Nn is C1, let Rk(f) be the set of points at which the Jacobian

matrix (derivative map) of f has rank at most k. If fis Cm'k, then [25, p. 173,

Theorem 2] dim(f(Rk(f)))^k; iff is proper, then f(Rk(f)) is closed in Nn.

1.3. Theorem. Iff is C2 and Mn and Nn are oriented, then for each yeNn

—f(Rn-2(f)),f~1(y) has at least |deg/| components.

See (1.6) below; [28, p. 128, Theorem (4.3)] can be viewed as a consequence of

(1.3). The complex analytic function f: S2 -y S2 defined by f(z) = z2 shows that

f(Pn-2(f)) cannot be replaced by a subset of smaller dimension.

1.4 Conventions. Throughout this paper manifolds are separable and without

boundary, unless otherwise specified. The tangent bundle of Mn is denoted by

TMn, and the tangent space at x e Mn by TxMn. Coordinates are written up x\

a map is a continuous function, and the composition of two functions is denoted

by gf or g of

Cech homology and cohomology are consistently used, Z (resp. Zp) is the group

of integers (integers mod /»), and the (weak) direct sum is denoted by 2- The

boundary of a set X is denoted by bdy X or dX (in case X is a manifold with

boundary), the interior of X by int X, the closure of X by X or Clf.^], and the

restriction of the map/to X by f\X. The distance between two points is d(x, y),

and S(x, e)={y : d(x, y)<e}. The «-sphere is denoted by Sn, euclidean «-space by

En, the origin vector in En by 0, and the closed ball Cl[5(0, 1)] in En by Dn.

1.5. Remark. Except in §5 each theorem deals with Cm (m è 1) manifolds and a

Cm map/: Mn-yNn. Since each property of hypothesis and conclusion is in-

variant under Cm diffeomorphisms, we may as well suppose that each of Mn
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and Nn is a C°° [22, p. 41] complete Riemannian manifold [22, p. 20] with induced

triangulation [22, p. 101, (10.6)] and distance function induced by its Riemannian

metric [17, p. 166, (3.5)].

Furthermore the differentiability hypotheses in Thorn's Transversality Lemma

[29, p. 26] can be improved [8, p. 376, (2.6)]. See also [8, p. 376, (2.5)].

1.6. Oriented Cm manifolds are defined in [28, p. 115, (3.7)] and characterized

in [28, p. 116, Theorem 3.3]. For connected oriented Cm manifolds Mn and TV",

and a proper Cm map/ : Mn -> Nn, the degree deg(f) is defined and characterized

in [28, p. 127, Theorem 4.2]. In particular, it is meaningful [28, p. 127] to talk of

the sign of the Jacobian determinant / at a point x, i.e., /(x)>0, =0, or <0.

2. General properties of monotone and quasi-monotone maps. If A' is a locally

connected generalized metric continuum and F is a separable metric space, a proper

map / : X-> Y is called quasi-monotone [32, p. 152] if and only if, for each region

í/c y and component V off~1(U),f(V)= [/.Both monotone onto maps and proper

open maps are quasi-monotone, and conversely, any quasi-monotone map / can

be (uniquely) factored /= hg, where g is monotone (onto) and « is light open [32,

pp. 151-155]. On locally connected continua the quasi-open maps of [26, p. 110]

are quasi-monotone, and [34] is devoted to a study of these maps in case X and Y

are 2-manifolds. Some results on differentiable quasi-monotone maps are given

in [6], [30], and [31].

A C2 proper map/: Mn->Nn with dim(Z?;) :£ « - 2 is quasi-monotone [6,

p. 380, (3.2)]. More generally, if dim B,^n—I and the Jacobian J^0 or J=0

locally at each point of M", then [6, (3)]/is quasi-monotone.

2.1. Lemma. Let f be C2, let « ̂  2, and let y(i) be distinct points in Nn -f(Rn _ 2(f))

(i= 1, 2). Then

(a) Each component off~1(y(i)) is a point, or a C2 embedding of a closed interval

orS1.

(h) If f is monotone or quasi-monotone, then f~1(y(i)) has a finite number of

components.

(c) Iff~1(y(i)) has a finite number of components, then there area C2 diffeomor-

phism p of an open subset of Nn onto S1xEn~1, and a C2 diffeomorphism a of

L1xEn~i onto f~1(p~1(S1 x En'1)), where L1 is the disjoint union of copies of

S\ pfa(S1x{t})cSix{t}, and P(y(i)) e S1 x{0} (i=l,2; te E^).

Proof. We may suppose (1.5) that M" and Nn are C00 manifolds. For each

x sf~\y(i)), there are [7, p. 87, (1.1)] C2 diffeomorphisms A of a neighborhood U(x)

of x onto En and p of a neighborhood V(y(i)) of y(i) onto En such that the map

g=pfX'1 has g'(xy, x2,..., xn)=x' (j= 1, 2,..., n- 1); conclusion (a) follows.

If/is either monotone or quasi-monotone, then for each (x1, x2,..., x" "x) e En ~1

the map « : F1 -*■ E1 defined by ¿»"(x1, x2,..., xn)=«(x") is monotone. Since /is

proper, conclusion (b) follows.

For (c) let Q.u be the components of f~\y(i)) (j=l,2,..., kt; ¿«1,2). If
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^í,í=W where x £ Rn-X(f), let Fu be any (n — l)-subspace of the tangent space

TyU)Mn; otherwise, by the argument of the second and third paragraphs of [8,

p. 378, (3.1)] there is a unique (n-l)-subspace Fu<=TmMn such that f*(TxMn)

= ru for each x e Qw.

There is a C00 diffeomorph A<= JVn of E1 with y(i) e A; thus [24] there is a C°°

diffeomorph U<=Nn of En with y(i) e U (i = 1,2). Let a : S1 -> U be a C°° em-

bedding such that y(i) e a(Sx), a(Sr) has trivial normal bundle, and TyU,a(Sx) is

transverse to Tu (y'=l, 2,..., k¡; /'= 1, 2). Let K be a tubular neighborhood of

«(S^-WO, J>(2)} in t/-{Xl),X2)}; by [29, p. 26] there is a C2 diffeomorphism

/I of W onto itself such that A is the identity map off V and / is transverse

regular [29, p. 23] on A~1(a(S1) — {y(l), y(2)}); thus / is transverse regular on

A-x(a(Sx)).

Let p be a C2 diffeomorphism of a tubular neighborhood of A~1(a(S1)) onto

,S1x£'1-1 with P(A~1(a(S1))) = S1 x{0}. Let £>0 and o be as given by [8, p.

376, (2.7)]; then each component of L1=f-1(A~1(a(S1))) is (C2 diffeomorphic to)

S1. We may as well suppose that S(0, e) = En~1, and (c) follows.

2.2. Theorem. Let f be C2 monotone.

(1) Iff is onto, then (i) for each y e Nn, f'x(y) does not separate Mn if «2:2,

and (ii) for each y e Nn—f(Rn_2(f)),f~1(y) is a point or a C2 embedding of[0, 1].

(2) If f is not onto, then (i) B, = Rn_x(f) = Mn (so that dim(f(Mn))<,n-l

[28, p. 47, Theorem 3.1]), and (ii)f-\Nn-f(Rn.2(f))) is the space of a fiber bundle

over a (not necessarily connected) («— l)-manifold with fiber S1 and projection f

Proof. If «=1 and/is onto, then conclusion (l)(ii) is satisfied; if/is not onto,

then M1 = S1 and/is constant. Thus we may suppose than «^2.

Let Ax (respectively, A2) be the subset of Nn—f(Rn-2(f)) consisting of points y

with/" l(y) a point or a C2 embedding of a closed interval (resp., the empty set or a

C2 embedding of S1). By (2.1)(a) Ax u A2 = Nn-f(Rn.2(f)). For each y ef(Mn)

-f(Rn-2(f)), there is a point yx^y, yx e Nn-f(Rn-x(f)) [28, p. 47, Theorem 3.1];

let p and o be as given by (2.1)(b) and (c) for y and yx.

For y e Ax and S1 the component of L1 containing f~1(y), the restriction map

is not constant, and since it is monotone, it is thus essential. Thus for each t e 5(0, e)

the map pfo\(S1x{t}) is essential, and hence onto. Since/is monotone, L1 = S1;

moreover, for each u e S1 x S(0, e), (pfa)'1^) is not homeomorphic to S1. As a

result Ax is open.

For y e A2 nf(Mn) and S1 a component of L1, the map pfaKS1 x {0}) is con-

stant, and it follows as above that pfa\(S1x{t}) is constant for each t e S(0, e).

Thus A2 is also open. Since/is proper, f(Rn_2(/)) is closed; since dim(f(Rn_2(f)))

gii-2 [25, p. 173, Theorem 2], Nn-f(Rn.2(f)) is connected. Thus either Ax= 0

or A2= 0.
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Suppose A2= 0. Then Nn-f(Rn-2(f))^f(Mn), and, since/is proper,/is onto.

Let « ̂  2, and let w e Nn. Since / is monotone onto, it is quasi-monotone [32,

pp. 151-152], so that each component of Mn—f~l(w) has image Nn—{w}. Thus

/_1(w) does not separate Mn. Hence / satisfies conclusion (1).

Suppose Ax= 0. If Mn^B,, then there exists an open set Q on which/is a

homeomorphism; since dim(/(Z?„ _ x(/))) ^ « - l,f(Q) meets Nn-f(Rn_x(f)), and

a contradiction results. Thus conclusion (2)(i) holds in this case. In particular/is

not onto. For y ef(Mn)—f(Rn_2(f)) the Jacobian matrix of the restriction of

pfa to a submanifold {xJx^O, e) of SxxS(0,e) has maximal rank. Also each

restriction map pfa\(S1x{t}) is constant, and thus pfa(S1xS(0, e)) is C2 diffeo-

morphic to S(0, e), and pfa is the natural projection map. Conclusion (2)(ii)

follows.

2.3. Remarks. Note that if Mn and A^1 are oriented, then [28, p. 127, Theorem

4.2] a C2 monotone map/ is onto if and only if the degree of /is ±1, and is not

onto if and only if deg/=0.

If/ is C" monotone and open, then/is a homeomorphism. This statement is an

immediate consequence of the structure theorem for proper open maps [7, p. 91].

2.4. Remark. Let Mn and Nn be C°° manifolds, and let/: Mn->Nn be a

proper map C°° except on f~1(yi) (i= 1, 2,..., k). By the argument of [7, p. 95,

(3.3)] there is a homeomorphism « : Nn -> Nn such that «/is Cx and the restric-

tion «|[An-lJf=1 {y,}] is a C°° diffeomorphism.

2.5. Examples. Differentiable monotone maps which are not acyclic (integral

Cech cohomology). Let p e Sk, q e Sm, reSk + m; and let Skv Sm he the subset

({p} x Sm) u (Sk x{q})^Skx Sm. There is a C°° diffeomorphism g of SkxSm

-(SkwSm) onto Sk + m-{r}; define/: SkxSm-*Sk + m by f(Sk\/Sm) = {/} and

elsewhere/is g (topologically, / is the smash product map). Then/is C° except

onf'1^), and by (2.4) it may be supposed to be Cœ. In particular, we observe that

the hypothesis dim(B,)^n — 2 is not sufficient to imply that / is acyclic if «^4

(see (1.1)).

2.6. Theorem. Iff is C2 quasi-monotone, then there exists a natural number k such

that: (a) for every y e Nn, /_1(v) has at most k components; and (b) for every

y e Nn—f(Rn_2(f)), f~x(y) has exactly k components, each a point or a C2 em-

bedding of [0, 1].

Suppose that Mn and Nn are oriented, (c) If the Jacobian determinant J^O or

/¿O at every point of Mn, then k= |deg/|. (d) 7//is monotone, then /^0 or J^O

at every point.

Proof. If/: M1 -» N1 is a proper quasi-monotone map, then either M1 = N1

= Ey or M1 = N1 = S1. In the former case/is monotone onto; in the latter case

f=hg, where g : S1 -> S1 is monotone onto, and « : S1 -> S1 is a finite-to-one

covering map [32, p. 153, (8.4)]. In either case the conclusions of the theorem are

satisfied, so that we may suppose that « ̂  2.
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See (1.6). Let y(i) e Mn-f(Rn-2(f)) be distinct points, and let p and a be the

maps given by (2.1)(b) and (c) with Pfa: L1 x 7in_1 -> S1 x E*"1. Since

pfoKVxm-.VxW^S'xQ}

is quasi-monotone [32, p. 152, (*)] and p(y(i)) e S1 x{0}, tr_1(/-1(X0)) nave the

same number of components (/'= 1, 2). Conclusion (b) follows.

Suppose that uef(Rn^2(f)) and/_1(¡/) has (at least) k+l components, Ut

(i= 1, 2,..., k+ 1). There exists an open «-cell E about u such that the Ut are

contained in different components of f'1(E); since/is quasi-monotone, for each

yeE,f~x(y) has at least k+l components. Since dim(/(7?n _ 2(/))) ^ « - 2 [25,

p. 173, Theorem 2], a contradiction of the choice of k results. Thus (a) is proved.

Now suppose that Mn and Nn are connected and oriented. Since dim(f(Rn _ x(f)))

Un-I, there exists y e Nn—f(Rn-X(f)); f~1(y) consists of exactly k points, and

if 7^0 or 7^0 at every point of Mn, then k= |deg/| [28, p. 127, Theorem 4.2].

Suppose that M" and A™ are connected and oriented, and that/is monotone.

If/is not onto, then 7=0 ((2.2), (2i)); thus we may suppose that/is onto, and thus

quasi-monotone [32, p. 151]. Suppose that there exist points xx and x2 in Mn at

which 7>0 and 7<0, respectively. Since / is monotone, f(x¡) $/(/?„_i(/)). Let

p and a be the maps given by (2. l)(b) and (c) for y(i)=f(x¡). Since/is monotone

onto, L1 = S1 and pfaKS1 x{0}) is monotone onto. Its derivative does not change

sign, so the Jacobian determinant of pfa does not change sign on S1 x{0}, and a

contradiction of the choice of the x¡ results. Thus (d) is proved.

2.7. Remarks. Conclusion (d) cannot be extended to quasi-monotone maps

[6, (12)] (but see [6, (3) and (4)]). The same example shows that conclusion (c) is

false if 7 changes sign.

In case « = 2 (2.6) is related to [34, p. 665, (3.8) and (3.9)] and to [34, p. 671,

(4.7)]. One can show by example that (2.6) is false for C°° quasi-monotone proper

maps/: Mm-^Nn where m>n; in particular, the number of components of

f'1(y) for y a regular value (i.e., y e Nn-f(Rn-x)) is not independent of y.

If/is C2 quasi-monotone, then it follows from (b) and [8, p. 371, (2.1)] that the

restriction map f\[Mn-f~1(f(Rn-2(f)))] has the factorization of [8].

2.8. Corollary. If Mn and Nn are oriented, f is C2, dim(Bf)^n-2, and

deg/= ± 1, then fis monotone (onto).

Proof. Since dim(5;)^«-2, the Jacobian determinant JäO or J^O; thus

[28, p. 127, Theorem 4.2] for each y e Nn-f(Rn-x),f~1(y) consists of exactly one

point. Since/is quasi-monotone [8, p. 380, (3.2)], in (2.6) k=l, so that/is mono-

tone onto.

2.9. Remark. Iff is C2 with dim(Br)^n-2 and Nn is orientable, then Mn is

orientable.

Without the hypothesis that dim(7i/)á«-2, the last statement is false (2.15).

The covering of the projective plane is a counterexample to the converse statement.
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Proof. See (1.5). Suppose M* is not orientable; then there is a simplicial map

a : S1 -> Mn around which the orientation changes, and we may suppose that

«(S1) n Bh= 0. The orientation of Nn changes around fa, and a contradiction

results.

2.10. The proof of (1.3). See (1.6). We may suppose that deg/>0. We first

prove the theorem in case «= 1. Let ye N1, and let J^N1 be a closed interval such

that _veint7 and the endpoints ar of J (r=l,2) are regular values [28, p. 47,

Theorem 3.1]. Let As (s= 1, 2,..., m) be the components of f'1(intJ); since

deg/>0, each As is a closed interval. From [28, p. 127, Theorem 4.2] deg/=2s

deg(/|y4s), and to prove that f_1(y) has at least deg/components, it suffices to

prove the corresponding result for each map f\As : As-*intJ. Since/is proper,

f~1({a1, a2}) n As consists of the two endpoints of As. If, for either r, f~1(ar)

consists of both endpoints, then deg(f\As)=0, and the conclusion is vacuously

satisfied; otherwise, deg(/|^4s)= ± 1 and/(^s)=7, so that again the conclusion is

clearly satisfied.

Now suppose that « S 2, and there is a point y e Nn —f(Rn _ 2(f)) such that

f~1(y) has less than deg/components. Let yx be a regular value of /; f~1(y1)

consists of a finite number y of points, and by [28, p. 127, Theorem 4.2] j^ deg/

In particular, yx^y. Let o and p be the maps given by (2.1)(c) for v and yx; then

pfa :L1xEn-1->S1xEn-1 with pfa(Lx x^cj1 x{i} for each teEn~1.

Let Ls (s= I, 2,..., m) he the components of L1. Since S1 x{0} contains a regular

value of pfa (namely, p(yx)), orientations can be defined on S1 and Ls so that

2s deg(p/cr|(Z.sx{0})) = deg/ Since the theorem is true for «=1, o~1(f~1(y))

(and therefore/_1(j)) has at least deg/components.

Analogous questions for simplicial maps are discussed by Hopf in [14].

2.11. Theorem. Let Mn be compact, let «a2, let f be C2 quasi-monotone, and

let V be an m-dimensional vector space over afield F. Let k be the natural number of

(2.6), and let r = dim(Hn-\Mn; V)).

(a) Then Hn~1(f-1(y); V) = 0 for all but at most mk + r points y e Nn.

(h) If Mn is orientable or if F=Z2, then Hn-1(f-1(y); V) = 0 for all but at most

m(k— 1) + r points y e N"; in particular, iff is monotone onto, then

i*: Hn~1(Mn; v)^ 2 #"~1C/~1Cy); V),
yeN"

(induced by inclusion) is an epimorphism.

Proof. Suppose that there are distinct points ys (s= 1, 2,..., /) such that

Un - Hf \ys) ; V) # 0; let Y= (J,/" Kyt). Since 77" " \ Y; V)x L 77 » " \f~ \ys) ; V),
dim(77"_1(F; V))^t; from the exactness of the cohomology sequence of (Mn, Y),

dim(77n_1(F; F)/imag i*)^t — r, so that dim(kerj*)^t-r. Since / is quasi-

monotone,^— Fhasat most & components (2.6); thus dim(Hn(Mn, Y; V))-¿mk.

Since kerj* is a subspace, mk^t — r, i.e., mk + r^t.
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If Mn is orientable, or if F=Z2, then Hn(Mn; V)xV, Hn(Mn, Y; V) is iso-

morphic to the direct sum of at most k copies of V, and ker7* is isomorphic to the

direct sum of at most k—l copies of V; thus m(k— 1) + r^t. If in addition/is

monotone, theny* is an isomorphism, so that i* is an epimorphism.

The theorem is a generalization of [8, p. 372, (2.3)]. Example (2.14) with V=Z3

shows that the orientability hypothesis is required in (b).

2.12. Example. No analogous statement can be made for Hk(Mn) with k=l,2,

...,« —2. Let g : S1 xS1 -> S2 be the map given in (2.5) (for k = m=l), and

let pi : S^-xS1 -> S1 be the projection maps (/=1,2). Let M{ be the mapping

cylinder of pt (a solid torus), let A^ be the mapping cylinder of a constant map on

S2 (i.e., a cone over S2), and let M3 (resp., N3) be the natural union of the Af,

(resp., Nt), i= 1, 2; then M3 and N3 are each diffeomorphic to S3. Let/ : M3 -y N3

be the map induced by g. Since g is C°°,/is Cm except at f~1(qi), where q¡ (i= 1, 2)

are the poles of A3 as a suspension over S2. From (2.4) we may suppose that/is

C°°. For uncountably many points y e N3, f'1(y) is homeomorphic to S'vS1;

thus H1(f~1(y);Z2)xZ2®Z2 while H\M3;Z2) = 0.

Analogous examples are obtained from the other maps of (2.5), and suspensions

of them.

2.13. Remark. Let Mn be oriented, let f be C1 monotone onto, let G be a principal

ideal domain, and let Cech homology and cohomology with compact supports be

denoted by Hk and Hk, respectively. Then

(a) 0 —> ker/* —> W(M»; G)-^> m(Nn;G)—^0

and

(b) 0 —y Hk(Nn; G) -^* Hk(Mn; G) —► coker/* —> 0

are split exact sequences (k = 0,l,...).

By Sard's Theorem [28, p. 47, Theorem 3.1] the hypothesis of [18, p. 639,

Theorem 3] is satisfied, and the remark is an immediate consequence of (the proof

of) conclusion (1) ofthat theorem ((1) follows from the naturality of the Poincaré

Duality (cap product) isomorphism).

2.14. Example. The hypothesis that Mn is oriented is necessary. Let S1 be the

canonical circle in the projective plane P2, and let/: P2 -^ S2 be the monotone

(onto) map for which B, = S1 and/(51) is a point. From (2.4) we may suppose that

/is C°, while (a) is not satisfied for k = 2. See also (2.9).

2.15. Example. In view of (2.11) it is natural to ask whether in (2.13 (b)) for

k = (n- 1) coker/* is 2ye«n Hn~1(f~1(y); G), i.e., is the sequence

0—y Hn~1(Nn;G)-^ Hn-\Mn;G)^ 2  Hn-1(f~1(y); G)—>0
SE*'»

exact? The following example provides a negative answer.
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Let T2 be the torus, let g : T2 -> S2 be the map given in (2.5) for k = m = l,

and let/ : F2 x S1 -> S2 x S1 be defined by f(u, v) = (g(u), v). Then

2    H2(f-1(y);Z2) = o,
yes2 xS1

while 772(F2 x S1 ; Z2) is not isomorphic to 772(52 x S1 ; Z2).

3. Technical lemmas.   The results of this section are needed for §4.

Given C manifolds Mm and Nn, let C'(Mm, Nn) be the space of C maps

/: Mm -> Nn with the fine Cr topology (r = 0, 1,...). (The fine and coarse C

topologies are defined in [22, pp. 25-28].) Let 9îr(A7m) be the set of those open

neighborhoods U of the identity map I e Cr(Mm, Mm) such that, if x e U, then x is

a diffeomorphism [22, p. 29, (3.10)].

3.1. Lemma. Given the hypotheses of [22, p. 40, (4.7)], let UeW(En), and let

Z^En be a bounded open neighborhood off(V). Then there is a C diffeomorphism

yëI/such that

(a) xf—h satisfies the conclusions of [22, p. 40, (4.7)],

(b) x 's the identity map I offZ, and

(c) x({t}xEn-m) = {t}xEn-m for each teEm.

Proof. In [22, p. 35, (4.1)]/ may be chosen to approximate / in the coarse C

topology.

With g, n, and 6 as in the proof of [22, p. 40, (4.7)] and <x>0, define

Aa = {xen-\&): \x-g(n(x))\ < a},

and choose a>0 such that the closure Cl[,4a n 7r_1(7r(/(F)))]c:Z. Let X=Aa,

and let Y=En-C\[AB n ^-^(/(F)))] for any ß with 0</3<«.

Let {<p, 1 — <f>} be a C°° partition of unity dominated by the open cover {X, Y}

of En. We may suppose that U is sufficiently small that if y e U, then x(/(F))<=^l5.

For any Cr map<f>: En -> £nthe map y^, defined by x*(x) = ^(x)-^(x) + (l -^(x))-x

agrees with I off the compact set X; thus there is a neighborhood F of I in the

coarse Cr topology such that, if </< e V, then x<t 6 U.

In the proof of [22, (4.7)] define 0 : En -> En by </.(x) = x+g(7r(x))-g(7r(x)) for

xen~l(0), and </>(x) = x elsewhere. If S is chosen sufficiently small, and g0 is

chosen to be an e-approximation to g0 in the coarse C topology, then >p will be

in V; moreover ip({t} x En~m) = {t} x En~m for each t e Em. The map x = x* ¡s tnus

a C diffeomorphism satisfying conclusion (c).

By its definition x is the identity off X; since <p is the identity off 7r_1(7r(/(F))), it

follows that x is also. Thus x satisfies conclusion (b) also. Since x(f(r/))Cj^e and x

satisfies conclusion (c), x(f(V)) n F= 0 ; since ¡/> = Z off 7r_:L(7r(/(F))), xf=M,

and one may readily verify that x/ satisfies the conclusions of [22, (4.7)].
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3.2. Lemma. Let Lp and Mn~p be C" manifolds, let Ve9lr(Lp x Mn'p), and let

F" (q^n-p) be a C (r= 1, 2,...) submanifold ofLpxMn'p transverse to Lpx{t}

for each t e Mn~". Then there exists ijieV such that:

(a) xf>(Fq) is a C°° submanifold of Lp xMn~p;

(b) tfi(Fq) is transverse to Lp x {t} for each t e Mn'p;

(c) i/>(Lpx{t})=Lpx{t}for each teMn~p.

The manifold Mn'p may be a single point, in which case the transversality

condition is vacuous; thus the lemma includes [8, p. 376, (2.5)].

Proof. Given (x,t)eFq, xeLp and teMn'p, let (PxQ, axß) be a C°° co-

ordinate pair, where P (resp., Q) is an open neighborhood of x (resp., t) in Lp

(resp., Mn'p) and a (resp., ß) is a C°° diffeomorphism of P (resp., Q) onto

a(P)cEp (resp., ß(Q)<=En'p) with a(x) = 0 (resp., ß(t)=0). Since F" is transverse

to Lpx{t} at (x, t), there is a coordinate plane Ep+q~n<=Ep (if q=n-p, then

gp+q-n 1S the orig¡n g of Ep) and a neighborhood Jcp of (x, r) such that

T^PxQ and the projection of axß(T) onto £p+«-,lx/:"-,,is a Cr embedding.

Let it: En~yEq = Ep+q-nxEn-p be projection. Let (R, y) be a C coordinate

pair of Fq, i.e., y is a C diffeomorphism of R onto y(R)^E", with (x, t)e R, R

compact, and R <= T.

The sets R for (x, t) e Fq cover F", and so there is a locally finite subcover i?¡

(/= 1, 2,...); let P¡, Q., Th <xu ßu y¡, nt be the sets and functions thus defined. Let

Ui = yi(Ri)clEq, and let V, and Wt be open subsets of U, such that fF¡<= K¡, F,c:f7í,

and the sets yf l(^¡) cover T" [22, p. 7]. Let Xt be an open subset ofLpxMn~p such

that Ä'jCPjX Qi, yr\Vi)<=Xi, X n r«c=yf H^i). and tne sets % are locally finite

(/=1,2,...).

We may suppose that V is sufficiently small that, for each </< e F, conclusion (b)

is satisfied, <p(Xi)<^Pi x Q{, and 7r¡ o (a¡ xj8¡) o ¡/< o yr1 ¡s an embedding. Moreover

we may suppose that F is a basis neighborhood (AT/, S¡) in [22, p. 26]).

We will define feK (/'=0, 1,... ; <p0 = F) such that (1) ^¡ agrees with i/if_i off

A"i, (2) AOJiayfW)) is a C°° submanifold ofPxM»-', and (3) k(Lpx{t})

=Lpx{t} for each / e Mn~p. Because the A¡ are locally finite, the limit map ip is a

well-defined Cr map; since each ^ is in the basis neighborhood V, if> e V also. The

remaining properties of <j> follow immediately. (Note that </<, -4> <p in the fine C

topology necessarily!)

The construction of the maps i/>¡ is by induction; >p0 = I; suppose that 0t_x has

been defined. Let /= (o¡¡ x ft) o >p¡_x o y-1t let Zc£" be a4 xft(</i¡_ 1(Ai)), and let

X e U be given by (3.1), where U e Jfr(En) is to be defined. For x <£ A¡ let ^¡(x)

= </ij _ x(x) ; for x e Xu let

«Mx) = (a, x ßi) -1 o x o («j X ft) o ̂  _ x(x).

Then ^ is a well-defined CT map, and if the U of (3.1) is sufficiently small, ^ e K

Properties (1) and (3) follow readily. Since X n T'cy-^jy,), it follows from (1)
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and the inductive hypothesis that

&((UyrW)-yfTO)

is a C° submanifold ofZ'xM"-'; that

is Cœ also follows from (3.1)(a)(3) and (a)(4).

3.3. Lemma. Let L" be a compact Cr manifold (p=l,2,.. .,«—1; r=l, 2,...

or r = co; dLp=0), and let Ax^LpxEn-p (i'=l, 2,.... m) be C submanifolds

with dA¡ = 0 such that :

(a) each Ai is a closed subset ofV xEn'p,

(b) each At is transverse to LP x {?} (for each t e En~p),

(c) each Ai n (V x {0}) = K{ is a compact Cr manifold, dK{ = 0, and

(d) the A¡ are mutually disjoint.

Then there isaC diffeomorphism r¡ ofV xEn~p onto itself such that r¡(KxEr) = Ai

andr¡(Lpx{t})=Lpx{t} (teEn~p; i= 1, 2,..., m).

The manifolds A¡ may have different dimensions; a useful case is that for which

Ai = dBi and dim(ZF)=«.

Proof. See (1.5). We may suppose that L" is a C° Riemannian manifold and

that Lp x En~p has the product Riemannian metric. By (3.2) we may suppose that

r = 00; let qi = dim(Ai).

For each (x, t) e Ak there is U(x, t) open in Lp x En~p such that (x, t) e U(x, t),

U(x,t)r\Ak is a Cx diffeomorph of int(Da«), and U(x,t)r\ Ax= 0 for i^k.

The sets U(x, t) cover {JiA¡; let Ur (r= 1, 2,...) be a locally finite subcover, where

Ur meets (only) Akm. Since the normal bundle of UT n Akm in Ur is trivial, there

is a tubular neighborhood VT of U, n /4Wr) and a C00 diffeomorphism pr of Fr

onto int(Z)^<'->)xFn"',it(r); let tt> be the projection of Dq"w xEn~Q"^ onto Fn"«)c<r).

For each se£""'1«'), p"1(7r_1(s)) is an open ^fc(r)-cell, and by choosing Vr suffi-

ciently small about Ur n Akm, we may suppose that p~1(tt~1(s)) is transverse to

Lpx{t} for each teEn~p. For each (x, r) g Vr, let Jr(x, t) be that set p-\ir-\s))

containing (x, t).

Let t' (j= 1,2,..., «— p) be the usual coordinates on En~p, and let 3/3F be the

corresponding vector fields in LpxEn~p. For (x, t) e Vr let Pr(x, t) be the

((«-/>)-dimensional) vector space orthogonal to the tangent space

U^,/)n(Fx{/}))

in F<x>()7r(x, t). Since

TM)(LpxEn-p) = Fu,()yr(^0 + ^,()(Lpx{i}),

it is the direct sum PT(x, t) © TlXit)(L" x {t}). It follows that orthogonal projection
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of Pr(x, t) onto Tlxt)({x}xEn~p) is an isomorphism; let uUr(x, t) be the vector in

Pr(x, t) which projects onto d\dt'(x, t). Then u,fT is a C°° vector field with domain

Vr (/= 1,2,...,«-/»; r=l, 2,...).

Let V0 = (LpxEn-p)-\JiAi, let ft (r=0, 1,...) be a Cm partition of unity

dominated by Vr, and let

00

v, = ß0 d¡dt> + J ßrU,.r        (7=1,2,...,«-/»).
r = l

Then the projection of each v,(x, t) on 7,u>t)({x}x£n"!') is djdt'{x,t), and r,-

agrees with uUr on Vr n Akir). Let <¿JiS (7=1,2,...,«—/»; ie^xf"1') be the

one-parameter group of diffeomorphisms associated with t>; [21, p. 10, (2.4)], and

define r, by

r¡(x, t) = (•pn-p.t"-" ° •■■ o <f>2,t* ° <Px,lx(x, 0), 0»

where f=(r1, t2,.. -, rJl_p) and composition is denoted by °.

3.4. Lemma. Let f: Mm-y Nn be a Ck proper map (k=l, 2,... ; m^n). Let

Ki(i=0, 1,..., s) be compact Ck submanifolds of Nn such that 8Kt = 0, f is trans-

verse regular on K¡, Ki<=K0 = Kg, and the Kt with i > 0 are mutually disjoint ; let p

be a Ck diffeomorphism mapping a neighborhood of Kg onto KpxEn~p with

p(x) = (x, 0)for xeKE.

Then there exist e>0 and a Ck diffeomorphism w of f~1(Kp)xS(0, e) onto a

neighborhood off~ X(K§) such that for h = pfw and each t e S(0, e) and i — 0,l,...,s:

(a)h(f-\Kop)x{t}) = Kopx{t},

(b) « - \Ki x S(0, e)) =/" l(*i) x 5^(0, e), and

(c) « is transverse regular on dK¡ x {t}.

(d) IfKi = dFf with F?^Kg, then

h-\FfxS(0,e))=f-1(Ff)xS(0,e).

By [29, p. 23]/_1(A'i) is a Ck manifold; the dimensions of the A"¡ may be different.

Proof. The proof of [8, p. 376, (2.7)] actually yields the stronger analogous

result for maps /: M"-yNn with q^n; the dimension of L is then p+q — n.

Thus there are £>0 and a Ck diffeomorphism a off_1(Kg) x S(0, e) onto a neigh-

borhood of f-\Ki) such that p/a(/-1(Ä'op)x{r}) = A'0px{r} for each re 5(0, e).

For e sufficiently small pfa is transverse regular on Kf x{t}(t e S(0, e);i= 1,2,.. .,s),

and thus is transverse regular on K? x S(0, e). Hence, for each i, either

(1) a~1(f~1(p~1(KixS(0, e)))) is a C manifold /4¡ which is a closed subset of

o-Kf-Kp-^KSx S(0, e)))) =f-x(K0)x S(0, e)

and is transverse to/_1(A'á') = {r} for each t e S(0, e), or (2) it is empty.

There is a Ck diffeomorphism r, off~x(KS) x 5(0, e) onto itself given by (3.3) for

all the i satisfying ( 1). Let a» = or, ; it follows readily that w has the desired properties.
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3.5. Lemma. Let f : Mm^Nn be Ck (k^p+l), and let A : Dp -> Nn be a Ck

embedding with f transverse regular on X(DP) (p<ri). Then there is a Ck diffeomorph

2 of S" such that A(Z)p)c£, the normal bundle ofl* is trivial, and f is transverse

regular on 2.

Proof. See (1.5). There is a Ck embedding p of Dn (and, in fact, of £(0, 1 + e) <= En

for some e>0) which extends A [24]. Thus there is a Ck embedding v : S" -> Nn

such that X(DP)<=V(S") and the normal bundle of v(Sp) is trivial.

Let F be a tubular neighborhood of v(Sp)-X(Dp) with Tn X(DP)= 0 ; by the

proof of [29, p. 26] there is a Ck diffeomorphism A of Nn onto itself such that A

is the identity map off T, and /is transverse regular on A'1(v(Sp)-X(Dp)). Then

'L=A~1(v(Sp)) has the desired properties.

3.6. Remark. The proof of [8, p. 382, (3.5)] actually shows the following:

given/ : Mn -*- Nn a Cm proper map (m, «^2) with dim(Z?,)^« — 2, there exists a

Cm proper map « : Mn->Nn such that (a) Bh<=B„ (b) h(Bh)^h(Rn_2(h)), and

(c) for each ye Nn, f'x(y) and h~1(y) have the same number of components.

Moreover, given any positive real-valued map 8 defined on Mn, h may be chosen so

that, for each x g Mn, d(h(x), f(x)) < 8(x).

4. Differentiable acyclic maps. This section deals with sufficient conditions for

a monotone map to be acyclic or cellular.

4.1. Theorem. Z//i's C3 monotone with dim(Bf)Sn — 2, then the homomorphism

f* : vx(Mn) -» TTx(Nn) is an isomorphism (onto).

The condition on B, is necessary for/, to be a monomorphism ((2.14) and

(4.5)).
Proof. If »=1 or 2, then / is a homeomorphism; thus we may suppose that

«^3. See (1.5). The map/is onto by (2.2).

Since dim(/(7?n_i(/)))gn-l [25, p. 173, Theorem 2], we may choose the base

points x and y for the fundamental groups so that/(x) = v and y <£f(Rn -i(/)).

The group Ttx(Nn, y) is generated by the polyhedral circles through y, and thus by

the C°° embeddings y : S1 -> Nn with y e y(S1). We may suppose that/is trans-

verse regular on y(Sx) [29, p. 26]; as a result f~1(y(S1)) is C2 diffeomorphic to S1

[29, p. 23], and defines an element of ^(Afn, x). Thus /"* is an epimorphism

(independent of hypothesis on Bf).

Now we prove that/* is a monomorphism. For each x e M" let S(x) = r(f(x)),

where r is a positive continuous function on A^" less than the number of [17,

p. 165, (3.4)]; let « be the C3 map of (3.6). If we use the unique geodesic joining

f(x) to «(x) in the normal neighborhood U(f(x), 8(x)) of [17, p. 165, (3.4)], a

homotopy between/and « is constructed, so that /*=«*. As a result, we may as

well suppose that/=«, i.e., that f(B,)<=f(Rn_2(f)), so that [25, p. 173, Theorem

2] dim(f(Bf))Sn-2. Since/is monotone, B,=f-l(J(B,)).

Let a e TTx(Mn, x) with /*(a) = 0. As above a has a representative p. : S1 -> Mn
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which is a polyhedral embedding, and we may suppose that p(Sx) n B,= 0. Let

D2 be the unit 2-disk with boundary S1. Since fp is homotopic to a constant map,

there exists a map F : D2 -> Nn such that the restriction F\ S1 =f¡x. There exists a

simplicial approximation G to F such that G(S1) nf(Bf)= 0 and /_1G|iS'1 is a

representative of a also. Let è, be a C3 diffeomorphism of Nn onto itself such that/

is transverse regular on each (open) simplex of i~1G(D2) [29, p. 26 and p. 27]

(e.g., see the proof of [9, Lemma 3]); choose | sufficiently near the identity that

f~1$~1G\S1 is again a representative of a. Since f(B,)^f(Rn-2(f)), the 1-skeleton

of £-\G(D2)) is disjoint from f(B,). For each closed 2-simplex t of ¿"^(D2),

/_1(t) is a (topological) embedding of a 2-manifold with boundary homeomorphic

to S1 [29, p. 23]. If/_1(r) is a 2-cell for each such 2-simplex t, then a = 0. Thus

we may suppose that for some t, /_1(t) is not a closed 2-cell; we will obtain a

contradiction.

There is a C3 diffeomorph E<^Nn of E2 such that t^Eand/is transverse regular

on E; we may suppose (3.2) that E is a C° submanifold of A™. Since bdy r c\f(Bf)

= 0, there is a C°° embedding A of the closed unit disk D2 into £ such that

A(D2)c¡nt r and (r-A(int D2)) r\f(B,)= 0 ; by [29, p. 26] we may suppose that

/is transverse regular on X(dD2). Then/_1(r) is a 2-cell if and only iff~x(X(D2))

is also a 2-cell, so that we may as well suppose that t = A(7>2); let J2=f~x(r).

Let 2 be the diffeomorph of S2 given by (3.5), and let « be the C3 map given by

(3.4) for/, Kg=Z s=l, and K? = t. Let g : J2xEn~2 -> D2xEn~2 be the restric-

tion of«. Then gisaC3 monotone onto map, g(J2 x {t}) = D2x {t} for each teEn~2,

g'\dD2 xEn~2) = dJ2 xEn~2, «^3, dim(7i9)^« — 2, and (since g is transverse

regular on each dD2 x{t} and f(Bf)<=f(Rn_2(f)))

g(Bg) c g(Rn-2(g)) n (int(772)x£"-2).

Let gt : J2x {t} -> 772 x {r} be the restriction of g, and let 77(g¡) be its branch set.

Since

g(Rn-2(g)) n ((int 7)2) x {r}) = gt(R0(gt)),

dim(gt(R0(gt)))^0 [25, p. 173, Theorem 2], and

^(5fe))c^9)n((int7)2)x{i}),

we have dim(gt(B(gt)))^0.

Suppose that there is a t e En~2 such that, for each ye D2, H1(g~1(y, t);Z2)=0.

It follows from the Vietoris Mapping Theorem [1] (cf. (4.3)) applied to gt that

H1^2; Z2) = 0; since J2 is not a 2-cell, a contradiction results. Thus, for each

teEn'2 there exists at least one ye D2 such that H\g~\y, t);Z2)^0. By [8,

p. 372, (2.3)] the number of such y is at most dim(//1(72; Z2)). A contradiction is

now deduced as in the proof of [8, p. 372, (2.4), Second Case]. (Since g is monotone,

that proof can be simplified somewhat—in particular, paragraphs three and four

can be omitted.)
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4.2. Lemma. Let f be Cp + 1 monotone with dim(B,)^n-2, let «ä3, and let Bp

be a Cp+1 diffeomorph of a p-ball in Nn such that f is transverse regular [29, p. 23]

on both B" and the boundary dB". Then f~1(B") andf~1(dBp) are simply connected

forp^3, andf~ 1(B2) is a closed2-cell.

Proof. The map/is onto by (2.2)(2)(i); by [32, p. 138, (2.2)] f'\Bp) andf-\dBp)

are connected (for p ä 2) manifolds [29, p. 23].

For p<n let 2 be the Cp+1 diffeomorph of Sp given by (3.5), and let « be the

Cp + 1 map given by (3.4) for/ Kg=Z and Kx = dBp. Since « - \\nt(Bp) x S(0, e))

=f-1(int(Bp))xS(0,e), it follows from (4.1) that 771(/-1(int(Z?")))=0; also from

(4.1)771(/-1(int(Zi'l))) = 0. Since f-^BB") is collared in f-\Bp) [22, p. 51, (5.9)] (or

[20, p. 23, (3.6)]), TTx(f~\Bp))=0. Thus f~\B2) is a 2-cell.

For />ä3 it similarly follows from application of (3.4) to K0 = dBp that

nx(f-\8Bp)) = 0.
4.3. Remark. The Vietoris Mapping Theorem. If X and Y are compact metric

spaces, and / : X -*■ F is acyclic (integral Cech cohomology), then / induces an

isomorphism Hj(X; Z)xH'(Y; Z).

To obtain this form of the theorem from that given in [1] use the duality [16,

p. 141, (F)] between the Cech homology and cohomology groups H,(X; 7?i) and

H'(X; Z), where 7?i is the group of real numbers modulo 1, and the fact that the

modified Vietoris homology groups of [1] agree with the Cech homology groups

[1, p. 536].
4.4. The proof of (1.1b). The hypothesis that dim(Z7r)^«-2 is required (4.5).

Given any compact set X<=-Sn with Sn—X C°° diffeomorphic to En, it follows

from (2.4) that there is a C°° monotone onto map/ : Sn-> Sn with Sn - X mapped

diffeomorphically onto Sn—{p} and f(X)={/>}.

Proof. See (1.5); let yeNn, and let U be a neighborhood of f~1(y) in Mn.

Choose aC° diffeomorph Bn <= A"1 of the closed «-ball Dn c En such that y e int(Bn)

andf~l(Bn)<^ U; by the Thorn Transversality Theorem [29, p. 26] we may suppose

that/is transverse regular on BBn. Thus f~x(8Bn) is a connected (by (4.3)) C"

(«-l)-manifold [29, p. 23] which separates U, so that/-1(Zfn) is a Cn «-manifold

with boundary. By (4.3)/_1(Zin) is acyclic, and thus by (4.2) and the Hurewicz

Theorem is a homotopy cell. If «/3, 4, 5, it follows from the «-cobordism theorem

[20, p. 108] that/" Ha") is Cn diffeomorphic to the closed «-ball £>\ Since y and U

were arbitrary, / has the desired property.

4.5. Example. An acyclic (integral Cech cohomology) C™ map need not be

cellular. Let K3 be a polyhedral homology 3-sphere [26, pp. 216-218]; there is

[5, p. 797] a C°° manifold A73 homeomorphic with K3. By an elementary argument

there exists a 2-dimensional subpolyhedron X such that M3 — X is homeomorphic

to F3(for a more general result in this direction see [11] and [2]); by [23, p. 544,

(6.3)] M3- X is C<° diffeomorphic to E3. Define/ : M3 -* S3 by:f(X) is a single

point/», and /maps M 3-X C°° diffeomorphically onto S3-{p); by (2.4) we may

suppose that/is Cw.
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Since 0 = H2(S3;Z)xH2(S3,f(X);Z)zH2(M3, X;Z) [12, p. 266], it follows

from the cohomology sequence that H1(X; Z)=0. From (2.12) (or again from the

cohomology sequence), H2(X;Z) = 0. Thus/is acyclic.

If/is cellular, then there is a topological (closed) 3-cell A<=M3 such that

A'cint A; there is a bicollared [4, p. 85] 3-cell B^int A with A'cint B. From [3]

M3 — int A ( = E3 — int A) is a closed 3-cell, and thus M3 is homeomorphic to S3,

contradicting our assumption. Hence /is not cellular.

4.6. The proof of (1.1a). If «= 1 or 2, then/is a homeomorphism; thus we may

suppose that « ^ 3. We suppose that / is not acyclic, and will obtain a contradic-

tion. Then (1.1b) yields (1.1a).

There is a minimal integer p (p = 0, I,.. .,n) such that there are (i) a Cn sub-

manifold Tp <= Nn (dFp — 0 ) on which / is transverse regular, and (ii) a point

yx e F" with f~1(yx) not acyclic. By (2.2)(2i)/is monotone onto, and by (2.2)(iii)

/»^2. The set f'Hyù is the nested intersection of sets f'^Bf) (7=1,2,...),

where each Bf is a Cn diffeomorph of a /»-ball in F" and / is transverse regular on

8Bf. By the Continuity Theorem [12, p. 261] there exist/ and i (/= 1, 2,...,/»- 1)

with 7/i(/-1(ÄP);Z)^0; let Bf be denoted by 7ip. By (4.2) /»ä 3. From the defini-

tion of p the restriction map /1 /" X(8BP) : /" l(dÄp) -> 8BP is acyclic, so that by

the Vietoris Mapping Theorem (4.3) 8B" is a cohomology sphere.

By (4.2) 771(/-1(7ip)) = 0, so that f-^B") is orientable. Suppose that

Hi(f-1(Bp);Z) = o

for every i^pß. By the Universal Coefficient Theorem [19, p. 172, Example 2] the

same is true for every coefficient field F. From the Lefschefz Duality Theorem

Hi(f~1(Bp),f~1(8Bp); F) = 0 for every iúp/2, and from the cohomology sequence

and the fact that W(f- \SBP) \ E)=0 for;<p - 1, it follows that H<(/" \B") ;F) = 0

for all i; thus H\f~1(Bp); Z) = 0 for all i. As a result we may suppose that

(1) for some i ^ p\2,   H\f-\BP); Z) * 0.

Let Ap,? be the qih barycentric subdivision of the closed /»-simplex A". Given

any 8>0, there are q^ 1 and a Cn triangulation [22, pp. 76-77] y mapping A"-"

onto B" with mesh at most 8 (e.g., see [23, p. 546]); by applications of [29, p. 26]

(cf. the proof of [9, Lemma 3]) we may suppose that/is transverse regular on each

open simplex y(a) of each dimension, so that/_1(y(<r)) is a C manifold. From the

definition of p and the Vietoris Mapping Theorem (4.3), f'1(y(a)) is acyclic for

each closed simplex a with dima<p. Now from the Mayer-Vietoris sequence

H'(f-1(Bp);Z)x2z #;(/-1(y(T));Z), direct sum over the closed/»-simplices t of

Ap-9; thus/-1(y(r)) is acyclic for all but at most m closed /»-simplices t, where m

is the minimal number of generators of H*(f~1(Bp);Z).

Given any r,>0 and any closed /»-simplex t of Ap'q, y(r) has an analogous sub-

division of mesh at most r,, and it follows from the Continuity Theorem [12,

p. 261] that
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(2) /-1(y) is acyclic for all but at most m points y e int(Zfp), and

H*(f-\Bp);Z) «     2     H*(f-\y);Z).
j/eint(BP)

By (1) there is a point xeint(Zip) with 77i(/"1(x);Z)^0; since f~\x)<= B„

dim(Br)^i^pl2 [16, p. 137, (F)]. In case p = n a contradiction results, and thus

p = 3,4,..., or n—l.

Let S be the Cn diffeomorph of Sp given by (3.5) with Bp<=I,cNn, and let

h = pfw be the C map given by (3.4) for/ Kg=I,, and Kf = 8Bp; then « maps

f-\Bp)xEn-p onto BpxEn~p with «(/-1Cß")x{r}) = Zipx{r} and « transverse

regular on 3Z?px{r} for each teEn~p. By the preceding argument, for each

t e En~p there are at most m points y e int(Z?p) such that h~\y, t) is not acyclic.

Thus there is a ? such that the number of points y e int(Z?p) with h~\y, t) not

acyclic is maximal. We may as well suppose that r=0.

Let y i (j-1, 2,..., s) be these points in int(Z?p), and let Bf be Cn diffeomorphs

of a /»-ball in int(Äp) such that the sets Bf are mutually disjoint, y, e int(Zff ), and «

is transverse regular on 8Bfx{0). By (2) applied to Bf, H*(f'\Bf;Z))^0. Let

X be the Cn diffeomorphism given by (3.4) applied to « itself, with p the identity

map, Zi0p=2 x {0}, Kf = 8Bf x {0} (j= 1, 2,..., s), and Kp+ x = 8Bpx {0}. For each j

(j= 1, 2,..., s) and t e S(0, e), (hxY^Bf x{t})xf~\Bf), and so by (2) there is at

least one point y(j, t) eint(Bf) with («x)_1((f(7. 0> 0) not acyclic. By the maxi-

mally choice there is exactly one such point.

Thus for each / e 5(0, e) there is exactly one point a(t) e int(Z7f) x {t} with

(Ax)_1(«(0) not acyclic; by (1) and (2) H'^hxY^t))-^)^ for some iZpß.

The proof now parallels (but differs from) the last half of Case 2 in the proof of

[8, p. 372, (2.4)]. We next prove that the one-to-one function a : S(0, e) -» int(Zff)

xS(0, e) is continuous; suppose the contrary. Then there exist tr e 5(0, e) (r=l,

2,...) with tr -> t0, a(tr) ~* z, z^a(t0). Choose a C diffeomorph AP<='Z of the

unit /»-ball with z e int(A") x {t0}, a(t0) $ Ap x {t0}, and «x transverse regular on

dAp x {t0}. There exists £ > 0 such that «x is transverse regular on dAp x{t} for each

t e S(t0, £) ; let i be the diffeomorphism given by (3.4) for the restriction map

«x|(2 x S(t0, 0), P the identity map, 7^ =2 x {t0}, and Kx = dApx {t0}. If Ap x {t0} is

identified with Ap, then «xi maps (hx)~1(Ap) x{t} onto A" x{/} for each t in some

neighborhood of t0. Since a(t0)<£ Apx{t0}, (hx)~1(Ap) is acyclic by (2); since

a(fr) e int(^p) x {ir} for r sufficiently large, («x)_1(^p) is not acyclic by (2). From

this contradiction it follows that a is continuous, and thus a homeomorphism into.

We may suppose that Bf is the closed unit />-ball Dp; let e : DpxS(0,e)

-> D" x 5(0, e) be the restriction of «x, and let n : Dpx 5(0, e) -*■ Dp be projection.

Since a(t) e int(Dp)x{t}, we may suppose (by replacing e by a smaller number if

necessary) that there exists ->?>0 with \x-tra(t)\ >r¡ for all x e 8DP and / e 5(0, e).

For each <f>,0^</>^7¡, let

A* = {(x, i) : \x-na(t)\ ^ (f>   and   te 5(0, e)}.
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If 7i(0, <f>) is the closed ball of radius <f> and center 0 in E", the function ß :B(0, <f>)

xS(0, e)->A<j) defined by ß(x, t) = (x+-rra(t), t) is a homeomorphism. Each

A<s>r\(Dpx{t}) is a (geometric) /»-ball in int(Z»p)x{r}, so there is a canonical

deformation retraction of Dp x {t} onto Aó n (Dp x {/}), retracting along radial

lines from rra(t); these retractions define a deformation retraction of DpxS(0, e)

onto A#.

Fix <f> > 0, and let U and V be the one point compactifications of (Dp x S(0, e))

— int(A0) and dA¿, respectively, with added point u. Let P, Q, R, S, and Tbe the

one point compactifications of e~x(DpxS(0, e)), e'x(a(S(0, e))), e~1(A<t>),

e~\U-{u}), and e~x(V— {«}), respectively, with added point q.

Now

77*(P;Z) X H\P,{q};Z)   (k - 1,2,...).

Since iT1(.Dpx1S'(0)e)) is homeomorphic to f~1(Bp)xEn-p, Hk(P,{q};Z) is

isomorphic to Hk(f-1(B{y)xSn-p, f-\Bp)x{z};Z) [12, p. 266], where z is any

point of Sn'p. We may suppose that i is the largest integer for which 77*(f~ 1(B{r); Z)

#0, so that Hn-p+i(f-\Bp);Z)=0. From the exactness of the cohomology

sequence

</>*: H—p+V-\Bl) x S»-",/"1^) x{z}; Z) -> Hn-p+i(f-\Bp) x Sn~p; Z)

is an epimorphism (i/i is inclusion), and by the Künneth Formula the latter group is

isomorphic to HHJ-^BS); Z). Thus Hn~p+i(P; Z)¿0.

Since Fis a deformation retract of U, H'(U; Z)xH'(V; Z). From the Vietoris

Mapping Theorem (3.4) H'(U; Z)xHj(S; Z) and H\V; Z)xHj(T; Z), and hence

the inclusion map induces an isomorphism H'(S;Z)xH\T;Z). As a result

H%S,T;Z) = 0, and, by excision [12, p. 266], Hi(P,R;Z) = 0. Thus inclusion

induces an isomorphism H'(P;Z)xHi(R;Z). Since (f> may be chosen arbitrarily

small, it follows from the Continuity Theorem [12, p. 261] that H'(P; Z)

XH'(Q;Z). Thus i7n-p+i(ß;Z)^0.

From [16, p. 137, (F)] dim( Q- {q}) ä n-p + i. By the choice of Q,H\e-\e(x));Z)

=¿0 (i>0) and e~\e(x))^Q for each xeQ-{q}, so that Q-{q}^Be. Since the

branch set Be is homeomorphic to a subset of Bf, dim(B,)^n—p + i. Since/»/2ái

and/><«, n—p + i>n¡2, contradicting the hypothesis on dim^).

4.7. Remark. Under the hypotheses of (I. la) or (1 .lb), ifMn and Nn are compact

and simply connected, then f is a homotopy equivalence.

Proof. Since / is acyclic, it induces (4.3) isomorphisms /* : 7i"i(Afn;Z)

-> H\Nn; Z) for all /'. Because Mn and Nn are finite polyhedra [22, p. 101],/thus

induces isomorphisms /* : H¡(Mn;Z) -+ H(Nn;Z) for all i (use [19, p. 172,

Example 2] to prove the dual of [19, p. 81, Corollary 4.6]). The remark follows

from [13, p. 113,(3.8)].

4.8. Remark. Let Mn and Nn be triangulated manifolds, and let f : Mn -> Nn

be simplicial and proper with dim(Bf) ^ n — 1.
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(a) Iff is monotone onto, then f is a homeomorphism.

(b) Ifdim(Bf)¿n — 3, then fis a finite-to-one covering map.

Thus the analogs of (1.1), (1.2), and [8, p. 370, (1.1)] for simplicial maps are a

fortiori true.

Proof. Since dirniZ^) :£ « — 1, / maps each simplex a of Mn homeomorphically

onto f(o) ; thus / is light and dim(f(B,)) = dim(ZF). If dim(Bf)=« — 1, then there are

two «-simplices a and t with common (n— l)-face such that f(o) =f(r); thus, if/

is monotone, dim(Z?r) ̂  « — 2. From [10, p. 608, (1.2)] it follows that if/is monotone,

then Bf= 0, so that/is a homeomorphism. In case (b) it similarly follows from

[10, p. 608, (1.2)] that B,= 0, and since /is proper,/is a finite-to-one covering

map.

5. Answer to a question of Hopf. In [14] H. Hopf asked the following question:

If/ : S3 -^-S2 is essential, is it true that each y in 52 has dim(f~\yy ^ 1 [14, p.

284, (b)] ? In fact, is the first Betti number positive (d) ? An affirmative answer to

the first question and (essentially) to the second is shown below.

5.1. Theorem. If f : S3 -> 52 is an essential map, then, for every yeS2,

H1(f~1(y);Z) has an element of infinite order. In particular dim(f~1(y))^ 1.

Proof. By [15, p. 68, (6.3) and (6.4)]/=/?F, where F : 53 -> S3 is essential and/7

is the Hopf map p : 53 -> 52. Given y e 52, let D be a topological closed disk in

52 such that y e int D, and let p : D x 51 -* D and a : DxS1^ 51 be the pro-

jection maps. Since p is a bundle map, there exists a homeomorphism « of p_1(D)

onto DxS1 such that ph=p. We may suppose that y is the origin 0 of the plane,

that Dt is the closed disk of radius t about 0 (0^r^ 1), and that D=Dx.

Suppose that the (restriction) map ohF\f~1(Dt) : f~1(Dt)^ 51 is inessential

for some t, 0<t¿l; we may suppose that r=l. Let G : f~1(D1)x[0, 1]^5: be

the homotopy, where G(x, Y) = ohF(x) and G(x,0)=qeS\ Define 77 : f-\Dx)

x [0, 1 ] -> Dx x 51 by 77(x, u) = (f(x), G(x, u)) ; then 77(x, 1)=hF(x) and

H(f-1(Dx),0) = D1x{q}. Define maps Fs : S3-> S3 (Ogjgl) by: FS=F off

f-\Dx); and for xef-\bdy(Dt)), Fs(x) = h~1H(x,s+(l-s)t). Then Fi = F, Fis

homotopic to F0, and only one point of p~1(0) is in the range of F0; hence F is

inessential, contradicting the hypothesis.

As a result ahF\f~1(Dt) is essential (0<r^l). It follows that the Brushlinsky

group 771(f'1(Dt))^0 [15, p. 47]; moreover the diagram

n\f-\Dt))xH\f-\Dt);Z)

t»

ni(f-\Du))xHi(fLl(Duy,Z)

(where r>«>0, and i* and /# are induced by inclusion) commutes [15, pp. 49,

59, (C)]. It follows from [12, p. 221, (4.4)] and the Continuity Theorem [12, p. 261]

that H^f-^y); Z)^0; thus dim(/"Hy))^ 1 [16, p. 137, (F)]. From the Universal
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Coefficient Theorem (and the Continuity Theorem), H1(f'1(y);Z) has an element

of infinite order.

5.2. Remarks. More generally, if S3 is replaced by any finite polyhedron (e.g.,

a compact 3-manifold) and / is algebraically trivial [15, p. 67], the same proof

yields the conclusion. As Hopf points out, the strict analog of this theorem for

higher dimensions is false: define / : S* -» S3 by suspension of p : S3^S2;

there are two points jf for which f'1(y^) is a single point.

The author is grateful to the referee for suggesting improvements in the

presentation.
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