GENERIC SPLITTING FIELDS OF COMPOSITION ALGEBRAS

BY J. C. FERRAR(1)

Witt [7] proved that one can assign to each generalized quaternion algebra \mathscr{A} over a field K, a field $F(\mathscr{A})$ containing K which splits \mathscr{A} and has the property: if $F(\mathscr{A})$ splits a quaternion algebra \mathscr{B} over K then either \mathscr{B} is split over K or \mathscr{B} is isomorphic to \mathscr{A} . Amitsur [2] has generalized this result to obtain generic splitting fields for all central simple associative algebras of dimension greater than one over K (cf. Roquette [6]). In this paper we generalize the result of Witt in another direction, studying splitting fields of composition algebras of dimension greater than one over K of characteristic other than two. We assign to each such algebra \mathscr{C} , a field $F(\mathscr{C})$ containing K, prove that $F(\mathscr{C})$ is an invariant under isomorphisms, and prove

Theorem 2. Let $\mathscr C$ be a composition algebra of dimension greater than one over K. Then

- 1. $\mathscr{C}_{F(\mathscr{C})}$ is split.
- 2. If $F \supseteq K$ is any field, then \mathscr{C}_F is split if and only if there is a K-place of $F(\mathscr{C})$ into $F \cup \infty$.
- 3. If \mathscr{C}' is any composition algebra over K such that $\mathscr{C}'_{F(\mathscr{C})}$ is split, then either \mathscr{C}' is split or \mathscr{C} is isomorphic to a subalgebra of \mathscr{C}' .

Thus we generalize the result of Witt to quadratic and generalized Cayley algebras.

- I. Composition algebras. A composition algebra $\mathscr C$ over a field K is an algebra over K, with identity 1, together with a nondegenerate quadratic form N such that N(xy) = N(x)N(y) for any x, y in $\mathscr C$. The structure of such algebras has been completely determined and we refer to [1] or [4] for proofs of the following results.
- 1. A composition algebra $\mathscr C$ is alternative with involution $\tau: \alpha 1 + u \to \alpha 1 u$, for u orthogonal to 1 with respect to the nondegenerate, symmetric, bilinear form $N(x, y) = \frac{1}{2} \{N(x+y) N(x) N(y)\}$. Each $x \in \mathscr C$ can be uniquely represented in the form $x = \alpha 1 + u$, $\alpha \in K$, N(u, 1) = 0 and one has $N(x)1 = (\alpha 1 + u)(\alpha 1 u)$.

If V is a subspace of \mathscr{C} , we shall denote by V^{\perp} the orthogonal complement of V in \mathscr{C} with respect to N(x, y).

2. If \mathscr{B} is a composition subalgebra of \mathscr{C} (necessarily having associated quadratic form the restriction of N to \mathscr{B}), and $u \in \mathscr{B}^{\perp} \subseteq C$, $N(u) \neq 0$, then $\mathscr{B} + \mathscr{B}u$,

Received by the editors August 28, 1966.

⁽¹⁾ Research partially supported by the National Science Foundation Grant GP-6368.

 $\mathcal{B}u = \{bu \mid b \in \mathcal{B}\}\$, is a composition subalgebra of \mathcal{C} with structure determined completely by the structure of \mathcal{B} and the element $N(u) \in K$. $\mathcal{B}u$ is orthogonal to \mathcal{B} with respect to the nondegenerate form N(x, y) and hence dim $(\mathcal{B} + \mathcal{B}u) = 2$ dim \mathcal{B} .

- 3. Every composition algebra \mathscr{C} has dimension 1, 2, 4, or 8 over K and possesses composition subalgebras of dimension 2^e for all e such that $2^e \le \dim \mathscr{C}$.
- 4. If φ is an isomorphism from a composition algebra $\mathscr C$ with quadratic form N onto a composition algebra $\mathscr C'$ with quadratic form N', then $N'(x\varphi) = N(x)$ for all $x \in \mathscr C$.
- 5. A composition algebra is called split if there is $u \in \mathcal{C}$, $u \neq 0$, such that N(u) = 0. If \mathcal{C} is split, the form N(x, y) has maximal Witt index. If \mathcal{C} is not split, \mathcal{C} is a division algebra.
- 6. If $F \supseteq K$ is a field, the algebra $\mathscr{C}_F = \mathscr{C} \otimes_K F$ is again a composition algebra (over F) with associated quadratic form N_F , the natural extension of N to \mathscr{C}_F .

For convenience we shall denote by λx , $\lambda \in F$, $x \in \mathscr{C}$, the element $\lambda \otimes x$ of \mathscr{C}_F .

II. Construction of the generic splitting field. We assume now that $\mathscr C$ is an arbitrary composition algebra of dimension 2^k , k>0, over K of characteristic other than two. Let u_i , $1 \le i \le m+1$, $m=2^{k-1}$, be elements of $\mathscr C$ such that $N(u_i) \ne 0$ for all i, $N(u_i, u_j) = 0$ for $i \ne j$, and u_i , $1 \le i \le m$, span a composition algebra $\mathscr B \subseteq \mathscr C$. We take $L(\mathscr C)$ to be the rational function field in m-1 indeterminates x_2, \ldots, x_m over K, assuming as a convention that this will be K if m=1, and define

$$\lambda(u) = N(u_1)^{-1}N\left(\sum_{i=1}^{m} u_i x_i + u_{m+1}\right) = N(u_1)^{-1}\left(\sum_{i=1}^{m} x_i^2 N(u_i) + N(u_{m+1})\right)$$

in $L(\mathscr{C})$.

The generic splitting field $F(\mathscr{C})$ is defined as follows: $F(\mathscr{C}) = L(\mathscr{C})$ if \mathscr{C} is split; $F(\mathscr{C}) = L(\mathscr{C})((-\lambda(u))^{1/2})$ if \mathscr{C} is not split.

We show now that $F(\mathcal{C})$ is dependent, up to isomorphism, only on \mathcal{C} , and not on the choice of the u_i , proving first

LEMMA 1. Let $\mathscr C$ be a composition division algebra over K, u_i , v_i , $1 \le i \le m+1$ sets of elements of $\mathscr C$ satisfying the conditions above and such that u_i , $1 \le i \le m$, and v_i , $1 \le i \le m$, span the same subalgebra $\mathscr B$ of $\mathscr C$. Then $L(\mathscr C)((-\lambda(u))^{1/2})$ is isomorphic to $L(\mathscr C)((-\lambda(v))^{1/2})$.

Proof. By (2), $\mathscr{C} = \mathscr{B} + \mathscr{B}u_{m+1}$ and $\mathscr{B}^{\perp} = \mathscr{B}u_{m+1}$. Thus there is $b \in \mathscr{B}$ such that $v_{m+1} = bu_{m+1}$, $N(b) \neq 0$. Since bu_i , $1 \leq i \leq m$ span \mathscr{B} ,

$$\alpha v_1 + \sum_{i=1}^{m} x_i v_i + v_{m+1} = \sum_{i=1}^{m} \xi_i(bu_i) + bu_{m+1} = b \left(\sum_{i=1}^{m} \xi_i u_i + u_{m+1} \right)$$

for any $\alpha \in L(\mathscr{C})((-\lambda(v))^{1/2})$, where ξ_i , $1 \le i \le m$, are K-linear combinations of α and the x_i , $2 \le i \le m$, and conversely. For $\alpha = (-\lambda(v))^{1/2}$,

$$0 = N\left(\alpha v_1 + \sum_{i=1}^{m} x_i v_i + v_{m+1}\right) = N(b) N\left(\sum_{i=1}^{m} \xi_i u_i + u_{m+1}\right)$$

and, since $N(b) \neq 0$, $\xi_1^2 = -N(u_1)^{-1}(\sum_{i=1}^{m} \xi_i^2 N(u_i) + N(u_{m+1}))$. Since the ξ_i generate $L(\mathcal{C})((-\lambda(v))^{1/2})$ over K, it follows that there is an isomorphism of $L(\mathcal{C})((-\lambda(u))^{1/2})$ onto $L(\mathcal{C})((-\lambda(v))^{1/2})$ mapping x_i onto ξ_i , $2 \leq i \leq m$, and $(-\lambda(u))^{1/2}$ onto ξ_1 .

We shall obtain our results on the independence of $F(\mathscr{C})$ from the choice of the u_i , and on the invariance of $F(\mathscr{C})$ under isomorphism of \mathscr{C} , as corollaries to

THEOREM 1. Let u_i , v_i , $1 \le i \le m+1$ be elements of a division composition algebra \mathscr{C} , satisfying the criteria given for the u_i in defining $F(\mathscr{C})$. Let u_i , $1 \le i \le m$, span the subalgebra \mathscr{B} and let v_i , $1 \le i \le m$, span the subalgebra \mathscr{B}' . Then $L(\mathscr{C})((-\lambda(u))^{1/2})$ is isomorphic to $L(\mathscr{C})((-\lambda(v))^{1/2})$.

Proof. We consider the separate cases m=1, 2, or 4.

Case 1. m=1. The only one-dimensional composition subalgebra of \mathscr{C} is K1, hence $\mathscr{B} = \mathscr{B}'$ and the result follows from Lemma 1.

Case 2. m=2. If $\mathscr{B}=\mathscr{B}'$, Lemma 1 again yields the desired result. Thus we may assume $\mathscr{B} \cap \mathscr{B}' = K1$.

If 1, u are an orthogonal basis for \mathscr{B} , $v \in \mathscr{B}^{\perp}$, then 1, v also span a subalgebra, say \mathscr{D} , of \mathscr{C} . Taking $u_1 = 1$, $u_2 = u$, $u_3 = v$, $u'_1 = 1$, $u'_2 = v$, $u'_3 = u$, we see easily that since $\lambda(u) = N(u)x_1^2 + N(v)$, $\lambda(u') = N(v)x_1^2 + N(u)$, the mapping taking x_1 onto x_1^{-1} , $(-\lambda(u))^{1/2}$ onto $x_1^{-1}(-\lambda(u'))^{1/2}$ determines an isomorphism of $L(\mathscr{C})((-\lambda(u))^{1/2})$ onto $L(\mathscr{C})((-\lambda(u'))^{1/2})$.

Since \mathscr{B}^{\perp} , $(\mathscr{B}')^{\perp}$ are two-dimensional subspaces of the three dimensional space $(K1)^{\perp}$, there is $z \in \mathscr{B}^{\perp} \cap (\mathscr{B}')^{\perp}$, $z \neq 0$. By the above observation and Lemma 1, $L(\mathscr{C})((-\lambda(u))^{1/2})$, $L(\mathscr{C})((-\lambda(v))^{1/2})$ are isomorphic to fields $L(\mathscr{C})((-\lambda(u'))^{1/2})$, $L(\mathscr{C})((-\lambda(v'))^{1/2})$ respectively, where $u'_1 = 1 = v'_1$, $u'_2 = z = v'_2$. By Lemma 1 the latter fields are isomorphic and the result follows.

Case 3. m=4. Again, if $\mathscr{B}=\mathscr{B}'$ we are finished. To complete the proof we shall show the result follows in the event dim $(\mathscr{B} \cap \mathscr{B}')=2$, and shall give a method of reducing the case $\mathscr{B} \cap \mathscr{B}'=K1$ to the case dim $(\mathscr{B} \cap \mathscr{B}')=2$.

We show first that if \mathscr{D} is a composition subalgebra of \mathscr{B} of dimension 2 with orthogonal basis 1, a_1 , $a_2 \in \mathscr{B} \cap \mathscr{D}^{\perp}$, $a_3 \in \mathscr{B}^{\perp}$, and we take $u_1 = 1$, $u_2 = a_1$, $u_3 = a_2$, $u_4 = a_1 a_2$, $u_5 = a_3$, $u_1' = 1$, $u_2' = a_1$, $u_3' = a_3$, $u_4' = a_1 a_3$, $u_5' = a_2$ (such sets are easily seen to satisfy the necessary criteria for use in defining $F(\mathscr{C})$, then $L(\mathscr{C})((-\lambda(u))^{1/2})$ is isomorphic to $L(\mathscr{C})((-\lambda(u'))^{1/2})$. For $\alpha \in L(\mathscr{C})((-\lambda(u))^{1/2})$,

$$\alpha 1 + x_1 a_1 + x_2 a_2 + x_3 a_1 a_2 + a_3 = (\alpha 1 + x_1 a_1 + a_3) + (x_2 1 + x_3 a_1) a_2$$

and since, for $\alpha = (-\lambda(u))^{1/2}$, $N(\alpha 1 + x_1 a_1 + x_2 a_2 + x_3 a_1 a_2 + a_3) = 0$, we have $N((x_2 1 + x_3 a_1)^{-1}(\alpha 1 + x_1 a_1 + a_3) + a_2) = 0$. Since $(x_2 1 + x_3 a_1)^{-1} = (x_2^2 + x_3^2 N(a_1))^{-1} \times (x_2 1 - x_3 a_1)$ by (1) we have, carrying out the multiplication term by term, and converting,

$$N\left(\sum_{1}^{4} \xi_{i}u'_{i}+u'_{5}\right) = \sum_{1}^{4} \xi_{i}^{2}N(u'_{i})+N(u'_{5}) = 0,$$

where

$$\xi_1 = (x_2^2 + x_3^2 N(a_1))^{-1} (\alpha x_2 + x_1 x_3 N(a_1))$$

$$\xi_2 = (x_2^2 + x_3^2 N(a_1))^{-1} (x_1 x_2 - \alpha x_3)$$

$$\xi_3 = (x_2^2 + x_3^2 N(a_1))^{-1} x_2$$

$$\xi_4 = -(x_2^2 + x_3^2 N(a_1))^{-1} x_3.$$

In $K(\xi_1, \xi_2, \xi_3, \xi_4) \subseteq L(\mathscr{C})((-\lambda(u))^{1/2})$ are the elements

$$\xi_3^2 + \xi_4^2 N(a_1) = (x_2^2 + x_3^2 N(a_1))^{-1},$$

and hence x_2, x_3 ; $x_2(\alpha x_2 + x_1 x_3 N(a_1)) - x_3 N(a_1)(x_1 x_2 - \alpha x_3) = \alpha(x_2^2 + x_3^2 N(a_1))$, hence α ; and finally x_1 . Thus $K(\xi_1, \xi_2, \xi_3, \xi_4) = L(\mathscr{C})((-\lambda(u))^{1/2})$ when $\alpha = (-\lambda(u))^{1/2}$, and the mapping taking x_i onto ξ_i , $2 \le i \le 4$, and $(-\lambda(u'))^{1/2}$ onto ξ_1 determines an isomorphism of $L(\mathscr{C})((-\lambda(u'))^{1/2})$ onto $L(\mathscr{C})((-\lambda(u))^{1/2})$ since

$$\xi_1^2 = -N(u_1')^{-1} \left(\sum_{i=1}^4 \xi_i^2 N(u_i') + N(u_5') \right).$$

Now if $\mathscr{B} \cap \mathscr{B}' = \mathscr{D}$ is two-dimensional, and $z \in \mathscr{B}^{\perp} \cap (\mathscr{B}')^{\perp}$, the latter intersection being nontrivial from dimensionality arguments as in Case 2, we may use the above result and Lemma 1 to show $L(\mathscr{C})((-\lambda(u))^{1/2})$, $L(\mathscr{C})((-\lambda(v))^{1/2})$ are isomorphic respectively to fields $L(\mathscr{C})((-\lambda(u'))^{1/2})$, $L(\mathscr{C})((-\lambda(v'))^{1/2})$ where u_i' , $1 \le i \le 4$, and v_i' , $1 \le i \le 4$, span the same subalgebra $\mathscr{D} + \mathscr{D}z$. Lemma 1 then completes the argument.

If $\mathscr{B} \cap \mathscr{B}' = K1$, we have again a nontrivial $z \in \mathscr{B}^{\perp} \cap (\mathscr{B}')^{\perp}$ and we take subalgebras $\mathscr{D}, \mathscr{D}'$ of dimension 2 in $\mathscr{B}, \mathscr{B}'$ respectively. Again it follows that $L(\mathscr{C})((-\lambda(u))^{1/2})$ is isomorphic to $L(\mathscr{C})((-\lambda(u'))^{1/2})$ where u_i' , $1 \le i \le 4$, span $\mathscr{D} + \mathscr{D}z$, and that $L(\mathscr{C})((-\lambda(v))^{1/2})$ is isomorphic to $L(\mathscr{C})((-\lambda(v'))^{1/2})$, where v_i' , $1 \le i \le 4$, span $\mathscr{D}' + \mathscr{D}'z$. Since $(\mathscr{D} + \mathscr{D}z) \cap (\mathscr{D}' + \mathscr{D}'z)$ is the algebra spanned by 1 and z, we have reduced the argument to the case $\mathscr{B} \cap \mathscr{B}'$ two-dimensional and are finished.

COROLLARY 1. The field $F(\mathcal{C})$ is independent of the choice of the $u_i \in \mathcal{C}$ used in defining it.

Proof. If \mathscr{C} is split, $F(\mathscr{C})$ depends only on the dimension of \mathscr{C} for its definition. If \mathscr{C} is not split, Theorem 1 shows the independence from u_i .

COROLLARY 2. If \mathscr{C} is isomorphic to \mathscr{C}' then $F(\mathscr{C})$ is isomorphic to $F(\mathscr{C}')$.

Proof. If φ is an isomorphism of \mathscr{C} onto \mathscr{C}' , $N'(x\varphi) = N(x)$ for all $x \in \mathscr{C}$ by (4). If u_i , $1 \le i \le m+1$, are chosen as above to define $F(\mathscr{C})$ and u_i , $1 \le i \le m$, span $\mathscr{B} \subseteq \mathscr{C}$, the elements $u_i \varphi$ in \mathscr{C}' are orthogonal, have $N'(u_i \varphi) \ne 0$ and $u_i \varphi$, $1 \le i \le 4$, span the

composition subalgebra $\mathscr{B}\varphi \subseteq \mathscr{C}'$. Thus $u_i\varphi$, $1 \le i \le m+1$ may be used to define $F(\mathscr{C}')$. Now $L(\mathscr{C})$ is clearly isomorphic to $L(\mathscr{C}')$ and

$$\lambda(u) = N(u_1)^{-1} \left(\sum_{i=1}^{m} N(u_i) x_i^2 + N(u_{m+1}) \right)$$
$$= N'(u_1 \varphi)^{-1} \left(\sum_{i=1}^{m} N'(u_i \varphi) x_i^2 + N'(u_{m+1} \varphi) \right) = \lambda(u \varphi)$$

so $F(\mathscr{C}) = L(\mathscr{C})((-\lambda(u))^{1/2})$ is isomorphic to $L(\mathscr{C}')((-\lambda(u\varphi))^{1/2}) = F(\mathscr{C}')$.

III. **Properties of** $F(\mathcal{C})$. In this section we prove a sequence of lemmas leading to the proof of our main theorem. We first prove

LEMMA 2. Let $K(x_1, \ldots, x_n)$ be the rational function field in n indeterminates x_1, \ldots, x_n , F a field extension of K, $\alpha_1, \ldots, \alpha_n \in F$. Then there is a K-place of $K(x_1, \ldots, x_n)$ into $F \cup \infty$ mapping x_i onto α_i , $1 \le i \le n$.

Proof. By induction on n. The result is well known if n = 1 and the place can, in fact, be defined explicitly. If n > 1, we use the induction hypothesis, with K replaced by $K(x_1)$ to claim there is a $K(x_1)$ -place ψ of $K(x_1)(x_2, \ldots, x_n)$ into $K(x_1)(\alpha_2, \ldots, \alpha_n)$ such that x_i maps to α_i , i > 1. Now by the validity of the result for one indeterminate, there is a place φ of $K(x_1)(\alpha_2, \ldots, \alpha_n) = K(\alpha_2, \ldots, \alpha_n)(x_1)$ into $F \cup \infty$ fixing the elements of $K(\alpha_2, \ldots, \alpha_n) \subseteq F$ and mapping x_1 onto α_1 . $\psi \varphi$ is then a K-place of $K(x_1, \ldots, x_n)$ into $F \cup \infty$ with the desired property.

COROLLARY. Let $\lambda \in K(x_1, \ldots, x_n)$ such that $K(x_1, \ldots, x_n)(\lambda^{1/2})$ is a quadratic extension of $K(x_1, \ldots, x_n)$, $\alpha_1, \ldots, \alpha_n \in F$, F a field extension of K. Then there is a K-place φ of $K(x_1, \ldots, x_n)$ into $F \cup \infty$ mapping x_i onto α_i for all $1 \le i \le n$ and, if $\lambda \varphi$ is a square in F, φ can be extended to a K-place of $K(x_1, \ldots, x_n)(\lambda^{1/2})$ into $F \cup \infty$ mapping λ onto a square root of $\lambda \varphi$ in F.

Proof. That φ exists follows from Lemma 2. It is known (e.g., [3]), that a place from $K(x_1, \ldots, x_n)$ into $F \cup \infty$ can be extended to a place φ' of $K(x_1, \ldots, x_n)(\lambda^{1/2})$ into $F' \cup \infty$, F' the algebraic closure of F. Since, however, $(\lambda^{1/2})\varphi'$ must be a square root of $\lambda \varphi$ in F', and since the square roots of $\lambda \varphi$ in F' are in fact, in F, $(\lambda^{1/2})\varphi' \in F$ and φ' maps $K(x_1, \ldots, x_n)(\lambda^{1/2})$ into $F \cup \infty$.

If \mathscr{C} is a composition algebra over K, F a field extension of K, we say F splits \mathscr{C} (F is a splitting field of \mathscr{C}) if \mathscr{C}_F is split.

LEMMA 3. $L = K(x_1, ..., x_n)$, the field of rational functions in n indeterminates, $n \ge 0$, splits \mathscr{C} if and only if \mathscr{C} is split over K.

Proof. We show that, if $K(x_1, \ldots, x_n)$ splits \mathscr{C} , $n \ge 1$, then $K(x_1, \ldots, x_{n-1})$ also splits \mathscr{C} and hence, by induction, K splits \mathscr{C} so \mathscr{C} is split.

Let u_1, \ldots, u_e be an orthogonal basis for \mathscr{C} with respect to N(x, y). This is also an orthogonal basis for \mathscr{C}_L over L and, if \mathscr{C}_L is split, there are $\xi_i \in L$, $1 \le i \le e$, such

that $N(\sum_{i=1}^{n} \xi_{i}u_{i}) = 0$. Clearing the denominators of the ξ_{i} we have, since $N(\alpha x) = \alpha^{2}N(x)$ for $\alpha \in L$, polynomials p_{i} in $K[x_{1}, \ldots, x_{n}]$, not all $p_{i} \equiv 0$, such that $N(\sum_{i=1}^{n} p_{i}u_{i}) = \sum_{i=1}^{n} p_{i}^{2}N(u_{i}) = 0$. We assume, without loss of generality, that x_{n} occurs in some p_{i} and we let k be the maximum of the degrees of the polynomials p_{i} , considered as polynomials in x_{n} over $K(x_{1}, \ldots, x_{n-1})$. We can write each $p_{i} = x_{n}^{k}q_{i} + r_{i}$ where $q_{i} \in K[x_{1}, \ldots, x_{n-1}]$, $r_{i} \in K[x_{1}, \ldots, x_{n}]$, r_{i} of degree less than k in x_{n} . Then $\sum_{i=1}^{n} (x_{n}^{k}q_{i} + r_{i})^{2}N(u_{i}) = 0$ and, since the x_{i} are algebraically independent, we must have $(\sum_{i=1}^{n} q_{i}^{2}N(u_{i}))x_{n}^{2k} = 0$, hence $\sum_{i=1}^{n} q_{i}^{2}N(u_{i}) = 0$ in $K(x_{1}, \ldots, x_{n-1})$. Thus $K(x_{1}, \ldots, x_{n-1})$ splits \mathscr{C} . Induction completes the proof that \mathscr{C} is split over K.

Conversely, if $\mathscr C$ is split over K and F is any field containing K, there is $u \in \mathscr C$, $u \neq 0$ such that N(u) = 0. But $u \in \mathscr C$ implies $u \in \mathscr C_F$ so, since $N_F(u) = N(u) = 0$, $\mathscr C_F$ is split. In particular $\mathscr C_L$ is split.

LEMMA 4. Let \mathscr{C} be a composition algebra over K, F, F' field extensions of K, φ a K-place of F into $F' \cup \infty$. If C_F is split, so is $\mathscr{C}_{F'}$.

Proof. We show first that if $\lambda_1, \ldots, \lambda_n$ are elements of F, not all zero, there is some j such that $(\lambda_j^{-1}\lambda_i)\varphi \in F'$, $i=1,\ldots,n$. Let j be such that $\lambda_j \neq 0$ and such that the number t of i for which $(\lambda_j^{-1}\lambda_i)\varphi = \infty$ is minimal. If t=0 we are done. If not, we may assume, without loss of generality, that $(\lambda_j^{-1}\lambda_i)\varphi = \infty$, $1 \leq i \leq t$, $(\lambda_j^{-1}\lambda_i)\varphi \in F'$, $t < i \leq n$. $\lambda_i \neq 0$ since otherwise $(\lambda_j^{-1}\lambda_i)\varphi = 0\varphi = 0 \neq \infty$. Thus $(\lambda_t^{-1}\lambda_i)\varphi = ((\lambda_j^{-1}\lambda_t)^{-1} \times (\lambda_j^{-1}\lambda_i))\varphi = 0$ for $t < i \leq n$, and $(\lambda_t^{-1}\lambda_t)\varphi = 1\varphi = 1 \in F'$ and hence for λ_t there are at most (t-1) i such that $(\lambda_t^{-1}\lambda_i)\varphi = \infty$, a contradiction to the minimality of t. Thus t=0.

Now if \mathscr{C}_F is split, and u_i , $i=1,\ldots,n$, are an orthogonal basis of \mathscr{C} over K, hence of \mathscr{C}_F over F and of $\mathscr{C}_{F'}$ over F', there are $\lambda_i \in F$ such that not all λ_i are zero and $N_F(\sum_1^n \lambda_i u_i) = \sum_1^n \lambda_i^2 N(u_i) = 0$. For λ_j such that $(\lambda_j^{-1} \lambda_i) \varphi \in F'$ for all i,

$$\sum_{i=1}^{n} (\lambda_{j}^{-1}\lambda_{i})^{2}N(u_{i}) = 0$$

and hence, $\sum_{i=1}^{n} (\lambda_{j}^{-1}\lambda_{i})^{2} \varphi N(u_{i}) = 0$. Since $(\lambda_{j}^{-1}\lambda_{i})^{2} \varphi = ((\lambda_{j}^{-1}\lambda_{i})\varphi)^{2}$, it follows that $N_{F'}(\sum_{i=1}^{n} (\lambda_{j}^{-1}\lambda_{i})\varphi u_{i}) = 0$ and, since $(\lambda_{j}^{-1}\lambda_{j})\varphi = 1 \neq 0$, $\mathscr{C}_{F'}$ is split.

LEMMA 5. Let $\mathscr C$ be a division composition algebra over K, $\lambda \in K$, and suppose $L = K(\lambda^{1/2})$ is a quadratic extension of K. Then $\mathscr C_L$ is split if and only if there is $u \in (K1)^1 \subseteq \mathscr C$ such that $N(u) = -\lambda$.

Proof. If there is $u \in (K1)^{\perp}$ with $N(u) = -\lambda$, then $x = (\lambda^{1/2})1 + u \in \mathcal{C}_L$ clearly has $N_L(x) = 0$, so \mathcal{C}_L is split. Conversely, if \mathcal{C}_L is split, then there is $x = a + (\lambda^{1/2})b$, $a, b \in \mathcal{C}$, such that $x \neq 0$, $N_L(x) = 0$. But $N_L(x) = N(a) + \lambda N(b) + 2N(a, b)(\lambda^{1/2})$ and thus N(a, b) = 0, $N(ab^{-1}) = N(a)N(b)^{-1} = -\lambda$. Since $N(ab^{-1}, 1) = N(a, b)N(b^{-1}) = 0$, $u = ab^{-1}$ satisfies the criteria.

Finally we give a slight generalization of a result of Jacobson [4], first defining subspaces V, V' of composition algebras \mathscr{C} , \mathscr{C}' respectively, to be equivalent if there

is a nonsingular linear transformation φ of V onto V' such that $N'(x\varphi) = N(x)$ for all $x \in V$, N, N' denoting the respective quadratic forms of $\mathscr C$ and $\mathscr C'$.

Lemma 6. If a composition algebra \mathscr{C} is equivalent to a subspace of a composition algebra \mathscr{C}' , then \mathscr{C} is isomorphic to a subalgebra of \mathscr{C}' .

Proof. The proof is essentially that of Jacobson [4]. Let φ be the mapping of $\mathscr C$ into $\mathscr C'$ such that $N'(x\varphi) = N(x)$ for all $x \in \mathscr C$ and suppose that $\mathscr B$, $\mathscr B'$ are isomorphic composition subalgebras of $\mathscr C$, $\mathscr C'$ respectively. By (4), $\mathscr B$ and $\mathscr B'$ are equivalent and, since $\mathscr B$ and $\mathscr B\varphi$ are clearly equivalent, $\mathscr B'$ and $\mathscr B\varphi$ are equivalent subspaces of $\mathscr C'$. By Witt's Theorem for bilinear forms, $(\mathscr B')^{\perp}$ and $(\mathscr B\varphi)^{\perp}$ are equivalent in $\mathscr C'$. Thus, if there is $u \in \mathscr B^{\perp}$ with $N(u) \neq 0$, which is the case unless $\mathscr B = \mathscr C$, then there is $u' \in (\mathscr B')^{\perp}$ such that $N'(u') = N'(u\varphi) = N(u)$. Then the algebras $\mathscr B + \mathscr B u$, $\mathscr B' + \mathscr B' u'$ are composition subalgebras of $\mathscr C$, $\mathscr C'$ respectively which are isomorphic by (2). Beginning with $\mathscr B = K1$, $\mathscr B' = K1'$ one can, in successive steps, thus construct an isomorphism of $\mathscr C$ into $\mathscr C'$.

Since in this proof, whenever $2 \dim \mathcal{B} = \dim \mathcal{C}$, we need only produce elements u, u' in \mathcal{B}^{\perp} , $(\mathcal{B}')^{\perp}$ respectively with $N(u) = N'(u') \neq 0$, we can clearly weaken the hypotheses to obtain the

COROLLARY. Let $\mathscr C$ be a 2n-dimensional composition algebra, V a nonisotropic (N(x,y)) nondegenerate when restricted to V) subspace of $\mathscr C$ of dimension n+1 which contains an n-dimensional composition subalgebra $\mathscr B$ of $\mathscr C$. Then if V is equivalent to a subspace of a composition algebra $\mathscr C'$, $\mathscr C$ is isomorphic to a subalgebra of $\mathscr C'$.

We are now prepared to restate and prove

Theorem 2. Let $\mathscr C$ be a composition algebra of dimension greater than one over K. Then

- 1. $\mathscr{C}_{F(\mathscr{C})}$ is split.
- 2. If $F \supseteq K$ is any field, then \mathscr{C}_F is split if and only if there is a K-place of $F(\mathscr{C})$ into $F \cup \infty$.
- 3. If \mathscr{C}' is any composition algebra over K such that $\mathscr{C}'_{F(\mathscr{C})}$ is split, then either \mathscr{C}' is split over K or \mathscr{C} is isomorphic to a subalgebra of \mathscr{C}' .

Proof. As in the definition of $F(\mathscr{C})$ in §II, we pick a set u_i , $1 \le i \le m+1$, $m=2^{k-1}$, where $2^k = \dim \mathscr{C}$, and denote by \mathscr{B} the composition subalgebra of \mathscr{C} spanned by u_i , $1 \le i \le m$. We may assume, by Lemma 1, that $u_1 = 1$ and hence

$$\lambda(u) = N\left(\sum_{i=1}^{m} x_i u_i + u_{m+1}\right).$$

Proof of 1. If \mathscr{C} is split, Lemma 3 yields the result since $F(\mathscr{C}) = L(\mathscr{C})$ is a rational function field in m-1 indeterminates over K. If \mathscr{C} is not split, neither is $\mathscr{C}_{L(\mathscr{C})}$ by Lemma 3, and since $\lambda(u)$ is by definition $N(\sum_{i=1}^{m} x_i u_i + u_{m+1})$, where $\sum_{i=1}^{m} x_i u_i + u_{m+1} \in (L(\mathscr{C})1)^{\perp}$, Lemma 5 yields the result.

Proof of 2. If there is a K place from $F(\mathscr{C})$ to $F \cup \infty$, \mathscr{C}_F is split, by Lemma 4 and Part 1 of this theorem.

If \mathscr{C} is split, \mathscr{C}_F is split for any $F \supseteq K$. By Lemma 2, there is a K-place of $F(\mathscr{C}) = K(x_2, \ldots, x_m)$ into $F \cup \infty$ for any $F \supseteq K$ as desired.

Suppose \mathscr{C} is not split, \mathscr{C}_F is split. By (5), \mathscr{C}_F contains a totally isotropic subspace W of dimension m over F. By a dimensionality argument W intersects $Fu_1 + \cdots + Fu_{m+1}$ so there is $u = \beta u_1 + \sum_{i=1}^{m+1} \beta_i u_i$ in \mathscr{C}_F , $u \neq 0$, with $N_F(u) = 0$. Thus

$$\beta^2 = -\sum_{i=1}^{m+1} \beta_i^2 N(u_i)$$

and, if $\beta_{m+1} \neq 0$,

$$(\beta\beta_{m+1}^{-1})^2 = -\sum_{i=1}^{m} (\beta_i\beta_{m+1}^{-1})^2 N(u_i) - N(u_{m+1}).$$

By Lemma 2, corollary, there is a K-place φ of $F(\mathscr{C}) = K(x_2, \ldots, x_m)((-\lambda(u))^{1/2})$ into $F \cup \infty$ mapping x_i to $\beta_i \beta_{m+1}^{-1}$, $(-\lambda(u))^{1/2}$ to $\pm \beta \beta_{m+1}^{-1}$.

If $\beta_{m+1}=0$, some β_i , $i\neq m+1$ must be nonzero, since $0=\beta^2+\sum_2^m\beta_i^2N(u_i)$ and not all of β , β_i are zero. We assume, without loss of generality, that $\beta_m\neq 0$. Then $(\beta\beta_m^{-1})^2=\sum_2^m(\beta_i\beta_m^{-1})^2N(u_i)$. Again by the corollary to Lemma 2, there is a K-place of $F(\mathscr{C})=K(x_2,\ldots,x_m)((-\lambda(u))^{1/2})=K(x_2x_m^{-1},\ldots,x_{m-1}x_m^{-1},x_m^{-1})(x_m^{-1}(-\lambda(u))^{1/2})$ into $F\cup\infty$ mapping $x_ix_m^{-1}$ to $\beta_i\beta_m^{-1}$, $2\leq i< m$, x_m^{-1} to zero, and $(x_m^{-1}(-\lambda(u))^{1/2})$ to $\pm\beta\beta_m^{-1}$, since $x_ix_m^{-1}$, $2\leq i< m$, x_m^{-1} are algebraically independent over K.

Proof of 3. If \mathscr{C} is split, $F(\mathscr{C})$ is a rational function field over K and hence, if $\mathscr{C}'_{F(\mathscr{C})}$ is split, \mathscr{C}' is split over K by Lemma 3.

If \mathscr{C} , \mathscr{C}' are not split over K and $\mathscr{C}'_{F(\mathscr{C})}$ is split, then since $\mathscr{C}_{L(\mathscr{C})}$ is not split and $F(\mathscr{C})$ is a quadratic extension of $L(\mathscr{C})$, Lemma 5 implies there is $u' \in (1')^{\perp} \subseteq \mathscr{C}'_{L(\mathscr{C})}$ such that $N'_{L(\mathscr{C})}(u') = \lambda(u)$. Thus in $\mathscr{C}'_{L(\mathscr{C})(x_1)}$,

$$N'_{L(\mathcal{C})(x_1)}(x_11+u') = x_i^2 + \sum_{i=1}^m x_i^2 N(u_i) + N(u_{m+1}).$$

It follows easily from a result of Pfister ([5], Satz 3) that the subspace $Ku_1 + \cdots + Ku_{m+1}$ is equivalent to a subspace of \mathscr{C}' . By the Corollary to Lemma 6, \mathscr{C} is isomorphic to a subalgebra of \mathscr{C}' .

We note finally that, in the event dim $\mathscr{C}=4$, i.e., when \mathscr{C} is a generalized quaternion algebra over K, a judicious choice of the elements u_i in the definition of $F(\mathscr{C})$ will give rise to the same splitting field obtained by Witt [7].

BIBLIOGRAPHY

- 1. A. A. Albert, Quadratic forms permitting composition, Ann. of Math. 43 (1942), 161-177.
- 2. S. A. Amitsur, Generic splitting fields of central simple algebras, Ann. of Math. 62 (1955), 8-43.
- 3. M. Deuring, Lectures on the theory of algebraic functions of one variable, Tata Inst. of Fund. Res., Bombay, 1959.

- 4. N. Jacobson, Composition algebras and their automorphisms, Rend. Circ. Mat. Palermo (2) 7 (1958), 55-80.
 - 5. A. Pfister, Multiplikative quadratische formen, Arch. Math. 16 (1965), 363-371.
- 6. P. Roquette, On the Galois cohomology of the projective linear group and its applications to the construction of generic splitting fields of algebras, Math. Ann. 150 (1963), 411-439.
 - 7. E. Witt, Über ein Gegenbeispiel zum Normensatz, Math. Z. 39 (1934-1935), 462-567.

THE OHIO STATE UNIVERSITY, COLUMBUS, OHIO