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Witt [7] proved that one can assign to each generalized quaternion algebra si

over a field K, a field F(si) containing K which splits si and has the property: if

F(si) splits a quaternion algebra Se over K then either á? is split over K or 3§ is

isomorphic to si. Amitsur [2] has generalized this result to obtain generic splitting

fields for all central simple associative algebras of dimension greater than one over

K (cf. Roquette [6]). In this paper we generalize the result of Witt in another

direction, studying splitting fields of composition algebras of dimension greater

than one over K of characteristic other than two. We assign to each such algebra (€,

a field F($>) containing K, prove that F(<^) is an invariant under isomorphisms, and

prove

Theorem 2. Let ^ be a composition algebra of dimension greater than one over K.

Then

1. #*■(«■) is split.

2. If F^K is any field, then ̂ F is split if and only if there is a K-place of FÇ£)

into F >J oo.

3. IfW is any composition algebra over K such that Wp^ is split, then either c€'

is split or *€ is isomorphic to a subalgebra of'S'.

Thus we generalize the result of Witt to quadratic and generalized Cayley

algebras.

I. Composition algebras. A composition algebra # over a field K is an algebra

over K, with identity 1, together with a nondegenerate quadratic form TV such that

N(xy) = N(x)N(y) for any x, y in (&. The structure of such algebras has been com-

pletely determined and we refer to [1] or [4] for proofs of the following results.

1. A composition algebra <€ is alternative with involution t:o.I+u^- al—u,

for u orthogonal to 1 with respect to the nondegenerate, symmetric, bilinear form

N(x,y)=^{N(x+y) — N(x)-N(y)}. Each xetf can be uniquely represented in the

form x = al + u, aeK, N(u, 1) = 0 and one has TV(x)l =(al + M)(al-«).

If F is a subspace of (€, we shall denote by V1 the orthogonal complement of F

in # with respect to TV(x, y).

2. If âS is a composition subalgebra of <€ (necessarily having associated quadratic

form  the  restriction  of TV to  3S),  and  ke^sC,  TV(w)5¿0,  then  3S + 3Su,
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3Su={bu | 6 e 38}, is a composition subalgebra of # with structure determined com-

pletely by the structure of 38 and the element N(u) e K. 38u is orthogonal to 38 with

respect to the nondegenerate form N(x, y) and hence dim (38+38u) = 2 dim 38.

3. Every composition algebra <€ has dimension 1, 2, 4, or 8 over AT and possesses

composition subalgebras of dimension 2e for all e such that 2e ̂  dim c€.

4. If <p is an isomorphism from a composition algebra ^ with quadratic form N

onto a composition algebra <£" with quadratic form N', then N'(x<p) = N(x) for all

xeT.

5. A composition algebra is called split if there is u e <€, u # 0, such that N(u) = 0.

If # is split, the form N(x, y) has maximal Witt index. If *€ is not split, *€ is a

division algebra.

6. If F^K is a field, the algebra <€T = <€ ®K F is again a composition algebra

(over F) with associated quadratic form NF, the natural extension of N to ^.

For convenience we shall denote by Xx, Xe F, xe <€, the element A (g¡ x of ^j..

II. Construction of the generic splitting field. We assume now that # is an

arbitrary composition algebra of dimension 2k, k>0, over A'of characteristic other

than two. Let uu l£i£m+l, m = 2k~1, be elements of # such that N(u¡)^0 for

all i, N(Ui,Uj) = 0 for Mt", and w¡, lS/Sm, span a composition algebra SS<=1(€.

We take Z-C^) to be the rational function field in m— 1 indeterminates x2,..., xm

over A", assuming as a convention that this will be K if m = 1, and define

A(«) = ATO/irW^UÄ+iw) = iV(i»i)_1(S«ÎM«0+J^+i))

in L(^).

The generic splitting field F(^) is defined as follows: F($)=L($) if ^ is split;

F(eê)=L(^)((-X(u))112) if <€ is not split.

We show now that Fff>) is dependent, up to isomorphism, only on (€, and not on

the choice of the wt, proving first

Lemma 1. Let ^ be a composition division algebra over K, u¡, vh 1 ̂  i £ m + 1 sets

of elements of <€ satisfying the conditions above and such that uh l^i^m, and v¡,

l£t¿m, span the same subalgebra 38 ofti. Then L($)((-X(u))112) is isomorphic to

L(V)((-m)112).

Proof. By (2), % = 38+38um + x and 38L=38um + x. Thus there is be 38 such that

i'm + i = 6ivm + 1, N(b)^0. Since but, 1 á/^m span 38,

m m / m \

aVx+y XiVi+v^x = ^UbUi) + bum + 1 = 6 y <fii/i + wm+1)
2 1 \ 1 /

for any a e L(T)((-X(v))112), where <f¡, l^i^m, are A"-linear combinations of a

and the x¡, 2^/^w, and conversely. For a = (—X(v))112,

0 = N\aVx + J4XiVi + Vm+x\ = N(b)N\f É»8»+Um+1J
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and, since TV(¿»)#0, ñ= -N^y'd'S ifN(Ui) + N(um + 1)). Since the & generate

L(V)((-X(v))112) over K, it follows that there is an isomorphism of L(<£)((- A(k))1'2)

onto L(^)((-X(v))112) mapping x¡ onto f„ 2^i'á«i, and (-A(w))1'2 onto &.

We shall obtain our results on the independence of F^€) from the choice of the

M¡, and on the invariance of Fife) under isomorphism of <€, as corollaries to

Theorem 1. Let u¡, vu l^i-¿m+l be elements of a division composition algebra

%, satisfying the criteria given for the ut in defining Fife). Let u{, lúi Um, span the

subalgebra 88 and let v¡, l^i^m, span the subalgebra 88'. ThenL(^)((-X(u))V2) is

isomorphic to L(W)((-X(v))m).

Proof. We consider the separate cases m= I, 2, or 4.

Case 1. «i=l. The only one-dimensional composition subalgebra of <€ is K\,

hence 38 = 88' and the result follows from Lemma 1.

Case 2. m = 2. If SB = Si', Lemma 1 again yields the desired result. Thus we may

assume Sä c\S6' = Kl.

If 1, w are an orthogonal basis for 88, v e88L, then 1, v also span a subalgebra,

say 2, of "^. Taking «1 = 1, u2 = u, u3 = v, u\=l, u'2 = v, u'3 = u, we see easily that

since X(u) = N(u)x2 + N(v), X(u') = N(v)x2 + N(u), the mapping taking xx onto xf1,

( — A(m))1'2 onto Xx~1( — X(u'))112 determines an isomorphism of L($>)(( — A(h))1'2) onto

L(^)((-x(u')r2).
Since 88L, (88')L are two-dimensional subspaces of the three dimensional space

(Kiy, there is z e 8SL r\ (88'y, z/0. By the above observation and Lemma 1,

L(V)((-X(u))112), L(T)((-X(v))112) are isomorphic to fields L(V)((-X(u'))112),

LÇ£)(( — Kv'))1'2) respectively, where u[= 1 =v[, u'2 = z = v'2. By Lemma 1 the latter

fields are isomorphic and the result follows.

Case 3. «i = 4. Again, if 88 = 88' we are finished. To complete the proof we shall

show the result follows in the event dim (88 n 8$') = 2, and shall give a method of

reducing the case 88 r\88' = Kl to the case dim (88 n 88') = 2.

We show first that if $> is a composition subalgebra of 88 of dimension 2 with

orthogonal basis 1, ax, a2e88 c\2L, a3e38L, and we take Wi = l, u2 = ax, u3 = a2,

ui=a1a2, u5 = a3, «i = l, u'2 = ax, u'3 = a3, u\ = axa3, u'5 = a2 (such sets are easily seen

to satisfy the necessary criteria for use in defining F^€), then L(^)(( — A(w))1'2) is

isomorphic to L(V)((-X(u'))112). For a eL(^)((- A(w))1'2),

al+Xxax + x2a2 + x3axa2 + a3 = (al+Xxax + a3) + (x2l+x3ax)a2

and since, for a = (-X(u))112, TV(al+x1a1 + x2a2 + x3a1a2-l-c73) = 0, we have

TV((x2l+x3a1)-1(al+x1a1 + a3) + a2) = 0. Since (x2l+x3a1)^1 = (xl + x§TV(c71))"1

x(x2l— x3ax) by (1) we have, carrying out the multiplication term by term, and

converting,

Tv(2 fá+uU = S m(u'ù + N(u'5) = 0,
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where

£2 = (xt + xlN(ax))~1(xxx2-ax3)

fa = (xi+XaWfri))"1*!

U = -(xî+xMajyW

In K(tx, it, (a, «f4)£L(^)((-A(w))1/2) are the elements

ñ + ñN(ax) = (x22 + x23N(ax)y\

and hence x2, x3; x2(ax2-l-XiX3Ar(671))-X3Ar(ai)(xiX2-ax3) = a(x2-l-X3Ar(ai)), hence

a; and finally xx. Thus K(£x, $2, f3, í4)=LCí?)((-A(M))1/2) when ce = (- A(k))1'2, and

the mapping taking x( onto £,, 2^/¿4, and ( —A(t/'))1/2 onto <fx determines an

isomorphism of L(V)((- X(u'))112) onto L(^)((-A(M))1/2) since

ñ= -NWxy^ZtfNWd+NwÁ

Now if 38 r\ 38'= 2 is two-dimensional, and ze38L r\ (38'Y, the latter inter-

section being nontrivial from dimensionality arguments as in Case 2, we may use

the above result and Lemma 1 to show L(V)((-X(u))112), L(<i?)((-X(v))112) are

isomorphic respectively to fields L(%)((-X(u'))112), L(V)((-X(v'))112) where u[,

1 = 1^4, and v't¡ la/a 4, span the same subalgebra Q>+!3z. Lemma 1 then com-

pletes the argument.

If 38 n 38' = Kl, we have again a nontrivial ze38L c\ (38'f and we take sub-

algebras 2, 2>' of dimension 2 in 38,38' respectively. Again it follows that

L(%)((- X(u))112) is isomorphic to L(T)((- X(u'))112) where u\, 1 á i'^4, span ® + ®z,

and that Li$)((-X(v))112) is isomorphic to L(%)((-X(v'))112), where v\, l^i<4,

span Q'+Q'z. Since (2 + 2¡z) n (&>' + 9'z) is the algebra spanned by 1 and

z, we have reduced the argument to the case 38 n 38' two-dimensional and

are finished.

Corollary 1. The field F($>) is independent of the choice of the u¡ e <€ used in

defining it.

Proof. If <€ is split, F($f) depends only on the dimension of # for its definition.

If # is not split, Theorem 1 shows the independence from u¡.

Corollary 2. Ifë is isomorphic to c€' then FÇ6) is isomorphic to £(#')•

Proof. If «jp is an isomorphism of # onto (€', N'(x<p) = N(x) for all x e ^ by (4).

If Wj, 1 ̂ /'¿m+ 1, are chosen as above to define F(%) and uu 1 ¿i^m, span 0£Íf,

the elements w(<p in <6' are orthogonal, have N'(Ui<p)i^0 and ¡7¡<p, 1 èiè4, span the
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composition subalgebra 88<pi^1(€'. Thus i/¡<p, l^i^m + l may be used to define

F(#"). Now L^€) is clearly isomorphic to L(£") and

Mu) = Wuù-^Niudxï+Wtim+d)

= N'(ux<p)-í{jtN'(ui<P)xf + N'(um + x<p)\ = X(u<p)

so F(^)=L(^)((-A(M))1'2) is isomorphic to !<«")((- X(u<p))ll2) = F(cé").

III. Properties of F(#). In this section we prove a sequence of lemmas leading

to the proof of our main theorem. We first prove

Lemma 2. Let K(xly..., xn) be the rational function field in « indeterminates

Xx, ■. ■, xn, Fa field extension of K, ax,..., ane F. Then there is a K-place of

K(xx,..., xn) into Fu oo mapping x¡ onto ah l^i^n.

Proof. By induction on «. The result is well known if «= 1 and the place can, in

fact, be defined explicitly. If « > 1, we use the induction hypothesis, with K replaced

by K(xx) to claim there is a ZC(xi)-place </< of K(xy)(x2,..., x„) into K(xx)(a2,..., an)

such that x( maps to a,, /> 1. Now by the validity of the result for one indeterminate,

there is a place <p of K(xx)(a2,.. ., an) = K(a2,..., an)(xx) into Fu oo fixing the

elements of K(a2,...,<*„)£ F and mapping xr onto ax. tp<p is then a Zv-place of

K(xx,..., xn) into F u oo with the desired property.

Corollary. Let X e K(xx,..., x„) such that K(xx,..., xn)(A1/2) is a quadratic

extension of K(xx, ■ ■ ■, xn), a1;..., an e F, Fa field extension of K. Then there is a

K-place <p of Zv(xl5..., x„) into F u oo mapping x¡ onto o¡¡ for all 1 ¿ i¿n and, if X<p

is a square in F, <p can be extended to a K-place of K(xx, ■ ■., x„)(A1/2) into F u oo

mapping X onto a square root of Xep in F.

Proof. That <p exists follows from Lemma 2. It is known (e.g., [3]), that a place

from K(xx,..., xn) into Fu oo can be extended to a place <p' of K(xx, ■ ■ ■, xn)(A1/2)

into F' u oo, F' the algebraic closure of F. Since, however, (A1,2)<p' must be a square

root of X<p in F', and since the square roots of X<p in F' are in fact, in F, (A1,2)ç>' e F

and <p' maps K(xx,..., xn)(A1/2) into F u oo.

If # is a composition algebra over K, F a field extension of K, we say F splits #

(F is a splitting field of ^) if #F is split.

Lemma 3. L = 7C(x1,..., xn), the field of rational functions in « indeterminates,

« siO, splits W if and only if€ is split over K.

Proof. We show that, if K(xx, ■ ■ -, xn) splits ÍP, b-1, then 7C(xi,..., x„_i) also

splits ^ and hence, by induction, K splits ^ so # is split.

Let Ux, ■ ■ -,ue be an orthogonal basis for "^ with respect to TV(x,_v). This is also

an orthogonal basis for <ë'L over L and, if #L is split, there are f¡ eL, l^i'^e, such



1967] GENERIC SPLITTING FIELDS 511

that JV(2î £i":) = 0. Clearing the denominators of the <f( we have, since N(ax)

=a2Ar(x) for ceeL, polynomials /»¡ in K[xx,..., xn], not all /»(=0, such that

■^Œî Piui) — 2î P?N(Ui) = 0. We assume, without loss of generality, that xn occurs

in some /»¡ and we let k be the maximum of the degrees of the polynomials /»¡,

considered as polynomials in x„ over K(xx,..., x„_ x). We can write eachpt=xkqi + r{

where qt e K[xx,..., xn.x], r¡e K[xx,..., xn], r¡ of degree less than k in xn. Then

Zî (XnCi + ri)2N(Ui) = 0 and, since the x¡ are algebraically independent, we must have

Œ! q?N(Ui))x2k = 0, hence 2! qfN(ud = 0 in JDfo,..., xn.x). Thus K(xx, ...,xn.x)

splits #. Induction completes the proof that & is split over K.

Conversely, if # is split over K and F is any field containing K, there is u e cë,

u=£0 such that N(u) = 0. But ue^ implies «e?, so, since NF(u) = N(u) = 0, ^F is

split. In particular ^ is split.

Lemma 4. Let ^ be a composition algebra over K, F, F' field extensions of K,<p a

K-place of F into F' U oo. If CF is split, so is ^F..

Proof. We show first that if Xx,..., Xn are elements of F, not all zero, there is

some/ such that (Ay_1A¡)(p e F', i= 1,..., «. Let7 be such that Ay^0 and such that

the number / of i for which (A/"1Ai)<p = oo is minimal. If r = 0 we are done. If not, we

may assume, without loss of generality, that (XJ~1Xi)<p = cc, 1^/^i, (Xf^-X^e F',

t<i^n. A(^0 since otherwise (A;"1A()«p = 09 = 0^oo. Thus (Af1AiV = ((A;"1A()"1

x(X~1Xi))<p = 0 for í</'á«, and (At_1A()«p= l<p= 1 e F' and hence for Xt there are at

most (i— 1) / such that (Ai"1A,)<p = oo, a contradiction to the minimality of t. Thus

t = 0.

Now if 'iff is split, and w¡, /= 1,..., «, are an orthogonal basis of <€ over K,

hence of ^ F over Fand of "iff. over F', there are A¡ e F such that not all A¡ are zero

and NF(2nx AiWi) = 2ï A,2Af(wi) = 0. For \, such that (A,"1^)«? e F' for all i,

2(Ar1Ai)2JV(i/i) = 0
i

and hence, 2" (A/" 1Xi)2<PN(ui) = 0. Since (A-1Ai)2«? = ((A)-1Ai)«p)2, it follows that

NAYx (X-1Xl)<pUi) = 0 and, since (Ar1A;)<p= 1 ̂ 0, &F. is split.

Lemma 5. Let ^ be a division composition algebra over K, Xe K, and suppose

L = K(X112) is a quadratic extension of K. Then <€L is split if and only if there is

ue(Kiy^ such that N(u)=-X.

Proof. If there is u e (AT)1 with N(u)=-X, then x = (A1,2)l + u e tfL clearly has

NL(x)=0, so *£L is split. Conversely, if ^L is split, then there is x = a + (A1,2)6,

a, be'if, such that x^O, NL(x) = 0. But NL(x) = N(a) + XN(b) + 2N(a, 6)(A1/2) and

thus N(a, b)=0, N(ab~1) = N(a)N(b)-1 = -A. Since N(ab~l, l) = N(a, 6)W(6-1) = 0,

u = ab'1 satisfies the criteria.

Finally we give a slight generalization of a result of Jacobson [4], first defining

subspaces V, V of composition algebras c€, <€' respectively, to be equivalent if there
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is a nonsingular linear transformation 93 of F onto V such that N'(x<p) = N(x) for

all x e V, TV, TV' denoting the respective quadratic forms of if and if'.

Lemma 6. If a composition algebra if is equivalent to a subspace of a composition

algebra if', then if is isomorphic to a subalgebra of IS'.

Proof. The proof is essentially that of Jacobson [4]. Let <p be the mapping of if

into "^' such that N'(xcp) = N(x) for all x e ^ and suppose that 88, 88' are isomorphic

composition subalgebras of if, #' respectively. By (4), 88 and 88' are equivalent and,

since 38 and 38<p are clearly equivalent, 88' and 88<p are equivalent subspaces of ^".

By Witt's Theorem for bilinear forms, (J")1 and (38q>y are equivalent in ^". Thus,

if there is ue38L with N(u)j^0, which is the case unless 88=^, then there is

u'e(88'y such that N'(u') = N'(u<p) = N(u). Then the algebras 88+88u, 88' + 88'u'

are composition subalgebras of #, ^" respectively which are isomorphic by (2).

Beginning with 38 = Kl, 88' = KV one can, in successive steps, thus construct an

isomorphism of # into ^".

Since in this proof, whenever 2 dim 88 = dim *€, we need only produce elements

u, u in 881, (88'y respectively with N(u) = N'(u')^0, we can clearly weaken the

hypotheses to obtain the

Corollary. Let ^ be a 2n-dimensional composition algebra, V a nonisotropic

(N(x, y) nondegenerate when restricted to V) subspace of& of dimension n+ 1 which

contains an n-dimensional composition subalgebra S8 ofaß. Then if V is equivalent to

a subspace of a composition algebra <&', IS is isomorphic to a subalgebra ofíS'.

We are now prepared to restate and prove

Theorem 2. Let ^ be a composition algebra of dimension greater than one over K.

Then

1. if ;•<«■) is split.

2. If F^K is any field, then iff is split if and only if there is a K-place of F^€)

into F u 00.

3. If'S' is any composition algebra over K such that Wp^ is split, then either if'

is split over K or % is isomorphic to a subalgebra of£'.

Proof. As in the definition of F(^)in §11, we pick a set «j, l = i = /n+l, m=2fc-1,

where 2* = dim if, and denote by 88 the composition subalgebra of <€ spanned by uu

1 ̂  i á«i. We may assume, by Lemma 1, that Ux = 1 and hence

X(u) = N\Sxiui + um + 1\.

Proof of 1. If if is split, Lemma 3 yields the result since F(if)=LC^) is a rational

function field in «2— 1 indeterminates over K. If # is not split, neither is ^L(^) by

Lemma 3, and since X(u) is by definition N(JJ$ xiui + um + l), where 2a xtu¡ + «m +1

e(LÇiS)iy, Lemma 5 yields the result.
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Proof of 2. If there is a AT place from F(^) to F u co, <gF is split, by Lemma 4

and Part 1 of this theorem.

If <& is split, ftp is split for any F3 K. By Lemma 2, there is a AT-place of

F($>) = K(x2,..., xm) into F u oo for any F2A- as desired.

Suppose ^ is not split, 1iF is split. By (5), ^F contains a totally isotropic subspace

W of dimension «? over F. By a dimensionality argument W intersects Fux + ■ ■ ■

+ Fum + X so there is u=ßux + JJS+ 1 M in #F, w^O, with NF(u)=0. Thus

m + l

|32 = -  2 ßMud
2

and, if y3m +1 ̂  0,

m

mur - - 2 o8«^™ i i)2^»*) - jv(«»+j.
2

By Lemma 2, corollary, there is a A-place y of FC^) = ATx2, • • -, xm)((-A(h))1'2)

into Fu co mapping x¡ to AjS"^, (-A(w))1'2 to ±ßßnlx-

If/3m + t = 0, some/3,, i^m+l must be nonzero, since 0=ß2 + ^Jß2N(u,) and not

all of ß,ßi are zero. We assume, without loss of generality, that ßm^0. Then

(ßßm1)2 = T2 (ßtßm^N^i). Again by the corollary to Lemma 2, there is a AT-place

of f(*) = AT(x2,..., xm)((- A(h))1'2) = A-(x2x-\..., xn.&\ x¿x)(x~\- A(k))1'2)

into Fu co mapping XjX"1 to /S^"1, 2 = i<m, x^1 to zero, and (xñ1( — A(h))1'2) to

±ßßn1, since XjX"1, 2^i<m, xñ1 are algebraically independent over A".

Proof of 3. If if is split, F(^) is a rational function field over K and hence, if

^i-rtf, is split, <€' is split over K by Lemma 3.

If (€, (€' are not split over K and ^w) is split, then since ^Ltt?) is not split and

Fl$) is a quadratic extension of L^€), Lemma 5 implies there is u' e (I')1 Z^'LiV)

such that N'u¥)(u') = X(u). Thus in ^"u^xxo,

m

N'UV)iXl >(*! 1 + «') = x? + 2 *?#(«•) + 7V(Mm + x).
2

It follows easily from a result of Pfister ([5], Satz 3) that the subspace Awj + •••

+ Kum + X is equivalent to a subspace of c€'. By the Corollary to Lemma 6, ^ is

isomorphic to a subalgebra of c€'.

We note finally that, in the event dim # = 4, i.e., when '€ is a generalized quater-

nion algebra over A', a judicious choice of the elements ut in the definition of Fi^)

will give rise to the same splitting field obtained by Witt [7].
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