SUBHARMONIC FUNCTIONS IN THE HALF-PLANE

BY
JUN-ITI ITO

1. Introduction. Recently, R. P. Boas, Jr. [3] has proved functions of exponen-
tial type in Rz > 0. But it will also be interesting to study higher classes of functions
which are represented as the difference of two subharmonic functions in Rz>0
weakening the condition of exponential type. From this point of view, firstly we
will study the behavior of mass distributions, next the representations, and lastly
the regularities related to the above functions for Rz >0.

2. Behavior of mass distributions.
2.1. GENERALIZATION OF CARLEMAN’S THEOREM. Define a domain

D=[Rz>0,]|z] < Rlfor0 < R < +0o0,

and let u(z) be a subharmonic function having a positive harmonic majorant for
z in D. Then by the representation theorem of Riesz [10] for z € D,

@1 u@) = ~ [z, O diled + ),
where A(z) is the least harmonic majorant for #(z) in D and p is stricken positive

mass distribution defined for Borel sets e in D, and

R2-z{
R%+ 2L

gxr(z, §) = log Py

By the function z=R{(z; — )R+ ((1 —z,)?R%+4(1 + 2,)?)*'3}/2(1 + z,), the domain
D of a z-plane is conformally mapped onto |z;| <1 of a z;-plane. If we write

h(z(z1)) = H(zy),

then H(z,) is harmonic and there exists a positive harmonic majorant for H(z,)
in |z;| < 1. Denote this harmonic majorant by S(z;). Then, if we write

T(z,) = S(z1)— H(zy),

T(z,) is a positive harmonic function in |z;| < 1. Therefore H(z,) may be written
as the difference of two positive harmonic functions. Therefore, we find

+n
lim f \H(re'®)| dp = M < +co.
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Hence the following representation of Nevanlinna [9, p. 187] holds: Except for
at most a countable set of 8, —n < 0 <, the limit (6)=lim,_,, [q H(re“’) d exists;
P(0) is a function of bounded variation and for |z;| <1,

e+ z;
ew'—zl

22 HE) = 5 [ RS2 aue),

where the integral is the Stieltjes integral. We set

1 9, 0, +n
@) =5 ([ + [ 4] ) = htsatss
2n -n 6, []

where 0, and 60, are defined by tan (6,/2)=—(2/R) and tan (6,/2)=(2/R)
(—m< 0, <8, <) respectively.
Let — H(, z,) denote the conjugate harmonic function of the Green function for
|z1] <1. Then for —n<60<86,, 0,<0=w and real ¢,

0H(e", z,) - R e®+z, O0H(e"Y, 2:(2)) _ oH df
o0 e—z, ot = 90 dr

and by an elementary calculation

o= — IR (RP + Y RRAR? - 1),
0H(e"®, z,(2)) itR?z— R?+ 22— 12+ 1t%2%/R?

a9 =% it(R?—z%)— R%z—1%z

_ rcos $(RZ—r2)(t2R2+(R+12/R)?)
T (£24+r2=2tr sin ¢)(R*+12r2—2R%r sin ¢)

z = re'®,

Therefore

__OH(e"%, z)(2)) _ 22}1( 1z )
ot - z—it R%+itz

Thus, if we write

W) = [[ ot ),
2.3) .
He) = [ ki 2 a¥ o).

And for an arbitrary positive e,
R-¢ R-¢&
[ 1aven s [ (arias) 1oy
-R+¢ —-R+¢

max_|dt]do| J o) < K(e) < +oo.

IIA

Therefore, ¥(r) is a function of bounded variation in the interval [— R+e, R—e].
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Next, we estimate J,(z,) +J5(z,). For 6, <0< 0, and —w/2<¢<n/[2,

d0 _ 4Rcos¢
dp ~ R*+4sin4
OH(e""?, z,(2)) _ % R2z+2isin ¢(R%—22)
o0 "V R(R2?—2z%)+2isin ¢zR?
_ r cos 7(R2—r2)(R%+4 sin? ¢)
= (R%+r2—2Rr cos (¢—7))(R%2+r2+2Rr cos ($+ 7))

z = re*.

Therefore

OH(e*?, z,(2)) _ z z
o9 - 2€R(Re"”—zi-Re“°’+z).

Thus, if we define ®(r)=[; (d/d0(¢)) d{(8(4)), then for an arbitrary positive e,
®(7) is a function of bounded variation in the interval [—n/2+¢, m/2—¢]. And

24 He+ie) = 1 [ KiRe, 2) do@)

From (2.1), (2.2), (2.3), and (2.4), we get

THEOREM 1. Define the domain D=[Rz>0, |z| <R] for 0< R< +c0. Let u(z) be
a subharmonic function having a positive harmonic majorant for z in D. Then there
exist two functions Y (t) and ®(¢) which are defined in the intervals (— R, R) and
(—n/2, [2) respectively and of bounded variation on arbitrary closed intervals
included in the above intervals respectively, and a stricken positive mass distribution
w(ey) defined for the Borel sets e in D. And for D 3 z,

u(z) = 1 f " KM, 2) dV(E)+2 f " KB(Re®, 7) dO()
TJ_r mJ-ni2

~ [ ez, 0 duted
LeD
where
1 z
R(; Y S
K3, 2) = ER(z—it R2+itz)
R(Rol® ) — z z
K3(Re®, z) = 2R(Re“’—z-l-Re""+z)
and

(z+DR?—z0)
(z— (R +20)

This theorem is an extension of a theorem of F. and R. Nevanlinna [8].

Let u*(e,) be a mass distribution which may be written as the difference of two
stricken nonnegative mass distributions p,(e;) and p(e;) defined for the Borel
sets e in D respectively. Then, from the proof of this theorem, we easily get

gR(z’ l) = IOg

THEOREM 2. Let u(z) be a function represented as the difference of two subharmonic
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functions having positive harmonic majorants for z in D. Then there exist two functions
W(t) and ®(¢) as in Theorem 1 and for z in D,

l +R Ry: 1 +n/2 2 .
uz) = f KiGt, 2) d¥(1) + - f KE(Re', z) dD($)
(2.6) -R -n/2
= [ ane, D dutteo,
{eD

where Kt and K% are defined in Theorem 1.

Let E(p, €) denote a set {r<|z| <p—e¢, p+e=|z| <R, |arg z| <m/2—e (¢>0)}. By
the Carleman method [6] we consider the integral

I = (1/2ni) f fm @+ 108 (- DR? ~2D)f(z— DR+ 20)} du¥(e)

taken along the contour of the domain {|arg z| <7/2, r;<|z| <p (ry<r)} in the
positive sense, starting from the point z= —ip with a fixed determination of the
logarithm. Then letting r, — O for fixed r, we get

RI = — J' (m 1-914) du*(ep)
E(p,&e)3L C
1 + /2

Q2.7
gr(pe', {) cos ¢ du*(e;) dé.

TP J-ni2 JieD

Again, integrating by parts and using the theorem of residues, we get
@8) W= | (p=2 = L] RE du*(er).
E,6)30; RIi<p—¢

From (2.6) {,, ., R¢|du*(e)| < +co. Therefore from (2.7) and (2.8), we find as
e—~>0andr—0
1 +n/2

gr(pe'?, ) cos ¢ du*(e;) dé

TP J-ni2 JieD

2.9)
- f (p~2— R-2RL du*(e) + f (R~ — R3RY) du*(e).
IKl<po pSILI<R

Accordingly, by using the same method as [6, p. 247] or [7] for A(z) we obtain
the following equality

e _ [ o _ :
P J.ICI<A)p ml d,‘*(eC) J‘D§IC|<R§R£ ld”'*(et)

2.10) + R du*e) + - [ prave
IZI<R T Jitl<o

+f ra¥n)- [ R-2aw+ T R),
pS|tI<R 1t <
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where m(p)=(1/m) [* 712 u(pe*) cos ¢ dg and m*(R)=(1/m) [* 22 cos ¢ d®(¢). Thus,
using the partial integration for [ <. ., R{™du*(e) and [ g, .1 2d¥(r)
respectively, we get the following result closely related to Carleman’s theorem.

THEOREM 3. Let u(z) satisfy the hypotheses of Theorem 2. Then for all p such that
O0<p<R,
*
@.11) '"(P) =2 f PAD) gy m ;R)

where A(t)=— [, < RCdu*(e)+(1/27) [, ., d¥(7), and m(p) and m*(R) are
defined in (2.10).

From Theorem 3, we easily obtain

THEOREM 4. Under the hypotheses of Theorem 2, we can assert the following for
all t such that 0<t<R:

(D). If A(t) =0, then m(t)/t is a continuous and nondecreasing function of t.

(). If A(t) is a nonincreasing function of t, then m(t)/t is a convex function of
1/22. '

Proof. Since the equality m(p)/p=2 [¥ (4(t)/t®) dt+m*(R)/R for 0<p,<p<R
is obtained from Theorem 3, by using (2.11) we get

ne) _y [ 40 4,

Therefore (I) holds. Next, from (2.11) we get

152 f3) - 0

for almost every p. Hence (II) holds.
By using Theorem 2, we get the following Theorems 5-8 related to the half-plane.

THEOREM 5. Let u(z) be a function in Rz >0 represented as the difference of two
subharmonic functions which have positive harmonic majorants in an arbitrary
bounded subdomain in Rz >0. Then there exist a function V(t) of bounded variation
defined in the finite imaginary axis and a stricken mass distribution p*(e;) defined
for the Borel sets e in Rz>0 and represented as the difference of two nonnegative
mass distributions, and for all p and R (0< p< R< +00),

m(P) zf’* A®) 4 MR
R

where A(t)=— [, <, RE du*(e)+(1/27) [, ., dY(7) and

m(R) = 1 J " (R cos ¢ d.
TJ -2
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Proof. Define two domains D;{Rz>0, |z|<R,} and D,{Rz>0, |z| <Ry} for
0< R, < R, < +00. Then applying the proof of Theorem 4 and using the result of
the uniqueness of positive mass distribution, there exists the stricken mass distri-
bution p*(e;) defined in this theorem, and we find for arbitrary positive numbers
p and R such that 0<p<R<R,,

m(p) ® Al(t) m(R)
@.12) -2 f dr+
and

m(p) R Az(t) mR)
@.13) ~2 f ar+R)
where

1
0= [ iy [ oo
and
1
2@ = =[  Rdioerry [ a¥io,

and ¥',(¢) and ¥,(¢) are defined in D, and D, analogously to ¥(¢) in Theorem 2
respectively. From (2.12) and (2.13), we get

[ 2O
t3

o

Hence A*(t)==A?(¢) for almost every ¢ (0 <t < R). Therefore

d¥y(r) = d¥y(7)

|zl <t 17l <t

for almost every ¢ and |, ., d¥x() is a function of bounded variation of ¢ such
that 0=<¢< R,. Thus we complete this proof.

If g(r) denotes a real valued function of positive r and lim, _, , , g(r)= +0c0, and
if the derivative of g(r) is evaluated in the interval [1, +o0) and g'(r)#0, by the
theorem, we find

THEOREM 6. If u(z) satisfies the hypotheses of Theorem 5, then we can assert the
Sfollowing :

(II). The condition

m(r) ~ rg(r)
is equivalent to
A(r) ~ —4rig'(r).
(IV). The condition
m(r)/rg(r) is bounded for 1 <r< +o
is equivalent to
A(r)[r3g'(r) is bounded for 1 < r < +oo0.
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Proof of (IIT). The derivative (d/dR) fﬁ (A(t)/t®) dt=A(R)/R?® is evaluated for
almost every R such that p< R< +0o. Therefore if ff (A(2)/t3) dt ~ —3g(R), then
A(R)~ —1R3¢'(R). Thus from (2.12), (IIT) holds. (IV) is proved analogously.

If we write 4,(t)= — [, ., RL du*(ey), Ao(t)=(1/m) |, ., d'¥(7) and

s - [ 440,20

then by Theorem 5

s6) =2 [ A are sw),

where R> p>e>0. Therefore we get

THEOREM 7. If, in Theorem 5, u(z) is a function subharmonic in Rz>0, then for
R>0
(V). S(R) is a continuous and nondecreasing function of R, and
(VD). S(R) is a convex function of 1/R2.

If we write T(R)=2 (¥ (4,(¢)/t?) dt+m(R)/R, then by Theorem 5,

R
10) = [ 2D asr®),  R>p>e>0
o
Hence we get

THEOREM 8. If, in addition to the hypotheses of Theorem 5, u(z) satisfies the
Phragmeén-Lindeléf boundary condition; namely lim sup, .., #(z) <0 (Rz>0) for all
real finite 7, then for R>0,

(VII). T(R) is a continuous and nondecreasing function of R, and

(VIID). T(R) is a convex function of R ~2.

Particularly, if u(z) is subharmonic, then 4,(t) <0 and 4,(¢) is a nonincreasing
function of ¢. Therefore from (VII), for R, > R;,

MRy [ A0 g < 1) [ A

Hence we find m(Rl)/R1 <m(R,)/R; which is due to Ahlfors [1] and Heins [5].
Next,dT(R)/dR ~2=(dm(R)/R)/dR ~2 — A,(R) for almost every R from the definition
of T(R). On the other hand, dT(R)/dR ~2= Ay(R)/2 for almost every R. Hence
2d(m(R)[|R)/dR~2=(2A4,(R)+ Ax(R)) for almost every R. Consequently m(R)/R
is a convex function of R ~%, and the case A,(¢)=0 of this result is due to Tsuji [12].

2.2. HiGHER CLASSES. In this section, we shall improve the conclusion of
Theorem 5 and study the behavior of mass distributions of higher classes. For this
we start from an application of the representation of (2.6). If > |z|, then Taylor’s
expansion for 1/(z—it) shows that

ﬁ__ltg(lt) =T

r -
- im0~ + Daj2) 7z = re®.
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Therefore, applying the elementary integration

1 +7/2

(2.14) ——; sin n(m|2—6) db =

T J—n2 re® tn+1

and also using the same method as (2.14) we find for |z| > ¢

1 +7/2 n-l

sm n(wf2—0)do =

(2.15)

; -n/2 rew
Thus from (2.14) and (2.15), we get
+n/2
-2 f re“’
1 !
- i (J:Supag tu+1 N(t)+J‘| tl<r re

By the same method as (2.16), we find

d‘I” (¢) sin n(=/2—6) df
(2.16)

).

tr-ipn

1 + /2 +R
@2.17) ;J'_m J:E iy (@) sin nr[2—6) db = 5 fm o o)

Next, Re!*n+1/2| _zt=gin n(w/2—0)/r" is harmonic in Rz>0. Therefore we
find

+n/2 +n/2 M —
f T (R KE(Re, re') w d db

-z12 TJ-n2

1 (=2 sin n(w/2—6)

T J+ai2 re

+
@.18) - f u(Re'?) L KE(re®, Re'®) d0 di
-n/2

= (R w)m%__ﬂd¢

-n/2

Moreover, by using Taylor’s expansion for log (z+ {) and log (z—{), if we write

+
1 z+{ _ A,
z—{ n=0
then for |z| < [{|,
A, = —% l’;gn z",  neven;
= 'zl ?zlc;; Z", n Odd.
Hence
1 f RA, sin n(n/2—6) d6 = (—1yw2+1 0 I‘Z“ﬂ, n even;
(2.19)
= (—1)""1”2'— R > nodd.

n |c|2n
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And for |z| > |{| we get

1

v 14 neven;

1 f RA, sin n(m/2—0) dO = (—1)M2+1 —
(2.20) B

= (—1)n-vi2 W R, nodd.

Moreover if we write

R*+zf &
lng z—zBm

n=0
then we get for z=re®,
+n/2 n n
1 f RB, sin n(m/2—0)df = (—1)~2+1 - S‘En’ n even;
m™J- | n R
2.21)
rt Rt

= (=1)n-112 — n odd.

Thus, from (2.6), if we write

1 +n/2
mir,m) = - |

-n/2

u(re'®) sin n(g— 0) dé,

then we get
m(r,n) _ - 1 ;!
T T 2 (fm« ra d?(t)-*-frsqu 1 ¥ - f d\F(t))
((_l)nlz (J. sln J~ 3 n
N d * _d *
n Kl <r ron © (et)'l' rSICI<R Iglzn (ad (e()
—f Czn dp.*(e;)) n even;
i<z R
@22 9 (=1)m+or R
n U}u« 7on dl“*(et)"‘J‘ mzn dl-" (e)
—f Ri: dﬂ“‘(e:)), n odd
L 1<k
_mR,n)
= g
If we write
_ [(=1)"23{", n even "
K@) = {( 1)+ Diagyn p odd} —|¢|" sin n(w/2—arg {)

and apply integration by parts for
1

27 )i < nt"“

_L 4w and j 127K du*(eo);
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furthermore, if we set

l n-1 T 1
@.23) aen =g | ea¥ee [ KO dee.
then
2.24) ) _ o J' v 440 e+ TR,

where A*(t)=A*(z, n).
Thus we obtain

THEOREM 9. Under the same hypotheses as in Theorem 5, the equality (2.24) holds.
From this Theorem 9 we find directly the following

THEOREM 10. Suppose that u(z) satisfies the hypotheses of Theorem 5. Then we
can assert the following for c=+1or —1,¢t>0 and 2n—p>0:

(IX). If 0A*(t) =0, then om(t, n)/t™ is a continuous and nondecreasing function
for t.

(X). If aA*(¢)/t? is a nonincreasing function of t, then om(t, n)/t" is a convex
function of t ~"=P),

(XI). Let

2.25) J' P @) dt < 6
n

for all ro>r,>N if N is selected sufficiently large for an arbitrary positive e.
T hen lim,, , » (m(2, n)/t")=p* (—c0<p*= +00) exists, and if p*< +oo, then
© =@+ D A%(1) dt converges.

(XII) Let j"z =@V A*(t) dt be bounded above for 1<ri<ry<+oo and
lim inf,, , o (m(r, n)/r*) < +00. Then m(r, n)/r* and [ t ="+ VA*(t) dt are bounded
respectively for 1 <r < +oo.

(XIII). Let f:f @D A¥ () dt<e for all 0<ry<ry<s if s is selected sufficiently
small for an arbitrary positive e. Thenlim,_, o (m(r, n)/r*) =pu% (—00 < u& < +00) exists,
and if pf > —oo, then [ t ~@"*DA*(t) dt converges.

(XIV). Let [} t=@n+VA*(t) dt be bounded above for 0<r<1 and

( rn

hm 1Sup — 15— > —o.

Then [} t ="+ A*(¢) dt and m(r, n)/r* are bounded respectively for 0<r<1.

If we write A%(£)=(1/n) [ <, k(2) du*(e), A%(t)=(1/2m) [, <, ™~ d¥(r) and
S*(R)=2n [¥ (A%(t)/t>*Y) dt+(m(R, n)/R™) for R>e>0, then from (2.24), for
R>p>e,

S*(p) = 2n f A 14 sH(R),

t2n+1
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Hence we get

THEOREM 11. Let u(z) satisfy the hypotheses of Theorem 6. Then we can assert
the following: For o=+1 or —1 and t>0,

(XV). If cA¥(t) =0, then oS*(¢) is a continuous and nondecreasing function for t.

(XVI). If 0A%(t) is a nonincreasing function of t, then eS*(t) is a convex function
of 1/t

If we write T*(R)=2n ¥ (A¥(r)/t>"**) dt+(m(R, n)/R") for 0 <e< R, then from
(2.24), for R>p>e,

T*(p) = 2n f ;“22(3 dt+T*(R).
Hence we get

THEOREM 12. If, in addition to the hypotheses of Theorem 8, n is odd, then we can
assert the following: For t>0,

(XVII). T*(t) is a continuous and nondecreasing function of t, and

(XVIII). T*(t) is a convex function of 1/t%".

Theorems 11 and 12 contain Theorems 7 and 8 respectively.

3. Representation theorems. First, we shall state the following fundamental
representation theorem.

THEOREM 13. Let u(z) satisfy the hypotheses of Theorem S. Then for &>0,
|z] < R< +0 (Rz>0) and K(¢)=K(¢, n) in Theorem 9,

1 z\" 1 z\""! z
u(Z) B "_7-’;<Itl<}zm{(i—t) Z—it_(mﬁ) R2+itz} le(t)

S or G R SR 6

@) (g7 ) K@ 0} dveed

f+n/2 ( ) n-1 z ( —z )n—l z
22 e'¢ Re*—z  \Re~ ' Re~ 1042

X u(Re'®) dp +RP(n—1, z, ¢)

+

where P(n—1, z, €) denotes

o dE e B (g vo
(2) f. m{ ((zz’“gg; +§g+2 Z () (% Rzk)K(l,z)}du*(ez)

S (lie) me, k).

k=1
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Proof. From (2.24) we get

n-1 k
2 (E) me, k)
i % \ie
(3-3) 4n—1 7 k rR 1 2n—1 z k
— - —_— * z <
i kzl k(i) J; t2k+1A (t, k) dt+i kzl (iR) m(R, k).

Accordingly, by using the equalities

z¢ _(@igt-1 1 Sl (it_)k _ z((tz/iR? n-1_l),
S @R =it it &yt Re+i1z

= kzi (;%)" sin k(m/2—¢)

z \"! z —z \*! z
B {l_(W) }Re‘°—z+{l—(Re“") }Re“¢+z'
from (2.22), (2.24), and (3.3), we find (3.1) and (3.2).

THEOREM 14. Let u(z) satisfy the hypotheses of Theorem 5. Suppose that the
conditions (2.25),

+n/2
(34 lim sup —-,%—,;i f |u(Re*®)| cos ¢ dp = 0
R-+o R —n/2
and
3.5 lIlzm mf— m(R,n) = p* < 4

are satisfied. Then

= ] {5 5 oo
S (e O
(g 7 K@ ) e

— 2R i,,z—+1+?RQ(n—l, z,¢)

(3.6)

where K(L, n) is defined in Theorem 9 and
= lim P(n—1,z¢)
R—+ o

fltl<s —_—l—t—-k 1 )}d\F(t)

fltl <s {log iicu” 2-:1 ]lc (,%)k K(Z, k)} du(e)+2i (iie)km(e’ k).

k=1
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Proof. By elementary calculation, we get for z=re®, {=te'¢,

(7o)~ (&) } = 27)" sl =o) sinn(5-+)

and using the inequality sin k(n/2—¢) Sk(n/2—¢)<k tan (7/2—¢) (0<d<m/2),
for small 6> 0 and large constant M,
Zn +1 (_ zZ)" +1

l m{(Rew)n(Rew —z) (Re"™)"(Re"+2)

X k
=2 (L) Sink(f_g) sin k(f— )|
kSme1\R 2 2 ¢
A cos¢ n+1
=2 k m+l ( ) sin28 = (—) M cos ¢.

Therefore from Theorem 13 and (XI) in Theorem 10, the representation (3.6)
holds.

THEOREM 15. In addition to the hypotheses of Theorem 5, let condition (3.5) be
satisfied. Suppose that

+

L}
3

K%) [, el < + oo
+ o
and that
(.8) f 1 V() < e,
ry <|tl<rg
(3.9 f . 1] ~2"K(¢, n) du*(er) < e,
(3.10) f o tsz‘P‘(ot) <e o= 4],

for all ro>r, > N if N is selected sufficiently large for an arbitrary positive e. Finally
let

3.11) hm mf

1 +n/2
Rmf |u(Re'®)| cos ¢ d = 0.

Then for z=re®, |0 <=/2,
1 r\" t sin n(w/2— 6)—r sin (n—1)(=/2— 6)
u(z) = p J;<|,|< o (t) r2—2tr sin 6+1¢2 d¥()
3.12 K k .
(3.12) f .y {log erz‘+2 2 k(lcclﬁ") r* sin k(1r/2—0)} du*(ey)

+2u*r*sin n(m/2— )+ RO(n—1, z, )
where p*, Q(n—1, z, £) and K({, n) are defined in Theorem 14.

The case where n=1 contains the results by Boas and R. Nevanlinna (see [3]).
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Proof. By using Taylor’s expansion, we write

@B = [ w3 (5 gm k@ o} direed

3.1 1@
(3.13) -->1 e sin k(r/2— 0) sin k(nf2— ) du*(e),
k=n+1 E<|{I<R
L = te'®,

Then by using (3.7) and the inequality (1/K) sin K(7/2 —$) <7m/2— ¢ <tan (/2 —¢),
0<d<m/2, we get
(3.19) Rlim v(z, R) = 0.

-+

Next, by conditions (3.8) and (3.9), condition (2.25) holds obviously. An
application of (XI) in Theorem 10 shows that [} (1/:2"*1)A*(¢) dt converges.
Therefore [} © (1/¢2"*1)A¥(r) dr and [ © (1/t2"**)A%(t) dt converge, where A¥(?)
and A%(r) are defined in Theorem 11. As [} © (1/¢2"*1)A%(t) dt converges,

3.15) U (13 —1/rdm) d‘P’(t)+f A/tr* ==Y dY(t)| < e
1t <ry Ty <ltl<rg

for all r,>r, > N if N is selected sufficiently large for an arbitrary positive e. Hence,

using (3.8), (3.15) shows

(3.16) lim g1 ré d¥(t) = 0.
1

n-+o Jigi<rn

Thus by (3.15) and (3.16), we get the existence of the finite limit, i.e.,

3.17) rLiIPw e nl“ d¥'(¢) exists (finite limit).
Using the same method as the above, we have

(3.18) lim r=2mK(L, n) du*(e) = 0.

=+ |K|<r

On the other hand, by conditions (3.7), (3.10), and (3.11), we find also for o= + 1

(3.19) lim [ o"*1—L d¥(ot)exist (fnite limit).

ro+o Jg tnt2
Now, we find

~[1 <lti<rg m{(%)n Z_lﬁ av()
) 255 G v

f {(5)’”1 t sin (n+ 1)(w/2— 6)—r sin n(n/2—6)
ry <|tl<rg t —2tr sin 0412

+ srzSin n(g— o)} a¥ ().
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Therefore, applying the second mean value theorem (with slight modification) for
the first integral of the last side, the absolute value of this integral is less than e
for all ry>r;>N if N is selected sufficiently large for an arbitrary positive e.
Hence by (3.17),

z\* 1
(3.20) J‘Km“m 9%{(7[) - d¥(t) converges.

Next, we find also for M <R,

tz\*"! z
fM<|t|<R§R{(iRﬁ) R2+it2} d‘F(t)

tz\" =z
B fM<|t|<nm{(;F) R:+itz er2 }d‘l”(t)

J’ ( ) R2sin (n+ 1)(7/2— 0)—tr sin n(w/2—06)
M<|t|<R R2 R*—2R%tr sin 0+1¢%r2

n-1,.n

e smn(——a)}d‘lf(t)

Accordingly, by using the same method as the above, from (3.17) and (3.19) we
get

(321) Rllglao J‘|t|<E { IR2 R2+1tz

Thus applying Theorem 13, (3.12) holds.

THEOREM 16. Let u(z) satisfy the hypotheses of Theorem 12. Suppose that con-
ditions (3.5), (3.7), (3.9), and (3.11) are satisfied. Then (3.12) holds.

Proof. As u(z) satisfies the PL boundary condition and » is odd, (3.8) is obtained.
If we use the same method as in the proof of Theorem 15, we find (3.15). Therefore,
we get for o= +1,

d¥(t) =

(3.22) lim ' t ="~ d¥(ot) exist (finite limit);

T+ Jg
and (3.22) implies (3.8). Hence, applying Theorem 15, we get (3.12).
The following theorem is easily obtained.

THEOREM 17. Let u(z) be a function in the half-plane Rz >0 represented as the
difference of two harmonic functions having positive harmonic majorants in an arbi-
trary bounded subdomain of Rz >0. Suppose that conditions (3.5), (3.8), (3.10), and
(3.11) are satisfied. Then for ¥(t) defined in Theorem 5, |6| <=2,

uz) = 1 (5)" t sin n(m/2—0)—r sin (n—1)(=/2—0)
S om e<|tl<+o \I r2—2trsin 0+1¢2

+2u*rt sin n(w/2— 0)+ O(|z|* 1),
where p*=lim;_, , , (1/R)M(R, n) for m(R, n) defined in (2.22).

d¥(r)
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4. Regularities. First we state the following main theorem in this section.

THEOREM 18. Let u(z) satisfy the hypotheses of Theorem 5. Suppose conditions
(3.5) and (3.11) are satisfied and that for o= £ 1,

@.1) f T e
L5

for all r,>ry> N if N is selected sufficiently large for an arbitrary positive ¢. Finally
let

@2 [ Rl < 4
<4+ ®
Then
4.3) lim “("" ) _ ursinn(m/2—6),  |u*| < +oo,

r—+ o

holds uniformly in any angle |0| < 8 < |2 except for an open set of r of finite logarith-
mic length; for |0| <m/2 with the exception at most of a set of outer capacity zero.
And

)
(4.4) lim “r¢)

r—+ rntl

=0

holds uniformly in any angle |0| < 8 <m/2 except for an open set of r of finite linear
length.

The conclusion (4.3) in the special case where n=1 contains the results by Ahlfors
and Heins [2], Boas [3] and It6 [7].

Proof. Now we write

U(z) = f <m<+m§R{lo ;+§ %,.21 (,ms)k G, k)}d *(ep)

k=

4.5)
- [ U@+ U@+ UE
e<|{|<N
where s denotes a positive integer, U,(z) denotes N< |{| <2°~2, Uy(z) denotes
|¢] >2°** and Uy(z) denotes 2°~ 2= [{| <2°*1.

First we estimate U,(z) and U,(z). By using Taylor’s expansion, we find for
22-1<|z]| <22, z=re' and {=te,

+ o l .
U(z) = =2 o {;W K(L, k) sin k(=/2— 6)
4.6) 2 al

ST I K, k) sin k(nf2—0) du*(eo).

K(, k) sin k(m/2— 0)} du¥(ey),

Us(2) = -

1e>2t+t iy kt?
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Since (1/k)|K(¢, k)| 2V 2t¥/(sin 28) sin (m/2—¢$), 0<S8<m/2, by the inequalities
sin k¢ <kd <k tan ¢, 0< d <x/2, there exists a positive constant M such that

LAC] Y mzml— |du* (e,

n
r N<|t| <282

4.7
%) el ,

rt 17> 28+t

1
R e |du*(er)|-

Next we estimate Us(z). For this we write for a small positive ¢,

f: ;_1_1 {1og 4, Z ( ) K(Z, k) sin k(m/2— a)} dr

t— t+6 28
B f gt~1 J: ft +&
By term-by-term integration of the series we get

t—¢
le-l

4.8)

L Y (t—’z)k K(, k) sin k(n2—6) dr

k=n

2logr 2 & r\¥1t-¢
< [Se e 2 n+k)k()]2s-1'

Since 3 (1/(n+k)k) converges there exists a positive constant M such that

t—¢
J;s-l

49) lim < Mtl,,.

e=—0

For 7, , we obtain similarly

J;+S

J;H { n+l1 z kr 5 K(, k) sin k(w[2—6)

rk n-1

) Z e K, k) sin k(n/2- 0)} dr

s[5 e S s () A

Accordingly there exists a positive constant M such that
Jiod <47
t+s

< MF'
Thus for |¢| < (7/2)—8, 0< 8 <(7/2),

(4.10) lim

&0

2M

sin & 2% 2 r|<2"*1: 6] <n/2—b t"“

@ [ Selvelds Reldu*(e)).
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If E(s, ¢) denotes a set of r in the interval [2°~%, 2] such that |Us(z)|/r" > ¢ for an
arbitrary positive e, and if we set ;- y E(s, &)=E(N, ¢), then
2M 1

—v1 Re|dp*(e)]-

1 1
esin 8 Jigy > 2" o1 <mia-s 1" "

4.12) f dlogr <
E(N,¢)

If we suitably select a sequence {N,} such that N,, — +o00 as n — 400 for a sequence
{e,} such that ¢, — 0 as n — +o0, the inequality

(4.13) J- dlogr < 4o
UnE(Np,6n)

follows from (4.2).
Next, for |¢| 27/2—38, if |0] <m/2—28, m/2>258>0, we easily see that

lim L Uyz) = 0.
r++ol

Thus lim, ., , » (1/r*)U(z)=0 with the same exceptional condition as the forepart
of (4.3).

If E,(s, ¢) denotes a set of r such that Us(z)/r"** > ¢ for an arbitrary positive e,
and ;> v Ei(s, €)=E,(N, ¢), then

2M 1
dr £ —- — Rtldu*(e)|.
le(n,e) €SN & Jig>2": 101 <aiz—s "1 {|du*(e;)|

Thus, for two sequences {N,} and {e,} in (4.13) we get

4.14) f dr < +oo.
UnE;(Np,&n)

Therefore (4.4) holds for U(z) under the same exceptional condition as that of
4.4).
Next, if we write

4.15) gz, §) = log

z

zig’,

then g(z, {) <g(e®, €'*) and for 0<|0| <8< m/2,

8z, ) S s TR (g(e®, €)1} (see [2)).

Hence we have for 2°~!<|z| < 2°

n-1 _n
U. < S I
I G(Z)I = J‘2’_2<l(l<2”1 {g(z’ €)+ kzl ktu
4.16) X |sin k(m/2— 0) sin k(1r/2—¢)|}|d;4*(ec)|
2_'@' _l_ i0 i "’_(“_n__l_:_l_)
0082 8 23—2<‘c| <28+1 t"’ cos ¢{g(e 4 € )+ 12,\/2 COt 8+ l}ld"*(et)L
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Thus, if we write K;(8)=max (M, 2-4"/cos? 8) and Ky=m(4""1—1)/124/2 cot 8+1
from (4.7) and (4.16), for 0< |8] <8< /2,

L os #{g(e”, ')+ Ky}|du*(ey)|.

<[ll<+ o t

4.17) |U@)| < f iten +K,(d)r" fN

Hence, by condition (4.2), we find

16
4.18) lim 00 _
r— + 00 r
under the same exceptional condition as the last part of (4.3) (see [2], [12]).
By using Boas’ method [3, p. 422] and applying the second mean value theorem
(with slight modification), we have

(419  lim t sin n(m/2— ) —r sin (n—1)(m/2—6)

rmto Jo<itl<+ 1™(r2—2tr sin 0+ %) a¥@) =0

for |6| < 8 </2. Thus applying Theorem 15, the proof is complete.

THEOREM 19. Let u(z) satisfy the hypotheses of Theorem 5. Suppose that (3.5),
(3.8), (3.11) and (4.2) are satisfied. Finally let

(4.20) lim sup n1+ i J o d¥(07) < +00

and
. 1 2t ot~ 1

4.21) lim sup - d¥(er) £ 0, o= +1.
t-+o 1 ¢ ™

Then the conclusion of Theorem 18 holds.

The special case where n=1 in Theorem 19 contains the results by Ahlfors and
Heins [2] and Boas [3].
Proof. We easily see (3.17). Hence by using the method of Boas [3, p. 443] and
the proof of Theorem 18, the conclusion of this theorem is obtained.
Suppose that #(z) is subharmonic in Rz > 0. Then, if we write
M(r,8) = sup u(2)

12l=71,161<é
for z=re* and 0< 8 <=/2, we have

THEOREM 20. If u(z) is subharmonic in Rz>0 in Theorem 18 or 19, then
lim,, , o M(r, 8)/r" exists (finite limit) and is not negative.

The special case where n=1 includes the results by Heins [4] and Boas [3]

(see [3)).

Proof. Set for a finite constant p,

4.22) V(z) = — f lesm { Z—J'g—g Z ,%(i%)kK(l, k)}du(ec)—%mi%t—f-
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V(z) is subharmonic in Rz >0 and identically zero on the imaginary axis. By the

inequalities of (4.13) there exists a sequence {r,} of r outside an open set of

(Un E(N,, €,) such that lim,_, , o (rp+1/r.)=1. And using the maximum principle

we find M;(r,) S M (r)SMy(ro+1) if r,Sr=r,.,, where M,(r)=sup, -, %z>o0 V(2).
On the other hand, if we write

= RS AL
V@ - | ) (75) K ) dute),
and if 2°~ ! <|z| <25, then for 0< 8 <n/2,

4@ -1- DI

V()|
V.Gl 3v/2 sin 28 2"2<|:|<2’“tn

~ cos § du(ey).

Thus, by (4.2) lim,_, ., Vi(z)/r*=0 for 0< 8 <|6| <m/2. Accordingly, as

J2"2<IKI <2s+1

by using the estimation of U(z) in Theorem 18 we get

1()

”5‘ dule)) < 0,

lim

exists (a nonnegative and finite limit).
r—+

Hence by (4.19) the proof is complete.

THEOREM 21. Let u(z) satisfy the hypotheses of Theorem 5. Suppose that conditions
(3.5), (3.11), and (4.2) are satisfied. Finally for o=+ 1, suppose
(4.23) fr ’ t: — d¥(ot) are bounded above for 1 < ry < r, < +c0.
Then, u(re'®)/r™ is bounded as r tends to infinity under the same exceptional conditions
as those of (4.3), and (4.4) holds with the same exceptional conditions as that of (4.4).

Proof. By conditions (4.2) and (4.23) we find that j:f t ~2n-14%(¢t) dt is bounded
above for 1 <r, <r,< +0. Hence, by applying (XII) in Theorem 10, for o= + 1,
4.24) f P on tnlﬂ d¥(ot) are bounded for 1 < r; < ry < +©

from (3.5). Thus we easily see the conclusion of this theorem.
The following theorem is easily obtained.

THEOREM 22. Suppose that u(z) satisfies the hypotheses of Theorem 5. Let
conditions (3.5), (3.11), (4.2), and (4.20) be satisfied, and let

(4.25) —— d¥(t) be bounded above for 1 < r; < ry < +oo.

tn+1
Ty <ltl<rz

Then the conclusion of Theorem 21 holds.
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The case where n=1 in Theorems 21 and 22 contains results by Boas [3] re-
spectively.

THEOREM 23. Let u(z) satisfy the hypotheses of Theorem 5. Suppose that con-
ditions (3.5), (3.11), and (4.1) are satisfied, and that

< 400

= + ©

(4.26) lim sup % |du*(e;)
gt <r

is satisfied. Then (4.3) holds with the same exceptional conditions as that of (4.4).
We may state the following theorems from the proof of Theorem 18.

THEOREM 24. Let u(z) satisfy the hypotheses of Theorem 5. Suppose that conditions
(3.5), (3.8), (3.11), (4.20), (4.21), and (4.26) are satisfied. Then the conclusion of
Theorem 23 holds.

THEOREM 25. Let u(z) satisfy the hypotheses of Theorem 5. Suppose that con-
ditions (3.5), (3.11), (4.23), and (4.26) are satisfied. Then u(z)/r" is bounded as r
tends to infinity under the same exceptional conditions as that of (4.4).

THEOREM 26. Let u(z) satisfy the hypotheses of Theorem 5. Suppose that con-
ditions (3.5), (3.11), (4.20), (4.25), and (4.26) are satisfied. Then the conclusion of
Theorem 25 holds.

REFERENCES

1. L. Ahlfors, On Phragmén-Lindelof’s principle, Trans. Amer. Math. Soc. 41 (1937), 1-8.

2. L. Ahlfors and M. Heins, Questions of regularity connected with the Phragmén-Lindelif
principle, Ann. of Math. (2) 50 (1949), 341-346.

3. R. P. Boas, Jr., Asymptotic properties of functions of exponential type, Duke Math. J. 20
(1953), 433-448.

4. M. Heins, On the Phragmén-Lindelif principle, Trans. Amer. Math. Soc. 60 (1946), 238-244.

5. , On some theorems associated with the Phragmén-Lindelof principle, Ann. Acad.
Fenn. Ser. A I Math.-Phys. (1948), no. 46, 10 pp.

6. J. Itd, Asymptotic properties of some functions, Bull. Nagoya Inst. Tech. 7 (1955), 245-252.

7. , Asymptotic properties of subharmonic and analytic functions, Proc. Amer. Math.
Soc. 9 (1958), 763-772.

8. F. Nevanlinna and R. Nevanlinna, Uber die Eigenshaften analytischer Funktionen in der
Umgebung einer singuliren Stelle oder Linie, Acta Soc. Sci. Fenn. 50 (1922), no. 5.

9. R. Nevanlinna, Eindeutige analytische Funktion, Springer, Berlin, 1936.

10. F. Riesz, Sur les functions subharmoniques et leur rapport a la théorie du potentiel, Acta
Math. 48 (1926), 329-343; 54 (1930), 321-360.

11. E. C. Titchmarsh, The theory of functions, Oxford Univ., 1932.

12. M. Tsuji, On a non-negative subharmonic function in a half-plane, K6dai Math. Sem.
Rep. 8 (1956), 134-141.

NAGOYA INSTITUTE OF TECHNOLOGY,
NAGOYA, JAPAN



