
SUBHARMONIC FUNCTIONS IN THE HALF-PLANE

BY

JUN-ITI ITÔ

1. Introduction. Recently, R. P. Boas, Jr. [3] has proved functions of exponen-

tial type in 3tz > 0. But it will also be interesting to study higher classes of functions

which are represented as the difference of two subharmonic functions in SRz > 0

weakening the condition of exponential type. From this point of view, firstly we

will study the behavior of mass distributions, next the representations, and lastly

the regularities related to the above functions for fUz > 0.

2. Behavior of mass distributions.

2.1. Generalization of Carleman's theorem. Define a domain

D = [SRz > 0, \z\ < R] for 0 < R < +oo,

and let u(z) be a subharmonic function having a positive harmonic majorant for

z in D. Then by the representation theorem of Riesz [10] for z e D,

(2.1) u(z) = - j gR(z, 0 dp(e:)+h(z),

where h(z) is the least harmonic majorant for u(z) in D and p. is stricken positive

mass distribution defined for Borel sets e in D, and

gn(z, 0 = log
z+C
z-t

+ log
R2-zt

R2+zl

By the function z = Ä{(z1-l)7< + ((l-z1)2Ä2 + 4(l+z1)2)1'2}/2(l+z1), the domain

D of a z-plane is conformally mapped onto \zx\ < 1 of a Zi-plane. If we write

h(z(zx)) = H(zx),

then 77(z!) is harmonic and there exists a positive harmonic majorant for H(zx)

in |zj| < 1. Denote this harmonic majorant by S(zx). Then, if we write

T(zx) = S(zx)-H(zx),

T(zx) is a positive harmonic function in |zi| < 1. Therefore 77(Zi) may be written

as the difference of two positive harmonic functions. Therefore, we find

lim f * 177(^)1 d</> = M < +oo.
'-»1 J -n
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Hence the following representation of Nevanlinna [9, p. 187] holds: Except for

at most a countable set of 0, —tt¿0<tt, the limit i/'(ö)=limr_1 \% H(rei(") d</> exists;

i/)(0) is a function of bounded variation and for \z^\ < 1,

(2.2) *w-¿/_>£=!!*<*

where the integral is the Stieltjes integral. We set

where 61 and B2 are defined by tan (0J2) = - (2/Ä) and tan(02/2) = (2/R)

(—77 < 0! < 02 < 7r) respectively.

Let — H(C, Z]) denote the conjugate harmonic function of the Green function for

|zi|<l. Then for -7rg0<01, 02<0^tt and real t,

8H(e",zù _ ««" + *!     8H(em\ z¿z))      8H d0

80       ~     ew-zi Bt 80' dt

and by an elementary calculation

j9 = ~[Rit2 + (R2 + t2)2]/[2R2(R2-t2)],

8H(em\ Zl(z)) _     itR2z-R2 + z2-t2 + t2z2/R2

89 it(R2-z2)-R2z-t2z

r cos </>(R2-r2)(t2R2 + (R + t2/R)2)

Therefore

(i2 + r2-2/r sin <f>)(Ri + t2r2-2R2tr sin </>)

8H(emt\zl(z))

= re1*.

8t - m[z-it   R2 + itzj'

Thus, if we write

(2.3)

Y^ = SldW)dmt))'

/2(zi) = - f  k\(it,z)cP¥(t).
T J-B

And for an arbitrary positive e,

r~£ \dY(r)\ ú f : \dt/d0\ wm\
J-R+e J-B+e

=  max  \dt/d0\ f * \d</>(0)\ < K(e) < +co.
|(|<S-e J-n

Therefore, T(r) is a function of bounded variation in the interval [—R+e, R—«].
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Next, we estimate 71(z1)+73(z1). For 0X<0<02 and -77/2<<£<77/2,

d0 _     4R cos </>

d</>~ R2+4sin2<f>'

dH(eim\ zx(z))     _ R 2z+2i sin <f>(R2 - z2)
= vt

d0 "v R(R2-z2)+2i sin (/>zR2

r cos r(R2-r%R2 +4 sin2 </>)

Therefore

(R2 + r2 - 2Rr cos (</> - r))(R 2+r2+2Rr cos (</> + r))

8H(eim\ zx(z)) = mh -+■
d<f> \Reié-z   Re-^ + z)

Thus, if we define <b(r)=¡\(d<j>¡dQ(<l>)) d<¡i(0(<j>)), then for an arbitrary positive e,

Í>(t) is a function of bounded variation in the interval [—rr/2+e, tt/2 — b]. And

1     Í-+JI/2

(2.4) 71(z1)+/3(zi) = - K2H(Rei*,z)d<S>($).
"I* J -B/2

From (2.1), (2.2), (2.3), and (2.4), we get

Theorem 1. Define the domain 7> = [9flz>0, \z\ <R] for 0<R< +00. Let u(z) be

a subharmonic function having a positive harmonic majorant for z in D. Then there

exist two functions T(r) and $>(</>) which are defined in the intervals (-R, R) and

(—77/2,77/2) respectively and of bounded variation on arbitrary closed intervals

included in the above intervals respectively, and a stricken positive mass distribution

p(e¿) defined for the Borel sets e in D. And for Da z,

1    f + fl 1    /* + n/2

u(z) = -        Kf(it, z) dx¥(t)+- Ki(Re(*, z) d<S>(4>)
TTj-R n J-n¡2

S '
-Jl/2

gat?, 0 dp(eç)

where

and

K^>z^*{zh-vhz)>

*^z) = *(^+^z)

|(z+Q(7<2-zO|
gate, 0 = !og

(z-Q(R2 + zt)\

This theorem is an extension of a theorem of F. and R. Nevanlinna [8].

Let /¿*(ec) be a mass distribution which may be written as the difference of two

stricken nonnegative mass distributions ^(e;) and /u2(ec) defined for the Borel

sets e in D respectively. Then, from the proof of this theorem, we easily get

Theorem 2. Let u(z) be a function represented as the difference of two subharmonic
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functions having positive harmonic majorants for z in D. Then there exist two functions

T(0 and <$(</>) as in Theorem 1 and for z in D,

u(z) = -¡ + B Af(/í, z) cPV(t) + - f + '2 KR(Re^, z) d<S>(<j>)
fJ-R ft J -ji/2

(2.6)

gR(z, O dp*(e¿,
JteD

where Kf and K2 are defined in Theorem 1.

Let E(p, e) denote a set {r ̂  |z| < p - e, p + e g |z| < R, |arg z| < 7r/2 — e (e > 0)}. By

the Carleman method [6] we consider the integral

/ = (1/2770 if (z~2 + p~2)log{(z+ Z)(R2-z£)/(z-0(R2+zQ>} dp*(e<) dz
JJe(p.s)3i:

taken along the contour of the domain {|argz| <7r/2, rx< \z\ <p (r1<r)} in the

positive sense, starting from the point z=—ip with a fixed determination of the

logarithm. Then letting rx -> 0 for fixed r, we get

m=-\ Ul-^)dp*(er)

(2.7)

+ — í        f    gR(pe{\ 0 cos <f> dp.*(e¿) d<f>.
ttp J -nl2   JçeD

Again, integrating by parts and using the theorem of residues, we get

(2.8) mi= f (p-2-\L.\-2)mi;dp.*(e¿.
Je(í>.s)3C; ICI <p-e

From (2.6) J"lc|<„ mt\dp*(e¿\ < +oo. Therefore from (2.7) and (2.8), we find as

e -*> 0 and r -> 0

(2.9)

— f        f    gR(pe1*, 0 cos </> dp.*(e:) d<f>
ttp J -%I2   Jceü

= f       0» " 2 - * - W <***(«e) + f (81Í -x - R - 2m) dp*(eK).
J\r\<P Jp£iC\<R

Accordingly, by using the same method as [6, p. 247] or [7] for h(z) we obtain

the following equality

^ = - f       P~2n dp*(eK)- f n-1 dp*(e,)
P J\t.\<P Jpi\l\<R

(2.10) +Í       R-2ndp.*(e,) + ̂ -[       p-2<W(t)
JK\<R ¿tt J\t\<p

+ f t~2dY(t)-¡      R-2dW(t) + r^^;
Jpâ\t\<R J\t\<R -K
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wherem(p) = (\/tr) ¡+_nJ22 u(pe*) cos </> d<f> and m*(R) = (l/^) /!*{* cos <f> d4>(<p). Thus,

using the partial integration for jpSW<R 9r.£_1 dp.*(e¿) and ¡pSm<¡¡ t~2 <T¥(t)

respectively, we get the following result closely related to Carleman's theorem.

Theorem 3. Let u(z) satisfy the hypotheses of Theorem 2. Then for all p such that

0<P<R,

(11,) *Sàm2 ('&*+!*!&
P Jp    t K

where A(t)= -J,tl<< 9t£ ay(et)+ (l/2ir) J|T|<j í/*F(t), ana w(p) and" m%R) are

defined in (2.10).

From Theorem 3, we easily obtain

Theorem 4. i/noe/- r/ie hypotheses of Theorem 2, we can assert the following for

all t such thatO<t<R:

(I). If A(t) = 0, then m(t)/t is a continuous and nondecreasing function oft.

(II). If A(t) is a nonincreasing function of t, then m(t)/t is a convex function of

\/t2.

Proof. Since the equality m(p)/P = 2 j* (A(t)/t3) dt+m*(R)/R for 0<Px<p<R

is obtained from Theorem 3, by using (2.11) we get

»»o»i)_, r Amdt+miñ.
3i Jo,.Pi       JP1 t P

Therefore (I) holds. Next, from (2.11) we get

dO^ld
(?) - «"

for almost every p. Hence (II) holds.

By using Theorem 2, we get the following Theorems 5-8 related to the half-plane.

Theorem 5. Let u(z) be a function in 9iz>0 represented as the difference of two

subharmonic functions which have positive harmonic majorants in an arbitrary

bounded subdomain in 9îz>0. Then there exist a function ^(t) of bounded variation

defined in the finite imaginary axis and a stricken mass distribution p*(eK) defined

for the Borel sets e in dtz > 0 and represented as the difference of two nonnegative

mass distributions, and for all p and R(0<p<R< +oo),

Mp) _o CRA(t)M¡m(R)

P

where A(t)= -/m<< ÎRÇ d^*(ec) + (l/2w) J|t|<t dY(r) and

m(R) = - f       u(Rei"') cos <f> dp.
T J-ji/2
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Proof. Define two domains D1{dtz>0, \z\<Rj} and D2{ÎHz>0, |z|<i?2} for

0<R1<R2< +oD. Then applying the proof of Theorem 4 and using the result of

the uniqueness of positive mass distribution, there exists the stricken mass distri-

bution p*(e¿) defined in this theorem, and we find for arbitrary positive numbers

p and R such that 0 < p < R < Ru

(2.12) stí.2f^í*+síp
P Jp     t K

and

m(p)     „ f* A2(t) Mm(R)*>-*r.9dt+-
R

where

and

A\t)=-\      «£<4**(ct) + y-f      ̂ W

A\t) = - [      mdp,*(e:)+±- f      cP¥2(r),

and Y^O and T2(0 are defined in ¿^ and Z)2 analogously to *F(0 in Theorem 2

respectively. From (2.12) and (2.13), we get

1■AW-^Üa-O.
P l

Hence A1(t) = A2(t) for almost every / (0<r<A!). Therefore

f        dWx(r) =   f        ¿Y2(r)
J|I|<( J|T|<(

for almost every t and J|I|<( cP¥2(t) is a function of bounded variation of r such

that 0 = t^Rx. Thus we complete this proof.

If g(r) denotes a real valued function of positive r and limr_ + „ g(r)= ±co, and

if the derivative of g(r) is evaluated in the interval [1, +oo) and g'(r)^0, by the

theorem, we find

Theorem 6. If u(z) satisfies the hypotheses of Theorem 5, then we can assert the

following :

(III). The condition

m(r) ~ rg(r)

is equivalent to

A(r) ~ -WOO-

(IV). The condition

m(r)/rg(r) is bounded for 1 <r< +oo

is equivalent to

A(r)/r3g'(r) is bounded for 1 < r < +oo.
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Proof of (III). The derivative (d/dR) J* (A(t)/t3) dt = A(R)/R3 is evaluated for

almost every R such that p<R< +00. Therefore if J* (A(t)/t3) dt-±g(R), then

A(R)~ -$R3g'(R). Thus from (2.12), (III) holds. (IV) is proved analogously.

If we write Ax(t)= -¡m<tu\ldp*(e,), A2(t) = (\/^)¡w<td^(r) and

*m       [RA2(t)   m(R)

then by Theorem 5

S(P) = 2J*^fidt + S(R),

where R > p > e > 0. Therefore we get

Theorem 7. If, in Theorem 5, u(z) is a function subharmonic in 9tz > 0, then for

R>0

(V). S(R) is a continuous and nondecr easing function of R, and

(VI). S(R) is a convex function of\/R2.

If we write T(R) = 2¡R (Ax(t)/t3) dt+m(R)/R, then by Theorem 5,

T(P) = f  Mfi dt + T(R),       R > p > e > 0.
J p    *

Hence we get

Theorem 8. If, in addition to the hypotheses of Theorem 5, u(z) satisfies the

Phragmén-Lindelôf boundary condition; namely lim supz^¡„ w(z) = 0 (?Rz>0)for all

real finite r¡, then for R>0,

(VII). T(R) is a continuous and nondecreasing function of R, and

(VIII). T(R) is a convex function ofR~2.

Particularly, if u(z) is subharmonic, then Ax(t)^0 and Ax(t) is a nonincreasing

function of t. Therefore from (VII), for R2 > Rx,

Kx Je       t K2 Js       t

Hence we find m(Rx)/Rxt¿m(R2)/R2 which is due to Ahlfors [1] and Heins [5].

Next, dT(R )/dR "2 = (dm(R )/R)/dR "2 - Ax(R ) for almost every R from the definition

of T(R). On the other hand, dT(R)/dR-2 = A2(R)/2 for almost every R. Hence

2d(m(R)IR)ldR-2 = (2Ax(R) + A2(R)) for almost every 7Í. Consequently m(R)/R

is a convex function of R ~2, and the case A2(t) = 0 of this result is due to Tsuji [12].

2.2. Higher Classes. In this section, we shall improve the conclusion of

Theorem 5 and study the behavior of mass distributions of higher classes. For this

we start from an application of the representation of (2.6). If t> \z\, then Taylor's

expansion for l/(z — it) shows that

1 1    +?   / ?\ n +?     rn
1       =   __   >     <_I|     =    _     V_ „Kn«-(n + l)i/5) _ _  rpie

z-it      itnê0\it)   -    n40ín+1 ' e-
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Therefore, applying the elementary integration

<2-14> I ¡Z RS¿5sin w(7r/2~ö) * - 27^'

and also using the same method as (2.14) we find for \z\>t

1    f + n/2 i fn-l

(2.15) - SR -jf—r sin «(77/2 -0)d0 = —
vtJ_b/2      refe-/r        v '       ' 2rn

Thus from (2.14) and (2.15), we get

• + a/2   r + R 1

77 J_.

(2.16)

1    f + ji/2   f + B 1
SR-JS-T.^Osiniií^-tf)^

n J -n!2  J -R        re   ~ «

¿ \Jrá<,t\'R t J\t\<r    ? /

By the same method as (2.16), we find

1    r + jil2   r + R - 1    /• ,n-lrn

(2.17) ¿J_^ J_b Jft ̂^-^(0 sin „(77/2-0)^0 = ^^^^-^(0.

Next, 9îei,I<n + 1>/2/—zn = sin n(-n-/2 — 0)/rn is harmonic in 9îz>0. Therefore we

find

T'* I f "" «(Jte^JW*, re-) ™*W2-g) ̂  ^
J -r.12  't J -J1I2 r

(2.18) = f+ '2 w(tef*) - f " '2 Sm"(7rn/2~g) A2s(re'9, /le») ¿0 dp
J-71I2 "t J + ji/2 ?

= r2u(Re*«f[«n^-<»dt.
J-Jl/2 -^

Moreover, by using Taylor's expansion for log (z+ £) and log (z—£), if we write

then for |z| <|£|,

log^|=+í^
¿     *> n = 0

2 tö£n  „
¿»- --T^iz'    «even;

-2^£z", «odd.

Hence

(2.19)

1    C + Jl/2 -n  cyi-n

i 8U» sin «(77/2 -0)d0 = (- iy2 + 1~im-n,        n even ;
tt J-„I2 n   |4|

= (-D(n-1),2-¡|p'       «odd.
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And for |z| > |£| we get

487

- f +     mAn sin n(77/2 - 0) d0 = ( - l)n'2 + » J- S£",
77 J _ „;2 nr

n even ;

(2.20)

Moreover if we write

»(-ly—H/a-Lgtpi „odd.

log
*2+z£

1- CO

-2*
**■       zi> n = 0

then we get for z=rete,

1    /" + JI/2 _n cvrn

- 9í5n sin n(77/2 - 0) d0 = ( - l)n'2 + » - ^       n even ;

(2.21)

= (-lf-11,s^'       «odd.

Thus, from (2.6), if we write

m(r, n) = ^ J +     «(re**) sin »i|- fl) ¿0,

then we get

m(

(2.22)

^-¿(f   £«*>+/.   ¡Ätwno-f   £><o)

" WlCKr r JrSlCKB |4|

-|       -näS^*^)).     «even;

(_l)(n + l)/2   /, 8t£».,,.,    f «£"•„,>

" VlCKr  f JrSICKÄ N

-f       %dp,*(e,)\,       nodd
Jk\<bk I

m(R, n)
Rn

+ ■1

If we write

r(-l)»rtSÎ»,»even

l(-l)(n + 1),23tí", nodd

and apply integration by parts for

•|ansinn(77/2-argö

¿f 7¿í^(0   and    f \l\-2"K(Qdp*(ec);
Z7r JrS|i|<B « JrSlCKB
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furthermore, if we set

(2.23) A*(t, n) - ¿ f      r»-1 dY(r) + l- f      A(Q ̂*(et),

then

(2.24) ^ = 2«f7¿í^(0^+^
where A*(t) = A*(t,n).

Thus we obtain

Theorem 9. Under the same hypotheses as in Theorem 5, i«e equality (2.24) /¡oWs.

From this Theorem 9 we find directly the following

Theorem 10. Suppose that u(z) satisfies the hypotheses of Theorem 5. Then we

can assert the following for ct= +1 or — 1, t>0 and2n—p>0:

(IX). If oA*(t)^0, then om(t,n)/tn is a continuous and nondecreasing function

fort.
(X). If oA*(t)/t" is a nonincreasing function of t, then om(t, n)/tn is a convex

function oft-(2n-p).

(XI). Let

(2.25) Í'2 t~i2n + "A*(t)dt < e

for all r2>rx>N if N is selected sufficiently large for an arbitrary positive e.

Then  limt^ + 00 (m(t, n)/tn) = p.*  (—co<p.*=+co)  exists,  and if p*<+<x>,   then

j+=° f-wn + i)^) dt converges.

(XII). Let $rrlt-l2n + 1)A*(t)dt be bounded above for l<r1<r2<+co and

lim infr_ + „ (m(r, n)/rn)< +oo. Then m(r, n)/rn and ¡\ t ~l2n + "A*(t) dt are bounded

respectively for 1 <r< +oo.

(XIII). Let jll t-{2n + 1)A*(t) dKefor all0<r1<r2<s if s is selected sufficiently

small for an arbitrary positive e. Then limr_0 (m(r, ri)/rn) = p% (—oo ̂  p% < +co) exists,

and if p* > —oo, then jl t -(2n + »A*(t) dt converges.

(XIV). Let jl t-(2n + »A*(t) dt be bounded above for 0 < r < 1 and

,. m(r,n)
hm sup      „     > -co.

r-o F    rn

Then \) t~{2n + 1)A*(t) dt and m(r, n)/rn are bounded respectively for 0<r< 1.

If we write At(t) = (l/n)^<tk(t)dp*(eK), A*2(t) = (l/2rr) f|t|<( r1-1 dY(r) and

S*(R) = 2n Jf (At(t)/t2n + 1) dt+(m(R, n)/Rn) for R>e>0, then from (2.24), for

R > p > E,

^Aip
S*(P) = 2nj*0¡dt + S*(R).
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Hence we get

Theorem 11. Let u(z) satisfy the hypotheses of Theorem 6. Then we can assert

the following: For a= +1 or — 1 and t>0,

(XV). IfoA\*(t)¿0, then aS*(t) is a continuous and nondecreasing function for t.

(XVI). IfaA^(t) is a nonincreasing function oft, then oS*(t) is a convex function

of\/t2\

If we write T*(R) = 2n fR (A\*(t)/t2n + 1) dt+(m(R,n)/Rn)ïor 0<e<R, then from

(2.24), for R>/»>«,

T*(p) = 2nj*0£dt + T*(R).

Hence we get

Theorem 12. If, in addition to the hypotheses of Theorem 8, n is odd, then we can

assert the following: For r>0,

(XVII). T*(t) is a continuous and nondecreasing function oft, and

(XVIII). T*(t) is a convex function of l/r2n.

Theorems 11 and 12 contain Theorems 7 and 8 respectively.

3. Representation theorems. First, we shall state the following fundamental

representation theorem.

Theorem 13. Let u(z) satisfy the hypotheses of Theorem 5. 77¡en for e>0,

\z\ <R< +00 (9îz>0) andK(Ç) = K(i, n) in Theorem 9,

_ f       *Jw fr+Q(*a-zQ _2 "t11 (ZY
J£<|tl<*     I   g te-D(R2 + zl)     i  ¿i k [I)

(3-1) x(t^-j^)*K, *)}**(*)

+ ̂ J-*/2 m\\Re^J      Re^-z+\RF^J      Re'^ + zJ

xu(Re^)d<¡, + W.P(n-\,z,e)

where P(n—1, z, e) denotes

+2il(^m(e,k).
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Proof. From (2.24) we get

i»"1     /7\k   rR 9 n.~.1  / 7\k

= jlk^  lj^A*(t,k)dt + ]2{^  m(R,k).
(3.3)

" "-1     /,\k  rR

Accordingly, by using the equalities

"-1 (z/ity-l    1     n^l(zt\k     z^tz/iR2)»-1 -1)Y    z*    = (zlit)n-l    1     y 1 /_EL\  = *(('*/'*

-2j%(gsink(,,2-^)

= {l~\ReTV     J Re^-z+{l~\R^J     J Re-'*+z

from (2.22), (2.24), and (3.3), we find (3.1) and (3.2).

Theorem 14. Let u(z) satisfy the hypotheses of Theorem 5. Suppose that the

conditions (2.25),

1 f + B/2

(3.4) lim sup ——x |«(/te1*)! cos <f>d<p = 0
B-. + CO    K J-ji/2

and

(3.5) lim inf — w(Ä, «) = p.* < +co
fl-> + 00     K

are satisfied. Then

f cfírin(z+Q(/?2-zQ   2 "^ 1 /z\*
J.< ,ci <«    I   g (z-0(R2 + zO    i ¿ * W

(3-6) x (t¿b-¿)x(Cí *)} **fe)]

-2p.*^^+îitQ(n-l,z,e)

where A(£, n) is defined in Theorem 9 and

Q =   lim P(n-l,z,e)
B-> + oo

- L.. fa Sf+2i I î (£)"*«• *>} *(e',+2/1 tó)*m<-' *>
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Proof. By elementary calculation, we get for z=rew, l, = te^,

and using the inequality sin k(ir/2—(/>)^k(n/2 — </>) = & tan (tt/2—(/>) (0<(/><tt/2),

for small S > 0 and large constant M,

mJ        z"+1 __(-z)n+1
(Rei0)n(Rei"' - z)   (Re " l*)n(Re " '* + z).

2JJ)*HHHH

*^£G)*24 *(§)*-*
Therefore from Theorem 13 and (XI) in Theorem 10, the representation (3.6)

holds.

Theorem 15. 7n addition to the hypotheses of Theorem 5, let condition (3.5) be

satisfied. Suppose that

(3.7)

and that

(3.8)

(3.9)

(3.10)

f        \t\-"-2m\dp*(ed\ < +00
•MCI + oo

f r*-1<ñr(t)< e,
Jrx <\t\ <r2

f        ic|-a»^(i;,/i)^*(<?{)<«,
Jrx <|CI<r2

[a<*+1-pb<w(°t)<<,    »-±1,

for all r2>rx>N if N is selected sufficiently large for an arbitrary positive e. Finally

let
i       /•■m/a

(3.11) lim inf ¡—^ |M(/?e"»)| cos <f>d<p = 0.
S-. + Œ    A J-jj/2

Then for z = reie, |0|<7r/2,

• 1X77/2-Ö)

(3.12) -L»<..{l°,Nt2I¥''iü,w-'}w
+ 2/x*rn sin n(77/2- 0) + SRß(n-1, z, e)

vvnere p*, Q(n-\, z, e) an«" K(i, n) are defined in Theorem 14.

The case where « = 1 contains the results by Boas and R. Nevanlinna (see [3]).
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Proof. By using Taylor's expansion, we write

,R2-zl   2 ^ 1 tz\*

(3.13) = - 2 l f      %sin ̂ z2 -ö)sin w - *> **(*)•
k^n + lK Je<K\<R *

t = té*.

Then by using (3.7) and the inequality (1/A) sin K(TT/2-<p)^ir/2-(pStan (n-ß-cp),

0<<f>< 77/2, we get

(3.14) lim   v(z,R) = 0.
B-> + 00

Next, by conditions (3.8) and (3.9), condition (2.25) holds obviously. An

application of (XI) in Theorem 10 shows that j*°° (l/t2n + 1)A*(t) dt converges.

Therefore j;°° (l/ran + 1MÎ(/) dt and J";°° (l/tan+1)A*(t) dt converge, where Af(t)

and At(t) are defined in Theorem 11. As ]+Dœ (l/t2n + 1)A%(t) dt converges,

(3.15) If        tn-1(llrin-llrf)dT(t)+[ (l/f» + 1-f"-1/r|n)</,F(0  < «
\J[t\<T1 •'ri<|i|<r2

for all r2 > ri > N if N is selected sufficiently large for an arbitrary positive e. Hence,

using (3.8), (3.15) shows

(3.16) lim    f       f^irfTW-fc
rj-n-oo J\t\<ri "l

Thus by (3.15) and (3.16), we get the existence of the finite limit, i.e.,

(3.17) lim   f      -^n cP¥(t) exists       (finite limit).
I--. + CO J|(|<r t

Using the same method as the above, we have

(3.18) lim   f      r-2nK(l,ri)dp*(e¿ = 0.
r-» + oo J|c|<r

On the other hand, by conditions (3.7), (3.10), and (3.11), we find also for 0= ± 1

(3.19) lim   {' on + 1-^cP¥(ot) exist       (finite limit).
r— + 00 Ji t

Now, we find

Jt*<ih<!ü   tw/ ^ííj

Jr1<|i|<r2   l\r/

n + 1 f sin (n + 1)(tt/2 - 0) - r sin »(77/2 - 0)

r2-2/rsin0 + r2

+ -£-lSmnfe-0JjdY(t).
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Therefore, applying the second mean value theorem (with slight modification) for

the first integral of the last side, the absolute value of this integral is less than e

for all r2>rx>N if N is selected sufficiently large for an arbitrary positive e.

Hence by (3.17),

(3'20) L.+Xïïér}^™^
Next, we find also for M<R,

-Lm.Affi *&*-&)'St™
r r (jr_y R2 sin (n + l)(7r/2 -0)-tr sin k(t7/2 - 0)

~ JM<iti<« VU2/  ' 7<4-2Ä2rrsin0+r2r2

+ Ç-"sinng-0)}^(?).

Accordingly, by using the same method as the above, from (3.17) and (3.19) we

get

Thus applying Theorem 13, (3.12) holds.

Theorem 16. Let u(z) satisfy the hypotheses of Theorem 12. Suppose that con-

ditions (3.5), (3.7), (3.9), and (3.11) are satisfied. Then (3.12) holds.

Proof. As u(z) satisfies the PL boundary condition and n is odd, (3.8) is obtained.

If we use the same method as in the proof of Theorem 15, we find (3.15). Therefore,

we get for <r= + 1,

(3.22) lim   f t-n-1dxF(at) exist       (finite limit);
r-> + oo Je

and (3.22) implies (3.8). Hence, applying Theorem 15, we get (3.12).

The following theorem is easily obtained.

Theorem 17. Let u(z) be a function in the half-plane 9tz>0 represented as the

difference of two harmonic functions having positive harmonic majorants in an arbi-

trary bounded subdomain of¡ñz>0. Suppose that conditions (3.5), (3.8), (3.10), and

(3.11) are satisfied. Then for T(r) defined in Theorem 5, |0| <7r/2,

1 f M" t sin nfr/2- 0)-r sin (n- 1)(t7/2- 0)
^■ïL^-W  -r2-2/rsin0+í2-^

+2p*rn sin n(77/2-0) + O(|z|n-1),

where p*=limB^ + x (l/Rn)m(R, n)for m(R, n) defined in (2.22).
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4. Regularities.    First we state the following main theorem in this section.

Theorem 18. Ler u(z) satisfy the hypotheses of Theorem 5. Suppose conditions

(3.5) and (3.11) are satisfied and that for a= ± 1,

(4.1) f2 o^t-«-1 (T¥(<jt)
Jr.

< e

for all r2>ri>N ifN is selected sufficiently large for an arbitrary positive e. Finally

let

(4.2) f Itl-»-1«^*^)! < +00.
J|Ç|<  +00

Then

(4.3) lim  î^P = 2u*sinn(77/2-0),       \p*\ < +oo,
r-> + oo       r

holds uniformly in any angle | 0| < 8<w/2 except for an open set ofr of finite logarith-

mic length; for |0| <77/2 with the exception at most of a set of outer capacity zero.

And

(4.4) lim  ¡£? = 0
r-* + oo    r

holds uniformly in any angle \0\ <8<tt/2 except for an open set of r affinité linear

length.

The conclusion (4.3) in the special case where n = 1 contains the results by Ahlfors

and Heins [2], Boas [3] and Itô [7].

Proof. Now we write

(4.5)

= f +Ui(z)+U2(z)+U3(z)
Je< ICI <N

where j denotes a positive integer, Ux(z) denotes iV<|£|<2s 2, U2(z) denotes

|£|>2s + 1and U3(z) denotes 2s-2S \t\ ^2s + 1.

First we estimate Ux(z) and U2(z). By using Taylor's expansion, we find for

2s-1 < \z\ <2S, z = reie and £ = *<?'*,

Ux(z) = - 2 f { f Ä *«, *) sin ¿(77/2 - 0)
JN<|CI<2S   2   U = l Kr

(4.6) - 'f ¿ *({, *) sin k(n/2- 0)} 0>*(ec)>

i/2(z) = -2 Í 2 Ä *& *) sin ̂/2- ö) **(^)-
J|{|>2S + 1 fc = n Kr
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Since (l/k)\K(i;,k)\=2V2tk/(sin28) sin (tt/2-</>), 0<S<tt/2, by the inequalities

sin k<¡> < k<f> < k tan <f>, 0 < <f> < tt/2, there exists a positive constant M such that

(4.7)

U,(z)

r"

U2(z)

Next we estimate U3(z). For this we write for a small positive e,

'2S      «     '     |z+£|      B-1

(4.8)

J^ 7^1 (log Ijrll + 2 fc2 l (p)  *«• *) sin *W2- ö)| <fr

(•t-e i"t + c /»2s

+ + •

J2*"1        J(-e Jt + e

By term-by-term integration of the series we get

ft-el        |(*t_c 2      Ü   1   /r\*

< pj£il+1 y __L_ /' i-e

„s-1

Since 2 (!/(«+£)&) converges there exists a positive constant M such that

lim
£-.0 J2'-1 tn(4.9)

For Jf^e we obtain similarly

r2' I     If2*      c 2   t-?   1
= - \lTTl I ^K^k) sin k(ir/2-0)

Jt + s\        \Jt + e \J        it=lKr

~2 % '^ST K{-1' k) SÍn k^12 - ö)} dT

< [2 y —L_ Jl+2 y1 _i_ II)* L]2' .
= [   áAn + k)kr^\¿,k(n-k)\t)  r"Jt+e

Accordingly there exists a positive constant M such that

(4.10) limir I < Jlf~
e-o|Jt + s| tn

Thus for \<f>I < (77/2) - 8, 0 < S < (tt/2),

(4.11) 1*^1^)1 dr * Ä f ,+1 ¿T«tl4»W|.
J2' ir sin 0 j2í-2<ici<2s+1:i*i<s/2-¿ *
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If E(s, e) denotes a set of r in the interval [2s"1, 2s] such that \U3(z)\/rn>e for an

arbitrary positive e, and if we set {JS>N E(s, e) = E(N, e), then

(4.12) í       dlogrí^-¡ -¿ï m\dp*(e<)\.
Je<,n,s) s Sin 0 J\^\>2N:\é\<nl2-ô '

If we suitably select a sequence {Nn} such that Nn -> +oo as n -> +oo for a sequence

{en} such that £„^-0asn^ +oo, the inequality

(4.13) f ¿log
JU„B(N„,£„)

follows from (4.2).

Next, for \</>\ ^tt/2-S, if |0| <tt/2-28, w/2>28>0, we easily see that

lim  I i/3(z) = 0.

Thus limr_ + 00 (l/rn)U(z)=0 with the same exceptional condition as the forepart

of (4.3).

If Ex(s, e) denotes a set of r such that U3(z)/rn +1 > e for an arbitrary positive e,

and \JS>N Ex(s, e)=Ex(N, e), then

í        dr = 7ET8¡     s 3¿I«l**fo>|.
JEííN.sI e sln ° J|{|>2w;|*|<ji/2-í *

Thus, for two sequences {JV„} and {en} in (4.13) we get

(4.14) f dr < +00.
JuB*iWn.«n)

Therefore (4.4) holds for U(z) under the same exceptional condition as that of

(4.4).
Next, if we write

(4.15) g(z, 0 = log |i±||,

then g(z, C)úg(ée, é*) and for 0< 10| < S<tt/2,

g(z, Q Ú ¿-s ^ {g(eie, e«) +1}   (see [2]).

Hence we have for 2s"1 < |z| < 2s

l°#)|3i  f., ,+í{g(z'0+2nf¿
J2"   2<|C|<2* + 1   l, fc=l K-t

(4.16) x |sin fc(ir/2- 0) sin a:(t7/2-<¿)| j|o>*(ec)|
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Thus, if we write A^S) = max (M, 2 ■ 4n/cos2 8) and A"2 = 77(4" -1 —1)/12y/2 cot 8 +1

from (4.7) and (4.16), for 0 < 10| < S < tt/2,

(4.17) \U(z)\ú\ +A-1(S)r«f I cos </>{g(e'°, é*)+K2}\dp*(e¿\.
Je<Kl <n jN<\tn< + oo i

Hence, by condition (4.2), we find

(4.18) lim  -^p = o
r-> + oo      r

under the same exceptional condition as the last part of (4.3) (see [2], [12]).

By using Boas' method [3, p. 422] and applying the second mean value theorem

(with slight modification), we have

(4.19) lim   f ' sinW(77/2-0)-rsin(.- X)(,/2-0) =
v      '     r^ + oo JE<w< + 00             rn(r2-2//-sin 0+r2)                  w

for |0| <8<tt/2. Thus applying Theorem 15, the proof is complete.

Theorem 19. Let u(z) satisfy the hypotheses of Theorem 5. Suppose that (3.5),

(3.8), (3.11) and (4.2) are satisfied. Finally let

1     f
(4.20) lim sup -—y     ffí/TH < +oo

í-> + 00        t Jl

and

(4.21) lim sup - r ^-- cT¥(ot) ̂ 0,       a = ± 1.
Í-. + oo      t   Jt T

Then the conclusion of Theorem 18 holds.

The special case where « = 1 in Theorem 19 contains the results by Ahlfors and

Heins [2] and Boas [3].

Proof. We easily see (3.17). Hence by using the method of Boas [3, p. 443] and

the proof of Theorem 18, the conclusion of this theorem is obtained.

Suppose that u(z) is subharmonic in ÍRz > 0. Then, if we write

M(r, 8) =     sup     u(z)
|*|-r,|»|<i

for z=reie and 0< S < 77/2, we have

Theorem 20. If u(z) is subharmonic in 9tz>0 in Theorem 18 or 19, then

limr_ + a, M(r, 8)/rn exists (finite limit) and is not negative.

The special case where n = 1 includes the results by Heins [4] and Boas [3]

(see [3]).

Proof. Set for a finite constant p.,

(4-22) r^--L^A'°e^rWÁ^'K{Lh)}^-2^-
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V(z) is subharmonic in 9îz>0 and identically zero on the imaginary axis. By the

inequalities of (4.13) there exists a sequence {rn} of r outside an open set of

{JnE(Nn, en) such that limn^ + 00 (rn+1/rn)=l. And using the maximum principle

we find Mx(rn)^Mx(r)^Mx(rn + x)ifrn^r^rn + i, where M1(r) = sup|s|=ri9¡2>0 V(z).

On the other hand, if we write

F*> -/,-<„, .s».2' I i (£)'««+«•
and if 2s-!< |z| <2S, then for 0<S<7r/2,

iwm <r 4"(4"-1-l)n f r"

3v2sin2S   J2'-2<i;i<2s+1 '

Thus, by (4.2) limr^ + 00 Vs(z)/rn = 0 for 0< S< |0| <7r/2. Accordingly, as

\z + ü■f log
J2S"2<|C| <2S + 1

¿tied S 0,

by using the estimation of U(z) in Theorem 18 we get

lim  —¡j-¿ exists       (a nonnegative and finite limit).
r-» + oo       r

Hence by (4.19) the proof is complete.

Theorem 21. Let u(z) satisfy the hypotheses of Theorem 5. Suppose that conditions

(3.5), (3.11), and (4.2) are satisfied. Finally for o-= + 1, suppose

Cr2    an

(4.23) —¿n dyY(at) are bounded above for 1
Jrx    t

< ri < r2 < +co.

Then, u(reie)/rn is bounded as r tends to infinity under the same exceptional conditions

as those of '(4.3), and (4.4) holds with the same exceptional conditions as that o/(4.4).

Proof. By conditions (4.2) and (4.23) we find that jrT\ t -2n~1A*(t) dt is bounded

above for 1 < rx < r2 < + oo. Hence, by applying (XII) in Theorem 10, for a= + 1,

rr2       i
(4.24) an -f^rj (r¥(ot) are bounded for 1 < rx < r2 < +oof2   „    1

from (3.5). Thus we easily see the conclusion of this theorem.

The following theorem is easily obtained.

Theorem 22. Suppose that u(z) satisfies the hypotheses of Theorem 5. Let

conditions (3.5), (3.11), (4.2), and (4.20) be satisfied, and let

(4.25) -md^(t) be bounded above for \ < rx < r2 < +ao.
Jr! <|f|<r2  t

Then the conclusion of Theorem 21 holds.
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The case where n = l in Theorems 21 and 22 contains results by Boas [3] re-

spectively.

Theorem 23. Let u(z) satisfy the hypotheses of Theorem 5. Suppose that con-

ditions (3.5), (3.11), and (4.1) are satisfied, and that

(4.26) lim sup f      H \dp*(e,)\ < +œ
r- + «¡    JlCI <r |b|

is satisfied. Then (4.3) holds with the same exceptional conditions as that o/(4.4).

We may state the following theorems from the proof of Theorem 18.

Theorem 24. Let u(z) satisfy the hypotheses of Theorem 5. Suppose that conditions

(3.5), (3.8), (3.11), (4.20), (4.21), and (4.26) are satisfied. Then the conclusion of

Theorem 23 holds.

Theorem 25. Let u(z) satisfy the hypotheses of Theorem 5. Suppose that con-

ditions (3.5), (3.11), (4.23), and (4.26) are satisfied. Then u(z)/rn is bounded as r

tends to infinity under the same exceptional conditions as that of (4.4).

Theorem 26. Let u(z) satisfy the hypotheses of Theorem 5. Suppose that con-

ditions (3.5), (3.11), (4.20), (4.25), and (4.26) are satisfied. Then the conclusion of

Theorem 25 holds.
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