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Introduction. The concept of holomorphic hull (or envelope of holomorphy)

of a set A on a complex manifold X has been studied extensively in various cases.

If A is a domain in Cn, then the holomorphic hull of A is a well-defined Stein

manifold spread over C. There are also many examples of lower dimensional sets

A in C, «> 1, in which all holomorphic functions on A can be continued analyti-

cally to some larger set A'=> K. The best known type of example, the boundary of

the unit ball, is due to Hartogs, but there are also many examples which are local

in nature and indicate that the phenomenon is geometric in nature and not neces-

sarily topological [6], [9], [10].

One basic question is: what is the largest set A' to which A can be extended in the

above sense of simultaneous analytic continuation? This set, if it exists, should be

the holomorphic hull of A. In §1 we define the holomorphic hull of a compact

set A in a Stein manifold X to be the spectrum of the algebra of holomorphic

functions on K (completed in the maximum norm), which we denote by E(K).

E(K) is mapped into X in a natural way, and we see that it is the maximal set to

which A can be extended. Moreover, we show that if E(K) is schlicht over X, then

A can be extended to E(K), thus justifying the definition. If K=E(K), then we say

that A is holomorphically convex. In analogy to the theory of polynomially convex

sets, there are many problems associated with this concept.

One can give conditions using the Levi form on local submanifolds Afc Cn, « > 1,

that M be locally extendible [1], [7], [9], [16], [18] or that M be locally holo-

morphically convex [18], [19]. For local hypersurfaces S in Cn, there are essentially

two complementary known results: (1) if the Levi form is nonvanishing at p e S,

then the local holomorphic hull of S at p contains an open set, (2) a necessary and

sufficient condition that 5 be locally holomorphically convex is that the Levi form

vanishes identically. The problems for lower dimensional manifolds stem from trying

to find (1) the structure of local nontrivial hulls (such as being an open set or a

higher dimensional manifold), (2) necessary and sufficient geometric conditions

that a manifold be locally holomorphically convex, and (3) global conditions that

a compact submanifold be extendible or holomorphically convex.

In §2 we prove that any submanifold M in C" with a vanishing Levi form is

locally holomorphically convex. For a certain class of dimensions the converse is
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true, solving the second problem stated above for this case. In §3 we examine in

more detail the structure of the local holomorphic hull of an («4- l)-dimensional

submanifold M in C with a nonvanishing Levi form. We show that M has a local

holomorphic hull which contains an (n + 2)-dimensional manifold immersed in C

which has the local structure of an «-parameter family of Riemann surfaces. We

then give an example to show that the local holomorphic hull of such a submanifold

need not contain an open set. Bishop [1] shows that, in C3, under more stringent

conditions, M has a local holomorphic hull which contains an open set. This work

has been extended by Weinstock to submanifolds of codimension 2 [17].

In a remark at the end of §3 we discuss the extendibility of compact submanifolds

with constant dimensional complex tangent bundles of positive dimension. It is

conjectured that such manifolds are always extendible to higher dimensional

manifolds, and some special cases are discussed. On the other hand, one can prove

that a compact ^-dimensional submanifold M with no complex tangent vectors is

holomorphically convex (see [20]). In this case one can prove a stronger result,

namely that the algebra of holomorphic functions on M is dense in the algebra of

continuous functions (see [4], [20], [11]).

1. The holomorphic hull of a compact set. Let A be a uniform algebra of con-

tinuous functions on a compact space K, and denote by S(A) the spectrum of A

(see [5, p. 56]; we shall use [5] as a basic reference throughout this paper).

Let X he a complex manifold with structure sheaf 0X = 6 (sheaf of germs of

holomorphic functions on X). If S is a subset of X, let 0(S) he the algebra of

sections of <9 over 5 (germs of holomorphic functions defined near S). Let U be an

open subset of X. Then <S(U) is a Frechet algebra with the topology of uniform

convergence on compact subsets. Let E(U) denote the space of continuous com-

plex homomorphisms of 0(U) into C equipped with the weak-star topology as a

subset of the dual of&(U) (this is the envelope of holomorphy of U if U is contained

in a Stein manifold X, see [13]).

Let K be a compact subset of X, and let C(K) be the Banach algebra of continuous

complex-valued functions on K with respect to the maximum norm. Let 3V(K) be

the subalgebra of C(K) obtained by restricting representatives of elements of @(K)

to K (note that this restriction is not one-to-one), and let A(K) be the closure of

3Hf(K) in C(K).

A(K) is then a uniform algebra on K, and we will define the holomorphic hull of K

to be S[A(K)], to be denoted by E(K). The justification for this definition will be

given by the results of this section.

Proposition 1.1. Suppose K is a compact subset of a Stein manifold X, then

there are continuous maps

</>:E(K)^X,   ir:K-*E(K),

where K<=<f>[E(K)] and </> ° tt is the identity on K.
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Proof. Let ir:A->P(A) be the Gel'fand map, where n(x) = 8x, the Dirac

measure at x. Define the map fr E(K) -* E(X) by <f>(X) = X\0(X). It is clear that

these are continuous maps and that <j> ° n is the identity on A. Applying the theorem

that X Stein implies E(X) = X (see [5, p. 222]), we obtain the desired result, and

the proposition is proven.

A compact set A in a complex manifold X is a holomorphic set if there is a se-

quence of open Stein manifolds A^c X such that J|tlcl¡ and

CO

k= n xt

(such sets were called S6 sets by Rossi [12]). A set A is locally holomorphic at pe K

if there exists a compact neighborhood N ofp such that N n A is holomorphic. We

will say that a set A in a Stein manifold X is holomorphically convex if A is equal to

its own holomorphic hull, i.e. if the mapping <j> given by Proposition 1 is a homeo-

morphism from E(K) onto A. And, similarly, a set A is locally holomorphically

convex at pe K if there is a fundamental system of neighborhoods of p, whose

intersections with A are holomorphically convex. Note that since the intersection of

two open Stein submanifolds of X is again an open Stein submanifold, if A is

locally holomorphic at p, then there is a fundamental sequence of neighborhoods

ofp, whose intersection with Ais holomorphic (is a holomorphic set). The following

proposition shows that holomorphicity implies holomorphic convexity, and it is

unknown to the author whether the converse is true, although it seems likely that

that should be the case.

Theorem 1.2 (Rossi [12]). If K is a holomorphic set, then K is holomorphically

convex.

Corollary 1.3. If K is locally holomorphic at peK, then A is locally holo-

morphically convex at pe K.

Suppose K<= A', then we shall say that K is extendible to K' if the natural map

r:0(K')->(P(K)

is an isomorphism. A is said to be extendible, if there exists a A' strictly containing

K, such that A is extendible to A'.

Proposition 1.4. Suppose X is a Stein manifold. If K is extendible to A', then

<t>[E(K)]=>A' and the map -n: A-> E(K) extends to a map -n': A' -> E(K) such that

(f> o 77-' is the identity on A'.

Proof. By hypothesis, r: <S(K') -*■ 0(K) is an algebraic isomorphism. It follows

readily that

\\rf\\K= ll/IU-,   fe^(K')

and hence that r extends to a topological isomorphism, r: A(K') -*■ A(K). Thus
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r*: E(K) -*■ E(K') is a homeomorphism. Letting # be the Gel'fand map mapping

K' into E(K'), we set 7r' = (r*)_1 o #, which proves the proposition.

Assuming that X is still a Stein manifold as before, we make the following

definition. We shall say that E(K) is a schlicht holomorphic hull if the map </> given

by Proposition 1.1 is injective, and we set </>[E(K)] = K, identifying E(K) and K by

the homeomorphism </>.

Theorem 1.3. Suppose X is a Stein manifold and K is a compact subset of X with

a schlicht holomorphic hull K. Then K is extendible to K.

Proof. Let U be an open set in X containing K. Then since K^ £/<= X, the natural

restriction maps induce maps

r F
E(K) —> E(U) —> E(X)

where E(U) is the envelope of holomorphy of U and F is a locally biholomorphic

map (see Rossi [13]). Moreover we have that F ° t = </>. By hypothesis, </> is injective,

hence we obtain that F\t(E(K)) is injective. But r[E(K)] is compact, since E(K) is

compact. It then follows from the fact that Fis locally biholomorphic that there is a

neighborhood N' of t[E(K)] such that F maps A^' biholomorphically onto a

neighborhood N of K in X, where we have identified X with E(X) since X is Stein.

If feO(U), then /extends to fe 6[E(U)], since E(U) is the envelope of holo-

morphy of U. But then/=/° F_1 is holomorphic on A^, and f\N n U=f\N n U,

and /is an extension off from U to U u A^Â.

To prove the theorem it suffices to show that the restriction map r : (9(K) -> &(K)

is onto. Suppose a e &(K), then there is an open set U^K and anfe <P(U) such that

/is a representative for a. By the above construction,/can be extended tofe 0(N)

where N^>Ñ., and/induces a germ /?e E>(Á) such that rß = a, and the theorem is

proven.

2. Local holomorphic convexity of submanifolds in Cn. Let M be a real sub-

manifold of a complex manifold X(all manifolds will always be C"). We shall say

that M is locally extendible at p e M if, for any sufficiently small neighborhood

N ofp, N C\ M is extendible. Note that if M is locally extendible atp e M, then M is

neither locally holomorphic nor locally holomorphically convex at p.

Let T(M) be the tangent bundle to M, with fibre TP(M) for /> e M. T(M) is a

subbundle of T(X), X considered as a real C°° manifold, and we will let 3: T(X)

-> F(A') be the almost complex tensor given by the complex structure on X. Set

TC(M) = T(M) r\ 3T(M),   TCP(M) = TV(M) n 3TV(M).

TCP(M) is a complex subspace of TV(X), and we will call TC(M) the complex

tangent bundle to M (it is not always a bundle). The complex rank ofTC(M) at p is

the complex dimension of TCP(M). We will say that TC(M) is nondegenerate at

pe M if there is a neighborhood N ofp such that TC(N n M) has constant complex
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rank at each point of N n M. TC(M) is nondegenerate on M if it is nondegenerate at

each point of M. Nondegenerate complex tangent bundles are subbundles of T(M).

At a point where TC(M) is nondegenerate, the Levi form is well defined. Con-

sider the complexification TCP(M) ® C (tensor over P); then J extends naturally

to this vector space and has two eigenspaces. Let TP1M(M) be the eigenspace with

eigenvalue +1 and let TP°'V(M) be the eigenspace with eigenvalue -1 ; then we

have TCP(M) ® C=TP1-0)(M) ® TP°-V(M). Conjugation is well defined here and

gives an anti-isomorphism of TP1,0)(M) onto TP0A)(M). Also, there is a canonical

isomorphism between TCP(M) and TP1M(M), and we will identify these two vector

spaces, using TCP(M) in the sequel.

Definition 2.1. The Levi form is a quadratic form

L(M):TC(M)-*C
defined by

Lp(u) = irf[Y, Y]p

where 7is a local cross section of TC(M) defined near/? such that Yp = u and ttp is

the projection

ttp: TP(M) ® C-> TP(M) ® C/TCP(M).

Remark. This definition is independent of the choice of 7 (cf. [8]).

We shall need the following two results concerning the Levi form on a sub-

manifold of C\

Theorem 2.2. Let M be a real k-dimensional submanifold embedded in Cn with a

nondegenerate complex tangent bundle of complex rank mat peM. If the Levi form

vanishes identically near p, then M can be represented near p as a (k — 2m)-parameter

family of m-complex-dimensional complex submanifolds of Cn, i.e. there exists a

neighborhood N of p, an open set B in Rk~2mx Cm, and a map F: B -» N, such that

F is an embedding, and if we set

(2.1) Ft(w) = F(t, w),    (t,w)eB,    t e Rk~2m,    w e Cm,

then Ft has maximal complex rank and is holomorphic in

Bt = Br\[tx Cn].

Proof. Since TC(M) is nondegenerate at p we can find a local basis for TC(M)

in a neighborhood N of p in M, which we denote by {Xx,..., Xm}. These will be

linearly independent complex vector fields of type (1,0) on M defined near p. The

vector fields {Re X¡, Im Xhj=l,..., m} span TC(M) (locally) when considered

as a real subbundle of T(M) and we can extend them to a basis of T(M) by adjoin-

ing / real vector fields {Yx,..., 7,} where we have set l=k-2m. Suppose 7is a

local cross section of TC(M), then we have

m

7=2 «iXi
j = i
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and hence

[Y, 7]= 2 «0,[jrte*,].

Moreover, we have that each commutator on the right-hand side is a vector field

on M, and we obtain
m 1

(2.2) [Xb Xf] = 2 (Pti*> + <**«) + 2 d¿ Y*
(l«l v=l

(we have expressed {Re Xu, Im A^} in terms of {Xu, Xß}). Thus the Levi form

vanishing identically near p implies that dt) vanish identically near p. Then (2.2)

gives the complex integrability conditions of Sommer [15], and Sommer proves in

his paper that the integrability conditions are necessary and sufficient that the

submanifold M he fibred into an /-parameter family of «z-complex dimensional

complex submanifolds of Cn. The theorem is then proven.

Theorem 2.3 [18](2). Let M be a real k-dimensional submanifold embedded in Cn,

with k>n and complex rank TC(M) = k — n. If

(a) TC(M) is nondegenerate at p, and Lp(u)+0 for all u e TCP(M), or

(b) there are no positive dimensional subvarieties of Cn embedded in M passing

through p, then M is locally extendible at p.

We now have our main result concerning local holomorphic convexity of sub-

manifolds in C\

Theorem 2.4. Let M be a real submanifold of Cn with a nondegenerate complex

tangent bundle at pe M. Suppose the Levi form vanishes identically on M near p,

then M is locally holomorphic at p.

First we have the following simple lemmas.

Lemma 2.5. Suppose M is a real k-dimensional submanifold of C" with rank

TCp(M) = m, for p e M. Let s = k — 2m, r = n + m — k. After a complex-linear change

of coordinates in Cn, M may be represented as a map F: N -> C, where N is a

neighborhood of the origin in Rs x Cm, and

F%t, w) = t, + ig\t, w),       j=l,...,s,

F^\t,w) = h\t,w),      j=l,...,r,

Fi + s + r(t,w) = Wj,       j=l,...,m,

(t,w) = (tx,...,ts,wx,..., wm) are coordinates in Rs x Cm, and{g'}, {«'} are real and

complex-valued functions respectively, vanishing to second order at (t, w) = 0.

(2) This theorem was stated more generally in [18], but the proof given was only applicable

to the case stated here.
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Proof. This follows easily from elementary linear algebra and the implicit

function theorem, see [1], [18].

Lemma 2.5'. Let U be a domain in C, and let <f> be a real-valuedfunction defined

in U, and let

S = {x: frx) = 0}

be a hypersurface in U with dfr^O on S. Let p be a point on S and suppose that there

is a complex submanifold Y of Cn of complex dimension m embedded in S passing

through p. Then the complex Hessian of<f>,

has at least m zero eigenvalues at p (with eigenvectors in TCP(S)).

Proof. Let z=(zx,..., zn) be the given coordinates in C, and assume that p is

z=0. There is a holomorphic change of variables z=g(Ç), such that (i) A =

(dg evaluated at z = 0) is unitary, (ii) (setting £, = £; + ñ?0 Tp(S) = [nn=0], TCP(S) =

[£n=0], and (¡ii) in a neighborhood U' of z=0 we have

(2.4) rnt/' = [£n+1=...= £n = 0].

Thus if we set $(0=<l>[g(0] and let 77 be the Hessian of <j> in the £ coordinates,

we have

77 = I* Hi

where * denotes Hermitian adjoint. Since A is unitary we see that 77 and 77 have

the same eigenvalues. It is easy to see that 77 has at least m zero eigenvalues with

eigenvectors in TCP(S) since

d2frdU 81, = 0,       i S m,j S n; i S n,j S m,

which follows from (2.4). The lemma is proven.

Proof of Theorem 2.4. Set s = k — 2m, r = n + m — k. By Theorem 2.2 we see that

M is (near p) an s-parameter family of w-complex dimensional complex sub-

manifolds of C. Let B„ be a ball of radius p about/?, so that each pointy of B0 n M

has an w-dimensional complex submanifold embedded in M passing through q.

Assume the representation for M given by Lemma 2.5 and identify

(xx,..., xs) = (tx,..., ts),       (zs+r + x, ...,zn) = (wx, ...,wm)

where zj=xj+iyj,j= 1,...,«, are coordinates in C. Set

g\z) = g'(t, w),       h'(z) = h\t, w)

and assume that p is chosen so that {g'} and {«'} are well defined in Bp.
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Consider a local tubular neighborhood Ne of M of radius e given in the following

manner: Let T0(M)L denote the orthogonal complement to T0(M) in Cn, and define

If we define

Ne = {z e Cn : z = p + v,p e M, v e T0(MY, \v\ < e}.

<K*)= 2 Lv,-sW+2 \z,-h'(z)\\
)=1 i=1

we then have

Bp n M = {z e Bp : </>(z) = 0}, Bp n 3Ne = {zeBp: </>(z) = e}.

Let

H(4>) = H =

As(z)      * *

* Br(z)       *

* *       Cm(z).

where

i,j = l,...,*i

i,j = s+l,...,s+r,

i,j = s + r+l,...,«.

As = 82</>/dZi dZj,

Br = d2</>/dzl dz,,

Cm = d2<f>/dZi dz,,

We have the following estimates, letting /, be the Ixl identity matrix:

As = lrls+0(\z\)

Br = Ir + 0(\z\)

Cm = 0(\z\)

-ih o   <r

H(0)-   0      Ir   0    = 0(\z\).

0     0    0.

Hence we obtain the result that at z = 0, H has at least s+r positive eigenvalues.

It follows that p can be chosen so that H has at least s + r positive eigenvalues on

B2p. The sets

De = {zeBp + e:</>(z) < e}

are neighborhoods of M n Bp with piecewise smooth boundaries such that

H DE = MrsB0.
£>0

We shall now show that for sufficiently small e, each Ds is a pseudoconvex domain.

For p and e small enough Ne will have a smooth boundary. Suppose this is the case.

Also choose e < p. To show that De is pseudoconvex it suffices to show that D£ is

bounded by pseudoconvex surfaces. We have

8De 8Bp + En[</> ^ e]uBp+sn [çA = £]
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and it suffices to show that the surface S=[fr=e] is pseudoconvex with respect to

the side [</><e]. By construction dfr£0 on 5.

Points p on S are of the form p0 + v where v e T0(M)L, \v\ <e and p0 e M.

Hence for fixed v, we have a neighborhood of p0 in M is translated to a submanifold

of S passing through p. Since we have

I Pol < M + M < p

there is a complex submanifold of S of complex dimension m passing through p.

Hence by Lemma 2.5' we obtain that H(</>—e) = H(fr has at least m zero eigenvalues

at p. But we know also that there are at least r + s positive eigenvalues of H(fr at p,

and since n = r + s + m, we see that 77(^) has only nonnegative eigenvalues in

TCP(S), and hence the surface S is pseudoconvex at p with respect to the side

[</> < e]. Thus De is a pseudoconvex domain and by the solution to the Levi problem

it is an open Stein submanifold of Cn (see [5, Chapter IX]). Hence M is locally

holomorphic, and the theorem is proven.

Corollary 2.6. Let M be a real submanifold ofCn with a nondegenerate complex

tangent bundle at peM. If the Levi form vanishes identically near p, then M is

locally holomorphically convex at p.

Proof. Apply Corollary 1.3.

Theorem 2.7. Suppose M is a real (n+l)-dimensional submanifold of Cn and

suppose M has a nondegenerate complex tangent bundle at p e M of complex rank 1.

Then M is locally holomorphic at p if and only if the Levi form vanishes identically

near p.

Remark. This theorem was proved for hypersurface in [18], and for 4-dimen-

sional real-analytic submanifolds of C3 in [19].

Proof. Suppose the Levi form does not vanish identically near p. Then for any

neighborhood N of p, there exists a point q e N n M such that LQ(M)^0. Then

Theorem 2.3 implies that N n M cannot be holomorphic. Since N was arbitrary,

this shows that M is not locally holomorphic at p when the Levi form does not

vanish identically near p. However, if the Levi form does vanish identically near p,

then Theorem 2.4 is applicable and the theorem is proven.

Corollary 2.8. Under the same assumptions on M as in Theorem 2.7, a necessary

and sufficient condition for M to be locally holomorphically convex at p e M is that

the Levi form vanish identically near p.

Proof. Sufficiency is given by Corollary 2.6. Necessity follows as in the proof of

Theorem 2.7 where we use the fact that an extendible set cannot be holomorphically

convex as we see immediately from Proposition 1.4 and the definition of holo-

morphic convexity.
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Remark. It is likely that Theorem 2.7 and its corollary are true without the

dimensional restrictions presently necessary.

3. Structure of local holomorphic hulls. Let M be a real C°° (n+ l)-dimensional

submanifold embedded in Cn, where n is fixed and ^ 2. Suppose TC(M) is non-

degenerate at p e M. We shall assume that rank TC(M) at p is one. We have first a

C00 embedding </>
</>:Bc Rn-^xC1-^Cn

where B is the unit ball in R"'1 x C1, and </>(B) = M. Letting (u, w) be the coordi-

nates in Rn'1 x C1, we obtain, as in Lemma 2.5,

<p'(u, w) = Uj + ih'(u, w),      j = 1,...,«-1,

</>n(u, w) = w,

where the real-valued C00 functions «' vanish to second order at (u, w) = (0, 0).

Let D be the unit disc [|£| < 1] in the complex £ plane, and let I be the unit interval

[0, 1]. Consider a continuous map/where

/: dDxI«^ B.

Then/=c4 o/is an «-parameter family of closed curves on M. By a "perturbation"

of the map /to a new map/1; we can find a map F where

F: D x In -+ Cn

such that

(i) For fixed t eln, F (I, t) is holomorphic at t, e D and has complex rank 1.

(ii) F\dDxP=fx o f

This is Bishop's result [1]. We want to extend Bishop's work to show that F can be

taken to be a differentiable mapping on Dxln which, under appropriate convexity

conditions on M, has maximal rank at all points of Dxln except for lower di-

mensional sets.

Let T be the Hubert transform of C°° real-valued functions u on dD defined as

follows: w = Re (<J)|d.D, where G is holomorphic in D and Im(G)(0) = 0. Let

Tu = lm(G)\dD. Let
70= [0,1],/= [-1,1],

Q = DxI0xIn-\

P = BDxIoXp-1,

with  coordinates  in   Q  given  by  q = (pem,r,t)   and  in  P  by p = (ew,r, t),

t=(tx,...,tn_x).

To find a mapping F: Q-+Cn which has the above properties it suffices to solve

the following equation

(3.2) f(p) = et-Th[f(p),g(p)]

for/. Here/is a map,
f:P^Rn~\
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g(p) is a given complex-valued function on P such that, for each fixed (r, t), g(p)

is the trace on 8D of a holomorphic function g on D, and e>0 is a fixed arbitrary

constant. Suppose / satisfies (3.2), then it follows immediately that for each fixed

0, /),
f(p) + ih[f(p),g(p)]

is the trace of a holomorphic map /

Therefore the pair (/ g) is the restriction to P of a map

F:Q^Cn

which is holomorphic for fixed (r, t). Thus we must solve (3.2) so that the solution

/is in Ck in order to obtain a differentiable manifold F(Q) (of order k) at those

points in Q where F has maximal rank.

Consider the Sobolev spaces Hm(P), which consist of L2 functions defined on P

with distribution derivatives up to order m also in L2(P). It is well known that

77m(P) c Ck(P)

for 2k<2m — dim P (see e.g. [3, p. 232]). We consider vector-valued functions

f=(fx,...,f,)B[H\P)]' = HT(P).

Denote the norm in Hm(P) by ||    ||m and use the same notation for/e 77,m(P), i.e.

II/IU= l/ilU+--- + ll/IU.
Let || \\p denote the maximum norm over P and we treat vector-valued functions

as above. For/e H?(P), m>(n +1)/2,

11/11* = CJI/IL
where Cm depends on /. In the applications here, / will always be either n — 1 or

«+1 and we shall assume Cm is the same for both cases. Assume also that B =

{(u,w):\\(u,w)\\P<l}.

Lemma 3.1. Let fige H?+X(P), \\f\\mSl, \\g\\mSl, m>2[(n+l)/2](a)

fi.P^B,       g:P^B,

then there exists a constant Km depending only on B, h, and m such that

\W)\m ú AJI/IIL
\W)-h(g)\\m S Km\\f-g\\m(\\f\\m+\\g\\m).

Proof. These inequalities are derived by Bishop [1] in the case m = l without

norms on the parameters. However, the arguments extend easily to this case and we

will omit the details here.

(3) [   ] denotes greatest integer.
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Take Km> CJ2 in Lemma 3.1, and let y= \\t ||m which is a constant independent

of m, m>l. We now have the basic existence theorem. This theorem is due to

Bishop [1] in the case m—l, when the L2 norms are taken only over the unit circle.

The somewhat stronger result presented here gives us differentiability with respect

to the parameters involved.

Theorem 3.2. Suppose m >2[(« + l)/2] and

0<e0< min^CJ-SOÓy)-1}.

IfgeH2n(P),g:P->C, with ||^||m^e0. then there exists uniquely an fe H™_X(P)

such that

(i)(f,g):P-+B,
(Ü) f(p) = e0t-Th(f(p),g(p)).

Proof. Letf°(p) = e0, and define by induction

fl(p) = e0t-Th(f'-\p),g(p)).

Using the inequalities in Lemma 3.1, it is easy to see that/' converges in H™_X(P)

tofe H^-i(P) which satisfies the equation in (ii) and satisfying

l/l. Ú (4Kmyi

(see [1]). Then we have that

\\(f,g)\\p = Cm\\(fig)\\m

=  Cm(\\fL+\\g\\m)

Ú CJAKm+\ < 1.
Hence

(fgy.B^p

and the theorem is proven.

Corollary 3.3. If (e, g) and (I, g) are two sets of data with m-norm <e0,andiff

fare the corresponding solutions of (3.2), then

\\f-f\\mu4y{\e-ê\ + \\g-g\\m}.

Proof. We have

f-f=et-êt + T[h(fig)-h(f,g)]

and hence

II/-/IL = y\e-ê\+Km{\\f-f\\m+\\g-g\\m}-{\\f\\m+\\f\\m+\\g\\m+\\g\\m}

= \*-ê\Y+m\f-fh+\\g-ê\u
Therefore,

¡f-f\\mè4y{\e-ê\ + \\g-g\\m},

as desired.
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Assume now that m > 2[(n+1)/2], let £0 be given as in Theorem 3.2, and let e be

such that 0 < s S <¡o- Let

Qe = D x 700) x 7" - \e),       Ps = 3Dx I0(e) x 7" - \e),

where I0(e) = [0, «], 1(e) = [-e, •]. Define g: P -> C by

g(p) = g(eie, s) = erew.

Consider the mapping fr=<f>°(f,g) where/is the solution to (3.2) for g, e as given

here. Let c = et, s = er, and we have then

(3.3) f(p) = c-Th[f(p),sr],

where p = (eie, s, c) are now the coordinates in Pe. Thus </> has the form

Up) =fl(p)+ihi(f(p), g(p)),    J = i,...,«-1,

Mp) = g(p),
and maps P£ to M. Setting t = eie, we define

¿TTl JdD        T — C

where £ e 7). This defines a mapping

(3.4) P: Qt -> C»

where p£C*(ße) since (/ g) e Ck(Pe), k ^ 1. We use here the fact that if for

fixed (c, s), f satisfies (3.3), then ifi¡, j= I,...,«- 1, are the boundary values of

holomorphic functions which are then given as above by the Cauchy integral

formula. Thus we obtain a differentiable map (3.4), where the order of the differ-

entiability depends on the size of e.

Lemma 3.4. Let M<= Cn be given as in (3.1). Then the Levi form Lp # 0 at p if and

only if

for some j, j = 1,...,«— 1.

Proof. There is a vector field X of type (1, 0) which generates TC(M) near p.

Let

(*!,.. .,xn + 1) = («j,.. .,«„_!, Rew, Im w)

be the real local coordinates on M as given by the embedding tp

dft/dxj = fr        dh'/dxj = h).

X is then given by

fcx     dx¡
where the {>/),} must satisfy

(3.5) "2  U) = 0,       i = 1,2,3.
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Since the matrix (fr), i,j= 1,..., « is nonsingular near/?, we may set ^n + i= 1 and

solve for <f>i,j= 1, • • •, «•

Now Lpt¿0 atp means that the vector fields [X, X], X, Xare linearly independent

at p. This implies that the matrix D given by

D =

+1      '

_Xtf>j-Xtfi¡.

j = !,...,« + !,

has rank 3 at p (and hence near p). By solving (3.5) explicitly for </>, we obtain at

p, since «j|p = 0,

"0 0 i   1"

0 ...    0 -i    1

_<*1 «n-1 0      0_

D

where

j = !,...,«-!.

A further calculation then gives us that

a, = -8/(«D,      j = 1,..., «-1.

Thus, it is clear that a necessary and sufficient condition that LP + 0 at p is that h'wib

be nonzero atp for some j,j=l, ■ ■., n — l.

By virtue of Lemma 3.4, we may assume that forPp^0 atp e Mn+1 the mapping

</> is of the form (where p = 0 in Cn)

(3.6)

fr = ux + iww+0(\x\3),

V = Ui + iO(\x\3),       j = 2,...,n-l,

fr = w.

(See [1, p. 15]; the nonvanishing of the Levi form is then equivalent to Bishop's

first assumption.)

We now want to compute the rank of the Jacobian of the map P. Set £ = £+ir¡,

F^Uj + iVj, and

'du, dUj_ Wj_ dUj dU, -

dÇ dt] ds dcx dcn_!

dVj dVj_ dVj_ dVj dV¡

_ Sf d-q ds dcx Scn_!_

J(F) =•

7=1,..., n. Let S(F) denote the set of singularities of F; i.e. the set of points in Qe

where J(F) has rank less than « + 2. We shall show that S is a lower dimensional

set.
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Lemma 3.5.

8U,/8ck |c = 0 = 8jk, j,k = 1,...,«-1,

dUj/ds\c = 0 = 0, j = 1,...,«-1,

dV,ldck\r = 0 = 0(\p\), j,k= 1,...,«-1.

Proof. We have, for y = 1,...,«- 1

F,(0,c,,)=i-.i    *JZl£Èdr
¿"l JdD T

= c,+fr f1 h'(f(eie, e, s), g(eiS, s)) dB.

Thus the first two parts of the lemma are clear. We now compute

ock     2ttJ0   ,*- 8ck

Let C denote large constants. Then we have

\\8é\\ =c\\f\\m,   u/n, ^ c\\f\\m.
II cci \\p

We obtain easily the following inequality

(3.7) W(f,g)\PúC\p\.

This follows from Corollary 3.3 and the fact that || g||m S C || g||P ¿ C \p\. Remember-

ing that h{(0, 0) = 0, we obtain

\\h{(f,g)húC\\(fg)\\P,

which, with (3.7), give the desired result.

Lemma 3.6.

8Vx/8s\^0 = s+O(\p\2).

Proof. Let w = wx + iw2. Then we have from (3.6) that

hi = 2wi + x_n(8Un + 8i¡n + x)0(\x\2),       i= 1,...,«+1.

Differentiating the equation

Vx(0,c,s) = (l/2n)jhi(fg)d8

with respect to s and using (3.8) we obtain easily the estimate (setting g=gx + ig2)

Since 8fi/8s and dgjds are bounded, we obtain the desired result, using (3.7), and

the fact that x is evaluated at (/, g)(p).
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Lemma 3.7. There exists an ex >0 such that, for \p\ <ex,

Rank/(P)|C=0 = « + 2.

Proof. Since g(s, 0 = s(i + ir¡), we have the last two rows of 7(P)Ç = 0 obtained

from Un and Vn given by

s   0   0

0    s   0

Hence it suffices to show that the matrix

M =

8LL

8s

dU,
8cj

8VX 8VX

. ds    8Cj.

i,j = !,...,«-!,

is nonsingular for \p\ sufficiently small. This follows from Lemmas 3.5 and 3.6 and

the Lemma is proven.

Now we are in a position to construct the extended submanifold. Let e =

min Oo, ex), where e0, ex are given by Theorem 3.2 and Lemma 3.7. Let Q£

= Qs-S(F).

Theorem 3.8. Let F be the differentiable map defined on Qc given by (3.4). Then

(i) S(F) has topological dimension Sn.

(ii) P: Q£ -> Cn is a regular (maximal rank) Ck map defining a submanifold

immersed in C, k^l.
(iii) P|P£<=Mn + 1.

Remark. In this theorem we may let k be as large as we please, by choosing «

sufficiently small.

Proof. Since J(F) is a holomorphic function of £ for fixed (s, c), then J(F)(c, s)

can only be singular at isolated points in D or singular everywhere in D. Since J(F)

is not singular at 1 = 0 by Lemma 3.7, then J(F) is nonsingular in D except on a

discrete set. Since this is valid for all (c, s), then the set of singularities of F is at

most an «-dimensional subset of Q. The theorem then follows.

This theorem will now give us the main result of this section.

Theorem 3.9. Let M<= CnbeaCco real (n + l)-dimensional submanifold ofCn with

TC(M) nondegenerate and of complex rank 1 at p e M. Suppose, moreover, the Levi

form is nonzero at p. Then, given any k^l, there exists an (« + 2)-dimensional real Ck

submanifold M such that M is extendible to M.

Proof. We construct the map

F:Qe^Cn

given by the previous theorem. We have P(0) = 0. Then F(QS) is an «-parameter

continuous family of analytic discs as defined in [18] and by Theorem 1 of that
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same paper we obtain that M is extendible to F(Qe). Let M be F(N) where A^ is a

neighborhood of q e Qs so that its image in Cn is a submanifold embedded in C.

The theorem is then proven.

We want to give an example of a 4-dimensional submanifold M^C3 which

satisfies the conditions of Theorem 3.9 but which is not extendible to an open set.

Namely, take

M = {zeC3 : \z2\ = |zi|-l, \z2\ è e, \z3\ = 2},

and let p = (1, 0, 2), for instance. One can check that Lp ̂  0, and in fact, by standard

Cauchy integral techniques it is easy to see that M is extendible to

M = {zeC3 : \z2\ g |xx[—l, \z2\ Ú e, \z3\ = 2}

which is a 5-manifold. But M5 can be expressed as the countable intersection of

domains of holomorphy Un in C3 given by

Un = {zeC3 : \z2\ < |Zi|-(l-e„), \z2\ < e+en, \z3\ < 2 + en}

where £„<1, and en->0, as «->oo. It follows that M5 is not extendible to an

open set.

Remark. Let M be a compact C°° real /c-dimensional submanifold of a Stein

manifold X with TC(M) of constant complex rank « > 0. We conjecture that M is

extendible, and moreover that 4>[E(M)] contains submanifolds of X of real di-

mension greater than k (</> as in Proposition 1.1). This is true in certain cases.

Bishop's peak point theorem [2] implies the existence of points pe M such that

there are no complex submanifolds at any positive dimension embedded in M

containing the point p(*). It follows from Theorem 2.3 that, if k>n, m = k—n, then

M is extendible. Moreover, if k = n+ 1, and m= 1, it follows from Theorem 3.9 that

M is extendible to a manifold of real dimension «4-2. Also, if k = 2n-l, then M is

extendible to an open set, which follows from Stein's theorem [16] (see also [9],

[18]), on extension from strongly pseudo-convex hypersurfaces. This is, of course,

related to Hartog's classical theorem, but the analysis here gives us less information

on the extended open set.

Remark (Added in Proof). It has been pointed out to me by H. Rossi that the

proof of Theorem 3.9 generalizes without much trouble to the case Mk<^Cn, k>n,

and rank TC(Mk) = k — n. That is, under these conditions Mk is locally extendible

to a differentiate submanifold of one higher dimension as in Theorem 3.9. One

needs only find the suitable generalization of (3.6) for rank TC(Mk)> 1, so that the

computations can be carried out. The extension manifold will be a (k— ̂ -param-

eter family of analytic discs, where the parameters come from w2,.. .,wk^n, as

given by Lemma 2.5. The estimates of Lemma 3.1 and the corresponding existence

theorem (Theorem 3.2) are valid in this case without change. It follows that

(4) This was pointed out to me by H. Rossi.
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Theorem 2.7 and Corollary 2.8 extend to this case. This extension result is also

contained in the thesis of S. Greenfield (Brandeis, 1967), where a somewhat different

proof is involved (still using the techniques of Bishop, however). Greenfield studies

also higher order Levi forms and higher order extendibility of submanifolds.
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