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1. Introduction. In [3] I. M. Gelfand proposed the study of existence and

uniqueness of solutions to the Cauchy problem for linear hyperbolic equations

whose coefficients are possibly discontinuous. In this paper we present some

sufficient conditions for the existence and uniqueness of weak solutions to such

problems. We also present some simple examples of hyperbolic Cauchy problems

for which weak solutions either do not exist or are not unique.

Our weak solutions are obtained as weak L2 limits of solutions of the associated

hyperbolic problem obtained by smoothing the coefficients and initial data. By

placing appropriate conditions on the original equation, we can show that the

strong solutions of the smoothed problem remain uniformly bounded in the L2

norm on compact sets as the smoothing parameter goes to zero. By the diagonal

method a subsequence of the family of smoothed solutions (indexed by the

smoothing parameter) can be selected which converges weakly on compact sets.

The weak solutions obtained in this manner are in general not unique, but in

some cases uniqueness can be obtained by placing an alternate condition on the

coefficients. To illustrate this, we mention briefly the following example, which

will be discussed in detail later. Consider the initial value problem

(1) ut + (a(x, t)u)x = 0,       u(x, 0) = u0(x).

By a weak solution of this problem we mean a locally integrable function u(x, t)

satisfying

/»OO        /»CO /»CO

(T) u(x, t)<f>t + aucf>x dxdt+\      u(x, 0)</>(x, 0) dx = 0
JoJ-00 J — 00

for any continuously differentiable function </> which vanishes for large |x|+f.

Now consider the difference quotient

(2) Q(x, t, h) = (a(x + h, t)-a(x, t))/h.

If Q(x, t, h) is bounded from below for all h, t, x, then a weak solution of (1) exists,
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but may not be unique. On the other hand, by requiring that Q be bounded from

above, we shall guarantee uniqueness, but then (1) may fail to have a weak

solution. By requiring that Q be bounded from above and below we are in effect

assuming that a(x, t) is Lipschitz continuous in x; in this case, (1) has a unique

weak solution. No assumptions need be made about the regularity of a(x, t) in the

t variable.

Essentially the same result holds for first order symmetric hyperbolic systems in

one space variable of the form

(3) Ut + (AU)x+C = 0,

where U and C are column vector valued functions, and A is a matrix. Existence

and uniqueness of weak solutions of (3) can be obtained by placing complementary

jump conditions on the matrix A.

In the case of first order symmetric hyperbolic systems in several space variables,

(4) (A°U)t+ ^l-(AiU) + BU+C = 0,

existence can be obtained by placing simple jump conditions on the matrix A1 in

the space variable xt. No such simple condition, however, can be used to obtain

uniqueness. In both cases no assumptions need be made on the regularity in the /

variable.

The situation is slightly different for second order equations of the form

(5) Mii-JA(^o|)+--- = o.

In this case, questions of existence and uniqueness depend on the behavior of the

leading coefficients a"(x, t) in the time variable. We shall see in §3 that (5) has a weak

solution if the quadratic form
n

i.j = l

satisfies certain jump conditions in /. By assuming complementary jump conditions

we can guarantee uniqueness of the weak solution of (5), although then the weak

solutions fail to exist in general. Finally, (5) has a unique weak solution if all the

coefficients a''(x, t) are Lipschitz continuous in t, while no regularity assumptions

need be made concerning their behavior in the space variables xx,..., x„.

The weak solutions we construct, both for second order equations and first

order systems, will be shown to satisfy a classical energy inequality.

The jump condition (as in equation (2)) is similar to the entropy condition used

by Oleïnik [5] in her investigations of the uniqueness of weak solutions of quasi-

linear conservation laws. Conditions similar to these jump conditions have been

used by Conway [1] in the case of single equations in several space variables.
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N. N. Kuznecov [4] has demonstrated uniqueness of solutions of first order

(nonsymmetric) hyperbolic systems in one space variable. He assumed that the

coefficients were piecewise smooth and had simple jump discontinuities along

smooth curves in the x — t plane.

There are two approaches to hyperbolic equations with discontinuous coeffi-

cients. The first is the method of characteristics which involves considerations such

as the intersection of characteristics and the Rankine-Hugoniot relations for shock

discontinuities. This point of view is used in constructing our nonexistence examples,

and it has also been developed extensively by Kuznecov [4]. The second approach

is that of energy considerations, and it is this point of view that has been adopted

in deriving the existence and uniqueness theorems in this paper. In this approach

one tries to show by an approximation process that there is a finite energy integral

associated with the solutions of the given hyperbolic equation with discontinuous

coefficients. The jump conditions we apply to the coefficients allow them to have

fairly bad behavior; in fact, the concept of characteristics need not make sense

here at all.

2. Preliminaries. In this section we present two measure theoretic lemmas

which will be used in the following discussions. We first introduce some notation

that will be used throughout.

Let 7sn + 1 denote («+ l)-dimensional Euclidean space with points denoted by

x=(x0, xx,..., xn), and let 3 = {xe En + 1; x0^0}. Let 77(r) be the hyperplane

x0 = t. We denote the initial manifold x0 = 0 by 770. We shall sometimes treat the

time variable x0 = t separately and write points as (x, t), where x = (xx,..., xn) is

the space variable. The functions in our discussions will take on values in Er,

r7t 1 ; if < , > denotes the inner product in ET, we define L2(<3) to be the set of all

functions u for which

(u, «> dx < +00.
Js

We denote by LXoc(3>) the set of all functions u for which the above inequality is

valid on compact subsets of 3¡. The dimension r of the range space will usually be

clear from the context.

We say that a sequence of functions un(x) converges weakly to a function u(x)

on compact subsets of 3) if

lim    (un, <f>) dx =    <«, </>) dx
n-* oo J J

for every function </> e Lfoc(&>) with compact support in 3>.

Lemma 1. Let {un(x, t)} be a sequence of functions in Lfoc(3) which converges

weakly on compact subsets of 3 to a function u(x, t) e L\oc(ß). Let K(t) = Kc\ H(t)
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where K is some compact subset of 3$. Suppose a(t) is some nonnegative function in

7i2oc([0, oo)) such that

f     (un(x, t), un(x, r)> dx = c2(t).

Then for almost all t we have

f    {u(x, t), u(x, t)> dx = o2(t).

Proof. Let E he any compact measurable subset of [0, oo). By the weak con-

vergence of un we have

(6) lim (un, u) dx dt = (u, u) dx dt.
n->co JE JKit) JE JKm

By Schwarz's inequality we see that

i  i    (un,u)dxdt \g f|   f    <wn, un} dx dt 1    -[f <n, u} dx dt]
I Je JKiti Ue jK(t) J       VJe Jku) J

(7)

= if a2(t)dt] <«, u)dxdt\    ■

Therefore by (6) and (7) we have

iff    <«, u) dx dt]     ú\¡ C72(0 dt
Ue JKU) i \-Je

Squaring both sides of the above inequality and letting f2(t)=jKm <w, u) dx, we

get

f f2(t)dti   f o2(t)dt.
Je Je

Since this is true for arbitrary compact E, we have that f(t)^o(t) a.e.    Q.E.D.

Lemma 2. Let i\be a domain in S¿ and let w e L2(Q.). Let {gn(x)} be a sequence of

functions in L2(ß) whose norm is uniformly bounded:

f  <gn,gn>¿*= G2,        « = 1,2,...,
Jn

for some positive constant G. Let An be a sequence ofr x r matrices whose entries are

uniformly bounded on O. and converge to zero in L2(Q). Then

lim     <gn, Anw} dx = 0.
n-* oo J

Proof. Lemma 2 is first proved for the case where w is a characteristic function
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and then extended to the case where w is a simple function by linearity. For

arbitrary w e L2(Q), one approximates w by simple functions.

3. Symmetric hyperbolic systems.   Consider in 3 the system

n

(8) Lu = 2 (A'u^ + Bu+C = 0
f = 0

of partial differential equations for the vector function u(x) = (u1(x),..., ur(x)),

where the matrices A1 and B and the vector C are given functions of x, and the

subscripts denote differentiation. We are concerned with establishing the existence,

uniqueness, and continuous dependence of weak solutions of the Cauchy initial

value problem for (8). Weak solutions are given by the following definition:

Definition, u is called a weak solution of (8) with the initial conditions i/i(x)

e Lfoc(H0) ifue LfQß(3) and

(9) f   y  [(A% </>>?-(Bu, <t>)-(C, fr dx}+[    KA^,j>y]dx = 0
J®i = o JHo

for every vector function <f>(x) which is continuously differentiable and which vanishes

for large \x\ +t.

We shall prove an existence theorem under the following conditions :

I. The elements of the matrices A{ (OSiSn), B, and C are in L20C(3¡).

II. The rxr matrices A1 (OSiSn) are symmetric.

III. There are constants c0 > 0 and c'0 > 0 such that

<.A°(x)u, u) S Co(u, u)

for all xe2>, and

<[A°(x)u, u) S: c'o(.u, u)

for all x e 770, where u is any vector.

IV. There is a constant cx>0 such that, for all x e 3i and all i, ISiSn,

(/I'OOh, u) S c1<m, m>

for all vectors u.

V. There is a function p ^ 0 in L\oc([0, oo)) such that

(B(x)u, u) ^ -p(x0)(u, u)

for all vectors u and all xe3>.

VI. Let Ax( = xl-xi and correspondingly let

Aj/1   = A (x0, ■ ■., Xj,..., xn) — A (Xq, ..., X{,..., xn).

Then there are functions p¡^0eL¡oc([0, oo)), p0 being a constant, such that

<(M'Oi)/A*0", «> = -Pi(x0)<u, ">

for all vectors u and all xe3¡.
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The existence theorem will be obtained via weak compactness arguments, using

energy estimates for the solutions of problems obtained from (8) by the following

smoothing process. Let cufc = 0 (k= 1, 2,...) be an infinitely differentiable function

on En + 1 with support contained in |x| =&_1 and satisfying

(10) f      mk(x)dx=l.
Je"*1

For any f e Lfoc(£l) we define

fk(x)=\    , Mx-y)f(y)dy.

Then fk (k=l,2,...) is infinitely differentiable in 3) and fk converges to/in the

L2 norm on compact subsets of 3>.

If A(x) = (ai'(x)) is a matrix with coefficients in L20<fß) we define Ak(x) = (aiki(x)).

There is no difficulty in showing that conditions II, III, IV, and V for the matrices

A1 (0 = /'^«) and B carry over to the associated smoothed matrices Ak and Bk.

On the other hand, condition VI ensures that

(11) {(dAk/dXl)u, u) = -plxoXu, u)

for any vector u, all x e Si and all k. To establish this fact consider the function

Fi(x) = {[Ai(x)-pi(x0)xiI]u,u)

where u is a fixed vector, and all variables x;, yV i, in A\x) are regarded as fixed.

Condition VI implies that Fi(x) is monotone increasing as a function of x¡. The

averaged function F^(x) is then also monotone increasing and is differentiable.

Thus
dFl/dxt ^ 0

and this condition immediately yields (11).

One can define a similar smoothing operation on the initial manifold H0 which

transforms </i e Lfoc(HQ) into infinitely differentiable functions ¡fik (A: =1,2,...)

which converge to ¡/r in the L2 norm of H0 as k -> oo.

We are now in a position to establish our first

Theorem 1. Under assumptions I through VI(2) there exists a weak solution

u e L2oa(£i) of the Cauchy problem for (8) subject to the initial conditions i/j e L2OC(H0).

Proof. Consider the smoothed sequence of systems

n

(12) Lku = J (Aiku)i + Bku+Ck = 0
i = 0

together with the sequence of smoothed initial conditions

(13) u(0, xx,..., xn) = 4>k(xx,..., xn).

(2) The bounds in V and VI actually need hold only on compact sets; a corresponding

remark applies to condition (ii) in the case of second order equations.
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Conditions II and III for the system Lk ensure that it is symmetric hyperbolic and

so we can apply the existence and uniqueness theory for such systems [2]. In

particular, we will apply it to the systems Lk when they are restricted to the nested

sequence of solid cones :

(14) T, = [x e 3 : r-xo ^ g (*f + "n  +4p r = 1,2,...

From the existence theorem for equations with smooth coefficients we obtain,

for each t, a sequence of continuously differentiable solutions uz¡k(x) of Lku = 0 in

T, which take on the values fr on Fz n 770. The standard energy inequalities [2]

show that

(15) EItk(t) âfU + J" k(s) exp (£ k(u) du} ds

Ez,k(t) = <M%,k, ".,*> dx
Jji(i)nr,

Ez,k(0),

where

and

k(s) = — max < max pt(s), p(s), 2      <C(s, x), C(s, x)} dxx ■ ■ ■ dxn
Co llSiSn Jr,

Consequently

(15)' <«,,*, î/,,fc> dx S Q \ <fr, fr) dx
Jr, JrtnH0

where ß is some constant which does not depend on k.

We note in passing that the uniform lower bounds in V and VI are essential in

deriving these estimates. The cones T, were chosen so that their sides are space-

like for all k= 1, 2,... ; hence the appropriate integrals over the sides of T, are

positive allowing us to derive the energy inequality (15).

Clearly the right-hand side of (15') is uniformly bounded above independently of

k and so by weak compactness we can select a subsequence of {ultH : k= 1, 2,...}

which converges weakly to a function uz(x) on the cone F,. Now for each k the

functions ul¡k were weak solutions of Lkut¡k = 0 in Ft in the sense that, if <j> is a

vector whose support in D is contained in the interior of T,, then

(16)    f   [ J <Alut,k, &>-<**"**, 4>>~(Ck, ¿>1 dx+ f    (AM* </>) dx = 0.

Taking limits we see immediately that

(IV) f   2 KA%, h)-(Buz, <¿>-<C, fr] dx+ f    (A°+, fr dx = 0;

i.e., uz is a weak solution of 7.w, = 0 in Tz. By the diagonal method we can now find
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a subsequence of the functions w, which converges weakly on each cone r, to a

function u e L20C(2>) which is the desired weak solution.    Q.E.D.

Using Lemma 2 of §2 we see immediately that the weak solution constructed in

Theorem 1 satisfies a classical energy inequality, viz.,

Et(t) g ^ [l + P k(s) exp (j* k(u) du\]E%(0)

for all t = 1, 2,..., where

Ei(t) — (u, M> dx.
Jr,nif(t)

Here, u is our weak solution. This energy inequality does not establish uniqueness

since there are weak solutions which do not satisfy this inequality, as we shall see

later. The energy inequality, however, does establish continuous dependence of

our weak solution on the initial data.

The condition VI which was used in the proof of the above existence theorem may

at first seem somewhat artificial. To show that this assumption, or some alternative,

is indispensible, we now present a simple Cauchy problem for a single first order

equation in two variables which fails to satisfy Condition VI and for which a weak

solution does not exist. Consider the equation

(18) ut+[a(x)u]x = 0

for the function u(x, t) in the upper half-plane D={(x, t) : r^O}, where

a(x) = 0, x = 0,
(19)

= — 1,       x > 0,

and u(x, t) is subject to the initial conditions w(x, 0) = 1. It is easy to see (by the

uniqueness theorem for weak solutions which will be proved shortly) that in the

regions x<0 and x>0 the weak solution u(x, t) of (18), if it exists, must coincide

with the solutions determined from the initial conditions in these respective regions

by the method of characteristics. Hence we must have u(x, t) = l. But along any

line of discontinuity L the solution must satisfy the Rankine-Hugoniot jump

conditions [2]

[u]dx-[au]dt = 0

where [/] denotes the jump of the function / along L. In the present case these

conditions lead to the requirement that w(x+0, t) = 0 for all i>0. Thus a weak

solution in this case is over-determined by the initial data and in general cannot

exist.

We shall now prove a uniqueness theorem for a restricted class of systems in one

space variable. The method used is a variant of that of Holmgren [2].

Consider then the system

(20) Mu = u0 + (Au)x = 0
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in 2J = {(x0, xx) : x0^0} for the vector function u(x) = {ui(x),.. .,ur(x)). We

suppose that A satisfies

I'. The elements of A are in Lf^fß).

II'. A is a symmetric matrix.

IV. There is a constant c>0 such that for all x e S and all vectors u,

— C<M, W>  =  (A(x)u, U)  S  c(u, «>.

VI'. There is a function v e L^fO, oo)) such that (using the notation of VI),

((AxA(x)lAxx)u, u) ^ v(x0)<u, «>

for all vectors u and all xe3>.

From VI' we see as before that the smoothed matrix Ak associated with A

satisfies

(21) <(dAk/8x)u, u) á v(x0)(u, u).

We now present

Theorem 2. If the above assumptions on A are satisfied then any weak solution

u e Lfoc(3) of (20), which is zero on H0, is identically zero.

Proof. The solution u satisfies Js [<w, cí0> + {Au, <j>x)>¡ dx = 0 for any smooth

vector function (/>. To show that w(x) = 0, it suffices to show that j3 (F(x), w(x)> dx

= 0 for any infinitely differentiable vector function F(x) which has compact

support contained in x0 > 0. We may choose T large enough so that the support

of F is contained in 0 < x0 < T. Now let the functions </>k (k"*1,2,...) be the

solutions of the backward initial value problem </>f + Ak</>k = F(x, t) onO<t<T

subject to 4>k(T, x) = 0. This can be done by solving the system

on 0<í<T, $k(0, x) = 0 and then taking </>k(x, t) = $k(x, T-t). Here Äk(x,t)

= Ak(x,T—t) and F(x, t) = F(x,T—t). The function </>k(x,t) so constructed

vanishes for large \x\ + t and so is an admissible test function. Therefore

(F,u)dx=      <çig + Ak</>k, u) dx
Ja Ja

(22) =  f  [-<[Au,<pky + <u,Ak<f>ky]dx
J9

=  f  (u,[A-Ak]<f>kydx.
Js

Now it follows from I' that the elements of A and Ak are in L^,c(St), and also the

elements of Ak converge in mean square to those of A. If we assume for the moment

that the functions </>k are uniformly bounded in mean square as k -> oo, then it

follows immediately from these two facts and Lemma 2 that the right side of (22)

can be made arbitrarily small, thus establishing the result.
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It remains to show that the functions fr are uniformly bounded in the L2 norm

as k -*■ oo. Now

roo        r*T roo        rT

(frx,frxydxdt= (frx,frxydxdt.
J - oo   Jo J - co   J0

Furthermore, by differentiating the system for fr and letting Wk = frx, we get the

system

(23) Wtk - Äk Wk - (Äk)x Wk= - Fx.

Now the usual energy estimates show that the integrals

Jco       />T
(Wk, Wk)dxdt

-00    JO

are uniformly bounded for k—\, 2,... if

(24) ((dÄk/dxx)u, u) S K*o)<", «>

(along with the other assumptions made above). But the left hand side of (24) is

the same as that of (21) and so we are through.    Q.E.D.

One can extend the method to establish uniqueness results for equations in

several space variables. To do so, however, one requires stronger assumptions in

place of VI'. In all cases Lipschitz continuity in the space variables (uniformly on

compact subsets) would suffice.

We will now present an example of nonuniqueness in a situation where assump-

tion VI' does not hold. Consider the equation

ut+[b(x,t)u]x = 0

in the upper half-plane t ̂  0, where

b(x, t) = 0,       x/t<l,

= 2,       x/t>l,

and u(x, t) is subject to the boundary conditions u(x, 0) = 0. Then using the method

of characteristics we see that u(x, t) is identically zero in the regions x<0 and

x/t>2. However, the line x/t=2 is a characteristic, and solutions may have dis-

continuities across characteristics. Thus we may choose u(x, t) to be any constant

in the wedge 1 < x/t < 2. Then u will be determined in the region 0 < x/t < 1 by the

Rankine-Hugoniot conditions (the line x/t= 1 being a line of discontinuity of the

coefficient b). There will likewise be a jump in u across x=0 but there are no

restrictions here since this line is characteristic and b(x, t) is continuous at x = 0.

4. Existence and uniqueness of weak solutions of second order equations. Con-

sider the second order hyperbolic equation

n n

(25) utt — V  (a^Ui), — ¿JMj — 2 c'ui — du — e = 0
i.i = l 1 = 1
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where the coefficients a", b, c\ d, and e are bounded and measurable on compact

subsets of 3d and satisfy the following additional conditions:

(i) There are constants a and a such that

a' J vf = 2 «"(*, tyofi, ^ a J P?
i = l i,i i = i

for any real numbers plt . ...p„ and all points (x, /) £ ®. We also assume that

aii = aii.

(ii) There is a constant A such that for all r#r', all xe En, and any numbers

Pi,..., v„

l^lf'V^i»'-'
We extend a"(x, /) to /<0 by setting a"(x, f)=o"(jc, 0) for r<0. As in §3 one

may show by the properties of the smoothing kernel o>k that condition (ii) implies

that

2 [I«#]«*>, S ¿¿«r

uniformly as A: -»■ oo.

We now define the Sobolev space ïVto2(3>) as the set of all functions u(x, t)

e Lfoc(&) such that there are functions u0, ux,...,un in Lfoc(3) for which

\{u(j£dxdt= - f    w0<¿ dxdt-í    u(x, 0)</>(x, 0) dx,

for any smooth function <£(x, r) which vanishes for large |x| +t. The functions z/¡,

/=0,. . ., n, are called the distributional derivatives of m.

By a weak solution of (25) we mean a function u e W^(&) with distributional

derivatives ut, ux,. . ., un which satisfy

(26)

/•co /* /* n

</>(x, 0)«¡(x, 0) dx +       - ut</>t +   2 a"ui<f>j dx dt
J - co •/ J £¿ i,Í = 1

^ c4(x, ÍKH+ 2 ciw¡ + í/" + í>lc/xc// = 0

for any C2 function </>(x, t) which vanishes for large \x\ + t. The initial data u(x, 0)

and ut(x, 0) are assumed to belong to Lfoc(H0).

We now prove the following theorem.

Theorem 3. Under the assumptions (i) and (ii) above, the second order equation

(25) has a weak solution in the sense (26).
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Proof. By the properties of the smoothing kernel we easily see that the in-

equalities (i) remain valid for the smoothed coefficients ak' as well. Thus the equa-

tion obtained from (25) by smoothing will be hyperbolic and we can apply the

classical existence theory to obtain a strong solution uk with strong derivatives

uk,uk, i=l,...,n.

We now derive the classical energy inequality for the solution uk of the smoothed

problem. We temporarily drop the superscript k to avoid cumbersome notation.

Multiply the equation for u by ut and write the higher order terms as a divergence:

(27)

where

(Ut)2+ 2 «"«.«i - 2 (a""iw<); = ß
t i.i=i

Q = » 2 aituiui + *("í)2 + 2 c¡UiUt + duut + eut.
^ i.i i = l

Here we have used the fact that aij = a'1.

Let P be the point t=r, xx= ■ ■ ■ =xn = 0 in the half space 3 and let Tz be a cone

with vertex P and base on the hyperplane 770. We shall specify Tz exactly later.

Let r(r) = 77(r) n Fz. We define the energy integral

"^L> [(Mi)2+-2 a"u,Ui
2, i.i = l

dx.

Now integrate the identity (27) over the region R(t) bounded above by F(t)

0< t), on the sides by r„ and below by TÍO). By Gauss' theorem we have

(28)    f i\ \(ut)2+ 2 a^uho- 2 a^uA dS = ¡(     Q(x,t)dxdt.

The vector (£0, ■ ■ ■, in) is the outward unit normal to the boundary of R(t).

The cone Ft is chosen so that the integrand on the left side of (28) is nonnegative

on the sides of rt. We then have

E(t)-E(0)S if    Q(x,t)dxdt.
JJru)

We now want to estimate the right side of the above inequality in terms of E(t).

Note that Q(x, t) depends on u while E(t) contains only first partial derivatives of

u. We have, however,

u(x,t)=     usds+u(x,0)

and by Schwarz's inequality,

u2(x, t) S 2¡t Í u2 ds+u2(x, 0)j-
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Integrating  over r(r) and  using the fact that Jr(f) uf dxS2E(t),  we  obtain

\ [    u2(x, t) dx S it f f    u2 dxds+\    u2(x, 0) dxX
¿ Jr») I  Jo Jru) Jrm J

(29)

S2t[ E(s)ds+ [   u2(x,0)dx.
Jo Jr0

Here T0 is some region in the initial manifold 770 such that r(/)cro for OSíSt

and for all values of the smoothing parameter k. We are assured of the existence of

such a region by assumption (i) which implies a uniform upper bound on the

characteristic speeds of the smoothed equations ; thus the domain of dependence

of P remains uniformly bounded as k -> oo.

We can now estimate the integral of Q(x, t) over the region R(t). Let B, C, D

be positive constants such that b(x,t)SB,  \C¡(x,t)\SC for f=l.», and

\d(x, t)\ S D. By the remark following condition (ii) and by the assumption of

uniform ellipticity (ii) we have

if    Q(x, s)dx= f   f     Q(x, s) dx ds
JJru) Jo Jv(s)

=  f f    \á  2  a%U¡ + Bu2s+\ V-  J a"uiUj + u2
Jo Jrw  {.¿a l££1 L  \a ,^fj

D e2 + w2)
+ ^(u2 + u2) + e-^\dxds.

It is now clear that there is a constant K depending on the positive numbers a, A,

B, C, and D such that

E(t)-E(0) Sk[ E(s)ds+2D Ç s f E(s')ds'ds
Jo Jo    Jo

+ if    e2(x, s) dx ds+ {   u2(x, 0) dx.
JJru) Jrn

The constant K does not depend on the smoothing parameter k since the constants

a, A, B, C, and D are independent of k.

Letting

/O) =  ÍÍ    e2(x,s)dxds+[   u2(x,0)dx
JJr«) Jr0

and integrating the iterated integral by parts we get

E(t)-E(0) S J" [K+D(t2-s2)]E(s)ds+f(t).

By assumption (i) the maximum characteristic speeds of the smoothed equations
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remain uniformly bounded as k^co; hence R(t) and therefore/(r) remain uni-

formly bounded as k -» go. The above integral inequality implies that E(t) remains

bounded on 0 _ t á t as k -» oo.

The procedure for obtaining a global weak solution is essentially the same as

in the case of first order symmetric systems. From (29) it is easily seen that the

integrals

ff   \uk(x, t)\2 dx dt

are uniformly bounded as k -> co. Letting t= 1, 2,... we construct by the diagonal

method a subsequence of solutions «'such that the functions if and (ul\, i = 0,..., n

converge weakly on the cones I\. It is easily seen that the weak limits thus obtained

form a function u e Wt¿2(2¿¡) with weak derivatives ut, ux,...,un which together

form a weak solution of (25).    Q.E.D.

In the same manner as in the case of first order systems we can show, using

Lemma 1, that the weak solutions obtained satisfy an energy inequality.

We remark that if condition (ii) is not satisfied, then equation (25) may not have

a weak solution. For example, consider the second order hyperbolic equation

utt-(c2(x, t)ux)x = 0,       u(x, 0) = f(x);       ut(x, 0) = g(x);

where

c(x, t) = ax,       x/t < 1,

= a2,       x/t > 1,

with 0<a2 < 1 <ax. Thus characteristics of the same type meet along the line x=t.

From the uniqueness theorem, which will be proved subsequently, it follows

that in the region x/r>l the weak solution must agree with the strong solution

since the coefficient c(x, t) is differentiable there. Continuity of the weak solution

across the line x=t, (denoted by L) then prescribes u(x, t) along the left side of

x=t (denoted by L~). Denoting values along L" (L+) by u~ (w + ) we have u~ =w+,

hence uf +ux =ut+ +ux . The Rankine-Hugoniot conditions in this case are

[ut] dx+ [c2 ux] dt = 0

where [/] denotes the jump of f(x, t) across L. Here dx/dt=l and we get

ut+ + a\ux = uf + a\ux . Thus along L, u and two linearly independent directional

derivatives are prescribed. In the region x/t< 1 the weak solution is also a strong

solution and is determined by the initial data along the boundary. However, the

function ip = ut — axux is constant along the direction (ax dxx, dt); that is, ifit + axipx

= 0. Thus the directional derivative uf —axux is uniquely determined on L~. We

now have three independent directional derivatives determined along L~ and so

the partial derivatives ux and ut are overly determined along L ~ by the initial data.

Consequently, a weak solution cannot exist.
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Finally we discuss the question of uniqueness of weak solutions of the second

order equation (25). This time we shall assume that

«"(*, t) -a"(x, t')or) - 2aw:r*' V^'Z
t-f

for some constant A' and any numbers vx,...,vn. This condition is complementary

to the condition (ii) on the quadratic form a" which was assumed in order to

establish existence. Note that both the conditions (ii) and (ii') will be satisfied if

we assume that each of the functions a"(x, t) is Lipschitz continuous in t.

We further assume that the coefficient b is Lipschitz continuous in /; that

é is Lipschitz continuous in x¡; and that b, à, and d are bounded on compact

subsets of 3.

Suppose that there are two distinct weak solutions of (25), say ux and u2. For the

difference w=ux — u2 we get the following integral identity:

-wtfr+ 2 aiiwi<t>,-frbwt+^ clWi + du + e\\ dxdt = 0

for any test function <j> which vanishes for large \x\ + t. We shall show that w=0 a.e.

by showing that

ÍLF(t, x)w dx dt = 0

for any smooth function F(t, x) with compact support in 3.

Let F(x, t) have support in 0 < t < T and let fr be the solution of the second

order equation

(30) <fö - 2 (aM)i -bAk - 2 <Wi - dkfr = F(x, t),
i.l = l i = 1

where dk = dk + 2f=i 4,¡ + ¿>m-

The solution fr is to satisfy the conditions fr(x, T) = <pk(x, T) = 0. We seek the

solution of the backward hyperbolic problem in 0</<T. Set fr(x, t) = fr(x, T—t);

the function fr assumes the initial conditions </ik(x, 0) = ipt(x, 0) = 0 and satisfies

the differential equation (30) with the coefficients ak'(x, t), bk(x, t),... replaced

respectively by ak(x, T—t), bk(x, T—t),....

As in the case of the existence theorem, by the assumptions (ii') we obtain an

upper bound on the energy integral

Ek(t) = \\    (#)2+ 2 dUtftfd*
¿ Jem ¡,, = l

for the function fr(x, t)—hence also for the function fr(x, t). The estimate is

uniformly valid as k -> oo. The region C(t) is the intersection of the hyperplane
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x0 = / with an appropriate cone—one of the cones F, which is large enough to

contain the support of F(x, t).

Now by the properties of the weak solution w(x, t) we have

JlF(x, t)w(x, t)dxdt

Il h o{«- i ««i.+iW),-!««-**'
i.J' = l

dxdt

-I
-JL

n n

■wt<f>t+ 2  ak<P,iWi-bkWt<l>k-^ck<]>kwi-dk</>kw
i.i-i

dx dt

\ 2 (<# - «'%**•', - (bk - bWw - J (d - cWwt - (dk - d)tky
Li,; = l 1-1

dxdt.

The smoothed coefficients ak}, bk,... converge in the L2 norm on compact

subsets of 3 as k -» oo to a", 6,.• • • Furthermore, aj/, bk,... are uniformly bounded

on compact sets as k -+ oo. Also, since the estimate on the energy integral is uniform

as k -> oo we see that </>* and c4f remain uniformly bounded in the L2 norm on

compact sets. Letting k -> oo and applying Lemma 2 we see that the integral

£
F(x, t)w(x, t) dx dt

is arbitrarily small. The desired result now follows.
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