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1. Introduction. Consider a uniform subspace S of a uniform space X. In [10],

M. Katëtov proved that every bounded uniformly continuous real-valued function

on S has a bounded uniformly continuous real-valued extension to X. A similar

theorem, due to J. R. Isbell [8], states that every bounded uniformly continuous

pseudometric on S has a bounded uniformly continuous pseudometric extension to

X. In this paper, we present a unified exposition of the above two theorems along

with other related results. In particular, using a construction due to H. L. Shapiro

[12], we prove a more general theorem from which the theorems of Katëtov and

Isbell may be derived.

Following Shapiro [12], if y is an infinite cardinal number, then a subset S of a

topological space Zis said to be Py-embedded in X if every continuous y-separable

pseudometric on S has a continuous y-separable pseudometric extension to X.

(A pseudometric d on X is called y-separable if there exists a subset A of X such that

\A\ S y and such that A is dense in (X, ¡Td), where 3~d is the topology on A'induced

by¿)

In §2, we show that every pseudometric on a topological space X that is induced

by a continuous real-valued function on X is X0-separable. This enables us to show

that every 7>8<>-embedded subset of a topological space X is C-embedded in X.

The converse of this theorem was demonstrated by Shapiro [12]. We also give an

example of a normal space X having a closed T^o-embedded subset that is not

T"«!-embedded in X. This settles an open problem that was posed by R. Arens [1].

The notation and terminology, except for uniform spaces, will be consistent with

that of [6]. For the general theory of uniform spaces, we refer the reader to [11].

If d is a pseudometric on a set X, then we will denote by ^ the topology on X

whose base consists of the sets Sd(x, e) = {ye X : d(x, y) < e}, where e > 0 and xel

We recall that the pseudometric d is continuous on a topological space (X, 3~)

if and only if ^c^ If/is a real-valued function on a set X, then the pseudo-

metric i/f; on X defined by

Mx,y)=\f(x)-f(y)\,

for x,yeX, will be called the pseudometric on X associated withf.

Let VL = (Ua)aeI and $s = (Ve)eeJ be two covers of a set X. We say that U has
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power at most y (y an infinite cardinal number) if |/| £y, and we say that U is a

refinement of 93 (written It < S3) if, for each a e I, there exists ß e 3 such that

Ua^Vß. Following J. W. Tukey [14], we say that U is a star-refinement of 33

(written 11 <* S3) if (st (Ua, U))aeI is a refinement of 33, where

st (U„ U) = \J{Ue:ßeI and U„ n Ua == 0}.

A cover U of a topological space X is normal if there is a sequence (lln)ne/v of open

covers of X such that llx < U and Un + 1<* Un for each n e N. If (Un)1SnSm is a

finite sequence of covers of a set X and if Un = (An(a))aeJn for each l^n^m, then by

Uj A ■ ■ • A llm or by An=i Un we mean the cover

(Ax(ax) n • • • r\Am(am))<ai.«.aj,...,,,.

If VL = (Ua)asl is a family of subsets of a set A'and if S<=X, then by 11 |S we mean

the family (S n t/a)a6/.

Suppose that (A', °ll) is a uniform space and that p is a collection of covers of the

set X. Then we say that p generates the uniformity °U in case the collection

{U(VaxVa):(Va)a„epj

is a base for W.lfUe W, then, as usual

ET(x) = (j> e AT :(*, *)€£/}•

If X is nonempty and if 33 is a cover of X, then we say that 93 is a uniform cover of

X if there exists U e'W such that (tV(x))xeX < 33. If X is empty, then, by definition,

every cover of A" is a uniform cover of X.

Now suppose that p denotes the collection of all uniform covers of a uniform

space (X, W). Then p has the following properties :

(1) If 33e/x and if 93 <9B, then 3S g/x.

(2) If 93 e p and if 3B e p, then 33 A 2B 6 p.

(3) If SB e p, then there exists 93 e p such that 93 <*SB.

Moreover, if p denotes the collection of all uniform covers of the uniform space

(X, <%), then p generates the uniformity *%. Finally, we note that every uniform

cover of a uniform space (A", %) has an open uniform refinement, and conse-

quently every uniform cover of (A', W) is normal, where open, of course, refers to

the topology on X induced by °ll.

Most of the results in this paper are contained in the author's doctoral disser-

tation which was written at Purdue University under the direction of Professor

Robert L. Blair, to whom the author wishes to express his appreciation.

2. inseparable pseudometrics. Most of the results that will be needed con-

cerning y-separable pseudometrics can be found in Shapiro's paper [12]. The

following theorem has a useful corollary.

2.1. Theorem. Suppose that X is a topological space, that y is an infinite cardinal



1968]     EXTENSIONS OF UNIFORMLY CONTINUOUS PSEUDOMETRICS        149

number, that ( Y, d) is a y-separable pseudometric space, and that f is a continuous

map from X into Y. Then r = d° (fxf) is a continuous y-separable pseudometric on X.

Proof. It is easy to verify that r is a continuous pseudometric on X. We now prove

that r is y-separable. Since y-separability, like separability, is an hereditary

property of pseudometric spaces, it follows that there exists a dense subset A of

f(X) such that \A\ Sy. For each a e A, we choose precisely one point xa ef~1(a),

and we set D = {xa : ae A}, so that \D\ Sy- Now suppose that xe X and e>0.

Then the nonempty open subset Sd(f(x), e) r\f(X) of f(X) contains some point

aeA. But then xa e D and f(xa) = a, so we have d(f(x),f(xa))<e, and hence

r(x, xa) < e. Therefore xa e Sr(x, e), so that ST(x, e) n D # 0. It follows that D is

a dense subset of (X, yr), and hence that r is a y-separable continuous pseudometric

on X.

2.2. Corollary. If X is a topological space and if fe C(X), then the pseudo-

metric ipf on X that is associated with f is a continuous H0-separable pseudometric

on X.

Proof. By 2.1, since R is separable, the continuous pseudometric r=d°(fxf)

is Xo-separable, where d is the usual metric on R. But clearly we have r=<\>¡.

Let us recall that if/is a real-valued function defined on a set X, then its zero-set

is the set Zx(f) = {xeX : f(x) = 0}.

2.3. Lemma. Suppose that S is a P^o-embedded subset of a topological space X.

Iffe C(S), ifZ=Zs(f) == 0, and iff£ 0, then there exists g e C(X) such that g\S=f.

Proof. Suppose that fe C(S), that Z=Zs(/)^0, and that/^0. By 2.2, the

pseudometric \/¡¡ on S associated with/is a continuous X0-separable pseudometric

on S, and therefore, by hypothesis, there exists a continuous pseudometric donX

such that d\SxS=ipf. We then define a map g from Xinto R by setting

g(x) = d(x, Z) = inf {d(x, z) : z e Z},

for all x e X. It is evident that g e C(X). Moreover, if x e S, then, since/ä0, we

have

g(x) = d(x,Z) = Mx,Z) = inf{|/(x)-/(z)| :zeZ} = f(x),

and it follows that g\S=f

2.4. Theorem. Suppose that X is a topological space and that S<=X. Then the

following statements are equivalent:

(1) S is C-embedded in X.

(2) S is P*°-embedded in X.

Proof. In [12], Shapiro proves that the first statement implies the second. We

will now prove the converse. Thus assume that 5 is T^o-embedded in X. If S= 0,

then there is nothing to prove. Hence assume that S is nonempty, and that/e C(X).
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Let aeS be arbitrary, set f(a) = a, and set g=(/v«)-a and h = — ((/a a) - a).

Then, by 2.3, there exist functions g0 and h0 in C(A") such that g0\S=g and

h0\S=h. Finally, we set f0 = (g0-h0) +a to get the desired continuous real-valued

extension off to X.

We conclude this section by giving two examples relating to X0-separable

pseudometrics.

2.5. Example. It is clear that every continuous pseudometric on a separable

space is X0-separable. The converse of this statement is not true. In fact, let A be

a set of cardinality c, let {0, 1} be the two-point discrete space, and let 7={0, 1}A,

i.e. Y is the space of all functions from A into {0, 1}, equipped with the product

topology. Finally, let

X = {ye Y : y(a) 7= 0 for at most countably many a e A}.

By a result due to Corson [5, Theorem 2], A' is a dense C-embedded subset of Y.

But then, by [12, Theorem 3.3], every continuous pseudometric on X has a con-

tinuous pseudometric extension to Y, since | 7| = 2C. Moreover, Comfort [4] noted

that Y is separable, but X is not separable. Now suppose that d is a continuous

pseudometric on X. Then there exists a continuous pseudometric extension r of

d to Y. But then, since Y is separable, the pseudometric r is X0-separable, i.e.

( Y, r) is a separable pseudometric space. Consequently, the subspace (X, d) of

( Y, r) is separable and so d is X0-separable. Thus, X is a nonseparable space such

that every continuous pseudometric on X is X0-separable.

The following is an example of a normal space X and a closed P"o-embedded

subset of A" that is not P*i -embedded in X.

2.6. Example. If m is an uncountable cardinal number, then Bing [3, Example

G] constructs an example of a normal 7i-space X containing a closed discrete

subset Y such that | T| = m, and such that there exists no pairwise disjoint family

(Gy)yeY of open subsets of X such that y e Gy for each y e Y. For this example,

take«i = X1. Since A'is normal and Tis closed in X, it follows that Tis C-embedded

in X. Therefore, by 2.4, Y is P"o-embedded in X. We assert that Y is not P*i-

embedded in X. In fact, assume the contrary, and let p be the metric on Y defined

by p(x, x)=0 for x e Y, and p(x, y)=l for x, y e Y and x / y. Since Y is a discrete

space, p is a continuous pseudometric on Y, and since | T| =8l5 p is ^-separable.

Therefore, there is a continuous pseudometric r on X such that r| Tx Y=p. But

then the family (Sr(y, l/2))yey is a pairwise disjoint family of open subsets of X

such that y e Sr(y, 1/2) for each y e Y. This contradiction implies that p has no

continuous pseudometric extension to X, and it follows that Tis not P*i -embedded

in A".

3. The main theorems.   We begin this section with a few preliminary results.

3.1. Proposition. Suppose that (X, tft) is a uniform space and that S is a uniform

subspace of X. If S3 = ( Va)ae, is a uniform cover of S, then there exists an open

uniform cover 9B = (Wa)ae¡ of Xsuch that WttC\ S<= Vafor each a el.
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Proof. The result is trivial if S= 0. Therefore suppose that S is nonempty and

let %s = (Va)aeI be a uniform cover of S. Then there exists an element V in the

relative uniformity ^\SxS on S such that (V(x))xeS<iß. Let Ue<% such that

U n (S x S) = V, and choose an open symmetric We<W such that W o W<=- U. Set

oti = (W(x))xeX. Then 9Î is an open uniform cover of X. We claim that 9i|5'<9S.

Suppose that xe X and that W(x) n 5^ 0. Choose j> e WOO n 5", and let z e

WOc) n S. Then we have (x, y)eW and (x, z) e W. But Wis symmetric, so we have

(y, x) e W, hence (y, z)eW° Ifc [/. Also, (j>, z)e5xS, so (y, z) e V, whence

■ z e V(y), and it follows that W(x) n S<= K(,y). Therefore we have

m\S < (V(x))xeS < ».

Now let 77 be a map from Xinto 7such that, for each xel,we have W(x) r\ S

c Vnix). Then, for each a e I, we set

wa =  u  **m
x6Ji"1(a)

and we set 3S = (Wff)aei. It is then clear that 93 is an open cover of X, and that

Wan S<^Va for each a e I. Moreover, since 9î is a uniform cover of X and since

in < SB, it follows that SB is also a uniform cover of X. This completes the proof.

3.2. Theorem. Suppose that (X, %) is a uniform space, that (Un)neN is a sequence

of symmetric elements of °U, and set U0 = X x X. If U„ + x c Un for each ne N, then

there exists a uniformly continuous pseudometric d on X such that dSl, and such

that, for each nonnegative integer n, we have

(*) Un+X ̂ {(x,y)eXxX: d(x,y) < 2-} c Un.

This is a particular case of the Metrization Lemma of [11, 6.12]. The uniform

continuity of d follows at once from (*) and [11, 6.11].

If (SSn)ne/v is a normal sequence of covers of a topological space X, and if d is a

pseudometric on X, then we say that d is associated with (58n)n6Ar in case the follow-

ing conditions are satisfied :

(1) dis bounded by 1.

(2) If k e N and if d(x, y)<2^k + 1\ then xest(y, S3fc).

(3) If k e N and if x e st (y, 33,0, then d(x, y)<2-(k~3). (Here st (y, 93fc) denotes

the union of all the members of 93fc that contain y.)

3.3. Theorem. If (S3n)ne¿v is a normal sequence of uniform covers of a uniform

space (X, aU), then there exists a uniformly continuous pseudometric on X that is

associated with (9S„)ne/v.

Proof. For each neN, let 93n = (Vn(a))aeIn and set Vn = (J {Vn(a) x Vn(a) : a e In}.

It is easily seen that (V2n)neN satisfies the hypothesis of 3.2, i.e. for each neN,

^n+2c Vn- Then we apply 3.2 to obtain a uniformly continuous pseudometric d
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on X (bounded by 1) that satisfies (*) of 3.2. Finally, a routine computation shows

that the pseudometric d satisfying (*) of 3.2 is associated with (93„)n6¿v-

We now sketch the proof of a generalization of a result due to Shapiro [12].

3.4. Theorem. Suppose that (X, *%) is a uniform space, that S is a uniform

subspace of X, and that y is an infinite cardinal number. Then every uniformly con-

tinuous y-separable pseudometric on S has a continuous y-separable pseudometric

extension to X.

Proof. The result is immediate if S= 0. Thus we may assume that S is non-

empty. Let d be a uniformly continuous y-separable pseudometric on S, and let

$fd denote the uniformity on S generated by d. By [11, 6.11], it follows that

<%dc*%\Sx S. Let m e N be arbitrary, and set

©^(^(x^-^3'))^.

Since d is y-separable, there exists a dense subset A of (S, 3~d) such that \A\ ^y.

Now set

SB" = (Sd(a, 2-<"1 + 3>))^,   and set   ÍRm = (Sd(x, 2"<m+«))xeS.

Then SRm is a uniform cover of (S, %d) and hence is a uniform cover of the subspace

S of ( X, <W). If x e S and y e Sd(x, 2~im + i)), then there exists a e A n Sd(x, 2~im+4>),

and hence d(a, y)úd(a, x)+d(x, >>)<2-(m + 3). Therefore y e Sd(a, 2"(m + 3)), and so

-S*a(x, 2-<m+4))c,Sa(a, 2-(m + 3)). It follows that Sfîm<SBm, and hence that SBm is a

uniform cover of the uniform subspace S of (A", <%) such that SBm has power at most

y and SBm<©m. We now apply 3.1 to obtain an open uniform cover 33m of the

uniform space (X, ■?/) such that 93m is of power at most y and such that 93m | S < SB"1.

But then 93m is a normal open cover of X of power at most y, so we may apply

[12, Lemma 2.6] to obtain a normal sequence (93;")^ of open covers of X such

that 93™ < 93m and such that 93¡" is of power at most y for each i e N. Having done

this for each me N, the remainder of the argument follows, verbatim, that given

by Shapiro [12, pp. 894-896].

The following corollary of 3.4 was first noticed by Shapiro [13].

3.5. Corollary. If X is a uniform space, and if S is a uniform subspace of X,

then every uniformly continuous pseudometric on S has a continuous pseudometric

extension to X.

Proof. Set y= \S\ + K0. Then every pseudometric on S is y-separable, and so the

result follows immediately from 3.4.

In the next theorem we restrict our attention to bounded pseudometrics.

3.6. Theorem. Suppose that (X, <¥) is a uniform space, that S is a uniform sub-

space of X, and that y is an infinite cardinal number. Moreover, suppose that X

satisfies the condition :

(*) If 93 is a uniform cover of X of power at most y, then there exists a

uniform cover SB of X of power at most y such that SB <* 93.
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Then every bounded uniformly continuous y-separable pseudometric on S has a

bounded uniformly continuous y-separable pseudometric extension to X.

Proof. The result is trivial in case S= 0. Thus we may assume that S is non-

empty. Let d be a bounded uniformly continuous y-separable pseudometric on S,

choose k e N such that dS2k, and let K={n eZ : n^-k}, where Z denotes the

set of all integers. For each me K, let

€5.-(«*,2-«"+")W

We now duplicate the argument used in 3.4 to find, for each m e K, a uniform

cover 2Bm of the subspace S such that 9Bm has power at most y, and such that

9Bm<©m. Again, for each me K, we apply 3.1 to obtain a uniform cover 93m of

the uniform space X such that 93m has power at most y, and such that 93m|S< 9Sm.

Then, for each meK, we can find, by virtue of the hypothesis (*), a sequence

(»Diejv of uniform covers of X, each having power at most y, such that SB? < 93m

and as,m+1 <* »r for each i e N.

Now, for each me K and i e N, we set

m

um = A »',
i=-k

and
m

UT=   A »Í.
i=-k

Then, for each me K and i e N, the following are true :

(i) llm and ttf are uniform covers of X of power at most y,

(ii) Ur+i<*U?-andU?<Um,

(iii) Uf+ ! < U? and IT+x < IT, and

(iv) Um|S<©m.

Again suppose that meK. Then, by (i) and (ii), (Wf)ieNis a normal sequence of

uniform covers of X, and so there exists, by 3.3, a uniformly continuous pseudo-

metric rm on X that is associated with (uT)ie/v, and rm is y-separable. By (ii) and

(iv), we also have

(**) If x, y e S and rjx, y) < 2~3, then d(x, y) < 2~(m+2\

Now define a map r: Xx X-> R+ by the formula r(x, y) = ~2meK 2~{m~3)rm(x, y).

It is easy to verify that r is a bounded uniformly continuous y-separable pseudo-

metric on X. Moreover, from (**) it follows that

(***) r\SxS^d.

Next, for each x, y e X, we set

f(x, y) = inf {r(x, a) + d(a, b) + r(b, y) : a, be S},

and

d0(x, y) = min {r(x, y),f(x, y)}.
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Evidently, d0 is a nonnegative symmetric function that is zero on the diagonal of

Xx X. The triangle inequality is easily proved by considering the various cases that

arise. Therefore d0 is a pseudometric on X. Since d0 á r, it follows that d0 is bounded,

uniformly continuous, and y-separable. Finally, by (***), d0 is an extension of ci.

This completes the proof.

An immediate corollary of Theorem 3.6 is the following result due to J. R.

Isbell.

3.7. Corollary (Isbell [8]). If X isa uniform space and if S is a uniform subspace

of X, then every bounded uniformly continuous pseudometric on S has a bounded

uniformly continuous pseudometric extension to X.

Proof. Suppose that A' is a uniform space and that S is a uniform subspace of X.

Set y = 2m + X0. Then every uniform cover of power at most y has a uniform

star-refinement, and if we delete any repeated members from the latter cover, then

it will still be a uniform star-refinement of the first cover, but with power at most y.

Therefore the result now follows immediately from 3.6, since every pseudometric

on X is y-separable.

S. Ginsburg and J. R. Isbell proved in [7] that every countable uniform cover of a

uniform space X has a countable uniform star-refinement. Therefore, for the case

y = X0, the hypothesis (*) of 3.6 is redundant, and we obtain another immediate

corollary of Theorem 3.6.

3.8. Corollary. If X is a uniform space and if S is a uniform subspace of X,

then every bounded uniformly continuous X0-separable pseudometric on S has a

bounded uniformly continuous H0-separable pseudometric extension to X.

It is remarked in [9, p. 52] that it is still an open question whether or not

hypothesis (*) of Theorem 3.6 is vacuously satisfied in case y>N0. However, we

now show that the argument given by Ginsburg and Isbell in [7] can be generalized

to provide an answer to this question for any infinite cardinal number y if the

generalized continuum hypothesis is assumed.

3.9. Theorem. Assume the generalized continuum hypothesis. Suppose that X is a

set, that U and S3 are covers of X such that S3** < II, and that y is an infinite cardinal

number. If IX is of power at most y, then there exists a cover SB of X of power at most

y such that 93 < SB <*U.

Proof. We may clearly assume that the power of 11 is infinite. Let Na be the

power of U, and let cuœ be the initial ordinal number of power Xa. Then we may

write V- = (Ui)ieI, where I is the set of all ordinal numbers less than cua. If i el,

let W(i) denote the set of all sei such that s<i. Let iel and suppose that

\W(i)\=K- Note that K<K- Then \0»(W(i))\=2«°-, where 0>(W(i)) is the set
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of all subsets of W(i). By the generalized continuum hypothesis, 2N"=Xa, + 1, so

that \0>(rV(i))\-gK- Set
0 = (J&(W(i)),

IE/

and note that |0| S \I\K = K = K-
Now suppose that 93 = (VB)BeJ. For each ß e 3, let m(ß) be the least i e I such that

st (Vß, 33)c r/¡, let n(ß) be the least i e I such that st (st (V„, 93), 93*)c t/j, and let

q(ß) = {iel: Vß e £/, and i S n(j3)}.

Thus we have defined maps m: J—*■ I, n: J-*■ I, and #: 7^>- <1>. Note that, for each

/3 e7, m(ß)un(ß), m(ß)eq(ß), and n(ß)eq(ß). Set

M = {(j,k,<l>)eIxIxQ:je<f,},

and, for each (7, /:, 0) e M, set

W1M = U{Vß- m(ß) = j, n(ß) = k, and q(ß) = </>}.

Finally, we let

Jii = (rVjklj,)u,k.<t>^eM-

It is clear that SB is a cover of X, that 93<3B, and, since |M|5|/x/x<l>|=X3

= Na!£y, that SB is of power at most y. We now show that SB<*11. Suppose that

(j, k, </>) e M, (r, s, a) e M, and that Wjk(t> n W„„ ̂  0 • Since j e </>, it follows that

Wm<^Uj. Moreover, there exist ß, ß'e3 such that m(ß)=j, n(ß) = k, q(ß)=</>,

m(ß') = r, n(ß')=s, q(ß') = o, and such that

VgC\ V„. ¥= 0.

Then FÄcst (VB., S3), so st (Vß, 33)<=st (st (V„., S3), 93*)<= U„ whence j^s=n(ß').

On the other hand, Ffi-<=st (VB, 93)c U}, whence je o. Therefore, Wrs<rc U,, and it

follows that st (WjM, SB)cry.. Consequently, 33<*U.

3.10. Corollary. Assume the generalized continuum hypothesis. If X is a

uniform space and if y is an infinite cardinal number, then every uniform cover of X

of power at most y has a uniform star-refinement of power at most y.

Proof. Suppose that A is a uniform space, that y is an infinite cardinal number,

and that tl is a uniform cover of X of power at most y. Choose a uniform cover

93 of A such that 93** < U. Then, by Theorem 3.9, there exists a cover SB of A of

power at most y such that S3 < SB <* U. Since 93 < SB, it follows that SB is a uniform

cover of X, and the proof is complete.

3.11. Theorem. Assume the generalized continuum hypothesis. If X is a uniform

space, if S is a uniform subspace ofX, and if y is an infinite cardinal number, then every

bounded uniformly continuous y-separable pseudometric on S has a bounded uniformly

continuous y-separable pseudometric extension to X.

Proof. This theorem follows immediately from Theorems 3.6 and 3.10.

Finally, we derive one other corollary of 3.6.
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3.12. Theorem. Suppose that X is a uniform space, that S is a uniform subspace

of X, that y is an infinite cardinal number, and that there exists no uniformly discrete

subset of X of power greater than y. Then every bounded uniformly continuous y-

separable pseudometric on S has a bounded uniformly continuous y-separable pseudo-

metric extension to X.

Proof. We must show that hypothesis (*) of Theorem 3.6 is satisfied. Suppose

that 93 is a uniform cover of X of power at most y, and choose a uniform cover 5R

of X such that fñ <* S3. We now apply [7, 2.3] to obtain a uniform cover 93 of X

of power at most y such that 93<9i. But then, 93<*S3. The result now follows

immediately from 3.6.

We are now ready to show that a theorem due to Katëtov [10] concerning ex-

tensions of uniformly continuous real-valued functions may be easily derived from

either 3.7 or 3.8. Besides the original proof given by Katëtov, we are aware of two

other proofs of this result in the literature. One of these was constructed by S.

Ginsburg, M. Henriksen, and J. R. Isbell and appears in [7]; the other is given by

M. Atsuji in [2]. The crucial step in our proof is contained in the following lemma.

3.13. Lemma. Suppose that X is a uniform space and that S is a uniform subspace

of X. If f is a nonnegative bounded uniformly continuous real-valued function on S

whose zero-set is nonempty, then there exists a bounded uniformly continuous real-

valued function g on Xsuch that g\S=f

Proof. Suppose that / is a nonnegative bounded uniformly continuous real-

valued function on S such that Z=Zs(f) is nonempty. Then the pseudometric ipf

on S that is associated with / is a bounded uniformly continuous X0-separable

pseudometric. Therefore, by 3.7 or 3.8, there exists a bounded uniformly continuous

pseudometric extension d of \\is to X. Define a real-valued function g on I by

g(x) = d(x, Z) = inf {d(x, z) :zeZ}. Then g is a bounded uniformly continuous

real-valued function on X. If x e S, then, since / is nonnegative,

g(x) = d(x,Z) = tf(x,Z) = inf{|/(x)-/(z)| :zeZ} = f(x),

and so g is the desired extension off.

3.14. Theorem (Katëtov [10]). If X is a uniform space and if S is a uniform

subspace of X, then every bounded uniformly continuous real-valued function on S

has a bounded uniformly continuous real-valued extension to X.

Proof. The result is trivial if S= 0. Thus we may assume that S is nonempty.

Suppose that / is a bounded uniformly continuous real-valued function on S.

Choose aeS, set f(a) = a, and set g=(/v«)-o and « = - ((/a a) - a). Then g

and « are nonnegative bounded uniformly continuous real-valued functions on S

such that aeZs(g) n Zs(h). Therefore, by 3.13, g and h have bounded uniformly

continuous real-valued extensions g0 and «0, respectively, to X. But then f0 =

(go —h0)+ 01 is the desired bounded uniformly continuous extension off to X.
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For completeness, we remark that, with computations similar to the ones in the

proofs of 3.13 and 3.14, 3.5 leads one to the following result (Theorem 3.16) of

Shapiro [13].

3.15. Lemma. Suppose that X is a uniform space and that S is a uniform subspace

of X. If f is a nonnegative uniformly continuous real-valued function on S whose

zero-set is nonempty, then there exists a continuous real-valued function g on X such

thatg\S=f

3.16. Theorem (Shapiro [13]). If X is a uniform space and if S is a uniform

subspace of X, then every uniformly continuous real-valued function on S has a con-

tinuous real-valued extension to X.

Remark. Consider the uniform subspace Z of integers in the uniform space R

of real numbers. The function/defined on Zby/(«)=«2 is an unbounded uniformly

continuous function on Z that has no uniformly continuous real-valued extension

to 7?. However, the function g on R defined by g(x) = x2 provides an obviously

continuous real-valued extension of/to R. Similarly, </</ is an unbounded uniformly

continuous X0-separable pseudometric on Z that has no uniformly continuous

pseudometric extension to R, whereas ifig is a continuous K0-separable pseudometric

extension of ipf to R. Thus boundedness is needed if one desires uniformly con-

tinuous extensions, and contrapositively, one can expect only continuous extensions

in the unbounded case.

References

1. R. Arens, Extension of coverings, of pseudometrics, and of linear-space-valued mappings,

Canad. J. Math. 5 (1953), 211-215.

2. M. Atsuji, Uniform spaces with a u-extension property, Proc. Japan Acad. 37 (1961),

204-206.

3. R. H. Bing, Metrization of topological spaces, Canad. J. Math. 3 (1951), 175-186.

4. W. W. Comfort, An example in density character, Arch. Math. 14 (1963), 422-423.

5. H. H. Corson, Normality in subsets of product spaces, Amer. J. Math. 81 (1959), 785-796.

6. L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, New York, 1960.

7. S. Ginsburg and J. R. Isbell, Some operators on uniform spaces, Trans. Amer. Math. Soc.

93 (1959), 145-168.

8. J. R. Isbell, On finite-dimensional uniform spaces, Pacific J. Math. 9 (1959), 107-121.

9. -, Uniform spaces, Math Surveys, No. 12, Amer. Math. Soc, Providence, R. I.,

1964.

10. M. Katëtov, On real-valued functions in topological spaces, Fund. Math. 38 (1951),

85-91; 40 (1953), 203-205.

11. J. L. Kelley, General topology, Van Nostrand, New York, 1955.

12. H. L. Shapiro, Extensions of pseudometrics, Canad. J. Math. 18 (1966), 981-998.

13. -, A note on extending uniformly continuous pseudometrics, Bull. Soc. Math. Belg.

18(1966), 439-441.

14. J. W. Tukey, Convergence and uniformity in topology, Annals of Mathematics Studies,

No. 2, Princeton Univ. Press, Princeton, N. J., 1940.

University of Dayton,

Dayton, Ohio


