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BY

MARK MAHOWALD AND MARTIN TANGORA(»)

1. Introduction. The day is probably not far off when we will have a complete

and effective description of Ext¿ (Z2, Z2), where A denotes the Steenrod algebra

(mod 2). In the meantime, theorems on the structure of certain submodules of this

algebra may be of interest, both for their intrinsic value and as clues to the final

solution. The purpose of this note is to present a proof of the existence of a sub-

module of considerable size and of very regular behavior.

We always use A to denote the mod 2 Steenrod algebra and we write Ext for its

cohomology, Ext = Ext^ (Z2, Z2). Our notation for elements of Ext is based on that

of May [3] as extended by one of us [4]. We always imagine Ext as displayed in the

plane with the generators of Exts,i written at the lattice point whose coordinates

are (t-s, s), and the use of such terms as "above x" or "to the right of y" should

be understood in this sense. When we say that an element is located "at (m, «)"

we mean t—s=m,s=n. Thus if an element is located at (m, «), its image under the

Adams periodicity operator P1 is located at («i4-8, «+4).

Recall that there is an element g located at (20, 4) which generates a polynomial

subalgebra of Ext [3], [4]. We will prove the following results.

Theorem 1. There exists a submodule A of Ext, containing sixteen elements, and

such that the elements

{F^'A: f.fc 0,y^ 0, A e A}

form an independent set in Ext (asaZ2 vector space). The product of any such element

with «o is zero, and none of the elements are divisible by h0.

We take for A the following sixteen elements :

d0l, d0m, e0m,gm located at (46, 11), (49, 11), (52, 11) and (55, 11) respectively;

P'g2, doe0g, d0g2, e0g2 located at (48-51-54-57, 12);

Plv, d0u, e0u, gu located at (50-53-56-59, 13);

P^or, P^etf, P^gr, d0e0r located at (52-55-58-61, 14).

Thus the sixteen elements of A are arrayed evenly upon a parallelogram with

vertices at (46, 11), (55, 11), (61, 14), and (52, 14). A display of a portion of Ext

containing these elements is given in Appendix 1, Table 1. Table 2 in Appendix 1

displays a portion of the wedge.
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Some such elements have many aliases, because of relations in Ext, but they are

always easily recognizable by their regularity.

Theorem 2. There is also a family T of six elements, with the property that

{g'r : y' s£ 0, t e T} is likewise an independent set, which does not meet the one gen-

erated by A.

These are the elements g2 at (40, 8), v at (42, 9), w at (45, 9), d0r at (44, 10), e0r at

(47, 10), and gr at (50, 10). (Applying P1 to these elements produces six of the mem-

bers of A.)

Combining all the P'g'A with all the g'T, we obtain an infinite wedge-shaped

diagram, filling out the angle with vertex atg2 (i.e. at (40, 8)), bounded above by the

line s=%(t—s)— 12, which is "parallel" to the Adams edge, and bounded below by

the line t — s = 5s. Thus this diagram spreads over essentially three-fifths of the

diagram of Ext. Above the wedge, we are in the range of Adams periodicity of

period 32 (at least stably). Inside the wedge, the picture is not quite so clear;

aside from the elements we are discussing, certain other fairly regular patterns

appear, and there is some "static" near the lower boundary of the wedge. Below

the wedge, Ext still appears quite unpredictable.

The upper boundary of the wedge contains the elements g2, v, d0r, d0l, P1g2,

P1v, etc. whereas the lower boundary contains g2, w, gr, gm, g3, gw, g2r, etc. In

particular the lower boundary contains all the powers of g.

We will also show the following:

Theorem 3. The wedge elements form a subalgebra of Ext.

The fact that none of these elements are divisible by «0 follows immediately from

the first part of Theorem 1 and the fact that h0g2 = 0. (Otherwise, supposing

pigi\ = h0p., we obtain the contradiction 0 = (h0g2)(¡j)=Pigi + 2^0.)

The same argument shows that none of these elements are divisible by ht for any

i S 5, since h¡g2 = 0 for /' S 5 by direct calculation. Presumably the restriction on /' is

not essential, since it seems likely that, for any /", h¡g' vanishes when y is sufficiently

large.

We remark, for what it is worth, that every one of these elements lies in a bi-

grading (t — s, s) for which t is divisible by 3.

We will refer to the following elements of Ext which appear in the known range:

d0 at (14, 4), e0 at (17, 4), g at (20, 4); r at (30, 6), / at (32, 7), m at (35, 7); u at

(39, 9), v at (42, 9), w at (45, 9), and z at (41, 10). We will also use the following

relations between these elements: d2=P1g; e2 = d0g; gl=e0m; d0e0r=gz; hxe0g

=h0h2m; h2u=h0z; d0v = e0u. Note that the first two of these relations imply

that d0e2og=P1g3.

In the proof it should be remembered that Ext has been computed explicitly (with

some reservations about the multiplicative structure) for t—sSIO [4]. If an argu-

ment about P'gJA appears to break down for i =7=0, say, this is of no consequence,

since the statement in question has been verified directly for such initial cases.
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2. Some preliminaries. In stable homotopy theory we may think of the Hopf

maps as maps from S""1 to S°, where n = 2',j=0, 1,2, 3. Using this notation, any

one of the Hopf maps gives rise to a cofibration

5° —> 5° U en -^-> Sn

and to long exact sequences

iff P#
■■■ ■—> Extfc* (S°) -Í-* Extfe' (5° u en) -¡U Extfe* (Sn) —► ■ • •

where we may take R = A (and Ext (X) means Ext (H*(X), Z2)) or we may equally

well take R = E°A (and Ext (X) then means Ext (£°//*(Af), Z2)). In either case it

has been shown by Adams [1] that the connecting homomorphism is given by

multiplication by h, (in the obvious sense). Each Ext (X) is an Ext (S^-module,

and the maps are Ext (S°)-module morphisms. These complexes and exact se-

quences play a central role in the proof of the theorem. In addition, they are used

in the proofs of Lemma 1(b) and Lemma 2 below.

Lemma 1. In Ext¿ (S°) we have the following Massey products:

(a) e0g = {h0,hx,m);

(b) m = (h2,hx,r};

(c) Z = <«j, «o, M>.

Proof. Adams has shown that <«1; «0, «1> = «0«2 and that <«0, hx, «0>=«?. We

can then obtain (a) and (c) from the following calculations (noting zero indeter-

minacy) :

htfog = h0h2m = <«!, «o, hx}m = hx(h0, hx, my;

h0z = h\u = <«o, «j, «o>«  = KQix, «o, u).

We need another argument for (b). One proof goes as follows: In Ext¿ (S°u e2)

(where the attaching map is the stable Hopf map -n) we can show that i#(m) = h2R

where p#(R) = r (and the multiplication is the module action of Ext (5°)). Since

F=</#(1), hx, r>, we deduce that i#(«i) = i'#««2, hx, r» and the result follows.

(See Appendix 2.)

Lemma 2. In Ext¿ (5° u eB) (where the attaching map is the stable Hopf map <j)

there is a class P such that p#(P) = h% and such that P■i#(a) = i#(Pïa) for any a in

Ext^ (5°). This class is a surviving cycle in the Adams spectral sequence for S° u eB.

See [2].

3. Proof of Theorems 1 and 2. We will prove that the {F'g'A} are nonzero by

working a row at a time, or rather an infinite group of rows at a time. We begin with

the known fact that all the elements in question which occur in a dimension s

congruent to 0 mod 4 have already been proved nonzero in Ext by a technique

originally due to May [4, Chapter 5](2). If s=4k, then the upper boundary of the

(2) An elegant new proof has recently been published by A. Zachariou [7].
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wedge contains the element Pk~2g2 located at (Sk + 24, 4k). Reading along this row

from left to right, we find pk~2g2y Pk~3d0e0g, Pk~3d0g2, and Pk~3e0g2 from

Pfc_3A; then the four elements from this row of Pk~*gA; and so forth, until we get

gk~3A and then finally gk (from gk~2T). One can generate the succession of ele-

ments in this row by replacing d0 by e0 or e0 by g at each step ; or, if no d0 or e0 is

visible, using the relation P1g=d2 to replace P1g by d0e0.

We next consider the rows underneath, i.e. the rows for which s=3 (mod 4).

If s=4k-l, this row begins with Pk~3d0l, Pk~3d0m, Pk'3e0m, and Pk~3gm, and

proceeds across to gk~2m. (We write P^eo"1 rather than Pld0gl when these terms

appear at every fourth place in such a row.) We consider the (stable) complex

S° u e1 where the attaching map is of degree 2. Recall that Ext¿ for this space is an

Ext^ (S°)-module. Our method is to show that the elements in the row s = 4k in

Ext¿ (S° u e1) contain as "factors" (in the sense of module action) the elements in

the row s = 4k— 1 of Ext^ (5°); thus these latter elements must be nonzero, since

the former are nonzero.

Indeed, Ext¿ (S° u e1) contains an element Hx such that p#(Hx) = hx; this follows

from the long exact sequence in Ext¿ for the cofibration. Now i#(e0g) = mHx,

where m e Ext¿ (S°) acts according to the module action. This follows from

Lemma 1(a), since 771 = </#(1), «0, «i>. Now P'jj* is nonzero in Ext¿ (S°), and

projects to a nonzero element under i# since we have proved that no such element is

divisible by «0. But then

0 # /#(Pi + V + 3) = iÁP'g'-doeo-eog) = (PW*fe)

= (Plg'd0e0)(mHx) = (Plg'd0eom)(Hx),

where the last step is justified by the fact that /# is a module morphism. This proves

that P 'g'doeom is nonzero. It follows immediately that P 'g'dom, P 'g'eom, and P 'g'm

are nonzero, but all the elements we are talking about in the row s=4k— 1 have this

form, except the lead-off element Pk~3d0l. However, this one is also nonzero, since

when we multiply it by g we obtain Pk~3d0e0m. This shows that all the wedge

elements are nonzero in a row s=3 (mod 4).

We next proceed to the rows s=2 (mod 4) and use a similar device. We consider

S° u e2 where the attaching map is the stable Hopf map r¡. In Ext for this space

there is a class 772 = <i#(l), hx, «2> such that/7#(772) = «2, and such that r-H2 = i#(m)

(by Lemma 1(b)). We have proved that P'g'doeom^O, and using the same ideas as

in the previous case, the calculation

0 Ï ¡„(Ptg'doeom) = (PWV)-T72

shows that Pigidoear is nonzero in Ext„ (S°). It follows immediately that all the

elements in the wedge are nonzero along the rows 5=2 (mod 4).

In the remaining rows we have s= 1 (mod 4). Such a row leads off with Pk~3v,

Pk~*d0u, Pk~ie0u, and Pk'igu, and terminates with gk~3v and gk~3w (from

gk'3T). (We write P¡£<V0g;w rather than Pi + 1g'+1v when these elements appear
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along the row, after the initial place.) We appeal to the complex 5° u e2 again, and

use the class //0 = </#(l), hx, «0> such thatp#(H0) = h0. By Lemma 1(c), u-H0 = i#(z).

Using the relation d0e0r=gz, we have

0 * i^P'g'-'doeor) = (/"*%(*) = (W*)-#o

and thus P^'uj^O (if /ä 1 ; but the result follows for y'=0 by multiplying by g).

SincePi + 1gi+2u=Pigid0e2u, all the elements in these rows are nonzero, except that

we do not obtain the last two, g'v and gjw, in this way. But multiplying these by d0

gives nonzero products, and so they also are nonzero.

This completes the argument that all the wedge elements are nonzero in Ext.

To see that «0 times any wedge element is zero, we use Lemma 2. In Ext (5° u ea),

the operator F1 corresponds to an actual product, so hoa = 0 implies F1«oa=0.

(Here we use the fact that none of the wedge elements are divisible by h3.) Also,

no£2 = 0> so the assertion holds whenever the wedge element has g2 as a factor.

The few wedge elements which are not covered by these two cases can be checked

individually.

4. Proof of Theorem 3. We should perhaps begin by remarking that this

theorem is not obvious. Along the lower boundary of the wedge (which forms a

subalgebra by itself), we are claiming, for example, that (gr)2=g5. This would

follow immediately from the relation r2=g3; but this latter is not a correct relation.

Also, most of our present knowledge of the multiplicative structure of Ext is based

on the May spectral sequence; but Theorem 3 is completely false if interpreted in

the filtered version of Ext which one obtains as £„ of the May spectral sequence.

For example, r2 = 0 there. In fact, of the ten key relations which we shall list below,

eight are false in May's £„ ; only (2) and (3) are correct there, while in the others

the left-hand side is zero.

With these comments in mind, we observe that Theorem 3 essentially reduces to

proving the following relations:

(1) r2=g3 + a where d0a=e0a=ga=0;

(2) rm=gw; (3) m2=g2r; (4) rv = e0gm;

(5) rw=g2m; (6) mv = e0g3; (7) mw=gi;

(8) v2 = d0g2r;       (9) vw = e0g2r;       (10) w2=g3r.

For the proof of (1) we refer the reader to [5]. The relations (2) and (3) hold in

May's £œ and project to bona fide relations in Ext. For the remaining relations, we

will argue with Massey products.

May has given the Massey products v = (hx, h2, e0g} and w=(hx,h2,g2}. We

need three others :

Lemma, (a) g2 = <«2, hx, m) ;   (b) e0r=<«2, hx, u> ;   (c) gr=(h2, hx,w).

In each case we observe that the triple product makes sense, and show that its
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product with a certain element is nonzero; there is no indeterminacy, and the result

follows. In the first case, we have

g\h2, hx, my = g(g2, «2, hxym = gwm

and by (1), (2), and (3) we have gwm = rm2=g2r2=g5, from which part (a) follows.

In the next case, if we multiply e0r by e0g we get the wedge element d0g2r, while

e0g<h2, «!, vy = (e0g, h2, hxyv = v2

which not only gives part (b) of the lemma but also part (8) of the theorem. Simi-

larly we can get (c) of the lemma and (9) of the theorem.

We prove (4) by the calculation

rv = r<hx, «2, e0gy = (r, hx, «2>e0g = e0gm

and a similar argument gives (5). We get (6) from

mv = m<«i, «2, e0g> = <m, hx, h2ye0g = e0g3

(using (a) of the lemma) and (7) similarly. Finally (10) is obtained by formulas

similar to those used for (8) and (9). This completes the proof of Theorem 3.

We note in particular that every wedge element generates a polynomial subalgebra

of Ext.

5. Some open questions.

1. All the wedge elements appear in the Iwai-Shimada calculation of H*(A2) [6]

where A2 is the subalgebra of A generated by Sq1, Sq2, and Sq*. It is interesting to

ask what phenomenon analogous to the wedge should appear (in addition to the

wedge itself) in H*(A3).

2. It is an empirical fact, for t — sS 70, that the lower boundary of the wedge

delineates the zone of periodicity. Above this lower boundary, everything is

periodic with period 8 (in t — s) except elements which form a nonzero product with

h%; these have period 16. This line lies much deeper than any periodicity theorem

which has been proved to date.

3. It is not hard to calculate 84 in the Adams spectral sequence for the wedge

elements and show that every wedge element either bounds or is bounded by

another wedge element, except of course near the upper boundary (where some

82's and S3's reach out to hit elements lying above the wedge) or near the lower

boundary (where some wedge elements are permanent cycles, but we do not know

what, if anything, they might bound). However, some of these calculations are

fictitious, since we do not have a proof that the elements in question survive to P4

in the Adams spectral sequence. If one could settle this, one could prove that

none of the wedge elements survive (except possibly some along the lower

boundary).

We indicate the calculations of S4. It is well known that d0 and g are permanent

cycles. Also PndQ is a permanent cycle, by virtue of its location; it follows that



1968] AN INFINITE SUBALGEBRA OF EXT4 (Z2, Z2) 269

P"g=Pn 1d2 is also a permanent cycle. It has been proved [2] that 8i(Pne0g)

=Pn+2g (for «SO). From this it follows immediately that

^(F'eogO = Pt + V       (i = OJ ^ 1)

and that

UP'doeogf) = Pi + 2d0g'       (i ï OJ ï 1).

This takes care of almost all the wedge elements for which s=4k. Along each such

row the wedge elements alternately kill or are killed by a 84, until we approach the

lower boundary of the wedge (at the right-hand end of the row), where the last few

permanent cycles may survive, since the 84's which might kill them (according to the

above scheme) now originate below the boundary of the wedge. Indeed, g2 itself

represents a homotopy element [2].

In the rows for which s=4k— 1, we use the fact that e0m is a permanent cycle

(there is nothing for it to hit, except elements known to survive; see [2]). This

gives

8¿d0g2m) = 8Ae0me0g) = e0m-P2g = d0g-P1d0l

from which it follows that 8á(gm)=P1d0l. From this we obtain 8i(Pid0gi+1m)

=Pi+2e0g'm (i^OJ^O) and also

8¿Py + im) = F'+ W0e0g;~1m(=Pi + ̂ g'l)       (i ä 0,j ä 0).

Again this cleans out the rows in question in an alternating pattern, except near

the lower boundary of the wedge, and also near the upper boundary, where we have

83(Pnd0m)=Pn + 1hxu[2].

We argue similarly in the rows for which s=4k — 2. We find P1e0r and d0e0r

(=gz) to be permanent cycles, and, starting again from 8i(e0g)=P2g, we can show

that 8i(Pigir)=Pi + 1d0e0gi~2r and that 8i(Pid0gir)=Pi + 2e0gi~1r. This cleans out

these rows, except near the boundaries of the wedge. Near the upper boundary

one has 83(Pnd0r)=Pn + 1hxd0g [2].

The remaining rows also follow the pattern; from the differential 8i(e0u)=P2u

[2] we can obtain 8¿Pígiv)=Pi + 1d0gi-1u and 8i(Pie0giu)=Pi + 2giu. At the upper

boundary, 82(Pnv)=Pnh0z.

Appendix 1. We present two tables here for reference.

In Table 1 we give a graphical presentation of a portion of Ext. Recall that the

vertical coordinate represents s and the horizontal coordinate t-s. The range

displayed is 30 ¿r—¿^61. The first wedge element, g2, is found at (40, 8), and the

wedge opens out slowly so that in column 61 there are three wedge elements present

(where s= 14, 17, 20). Of course Ext contains many other elements in this range.

Some are indecomposable, like r at (30, 6) or « at (31, 5). Others are decomposable

and have been entered in the table as products, like h\ at (30, 2) or like the wedge

elements themselves. Many elements contain h0 or hx as a factor, and we find it
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convenient to indicate them simply by a small dot or circle at the appropriate

location, joined by a vertical or diagonal line to the other factor. Thus the element

at (30, 5) is h%(h%). If two lines converge, this indicates a relation; thus, for example,

hxdx =h0p at (33, 5). (If two different dots or circles are shown, there is no relation;

for example, hxt + h\x at (37,7).) The Adams periodicity operator is denoted by F

or F1.

For detailed information about the algebra generators, the reader is referred to

[4], Chapter 4 and appendices.

In Table 2 we present a display from which all other elements of Ext have been

deleted and only the wedge elements presented, for t—s^lO. For typographical

reasons, subscripts have been dropped from the notation : thus in Table 2 we write

Pdeg for the element usually written P1d0e0g (located at (59, 16)). From Table 2

the reader should be able to extrapolate the wedge indefinitely.

Appendix 2. In Lemma 1 of §2 we indicated that the Massey product m =

(.h2,hx,r} follows from the fact that i#(m) = h2R in E\tA (S° u e2), where R =

</#(l), «i, r> and p#(R) = r. We now indicate how this relation is obtained.

In the May spectral sequence for 5° we have:

(1) h22hi(b°2)2 = 82(h2b02bl);

(2) h32g=82(C), where C=(è|)3+/ifèg«1(l);

(3) 8i[h2(b%)2] = h2hMY + h22g;

(4) 82[bl(bi2)2] = hxD, where D = (b12)3 + b°2b12hx(l).

From (l)-(3) we find that 8i[h2(b3r)2] = 0 in £4, and h22(b3))2 = r survives to £M.

We may write £2 of the May spectral sequence for 5° u e2 by means of the long

exact sequence in Ext£% arising from the cofibration. Using naturality arguments,

we find that (1) pulls back into S° u e2, but that there is an element (h2g)* such that

P#(hlg)* = hlg, which does not bound in £2 for 5° u e2, since hxC=£0. Thus we can

verify that the natural candidate for R, namely p# 1(h2(b3)2), is not a permanent

cycle.

On the other hand, 82(i#(b°3(b2)2)) = i#(hxD) by (4), but i#(hxD) = 0 by exactness.

We can verify that i#(b3(b\)2) = R survives, and that p#(R) = r. But h2R =

i#(n2bl(b\)2) = i#(m) since by May's definition m = h2b%(b2)2. This proves h2R = m

and the rest is easy.

Further discussion of this type of calculation will appear elsewhere ([5]).
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