INERTIAL AUTOMORPHISMS OF A CLASS OF
WILDLY RAMIFIED »-RINGS

BY
NICKOLAS HEEREMA(?)

I. Introduction. Let R, be a ramified v-ring with ramification e. That is, R, is
a complete, discrete, rank one, valuation ring having characteristic zero with
residue field k of characteristic p (p#0, 2) and pR, is the eth power of the maximal
ideal M of R,. Let & represent the group of automorphisms of R,, e being the
identity map. Then, for i>0, &;={c | 0 € &; « = ¢, mod M'} and H;={« | x € &,,
a(m)—me M+ for m € M}. The ramification groups ®&; and $; are invariant in
&. The object of this paper is to evaluate the factor groups of the series (1) of
M G29,206,29,2-
ramification groups in that case in which e=p. A second objective is the determina-
tion of those automorphisms in &, which are derivation automorphisms (see below).

Neggers has shown [3, Theorem 6] that for any e and i=(e+p)/(p—1),
®,/®;,, is isomorphic to D(R,)/vZ(R.) where Z(R,) is the additive group of
derivations on the ring R, and n2(R,)={nd | d € D(R,)} where = is a prime ele-
ment in R,. In addition he proved that £;/®; ., is isomorphic to the additive group
of those derivations on k which lift to R, where again i>(e+p)/(p—1). The map
used by Neggers to evaluate &;/®,,, also shows that if i=(e+p)/(p—1), then
®,/9; is isomorphic to 2D(R.)/2*(R.) where 2*(R,)={d | d € D(R,), d() € nR,}
[3, proof of Theorem 6]. The principal tool of this investigation is the convergent
higher derivation [2]. Let D={D;}{2, be a higher derivation on R,(D(R,)< R, for
i>0). D is convergent if, for a € R,, > D;(a) is a convergent series in the =-adic
topology. If D converges the map «y:a— 52, Di(a)(Do(a)=a) is an inertial
automorphism (see Theorem B). The group &, of all derivation automorphism o,
is an invariant subgroup of &.

Throughout this paper R will denote a v-ring in R, such that [R,:R]=e, and
R is unramified. Thus R has the same residue field k£ as R,. For a in R,, @ will
denote the image of a under the natural map of R, onto k, = always represents a
prime element in R,. We have

2 m+pu = 0, u#0.

If e=p and # € k? then = can be chosen so that

?3) 7 +p(l +7t) = 0, t>0, 0#£0,

or n+p=0. We note that the conditions

“ w¢k’;t=p and vé¢kP;aswellasdif 1 St <p
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are all independent of the choice of =, assuming (3) to be satisfied for all but the
first listed. Throughout this paper the symbols u and v will represent the quantities
given in (2) and (3). The considerations (4) determine, to a large extent, the
structure of the groups (1) as is seen in the following two theorems which summarize
the results of this study. ®(R,; R) is the group of automorphism of R, over R.

THEOREM 1. Every inertial automorphism on R, is a derivation automorphism,
i.e. 8, =@y, unless i € k® and t=p—1, in which case the following are equivalent.

(@) v is a (p—1th root in k.

(b) R, is Galois over R.

(©) Gy#9..

(d) &,|9, is the group of order p.
If R, is Galois over R then ®(R,; R)y=®, if and only if ¢ k". In any case,
&, =8y G(R,; R).

THEOREM 2. If il ¢ k” then for i= 1, ©,/®, . is isomorphic to the subgroup D of
those & € D(k) which lift to R,. Also, 2={8| & € D(k), 8@)=0}. In this case &,/D,
is isomorphic to k*, the additive group of k.

If uek®, then for i21, $,/®,,, is isomorphic to 2D(k) unless t=p and i=1. If
t=p, £,/ is isomorphic to the subgroup of those & € D(k) such that 8§©)=0. Also,
&=, i21, unless t=p—1, i=2 and one of the four equivalent conditions of
Theorem 1 holds.

By Neggers’ results referred to above [3,'proof of Theorem 6] we have
COROLLARY. Z(R,)/2*(R,) is isomorphic to k* if i ¢ k® and is trivial if u € k*.

II. Proofs. For S a subring of R,, the symbols (S, R.), .S, R,) and
H#(S, R,) will stand for the set of all higher derivations, all convergent higher
derivations, and all uniformly convergent higher derivations with domain S and
range R,. We quote the following two theorems which will be used repeatedly.
Theorem A provides the necessary freedom in the construction of D € #,(R,, R,).
Theorem B implies that if De (R, R,), then o, is indeed an inertial
automorphism.

THEOREM A [2, Theorem 4). Let & be a p-basis for k and let ¥ <R be a set of
representatives of the elements of . If I is the set of positive integers and f is a
mapping from & x I into R, then there is one and only one D € (R, R,) such that
Dy(s)=f(s, i) for all s€ & and i € I. Moreover, D converges (uniformly) if and only
if D converges (uniformly) on &.

THEOREM B [2, Lemmas 1 and 5). If D is in 5#(R,, R,) then D(R,)<wR, and
Di(nR,)<=?R, for i>0.

Theorems 1 and 2 will be proved by means of a series of lemmas.
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LEMMA 1. If & is a set of representatives in R of a p-basis & for k and D in
H(R, R,) is such that D(F)<n'sR,<wR,, j=1, then D(R)<=%R, where
q = min @, +--+t), izl
it +ii=ito=0
Proof. For a given i we choose n sufficiently large so that D,(R*")<=#%R, for
Jj=1,...,i [2, Lemma 6] where R®™ is the subring of R generated by the p"th
powers of elements in R. Since every element in k has a representative in R*'[¥],
it follows that R=RP"[¥]+p%R. If b=as,,...,s, where ae R”" and s,,...,
s, € & then
D:(b) = z Dio(a)Dil(sl)’ ey Dr(sr)
fo+ or +ip=1
is seen to be in #%R and hence, since D,(p%)=0 for all j, D(R)==%R,.
Let «, an automorphism of R,, be in ©;, i=1. Then «(a)=a+#'a*(a) and the
mapping o* induces a derivation 8, on k. The mapping

(5) ¢i: o —> 8a
is a homomorphism of 9, into 2(k) with kernel &, ;.

LeMMA 2. If an automorphism o of R, is in ,, then 8,(#) =0. If =* + p(1 + #*v) =0,
then 8,(0)=0 for o in 9,.

Proof. Since o(w)—m € 7' *1R, it follows that «(n?)— =P € 7P *'*1R,. Thus by (2)
o(w)—u is in #'*'R, or o*(u) € wR, which implies 8,(#)=0. In the remaining case
let e(m)=m+m2b. Then a(n?)—a? =a?Pb?, mod #2**1R,, and a(p(1+=*v))—p(1 +7*v)
=pna®*la*(v), mod #*?*2R,. Hence benR, and it follows that «*(v) e 7R, or
8,(0)=0.

Given D and H in #(R,, R,), D ° H in #(R,, R,) is given by

i
(DeH) = Y DiH.,
i=0

H#(R., R.) is a group with respect to this composition and #,(R,, R.), #.(R., R.)
are subgroups [2, Theorems 1, 2]. Moreover, one can verify directly that, for D
and H in H#Y(R,, R,), epoy=apoy.

LeEMMA 3. Let {D™}2_, where D™ e H#(R,, R,) be such that D{*(R,)<n*R,,
iz1, n21, and lim,s,=0. Let a,=apm,...,apm and D™=DWV o...0 DM,
Then lim, ,(a) and lim, D{™(a) exist for all i>0 and a € R,. Moreover, «: a—
lim, o,(a) is an automorphism, D={D,} is in #,(R,, R,) where Da)=lim, D{(a)
and a=cp. If D™ € #(R,, R,)n=1, then D € #,(R,, R,).

Proof. By definition of product in #£(R,, R,) we have
D+ (@) — Di(a) = 2. DY+ Dt (@),

f1+ e tims1=nim4 1 #0
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the right side of which is in #*n+1 R, since for D € #,(R,, R,), Di(n"R,)<="R, for
all i and n by Theorem B. Thus, a,,(@)—an(@)=> D{"*Y(a)—>2 o D{™(a)
€ m*m+1R,. The rest of the lemma follows directly.

Since R, is totally ramified over R and [R,: R]=p then R,= R[] and the minimal
polynomial f(x) of = over R is an Eisenstein polynomial, that is,

©6) f(x) = xP+pa,_x*"1+ - - +pa;x+pa,

and a, is a unit. Clearly, a,=u (see (2)). Also, if @ € k? then a,=b"+pc where b
and c are in R. By replacing = with b~ 17 we can assume that

(7) ay = 1+pb0.

We note next that every D € #(R, R,) extends uniquely to a higher derivation
D of the quotient field of R,. Also, D(R,)<R, if and only if D(z)e R,. If D
converges on R, D will converge on R, if and only if D converges at = [2, Lemma 3].

Let (r, s) denote an ordered set of r nonnegative integers whose sum is s and let
|(r, 5)| represent the largest integer in (r, s). We let >, D(ay, . . ., a,) denote the
sum of all products D;(a;)D;,(ap)--- D;(a;) such that ij+-.-+i,=s and
i;20. Also, f'(x) and fPi(x) represent respectively the ordinary derivative of f and
the polynomial obtained by replacing each coefficient in f with its image under D,.
With these conventions it is useful to write the expression for Dy(w) derived from
Dy(f(m))=0 as follows:

f@Dm) = fPm+ > Dlmy...,m

(@,1); (v, DI <1

@, 1)

p—-1

+Zp Z D(ay, m, ..., m.
=0 G+1.a:iGF1.00<t

Let v represent the exponential valuation on R,. Note that p<v(f'(m)) =2p—1.

LeEMMA 4. A given 8 € D(k) lifts to d € D(R,) if and only if (i) =0.

Proof. A derivation de Z(R,) induces a derivation on k under the natural
map of R, onto k only if d(m)<nR,. But d(f(=))=0 means d(m)= —f=)/f (m).
Thus f9%m) e #?*1R, which means d(a,) € 7R, and, hence, if d induces 8 on k,
8(a,)=8(#)=0. Conversely, every & € (k) lifts to d’ on R [1, Theorem 1]. If
8(i) =0, d'(ao) € pR which means that f¥(n)/f'(m) € #R,. Thus the extension d, of
d’, to R, is in Z(R,) and induces 8 since d’ does.

LeMMA 5. Let D € #(R, R,) where R,=R[n] and f(x)=x?+>7-¢ pax' is the
minimum function of = over R. Let ¢>2, n2 1, and m> p(n— 1) be integers such that,
using the same symbol for the extension of D to R,

(CARY) D,(m) e n*R, ifj<mn,
9,2 D) e nR, ifn 2j<m,
and, if jzn

6,3 Dy(a;) € f'(m)ym* =P~
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Ifq=3 then (9, 3) is assumed to hold only for j=m. Under these assumptions >, D ()
converges and i D) € iR,
j=n

The proof of this lemma consists of checking the valuation v of the terms on the
right side of (8). We show first that if j=m,
(10) Dj(n) € ™R,

Thus assuming (10) true for j<r where r=m we consider (8, r). By (9, 3) fPr(=)
is in f'(m)nR,. The term D, (w) - - - D, (m) of A,=2¢ niwmi<r D(m, ..., ) is in
7P *9R, in view of the fact that at least one i;>n and another is different from zero.
The above term appears in 4, a multiple of p times unless iy =iy="---=i,=r/p
in which case it is in #**R,<f'(m)7*R,, since v(f'(7))<2p—1 and p#2. Thus
A, ef'(m)n'R,. A similar argument shows B,, the remaining term on the right
side of (8, 1), to be in f'(m)p?R,. Thus by (8, r) D(m) € 7' R,,.

Given i=0, we assume for some integer s =m that if j>s, then Dy(=) e n**R,

and, for h=0,...,p—1
an Dy(ay) e f'(m)n'*2-P*1R,.
Let s'=ps and let j>s". Then fPi(m) € f'(m)=**** 1R, and, by an analysis like that
above, 4; and B, are seen to be in f'(m)n'*9*1R,. Thus Dy(m) e w**?*1R,,. Since D
converges on R, given i=0, there is an s such that (11) holds for j>s. It follows
that 3 Dy(w) converges, and in view of (10) >;%, Dy(w) € n°R,.

LEMMA 6. If « € 9y, iZ 1, then there is a D € #,(R,, R,) such that o~ 'ap € Gy, .
Moreover, 9/®,., is isomorphic to the subgroup of those 8 in D(k) for which
8()=0 with the following exception. If @ € k? and, for suitable choice of = we have
7P =p(1 +7*v) then $,/®, is isomorphic to the subgroup of those

e 2(k)> &) = 0.

Proof. By Lemma 2, it will be sufficient to find D e #,(R,, R,) such that
#1(ep) (see (5)) is a given 8 for which 8(i7) =0, or, in the exceptional case, 8§(5)=0.
Let (6) be the minimum function of = over R.

Case 1. v(f'(m))<2p—1, i>1. Let 8 be any derivation on k for which 8(7)=
8(@)=0 and let H={H,} be any higher derivation in #(R, R) satisfying the two
conditions (a) H, induces 8, (b) H;(a,) €pR, j=1,..., p—1. Specifically, every
derivation on k lifts to R [1, Theorem 1] which fact makes H, available. Let
H;=H]|j! for j=2,...,p—1. By Theorem A, maps H,, j=p, can be defined so
that H={H;} € #(R, R). Let D={D,} where

(12) D, = »"H,.
Clearly, D € #,(R, R,). We now show that

13) Dimea*'R, jz1,
and

(14) Z D/(w) converges,
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from which, with (12), it will follow that, using the same symbol for the extended
higher derivation, D € #(R,, R,), op € ; and ®(ap)=34.

Let o(f'(m))=p+r—1. Thus r is the least positive integer such that a, is a unit.
Looking to the conditions of Lemma S we note that f'(m)n!*1-?~SR,=#!*""5R,.
If s=r, Dfa,) e n'R,<n'*"5R, for j=1. If r>5>0, a,€pR; hence, Hya;) € pR
and thus Dya)e#*PR,=='*"~5R, for j21. Finally, D(a,)=="Ha,). If j<p,
Hja,) e pR, and = Hja,) e n''*?R,<n'*'R,. If jZzp, ijzi+r. Hence, Djao)
en'*'R, for j=1. Thus conditions (9, 1) to (9, 3) are satisfied with g=i+1 and
n=m=1. Hence (13) and (14) hold.

Case 2. v(f'(m))<2p—2, i=1. We define D as in Case 1 and note by inspection
of (8,j) for j=1,...,p that D,(=) € »*R,, D(w) e n®R, for j=2,..., p. Also, in
this case, f'(m)n®~?~*R,>a?~SR,>n"R, and, by (12) D,(a,) € n?R,<f"(m)n®~?~*R,
for j=p and 5s=0, ..., p—1. Thus conditions (9, 1) to (9, 3) are satisfied for n=2,
m=p+1 and g=3. Hence > Dy(w) converges and is in #2R,. Thus, o, € $; and
$1(ep)=3.

Case 3. v(f'(m))=2p—2, i=1. We consider a number of subcases. In each case
D is constructed by the method of Theorem A.

(3,1). a,_, ¢ k?, a, ¢ k®, a,_, and a, p-independent. As before, we initiate the
construction of DeJ, (R, R,) by letting D;=«'H;, j=1,...,p—1, where
{H}3~* are chosen so that H,, a derivation on R, induces a given 8 € (k) such
that 8(@,)=0 and Hya,) € pRfor j=2,..., p—1. Let & be a set of representatives
in R of a p-basis & of k. We may assume both a, and a,_, in & By inspection
of (8,1) to (8, p—1) we have D,(v)en?R, and D,(m)e R, j=2,...,p—1.
Considering (8, p), each summand of A4, and B, is in #??*1R,, except the
term [D,(=))P which is in #»?’R, but not in #2?*1R,. Thus, we define D, by
D,(s)=0 for se ¥ —{a,} and D,(a,) is so chosen that fP»(m)+A,+ B, is in
f'(m)m*R,. Thus, D,(a,) € m"*R, and D,(7) e m®R,. For j>p we let Dys)=0 for
s€ ¥ By Lemma 1 Dya;) e n?*1R, for j>p. It follows that conditions (9) of
Lemma 5 are fulfilled for n=2, m=p+1 and ¢=3. Thus by Theorem A the ex-
tension of D to R, converges uniformly o, € $; and ®;(ap)=34.

(3,ii) a,_, ¢ k®, a, ¢ k?, a,_, and a, p-dependent. Let H, € Z(R) induce 6 € &,
where 8(@,)=0 (Lemma 4) and let & be a set of representatives of a p-basis
for k which contains a,. H € #,(R, R) is defined by the conditions H,(s)=0 for
j>1 and se &% Let D,=n'H, for j=1. Now Hy(a,_,)€pR, since H,(a,) € pR,
and the elements @,, d,_, are p-dependent. Thus by (8, 1), D,(=) € #®R,. Also
DJa)ef'(m)n®~ P sR,=a?*'"°R, for jz1, s=0,...,p—1. Thus, conditions
(9) of Lemma 5 are satisfied for n=1, m=2, g=3 and again D e 5 (R,, R,),
ap € H; and Dy(ap)=24.

3, iii) @,_, €k, a, ¢ k®. A higher derivation D in #,(R, R,) is chosen as in
(3, ii). Since a,_,=b5_,+pc, Hy(a,_,) € pR,. Thus D,(7) € m*R, and for the rest
the argument of (3, ii) applies.

(3, iv) a@,_, ¢ k?, a, € k?. We choose = so that a,=1+pb,. Let & be a set of
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representatives of a p-basis for k. We can assume a,_, in &. Let H; in 2(R)
induce & in D(k). Forj=2,...,p—1and s e & we let H(s)=0. For j=1,...,p—1
let D;=n'H,. By (8, 1), D,(m) € m*R, (D,(m) € 7°R, unless D,(a,-,) ¢ m*R,). Also,
D/(m) e w®R, for j=2,...,p—1. The terms A4,+ B, of (8, p) have [D,(m)]* as the
unique summand of minimum valuation, if D,(=) ¢ #®R,,. In any case, D, is defined
by D,(s)=0 for s€ ¥, s#a,_, and D,(a,_,) € n®R, is chosen so that D,(=) is in
m°R,. Finally D(s)=0 for s € & and j>p. Again by Theorem A these conditions
determine D in (R, R,). By Lemma 1 D,(R)<=°R, for j>p. Again we invoke
Lemma 5 with n=2, m=p+1 and g=3 to show that D € #,(R,, R,), «p € $, and
O, (ap) =3,

(3, v) a, € k®, a,_, € k®. Again it may be assumed that a,=1+pb,. We choose
any H e #(R, R) such that H, induces a given 8 € 2(k) and let D,=='H,, j=1.
Lemma 5 applies with n=1, m=2 and g=3.

Case 4. v(f'(m))=2p—1, a, ¢ k® i>1. Let He#(R, R) be chosen so that
Hya,) e pR,forj=1, ..., p—1and H, induces a given 8 € D(k) for which 8(a,) =0.
Let D={#H}. Since by (8,1) D,(m)e='*'R, and, by inspection, D,a,)
ef'(mmt*t-?, 5=0,...,p—1, j21, we see by Lemma 5 that 3 Dy(xn)e='*'R,.
Thus «p € §; and Oy(ep)=38. Clearly, D € #,(R,, R,).

Case 5. v(f'(m))=2p—1, a,€k®?, i>1. We can assume that ao=1+pb,. Let
H e 5#(R, R) be such that H, induces a given 8 € 9,. Let D={#""H,} and argue
as above.

Case 6. v(f'(m))=2p—1, a, ¢ k?, i=1. Let 8 e D(k), 8(,)=0, and let H, in
2(R) induce 8. Let &% be a set of representatives in R of a p-basis for k with a,
in &. We define K, € 2(R) as follows: K,(ap)==""(H,(a,)) and K;(s)=0 for
s€ ¥, s#a,. By Theorem A, these conditions determine a derivation on R. The
derivation D,=nH,—n"*1K, has the property D,(a,)=0 and is the first map of
D e #,(R, R,). For the rest, we define Dy(s)=0 for s € & and j> 1. By Theorem A,
De#(R,R,). By Lemma 1 D,(R)=nR, and D(R)<=*R, for j=1. The con-
ditions of Lemma 5 are fulfilled for n=1, m=1 and g=3. Moreover, ¢,(ap)=35.

Case 7. v(f'(m))=2p—1, a, € k®, i=1. Again, = is chosen so that ay=1+ pb,.
We have the situation (3) with t=p and 5=5b,. Thus, in deference to Lemma 2,
we choose 8 € 2(k) so that §(b,)=0 and let H, € 2(R) induce 8. Let H € (R, R)
be any higher derivation on R with the given H, as the first map. Let D={D,} where
D;=n'H;,jz1. Letn=m=1,q9=3in Lemma 5 and we conclude that > D,(=)en°R,.
Again we have the desired conclusion and Lemma 6 is proved.

The next series of lemmas are concerned with automorphisms in the “gap”
between &; and ;.

LemMA 7. If = is a prime element of R, and w°= —pu where ii ¢ k®, then, given
i22, there is a D € #,(R,, R,) such that ap, € &, and ap(m)=m+n'a where a is any
given element of k. Hence &,/$9, is isomorphic to k+.

Proof. We assume (6) to be the minimum function of = over R and thus @, ¢ k®.
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Let & be a set of representatives in R of a p-basis for k with a, € & With a chosen
arbitrarily in R, we define a derivation D; mapping R into R, by D;(ap)=
—p~Yf'(m)nta and D,(s)=0 for s € &%, s#a,. Then D, (R)<f'(m)n*~?R, by Lemma
1 and by (8.1), Dy(m)=='a, mod »**'R,. Let D/(s)=0, se€ ¥ j=2,...,p—1. If
i=2, the term [D,(m)]? in A4, of (8, p) makes it necessary to consider cases.

Case 1. i>2 or v(f'(m))<2p—2. In this case we let D,(s)=0, s€ ¥, j>p—1.
Thus, by Lemma 1, D(R)<[f'(m)=*"P}R,, j2 1, and if j>1, D{R)<f'(m)a**+1-?
since f'(w) € n’R,. The conditions of Lemma 5 are fulfilled for n=2, m=p+1 and
g=i+1. Thus D extends to R,, is uniformly convergent on R, and >, D;(m)
e n**1R,. In particular then, >2, Dy(n)=n'a, mod ='*1R,.

Case 2. i=2, o(f'(m))22p—2. In this case we choose D,(s)=0, s€ ¥ s#a,
and D,(a,) € n’R, so that D (=) will be in #*R,. Again, we let D(s)=0 for j>p,
s€ & and apply Lemma 5 with n=2, m=p+1 and g=3, obtaining the same
conclusion as in Case 1.

The map 7;: ®; — k* given by 7,(«) =a where a(m) =+ ='a, is a homomorphism
with kernel $; and evidently maps onto £+ if i>2.

LeMMA 8. If « is a prime element of R,, n°= —pu, and 4 € k? then &,=$9; for
i>1lunlessi=2andtof (3)isp—1. If t=p—1 the following are equivalent.

(a) © has a (p—1)th root in k.

(b) R, is Galois over R.

© G2#9,.

(d) ®&,/9, is the group of order p.

Proof. Let o be in &,. Then a=¢+n'a*. The relation

[x(m)]P — =P = p[l + [a(m)]'x(v)] — p(1 +7'0)
becomes

p‘n'”p_la*(ﬂ')+ . +7T1P[a*(ﬂ)]p
1s) = plat+trt =1} (m) + - - (o (m)) [rla*(v)
+ptat~tHia*(m) + - - - + 7t (a* (7)) 0.

If i>2 the unique term having minimal valuation on the left side of (15) is
prt*P~le¥(m). If ptt the unique term of minimal valuation on the right is
ptat~1+ipa*(mr), unless «*(7) is in wR,. Thus, either o*(m) e R, or t+i—1=p+i—1,
which cannot be. Thus, if i>2 and p { ¢, then « € ; or &;=9,. If p|t and i=2 the
left side of (15) has valuation less than the right side unless «*(7) € #R,. Thus
again &,=9,.

If i=2 and p t ¢, the unique term of minimal valuation on the left side of (15)
is #?P[a*(w)]P, assuming o*() to be a unit. The corresponding term on the right is
ptat*le*(m. Thus, 2p=p+t+1 ort=p—1. So, if t#p—1, G;=9,. If t=p—1,
then by (15), #?*[a*(7)]?=p(p — 1)7Pa*(7)v, mod #2* +1R,, or, using (3), [a*(@)]?~*
=(p—1)v, mod #R,. Thus, (p—1)5, or 7, is a (p— I)th root in k and the residue
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of o*(m) is a (p—1th root of (p—1)5. We have shown that (c) — (d) — (a). A
theorem of Wishart [4, Theorem 4.15] asserts that (a) — (b).

Suppose, finally, that « in &, leaves R element-wise fixed. Then, if o(7) ==+ ='b,
o« € ®;. Thus, if a#e, then €@, o« ¢ $H, for some r>1. Evidently, r=2 and
(b) — (c). This fact was also observed by Wishart [4, Corollary 4.16] who noted
that if # € k” then R, is Galois over R if and only if &, 9. It follows from Lemma
7 that if i ¢ k?, then ®&, can be different from £, without R, being Galois over R.

LEMMA 9. If ®,+# ., then, for each o € &,, there is a D in #,(R,, R,) such that
aapt € D, if and only if, in (3), U ¢ kP.

Proof. Assuming first that & ¢ k” it follows from Lemma 8 that in (3), r=p—1
and 7 is a (p—1)th root in k. Assuming (6) to be the minimal polynomial of =
over R, relation (3) with t=p—1 implies that a,, ..., a,_, are in pR, a@,_,(= —)
is a (p—Dth root in k, v(f'(m))=2p—2 and a,=1+ pb,.

Let w be a unit in R, such that w is a (p—1)th root of a,_,(p—1). We wish to
construct D € #,(R,, R,) such that «p € &, and ap(7)=n2w, mod #°R,.

Let & be a set of representatives in R for a p-basis of k chosen to include a, _,.
Then D, is defined by D,(a,-,)= —f'(m)n®w/pn®~1, Di(s)=0 for s€ S s#a,_;.
By Lemma 1 D,(R)<n®R, and by (8.1) Dy(m)=n%w, mod #»*R,. For j=2,...,p—1
and se ¥ D;(s)=0. By (8, 2) to (8, p—1), D,(m) e w®R, for j=2,...,p—1. The
term [D,(m)]? in (8, p) leads us to define D, by D,(a,_,)= —=**w?/p(=*~1) and
D,(s)=0, s€ &, s#a,_,. Since each term of (8, p) in A,+ B, is in #??*!R, save
[Dy(m)]? and [D,(m)]P=n?*w?, mod »?**1R,, we have D,(«) € #°R,. Finally, we let
Dj(s)=0 for s€ & and j>p. Then D,(R)<=%R, for j>p and by Lemma 5 with
n=2,m=p+1andq=3, we conclude that > D,(w) converges and >;% , D,(7) € n°R,.

It remains to show that o is in &,. We have shown that ap(7)— is in #2R,
and it is shown below that

(16) op(s)—s € n?R,, sef.

If se & s#a,_, then ap(s)=s by definition of D. Since D;(a,_,)=0 for j#1, p
it is sufficient to show that D,(a, )+ D,(a,-,) €m*R,. Now, f'(m)=(p—1)a,_ 7" "2,
mod #n?~1R,. Also w?~1=(p—1)a, ., mod =R, by choice of w. Using these facts
as well as the congruence #*= —p, mod #»”*1R,, leads to the conclusion D,(a,_,)
+Dy(a,_1)=—f'(m)n®w[pn? =1 —n®*wP[pnP -1 € n?R,,

Since «p is inertial, «p(a®)—a” € #’R, and every unit in R is, mod pR, a poly-
nomial in elements of & with coefficients in R?. It follows that «,(a)—a € #?R,
for a in R. Thus « is in &,.

It was shown in the proof of Lemma 8 that if « € &, then ¢« =¢+#2%* and o € 9,
or the residue of «*(7) is a (p — 1)th root of (p— 1)5=a,_,(p—1). Thus if we choose
w, in the construction of D, to be «*(r), then aop? € H,.

If 5 € k? then v=0v8+mv,. Thus a,_, =75 and b, =4, where, again, a,=14+ pb,.
We choose ¢, and ¢, in R so that a,_; =c§+pc,. Let D € #,(R,, R,) be such that
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ap € &y, ap ¢ Oy There is, then, a first index j such that fPs(x) € f'(7)n?R, and
SfPi(m) ¢ f'(m)n®R,. This requires that D(a,_,)= D,(cE+pc,) € n?R, and Dya,_,)
¢ m*R,. However, DyR)<nR, and hence Dy(c§+pc,) € n"’R,. We have a contra-
diction. Thus &, N &, < $,, and Lemma 9 is proved.

For i>1 and « € §, there is a D € #,(R,, R,) such that D(R,)<='R, (see (12))
and cep € ®;, 4. Also if i>2 and « € ®; then « € , or there is a D € #,(R,, R,)
such that D(R,)<#'R, and «ap € $;. This follows from Lemma 7, Case 1 of the
proof of Lemma 7 and Lemma 8. Thus, given « € §, there is a sequence {D™},
D™ e #,(R,, R,) such that, D™(R,) <=*:R, where lim,, s,=co, and &=aD1aD2 .
op,., mod 9, .2 By Lemma 3, there is a D € #,(R,, R,) such that a=0p.

By Lemma 6 and Lemma 9, we conclude that &, and &(R,, R) together generate
®. If B is an automorphism on R and D e (R, R,) then H={H;} where
H=B~D is also in J#(R,, R,). If D converges uniformly so does H. Thus &,
is an invariant subgroup of G the automorphism group of R,. Hence ;=
&5 ®(R,, R). These observations along with Lemmas 8 and 9 prove Theorem 1.
Theorem 2 follows directly from Lemmas 2, 4, 6, 7 and 8.
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