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I. Introduction. Let Re be a ramified f-ring with ramification e. That is, Re is

a complete, discrete, rank one, valuation ring having characteristic zero with

residue field k of characteristicp (p^O, 2) and pRe is the eth power of the maximal

ideal Af of Re. Let © represent the group of automorphisms of Re, e being the

identity map. Then, for />0, @¡ = {a | a e ®; a = e, mod M¡} and §¡={o: | a e ©¡,

a(m)-m e Mi + 1 for m e M). The ramification groups ©¡ and §¡ are invariant in

©. The object of this paper is to evaluate the factor groups of the series (1) of

(1) ©, 2 ©i 2 @2 2 §2 2 • • •

ramification groups in that case in which e=p. A second objective is the determina-

tion of those automorphisms in &1 which are derivation automorphisms (see below).

Neggers has shown [3, Theorem 6] that for any e and i^(e+p)/(p—l),

@i/@i + i is isomorphic to 2¿i(R¿)¡it£¿(R¿) where !3(Re) is the additive group of

derivations on the ring Re and ■n3>(Re) = {Trd \ de @(Re)} where w is a prime ele-

ment in Re. In addition he proved that W®i + i is isomorphic to the additive group

of those derivations on k which lift to Re where again i^(e+p)/(p— 1). The map

used by Neggers to evaluate ©¡/©i + 1 also shows that if i~à(e+p)/(p- 1), then

@i/.C¡ is isomorphic to 2(Re)¡2*(Re) where @*(Re) = {d \ d e 3>(Re), d(n) e nRe}

[3, proof of Theorem 6]. The principal tool of this investigation is the convergent

higher derivation [2]. Let -D = {A}¡ = i be a higher derivation on Re(Di(Re)cRe for

/>0). D is convergent if, for ae Re, 2 A(«) is a convergent series in the 77-adic

topology. If D converges the map aD: a^ 2¡°=o Di(d)(D0(a) = a) is an inertial

automorphism (see Theorem B). The group &D of all derivation automorphism aD

is an invariant subgroup of ©.

Throughout this paper R will denote a !>ring in Re such that [Re:R] = e, and

R is unramified. Thus R has the same residue field k as Re. For a in Re, ä will

denote the image of a under the natural map of Re onto k, it always represents a

prime element in Re. We have

(2) TTe+pu = 0,       m,¿0.

If e=/7 and uekp then -n can be chosen so that

(3) 77p-1-/7(1+^/;) = 0,       r > 0,   y ^ 0,

or ttp+p=0. We note that the conditions

(4) ü$kv;t=p   and   v$kp;as well as 0 if 1 ^ r < /)
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are all independent of the choice of n, assuming (3) to be satisfied for all but the

first listed. Throughout this paper the symbols u and v will represent the quantities

given in (2) and (3). The considerations (4) determine, to a large extent, the

structure of the groups (1) as is seen in the following two theorems which summarize

the results of this study. ®(FP; F) is the group of automorphism of R„ over R.

Theorem 1. Every inertial automorphism on Rp is a derivation automorphism,

i.e. ©! = ©£,, unless üe k" and t—p—l, in which case the following are equivalent.

(a) v is a (p— l)th root in k.

(b) F„ is Galois over R.

(c) ©25¿í>2.

(d) ©21 ©2 is the group of order p.

If Rp is Galois over R then @(FP ; R)c ©ß // and only if v $ kp. In any case,

&^®D-&(RP;R).

Theorem 2. Ifü$kp then for ¿3:1, §(/®i + i is isomorphic to the subgroup S¿ of

those 8 e 2(k) which lift to Rp. Also, S¡ = {8 \ 8 e 3¡(k), 8(ü) = 0}. In this case ©,/§(

is isomorphic to k + , the additive group of k.

If üekp, then for igjl, W@i + i is isomorphic to !S(k) unless t=p and i=\. If

t=p, §i/©2 is isomorphic to the subgroup of those 8 e 3¡(k) such that 8(0) = 0. Also,

®i = í>¡, *=1, unless t=p—\, i=2 and one of the four equivalent conditions of

Theorem 1 holds.

By Neggers' results referred to above [3,'proof of Theorem 6] we have

Corollary. S>(Rp)¡Si*(Rv) is isomorphic to k+ ifü<£kp and is trivial ifuek".

II. Proofs. For S a subring of Re, the symbols Jf(S, Re), 3^C(S, Re) and

^fu(S, Re) will stand for the set of all higher derivations, all convergent higher

derivations, and all uniformly convergent higher derivations with domain S and

range Re. We quote the following two theorems which will be used repeatedly.

Theorem A provides the necessary freedom in the construction of D e ^u(Re, Re).

Theorem B implies that if D e 3fc(Re, Re), then aD is indeed an inertial

automorphism.

Theorem A [2, Theorem 4]. Let £f be a p-basis for k and let if ^R be a set of

representatives of the elements of y. If I is the set of positive integers and f is a

mapping from ¿fxl into Re then there is one and only one D e Jf(R, Re) such that

Dt(s)=f(s, i)for all s e if and i e I. Moreover, D converges (uniformly) if and only

if D converges (uniformly) on £f.

Theorem B [2, Lemmas 1 and 5]. If D is in ^c(Re, Re) then A(Fe) <= 7rFe and

DinRe)cTT2Refor i>0.

Theorems 1 and 2 will be proved by means of a series of lemmas.
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Lemma 1. If ' Sf is a set of representatives in R of a p-basis if for k and D in

Jt(R, Re) is such that D^^^^iR^-nR^j^ 1, then DiR^-n^R^ where

q, = min (th-\-hi,,),       f è 1.
/i + ••• +/i = i;(o = 0

Proof. For a given i we choose n sufficiently large so that Dj(Rpn)(^TT^Re for

j=l,...,i [2, Lemma 6] where Rp" is the subring of R generated by the pnth

powers of elements in R. Since every element in k has a representative in Rpn[£f],

it follows that R = Rp"[&']+p','R. If b = as1,...,sr where aeRp" and su...,

sr e Sf then

Dx(b)=     2     A.(«)At<fc).-...Ato
.(, + ••• +(r=i

is seen to be in tt^R and hence, since Dj(p"i) = 0 for ally, Di(R)<=TT'>iRe.

Let a, an automorphism of Re, be in §¡, ¡'^1. Then a(a) = a + -nla*(a) and the

mapping a* induces a derivation 8a on A:. The mapping

(5) facets«

is a homomorphism of £>¡ into S>(&) with kernel ®i + 1.

Lemma 2. If an automorphism a of Rp is in §¡, then 8a(u) = Q. IfTrp+p(l + irpv) = 0,

then 8a(v) = 0for a in ¡q¡..

Proof. Since a(7r)-7r e tti + 1Rp it follows that a^-Tr" e ttp+í + 1Rp. Thus by (2)

a(u) — u is in nt + 1Rp or a*(«) etrRp which implies Sa(w) = 0. In the remaining case

let a(7T) = TT+7T2b. Then a(np) —np = TT2pbp, mod Tr2p + 1Rp, and a(p(l+7Tpv))-p(l-r-npv)

=p7Tp + 1a*(v), modTr2p+2R1!. Hence be-rrRp and it follows that a*(v)enRp or

3a(5) = 0.

Given D and 77 in Jf(Re, Re), D ° H in Jf (7?e, 7*e) is given by

(D oH)t= 2 AA-/-
/ = o

^(7?,,, 7?e) is a group with respect to this composition and J?c(Re, Re), ^(^e, Re)

are subgroups [2, Theorems 1, 2]. Moreover, one can verify directly that, for D

and H in ^(7?e, 7?e), o¡DoH = c£Dc¡H.

Lemma 3. Let {Din)}%=1 where Din) e Jfc(Re, Re) be such that D\n)(Re)<=Trs*Re,

fg;l, wäl, ««i/ limn £,, = 00. Ler an = aD« >,..., aD<"> a«í/ D<n) = 73a* ° • • • ° Din\

Then limn an(a) a«d Iim„ D¡n>(a) exist for all i>0 and a e Re. Moreover, a: a^-

lim„ an(a) is an automorphism, Z> = {A} & Wl ̂ c(Re, Re) where D¡(a) = limn Df\a)

anda = aD. If Din) e J?u(Re, Re)n ̂  1, then D e Jfu(Re, Re).

Proof. By definition of product in Jfc(Re, Re) we have

DT + 1\a)- DT\a) = 2 A? ■ • ■ Aítí'W.
ii + ••■ +im + l=n:im + 15i0
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the right side of which is in ns^+iRe since for D eJt?c(Re, Re), AtoFe)<= irnRe for

all i and n by Theorem B. Thus, «m+1(a)-am(a) = 2.°°=o A*B+1)(a)-If-o A(m)to

e-rrs«>+iRe. The rest of the lemma follows directly.

Since Rp is totally ramified over F and [Rp : F] =p then Rp = R[tt] and the minimal

polynomial/(x) of 77 over F is an Eisenstein polynomial, that is,

(6) f(x) = xp+pap-1xp~1-\-\-paxx+pa0

and a0 is a unit. Clearly, ä0 = ü (see (2)). Also, if üekp then a0 = bp+pc where è

and c are in F. By replacing 77 with 6 ~ 1ir we can assume that

(7) a0 = 1 +/>V

We note next that every D e 3^(R, Re) extends uniquely to a higher derivation

D of the quotient field of Re. Also, D(Re)^Re if and only if D(ir)eRe. If D

converges on F, D will converge on Fe if and only if D converges at 77 [2, Lemma 3].

Let (r, s) denote an ordered set of r nonnegative integers whose sum is j and let

\(r, s)\ represent the largest integer in (r, s). We let 2„iS) D(au ..., aQ) denote the

sum of all products   Ajto)A2to) • • • A,to)   such  that  it-\-\-iq=s  and

ij^O. Also,/'(x) and f°>(x) represent respectively the ordinary derivative of/and

the polynomial obtained by replacing each coefficient in/with its image under A-

With these conventions it is useful to write the expression for Ato derived from

A(/to)=0 as follows:

/'(7r)Ato=/D'to+        2 D(rr,...,n)
(p.i);l(P.l)]<i

(8,i)
p-i

+ 2^ 2 D(aj,7r,...,7r).
j' = 0     (i + l,i);l(i + l,i)|<i

Let v represent the exponential valuation on Rp. Note that/? 5| t>(/'to) = 2/> — 1.

Lemma 4. A given 8 e 3¡(k) lifts to de2¡(Rp) if and only if8(u)=0.

Proof. A derivation de3¡(Rp) induces a derivation on k under the natural

map of Rp onto k only if d(-n)<^TTRp. But í/(/(tt)) = 0 means d(ir)= -/dto//'(i-).

Thus /dto enp + 1RP which means d(a0) e ttRp and, hence, if d induces 8 on k,

8(a0) = 8(H) = 0. Conversely, every 8e2(k) lifts to d' on F [1, Theorem 1]. If

8(H) = 0, d'(a0) epR which means that /"'to//'to enRp. Thus the extension d, of

d', to Rp is in ¿3(RP) and induces S since d' does.

Lemma 5. Let D e 3fc(R, Rp) where Fp = F[tt] and f(x) = x" + 2ï=o P^x' is the

minimum function of n over R. Letq>2, «ï: 1, andm>p(n—\) be integers such that,

using the same symbol for the extension of D to Rp,

(9.1) AW^Ä,       ifj<n>

(9.2) Dj(ir)eir«Rp       ifnèj<m,

and, ifj^n

(9.3) AWe/W-.
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Ifq = 3 then (9, 3) is assumed to hold only for fern. Under these assumptions 2 Ato

converges and £,
2 Atoe "'A.

i = n

The proof of this lemma consists of checking the valuation v of the terms on the

right side of (8). We show first that if y'ä«i,

(10) Ato e -"qRv

Thus assuming (10) true for j<r where rimwe consider (8, r). By (9, 3)/D'to

is in f'(TT)TTqRp. The term Dtl(ir) ■ ■ • A„to of ^r = Z<p,r);i<P.r)i<r D(n, ...,tt) is in

ttp+qRp in view of the fact that at least one i¡>n and another is different from zero.

The above term appears in Ar a multiple of p times unless h = i2= ■ • ■ =ip = r/p

in which case it is in TrPQRpcf'(„)„"Rp, since f(/'to)è2p-1 and p+2. Thus

Ar ef'(ir)TrQRp. A similar argument shows B„ the remaining term on the right

side of (8, r), to be m.f'(TÍ)p"Rp. Thus by (8, r) Ato e ""Rp-

Given /'SO, we assume for some integer s^m that if j>s, then Ato eTTi+aRp

and, for «=0,.. .,p — \

(11) AK)e/'to^i + 9-I, + 1A-

Let s' —ps and let/>5'. Then/Di(7r) ef'(Tr)iTl + q + 1Rp and, by an analysis like that

above, A¡ and B} are seen to be in/'(*>'+a+1A- Thus Ato e "i+<, + 1Fp. Since D

converges on F, given ¡SO, there is an s such that (11) holds for/>5. It follows

that 2 Ato converges, and in view of (10) 2f=n Ato e """Rp-

Lemma 6. If a e$t, i£ 1, i«e« i«ere is a D e Jfu(Rp, Fp) swc« í«aí a_1aD e G( + 1.

Moreover, Jpi/©4 + ! « isomorphic to the subgroup of those 8 in 2(k) for which

8(ü) = 0 with the following exception. If üekp and, for suitable choice of n we have

ttp=P(\ +tt"v) then §i/©2 is isomorphic to the subgroup of those

8 e 9(k) s 8(v) = 0.

Proof. By Lemma 2, it will be sufficient to find D e Jfu(Rp, Rp) such that

<¡>i(aD) (see (5)) is a given S for which 8(h) = 0, or, in the exceptional case, 8(D) = 0.

Let (6) be the minimum function of rr over F.

Case 1. f(/'to) < 2/> — 1, i>l. Let S be any derivation on k for which 8(u) =

8(50) = 0 and let H={H,) be any higher derivation in Jt(R, R) satisfying the two

conditions (a) Hx induces 8, (b) H¡(a0)epR, j=\,.. .,p-\. Specifically, every

derivation on k lifts to F [1, Theorem 1] which fact makes Hx available. Let

Hj = H{lj\ fory'=2,.. .,p-\. By Theorem A, maps H„ j^p, can be defined so

that H={H¡}e^(R, R). Let D={D,} where

(12) A = **#/•
Clearly, D e Jf„(F, Fp). We now show that

(13) Ato^i + 1A,     j*h
and

(14) 2 Ato converges,
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from which, with (12), it will follow that, using the same symbol for the extended

higher derivation, D e J^U(RP, R„), aD e $, and i>i(aD) = 8.

Let v(f'(Tr))=p + r— 1. Thus r is the least positive integer such that ar is a unit.

Looking to the conditions of Lemma 5 we note that f'(Tr)TTi + 1'p'sRp=TTi+r~sRp.

If s â r, D,(as) e tthRp c j + ' - *Rp for j ^ 1. If r > s > 0, as e pR ; hence, H,(as) e pR

and thus Dj(as)e-rrii+pRp^ni+r-sRp for j£1. Finally, £>/a0) = tt"///*/,,). If j<p,

Ht(aQ)epRp and ■ni>Hi(a0)enii+pRpCTri+rRp. If j^p, ij^i+r. Hence, Afao)

e7ri + r7?p fory^l. Thus conditions (9, 1) to (9, 3) are satisfied with q = i+l and

n=m = l. Hence (13) and (14) hold.

Case 2. v(f'(Tr))<2p — 2, i=\. We define D as in Case 1 and note by inspection

of (8, j) for j=l,.. .,p that A^) ett2Rp, Ai77) 6^Rp f°r7=2, • • ■,/>• Also, in

this case,f'(n)Tr3-p-sRp^TTp-sRp=>7rpRp and, by (12) £>/a5) e npRpczf'(n)Tr3-p-sRp

for j^p and i = 0,.. .,p — 1. Thus conditions (9, 1) to (9, 3) are satisfied for n = 2,

m=p+l and q=2>. Hence 2 AW converges and is in tt2Rp. Thus, aDE§i and

<I>i(<*d) = 8.
Caje 3. v(J'(tt))=2p-2, f=l. We consider a number of subcases. In each case

Z> is constructed by the method of Theorem A.

(3, i). äp_! $kp, ä0$kp, âp-1 and ä0 p-independent. As before, we initiate the

construction of De3#*u(R,Rp) by letting Dj = -n,Hi, j=\,.. ,,p—\, where

{//,}?_1 are chosen so that Hu a derivation on Rp induces a given S e 2(k) such

that 8(â0) = 0 and 7/;(a0) epR for j=2,...,/»—1. Let y be a set of representatives

in 7? of a /»-basis Sf of A:. We may assume both a0 and op.! in ¿f. By inspection

of (8, 1) to (8,/7-1) we have T),» e 7727?p and Dfr) e-rr3Rp,j=2,...,/?- 1.

Considering (8, p), each summand of Ap and 7?p is in 7r2p+17?p, except the

term [AMI" which is in tt2pRp but not in tt2p + 1Rp. Thus, we define Dp by

7)p(i) = 0 for sey-{(i0} and Dp(a0) is so chosen that /Di>(7r) + ,4p-r-7ip is in

f(rr)TT3Rp. Thus, Dp(a0) e ttpRp and Dp(n) etr3Rp. For j>p we let A(i) = ° for

se^ By Lemma 1 Dj(as) e-rrp + 1Rp for j>p. It follows that conditions (9) of

Lemma 5 are fulfilled for n — 2, m=p+l and q = 3. Thus by Theorem A the ex-

tension of D to Rp converges uniformly aD e &x and <I>i(aD) = 8.

(3, ii) öp_i ^ kp, a0 $ kp, äp_! and a0 p-dependent. Let H1 e @i(R) induce 8e2k

where 8(ä0)=0 (Lemma 4) and let if be a set of representatives of a /7-basis

for k which contains a0. HeJí?u(R, R) is defined by the conditions Hj(s) = 0 for

/>1 and seif. Let D^tt'H, fory'äl. Now Hl(ap_1)epRp since H^Oq) e pRp

and the elements ö0, äp_,_ are /^-dependent. Thus by (8, 1), D^tt) eTr3Rp. Also

Dj(as)ef'(TT)Tr3-p-sRp = Trp + 1-sRp for /"^l, j = 0,.. .,/?-l. Thus, conditions

(9) of Lemma 5 are satisfied for n=\, m=2, q=3 and again D e Jtu(Rp, Rp),

aD e i>! and 01(aD) = S.

(3, iii) äp _ ! e &p, ä0 £ Ap. A higher derivation 7) in 3^U(R, Rp) is chosen as in

(3, ii). Since ap _ ! = bpp _ x +pc, H1(ap-1) epRp. Thus A(") etr3Rp and for the rest

the argument of (3, ii) applies.

(3, iv) äp _ ! i k", à0 e kp. We choose tt so that a0 = 1 +pb0. Let y be a set of
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representatives of a /»-basis for k. We can assume ap^x in Sf. Let Hx in S>(R)

induce Sin 9¡(k). For/'=2,.. .,p-\ and je Sf we let Hj(s)=0. For/=l,.. .,p — l

let Dj = niHj. By (8, 1), At to e "-2FP (Aito e tt3Fp unless Aito-i) £ ^2FP). Also,

Ato £t3Fp fory = 2,...,/?- 1. The terms Ap + Bp of (8, p) have [AtoF as the

unique summand of minimum valuation, if Ato £ ^3FP. In any case, A is defined

by Dp(s) = 0 for s eSf, j^ap_1 and Ato-i) e7r2Fp is chosen so that Ato is in

7T3FP. Finally D,(s) = 0 for s e if andj>p. Again by Theorem A these conditions

determine D in ^U(R, Rp). By Lemma 1 Dj(R)^tt'3Rp for j>p. Again we invoke

Lemma 5 with n = 2, m =p +1 and q = 3 to show that D e ^U(RP, Rp), aD e §j and

01(«D) = S.

(3, v) a0 ekp, öp_! e &". Again it may be assumed that a0= 1 +/?¿>0. We choose

any HeJf(R, R) such that #! induces a given 8 e 9(k) and let D^n'Hj, j%l.

Lemma 5 applies with n= 1, m = 2 and 9 = 3.

Case 4. v(f'(w))=2p-\, ä0£&p, *'>1. Let HeJf(R,R) be chosen so that

Hj(a0) e pRp forj = 1,...,/?— 1 and ^ induces a given S e @(k) for which S(50) = 0.

Let D={n"Hj}. Since by (8,1) D^tt) eni + 1Rp and, by inspection, Ato)

ef'(ir)Tr, + 1-p, s=0,...,p-l,f¿l, we see by Lemma 5 that 2 Atoe7r< + 1A>-

Thus aD e ©, and <D¡(aD) = S. Clearly, Z> e ^(Fp, Fp).

Cflie 5. v(f'(Tr)) = 2p—\, ä0ekp, í>l. We can assume that a0 = l+/>60. Let

HeJi"(R, R) be such that Hx induces a given SeSfc. Let D={irtiHj} and argue

as above.

Case 6. v(f'(ir))=2p- 1, â0£Â:p, i=l. Let 8e®(k), 8(ä0)=0, and let #x in

^(F) induce 8. Let ^ be a set of representatives in F of a /»-basis for k with a0

in ^. We define KxeS>(R) as follows: K1(aQ)=7r-p(H1(a0)) and K1(s)=0 for

sea? s^a0. By Theorem A, these conditions determine a derivation on F. The

derivation D1=ttH1—ttp + 1Kx has the property Ato)=0 and is the first map of

D e Jf'u(R, Rp). For the rest, we define A(?)=0 for s e y andy> 1. By Theorem A,

D e Jtu(R, Rp). By Lemma 1 D1(R)c7TRp and Dj(R)<=-n2Rp for;äl. The con-

ditions of Lemma 5 are fulfilled for «=1, «2=1 and q = 3. Moreover, <f>i(aD) = 8.

Case 7. v(f'(ir)) = 2p-l, ä0ekp, i=l. Again, -n is chosen so that a0 = l+pb0.

We have the situation (3) with t^p and v = b0. Thus, in deference to Lemma 2,

we choose S e 3¡(k) so that S(50) = 0 and let Hx e 3>(R) induce 8. Let He JT(R, R)

be any higher derivation on F with the given H1 as the first map. Let D = {Dj} where

A=^Hi,i S 1 • Let «=«7=l,<¡r=3in Lemma 5 and we conclude that 2 Ato e 7I'3FP.

Again we have the desired conclusion and Lemma 6 is proved.

The next series of lemmas are concerned with automorphisms in the "gap"

between ©¡ and §,.

Lemma l.Ifir is a prime element of Rp and ■np = —pu where ii $ kp, then, given

/S 2, there is a De J^U(RP, Rp) such that aD e ©¡ and aD(n) = iT+TTia where ä is any

given element ofk. Hence ®¡/&t is isomorphic to k+.

Proof. We assume (6) to be the minimum function of -n over R and thus ä0 $ k".
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Let if be a set of representatives in R of a /»-basis for k with a0e if. With a chosen

arbitrarily in Rp we define a derivation Dx mapping R into Rp by 7)1(û'0) =

-p-yfrWa and A(0 = 0 for ie^,s#% Then D1(R)^f'(n)7rl-pRp by Lemma

1 and by (8.1), D^s^a, mod7ri + 17?p. Let Dj(s) = 0, seif, j=2,.. .,p-\. If

f=2, the term [D1(tt)]p in Ap of (8, p) makes it necessary to consider cases.

Case 1. ¡>2 or v(f'(ir))<2p—2. In this case we let D¡(s)=0, seif, j>p— 1.

Thus, by Lemma 1, A<ä)cLV'(''V~'t^W=1, and if/>l, 7)/7?)<=/>>'+ 1"p
since /'(t) e 7Tp7?p. The conditions of Lemma 5 are fulfilled for n=2, m=p+ 1 and

j=f+l. Thus D extends to Rp, is uniformly convergent on Rp and 2/=2 AO7)

£7Ti + 17?p. In particular then, 2f=i AWEA mod ttí + 1Rp.

Case 2. i = 2, v(f'(-n))^2p — 2. In this case we choose Dp(s) = 0, seif, sj^a0

and Dp(a0) e-rrpRp so that AC77) will be in 7r37?p. Again, we let D,(.s) = 0 for j>p,

seif and apply Lemma 5 with n = 2, m=p+l and q = 3, obtaining the same

conclusion as in Case 1.

The map t(: ©j -► & + given by ri(a) = ä where a(7r) = 77+77*0, is a homomorphism

with kernel §¡ and evidently maps onto k+ if f _ 2.

Lemma 8. IfTr is a prime element of Rp, 7rp=—pu, and uek" then Qb^&ifor

i> 1 unless i=2 and t of (3) isp — l. Ift=p— 1 the following are equivalent.

(a) v has a (p— \)th root in k.

(b) 7?p is Galois over R.

(c) ®2^§2.

(d) @2/£>2 is the group of order p.

Proof. Let a be in ©¡. Then a = e + n'a*. The relation

[a(7r)]p-7rp = p[l + [a(n)Ya(v)]-p(l + 77V)

becomes

/77ri+p-1a*(7r)-r- • • ■ +7rip[a*(7r)]p

(15) = pW + t-n1 -l + fa*(7r) + • • • + 7r'i(a*(7r))']7rfa*(r)

+p[t7Tt-1+ia*(7r)+ ■ ■ ■ +irH(a*(rr)y]v.

If i>2 the unique term having minimal valuation on the left side of (15) is

Pttí+p~1(x*(tt). If p \ t the unique term of minimal valuation on the right is

ptTrt~1+lva*(ir), unless a*(7r) is in ttRp. Thus, either a*(7r) £ TrTîp or t+i— 1 =p + i— 1,

which cannot be. Thus, if i>2 and p \ t, then a e §t or ©¡ = 3?¡. If p\t and f = 2 the

left side of (15) has valuation less than the right side unless £**("-) £ 7r7?p. Thus

again ©, = £,.

If i=2 and p \ t, the unique term of minimal valuation on the left side of (15)

is 7r2p[a*(7r)]p, assuming a*(7r) to be a unit. The corresponding term on the right is

ptTTt+1a*(Tt)v. Thus, 2p=p + t+l ort=p-l. So, if t^p-l, ®2 = £2. If t=p-l,

then by (15), 7r2p[a*(Tr)]p =p(p-\)-npa*(Tr)v, mod tr2p + 1Rp, or, using (3), [^(tt)]"-1

= (p—V)v, mod 7r7?p. Thus, (p— \)v, or v, is a (p—\)th root in k and the residue
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of a*(-rr) is a (p— l)th root of (p-l)v. We have shown that (c) -» (d) -> (a). A

theorem of Wishart [4, Theorem 4.15] asserts that (a) —i* (b).

Suppose, finally, that a in ©x leaves F element-wise fixed. Then, if a^ — Tr + Tr'b,

a e ©i. Thus, if a t¿ e, then a e ©r, a £ £>r for some r > 1. Evidently, r = 2 and

(b) -»■ (c). This fact was also observed by Wishart [4, Corollary 4.16] who noted

that if ü e kp then Rp is Galois over F if and only if ©2 =£ §2. It follows from Lemma

7 that if ü $ k", then ®2 can be different from §2 without Rp being Galois over F.

Lemma 9. If ©2 7e §2, fAe«, /or eac« a e @2, there is a D in ¿FU(RP, Fp) such that

aa¿1 e §2 if and only if, in (3), y £ /cp.

Proof. Assuming first that ß ^ /cp it follows from Lemma 8 that in (3), t =p — 1

and v is a (/>— l)th root in k. Assuming (6) to be the minimal polynomial of 77

over F, relation (3) with t=p—\ implies that au ..., ap_2 are in pR, âp_i(= —v)

is a (p— l)th root in A:, v(f'(rr)) = 2p — 2 and a0 = 1 +/>¿0-

Let w be a unit in Fp such that iv is a (p— l)th root of äp_1(/>— 1). We wish to

construct D e 3fu(Rp, Rp) such that aD e ©2 and aD(n)=tt2w, mod 7t3F„.

Let if be a set of representatives in F for a/7-basis of k chosen to include ap_x.

Then A is defined by Ato-i)= -f^^w/pir"-1, A(s)=0 for se if, s^ap_x.

By Lemma 1 A(F)<=7r2Fp and by (8.1) Ato=^2w, mod tt3Fp. For/'=2,...,/?-1

and seif, Ato=0. By (8, 2) to (8,/>-l), Atoe"-3A> for j=2,.. .,p-\. The

term [Ato? in (8, p) leads us to define Dp by Ato-i)= -i^'W/p^-1) and

Dp(s)=0, se if, s^ap_1. Since each term of (8, p) in ^P + Fp is in ir2p + 1Rp save

[AtoF and [D1(tt)]p = tt2pwp, mod tt2p + 1Fp, we have Ato e ^3A- Finally, we let

Dj(s) = 0 for s e if and j>p. Then Dj(R)<^tt2Rp for j>p and by Lemma 5 with

«=2, «t =/? +1 and q=3, we conclude that 2 Ato converges and 2f= 2 Ato e ""3FP.

It remains to show that <xD is in ©2. We have shown that ccd(tt) —it is in n2Rp

and it is shown below that

(16) aD(s)-se-rr2Rp,       seif.

If seif, s^ap-x then aD(s) = s by definition of D. Since A(an-i) = 0 foryVl, p

it is sufficient to show that Ato -1)+Ato -1)e t2F„. Now,/'to=(/> - i)ap -to " 2,
mod TTp-1Rp. Also wp_1 = (/?- l)aP_!, mod ttFp, by choice of w. Using these facts

as well as the congruence ttp= -p, mod 7rp + 1Fp, leads to the conclusion Ato-i)

+ Ato - l) = -/'("> V/^" " 1 - Tr2PWP/pTTP - 1 6 7T2Fp.

Since aD is inertial, <xD(ap) — a" enpRp and every unit in F is, mod pR, a poly-

nomial in elements of if with coefficients in Fp. It follows that aD(a)-aen2Rp

for a in F. Thus a is in ©2.

It was shown in the proof of Lemma 8 that if <x e @2 then a = e + tt2o* and a e §2

or the residue of a*to is a (/? — l)th root of (/?— l)ß=äp_i(/>— 1). Thus if we choose

w, in the construction of D, to be a*to, then aa¿* £ &2.

If vekp then ^ = ^ + 77-^. Thus äp_ x = f7g and b0 = v1 where, again, a0 = l+^o-

We choose c0 and Cj. in F so that ap_1 = cg+/?Ci. Let DeJfc(Rp, Rp) be such that
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aD e ©2, aD $ §2. There is, then, a first index j such that /D'(7r) ef'(TT)v2Rp and

fDi(7T)if'(TT)tT3Rp. This requires that D,(ap _ J = Z);(cp +pcx) e tf2Rp and A(°j>-i)

$tt3Rp. However, Dj(R.)^ttRp and hence 7)y(cp+/?£•,.)£ 77p7?p. We have a contra-

diction. Thus ©2 n @„<:|)2| and Lemma 9 is proved.

For i> 1 and a e #, there is a 7) £^(7?p, 7?p) such that D(Rp)ctt*rp (see (12))

and aaD £ @i + 1. Also if i> 2 and a e @f then a £ §, or there is a 7) e ¿Fu(Rp, Rp)

such that D(Rp)'^TTiRp and aaD e §,. This follows from Lemma 7, Case 1 of the

proof of Lemma 7 and Lemma 8. Thus, given a e §2 there is a sequence {A"'},

D™e3H?u(Rp, 7?p) such that, Dw(Re)<=Trsi>Rp where limn Jn = co, and a = aDlaDa • • •

aD2n, mod §n+2. By Lemma 3, there is a D eJ^u(Rp, Rp) such that a = aD.

By Lemma 6 and Lemma 9, we conclude that ©D and @(7?p, 7?) together generate

©. If ß is an automorphism on 7? and D e ¿Fc(Re, Re) then 77={77¡} where

Hi=ß~1Diß is also in ^c(Re, Re). If D converges uniformly so does H. Thus ©D

is an invariant subgroup of G the automorphism group of Rp. Hence ©j =

@D-@(7?p, 7?). These observations along with Lemmas 8 and 9 prove Theorem 1.

Theorem 2 follows directly from Lemmas 2, 4, 6, 7 and 8.
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