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1. Introduction.   In [9], Kaplansky proves:

Let R be a commutative local domain with quotient field Q. Then the following

are equivalent :

(i) The homological dimension of QR, hdB (Q),= 1.

(ii) Q is countably generated.

In [14], Small shows that the hypothesis "/? local" may be replaced either by

"R is domain such that the Jacobson radical 3^0 and R/3 is Noetherian" or by

"7? is a regular domain which is not Dedekind, such that R contains an uncountable

field," and (i) will still be equivalent to (ii). Small also shows that, if Q is generated

by N„ elements, n an integer, then hdR(Q)^n+l. This implies that, for QR

countably generated, hdB (0=1. This special case also appears in Matlis [10].

The question naturally arises if, for all commutative domains R, hdB (Q) = n+ 1

if any generating set for QR has at least Xn elements and the global dimension of

R>n. By Matlis [10], the answer is no—a Noetherian domain of Krull dimension

1 always has hdB (0=1. However, for regular domains, a situation of particular

interest to Small in [14], we obtain some information. By means of the techniques

of Osofsky [13] and Kaplansky [9], we show:

Let R be a regular local ring of dimension m such that cardinality R = cardinality

R/3 or R is complete. Let Q be generated by a set of Hk but no fewer elements. Then

hdR(Q) = min{k+l,m}. This is then generalized to regular domains finitely

generated over some field. As indicated in Small [14], this gives a new statement

equivalent to the continuum hypothesis. Indeed, for neo, let Fm be the ring of

polynomials in m^n +3 variables over a field F with cardinality 2s". Let Qm be its

quotient field. Then hdj-m (2J=«+2<>2s»=Sn+1, In particular, if Äis the field of

real numbers, hd/?3 (ß3) = 2othe continuum hypothesis holds. One can actually

write down a module over R3 which is free o 2K° =XX. Let F be the free /?3-module

generated by R3 x R3, i.e. F= ^x.y)eR3 x k3 ® (x, y)R3. Let M be the submodule of F

generated by {(y, z) — (x, z) + (x, y)yjz\y = za, x=yb, where a and b are nonconstant

polynomials}. Then M is projective o the continuum hypothesis holds. Since M is

infinitely generated, by a result of Bass [4], M is free o M is projective. In the

appendix, we show how to construct a free basis for M if the continuum hypothesis
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holds. If one changes R3 to R2, the corresponding module always has a free basis,

so we see no way to show directly from the module M that if 2*o^N1, M cannot

have a free basis.

Most of the results in Small [14] and Osofsky [13, §2] are special cases of generali-

zations proved here. One might hope that the techniques employed could be

combined with appropriate induction hypotheses to yield dimensions of other

modules over other rings.

2. Definitions and notation. Throughout this paper, R will denote a ring with 1.

All modules will be unital right A-modules.

\A\ will denote the cardinality of the set A.

Let A, B, and C be A-modules, X:A^-C, ¡x:B^-C, v.A^-B A-homo-

morphisms. (A, v) : A -*■ C © B will denote the homomorphism defined by

(A, v)a=Xa+va for all aeA. \®p.:A®B-^C is defined by (\®p.)(a+b)

= \a + fib for all a e A, b e B.

A right A-module M will be called directed if:

(i) M is generated by a set of elements M' such that xr=0or=0 for all

xe M'.

(ii) For all x, ye M', there exists a z e M' such that zR^xR+yR.

M' will be called a set of free generators for M.

If M is a directed module with free generators M', u: M' x M' -> M' is called

an upper bound function if u(x, y)R^xR+yR for all x, ye M'. We extend m to a

function from U"=2 (M')n to M' inductively by

u(mx, ...,mn) = u(mx, u(m2,..., mn)).

Then u(mx,..., m„)Ä22f_i mzR. If X^M' and u(Xx X)çX, X will be called

u-closed. For all TçM', define the «-closure of Y, cl (Y), by

ci(T)=      n      x.
y = X = M';Xu-closed

If we set 70 = Y, Yn + x = Yn u u( Yn x Yn), then el ( Y) = [Jñ= o Yn.

We observe:

2.1 If |T|^X0, then |cl(y)| = |T| since |Tn + 1| = |T„| for all «^0.

2.2 If X is w-closed, the submodule of M generated by X is directed.

2.3 If M is directed, then M is finitely generated o M is cyclic.

2.4 If M is directed and A1 is a set of free generators for M, then X is directed

by inclusion of cyclic submodules.

2.5 If Af is directed and countably generated, then M=\Jf=QxiR where xtR

is free and XjÄcxjÄ for all iSj-

hdB (M) will denote the homological dimension of MR. If x, y e M, xSy will

mean xR^yR. If M is directed, xeM', x~1 will denote the A-isomorphism:
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xR -*■ R given by x~l(xr) = r. x_1 exists since xR is free with basis x. Note that

x-x~\xr) = xr.

Let X^MR, näO. Pn(X) will denote the free Ä-module

P¿X)= 2 0<xo,...,xn>A
{jcjlOSiSniçX;^ > xx > ■■■ >xn

where, for all r e R, <x0,..., xn>r=0 o r=0. Set P _ x(X) = the submodule of M

generated by X.

Let xe M'. Set j(x)={.y e M' \ y<x}, s(x) = {ye M' \ y^x}. We define a map

x* : Pn(s(x)) -> ^n ♦ i(K*)) for « è 0 by

X \Xn, ..., x„> = <,x, x0,..., xn).

If n = -1, x* : P_ i(x) -+■ P0(s(x)) is defined by

x*(xr) = <x>r = <x>x_1(xr).

For n^O, define a function dn: Pn(X) -+ Pn-x(X) by

d0<.x} = x,
n-l

c4<x0,..., x„> =  2 <*o. • • •, x\,..., xn>( -1 y + <X0, . . ., Xn_ !>(- 1 )nxn"ii(xn)
i = l

where x¡ means delete x¡.

x* and di are analogous to the "adjoin a vertex" and boundary operators of

combinatorial topology, and are precisely the functions defined in [13]. They are

connected by a basic relation :

(2.6) dn + x(x*p) =p - x*dnp   for all n è 0, p e Pn(s(x)).

This relation will often be used without explicit reference to it. It is verified by

direct computation.

3. The projective resolution of a directed Ä-module. We apply the argument in

[13] to get a projective resolution of a directed ^-module which we will use to

calculate its dimension in special cases.

3.1 Proposition. Let M be a directed R-module with set of free generators M'

and upper bound function u. Let X be a u-closed subset of M'. Then

dn + i               d„                                  dx                d0
(4L)->Pn(x)-^Pn_1(X)-►->P0(X)->P-X(X)->0

is a projective resolution ofP-x(X) = the submodule generated by X.

Proof, (i) á¿ is a complex. This is a straightforward computation, written out

in [13].

(ii) 3PX is exact. ^x is exact at P-X(X) since X generates P_X(X).
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Let p = 2 f= i <*o, • • ■, x^fi e Pn(X), dnp = 0. Let x = u(x\,..., 4). Assume

x\, ...,x'Q<x = x0+1=- ■ ■ =xkQ, and set p'-2\~i <*o. • • •.4)''i. P"=P~P'- By

definition, p" = x*q for some g- e Pn-Wxn or *r- By 2.6,

p-dn + x(x*p') = x*q + x*dnp'.

Since á^ is a complex

0 = í4[;c*07 + ¿,y)] = q + dnp'+x*(dq)       if « > 0,

= xx"1(g+í/n/7')=í+(7n/j' if« = 0.

Since for «>0, no term of q+dnp' involves the symbol x, and every term of x*dq

does, q+dnp'=0. Hence p = dn+x(x*p').

We are also interested in a projective resolution of a quotient of two directed

modules.

3.2 Proposition. Let M be a directed R-module, X and Y u-closed subsets of

M', Z£ Y.Letvbe the natural map from P -X(Y) ->■ P -X(Y)/P -X(X), I the identity

on Pn(X). Then

(-dn, I) ®dn + x
Vx.r)->Pn(X)@Pn + x(Y)K ,VJ   n + 1>Pn-x(X)@Pn(Y)

(-dx,I)@d2 I@dx
_ ...   V )KJ  *>P0(X) ®Pi(Y)-^-Up0(Y)

^P-X(Y)/P.X(X)-*0

is a projective resolution ofP.x(Y)/P_x(X).

Proof. Clearly 0>XY is exact at P.X(Y)/P.X(X) since d0 is onto P-X(Y). Also,

vd0(I ® dx) = 0 since i/07>0(A')s7>_1(Ar) and dQdx = 0. Let z e kernel vd0. Then

d0(z) e P_X(X). Since d0: P0(X) -> P-X(X) is onto, there is an x e P0(X) such that

í70(x-z) = 0. Since 0^ is exact, z eP0(X) + dx(Px(Y)) and 0>X_Y is exact at P0(Y).

Moreover,

[7 © dx][(-dx, I)@d2] = (-dx + dx, dxd2) = 0.

If (7 © dx)(a, b) = 0,aePo(X),bePx( Y), then a+dxb = 0, and by the exactness of

3PX and ¿?Y, there is a zePx(X) and weP2(Y) such that dxz=dxb= —a and z=

¿>4-i/2w. Then (a, b) = [(-dx, I) © d2](z, - w) so ^,y is exact at P0(X) © Px( Y).

For «> 1,

[(-4-!, 7) © dn][(-dn, I) © dn + x] = (dn_xdn, -dn + dn) © dndn + x = 0.

Hence 2PXtY is a complex. Let

[(-^,7)©4 + 1](a,è) = 0.

Then

0 = -i/na = a+dn+xb.
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By the exactness of 0>x, dn + x(b)= -a=dn + x(z) for some zePn + x(X), and b — z

= dn+2(w) for some wePn + 2(Y). Then [(-dn + x, I) ®dn + 2](z, w) = (a,b). Hence

¿?x,y is exact.

Clearly every module in ^x.Y is projective (indeed free).

4. The Small inequality. We apply an argument in Small [14] to get one

inequality on the dimension of a directed A-module.

4.1 Lemma (Auslander). Let M be a right R-module, J a nonempty well-ordered

set, and {N¡ \ie J} a family of submodules of M such that if i, j e J and i ¿y, then

Nt s Nj. IfM= \Jl&f N¡ and hdB (M/U, < i M) = « for all i e J, then hdB (M) g n.

This is Proposition 3 of Auslander [1].

4.2 Proposition. Let M be a directed R-module possessing a free generating set X

of Xn elements for some new. Then hdB (M) á n + 1.

Proof. If n = 0, by 2.5, M=(J(" 0 xtR. Since xtR has dimension 0 for each i and

0->Xj/?->- xi + xR-> xi + xR/XiR->-0 is exact, hd (xi + xR/XiR)S 1 for each ;'. By 4.1,

hdK(M)úl.

Now assume n>0 and the proposition holds for n—l. Index ^ by Xn, i.e.

X={xa | a<Xn}. By transfinite induction we define a set of w-closed subsets of X,

{Xa | a<N„} such that X0~3.{xa\ae w}, Xa = {Jß<a Xs for a a limit ordinal, and

Xß + x = cl(Xßu {xß}). We note | X0 \ < Xn. Assume | Xß \ < Xn for all ß < a. If a is a

limit ordinal, Xa is a union of |a|<Xn sets of cardinality < X„, so |JTa[<Sn. If

a=/3-|-l, since A^3^ which is infinite, \X¡¡ u {^c^}| = |A^¡ <Xn, so by 2.1, \Xß + x\

= \Xß\ <Xn. Hence each Xa has \Xa\ <Xn by induction. Then M=\Ja<KnP^x(Xa),

and by the induction hypothesis, hd(P-x(Xa))-¿n. Since U«<«^-iW=^-Ä)

if a is a limit ordinal or P_x(Xtt-x) if a is a successor ordinal, in the exact sequence

O^UB<aP-i(Xß)^P-x(Xa)^P.x(Xa)/\Jß<aP_x(Xß)^0

two of the three terms have dimension g«. Hence hd(P-i(Xa)/{Jß<aP-x(Xß))

¿H+l. Thenhds(M)á«+l by 4.1.

5. Direct summands of a projective dnPn.

5.1 Lemma (Kaplansky). A projective module over any ring R is a direct sum of

countably generated submodules.

For a proof see Kaplansky [7].

Let p ePn(X), /> = 2r=i<*ó> • • -, xi}^. We say xe X appears in p if x=x) for

some i and j, O^j^n, r^O. For each p ePn(X), {xe X\x appears in p} is finite.

For YçPn(X), set

a(Y) = {xe X\x appears in p for some p e Y}.

5.2 Proposition. Let M be a directed R-module with free generators M', upper

bound function u and projective dimension S k such that no set of cardinality ^ X„
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generates M for some new. Let Zg M' have \Z \ S N„. Then there exists a u-closed

set YzM' such that Z^Y and

(a) |T|=Xn.

(b) No set of cardinality <Xn generates 7>_1(T).

(c) dkPk( Y) is a direct summand of dkPk(M').

Proof. Since hdB (M)Sk, dkPk(M') is projective. By 5.1, dkPk(M')="2iej © Q¡

where Q{ is countably generated. For X^dkPk(M'), set

\*f ieS        JVi*S

Let X be infinite. Since each element in X is in a finite sum of g¡'s, if X* = 2¡ejr Qx,

\X~\ S \X\. Since each Q¡ is countably generated, |a(öO| = ^o- Then

(5.3) I^ZOI = -(2 a) S |JT|-«oá \X\

Now let Y0 be the «-closure of Z (hence | T0| á^n)- We inductively define Y„

for a< Xn with the following properties:

0) |Ta|^Xn,

(ii) Ta = Ui<a Y$ for a a limit ordinal,

(iii) Ya + x = cl(a{[dkPk(c\(Yav{x}))Y}) where x^P^TJ. (I.e., add an extra

element to Ya, close it to get a directed set, apply dk to the corresponding (k+ 1)-

tuples, take all elements appearing in a minimal set of g's containing this image,

close again.)

Since |7a|¿Xn, P_x(Ya)^M. Hence (iii) is always possible. Since a union of

< X„ sets of cardinality S Nn has cardinality S Nn ; cl does not increase cardinality

by 2.1; dkPk(X) is \X\-generated; and \a(Xf)\ S \X\ by (5.3); (i) will be satisfied

by Ya if it is satisfied by all Ye for ß < a.

Set

Y= U  Ya.
œ<X„

Since each Ya is «-closed, so is Y. Since Ya + x^a{[dkPk(Ya)]*}, dkPk(Ya + x)

ndkPk(Ya)\  Hence  dkPk(Y) = [dkPk(Y)Y.   Moreover,   \Ya\sK implies   \Y\S

By(m),P_x(Ye + x)^P_x(Ye). Hence7>_1(F) = Ua<ls„7'-1(ya)isastrictly ascend-

ing union of a chain of submodules with order type Xn. Since any set A of ordinals

<X„ such that |,4|<Xn must have a supremum <Kn, no set of cardinality <Sn

can generate P-X(Y). Hence Y must satisfy (a), (b), and (c) of the proposition.

6. Quotient fields of regular local rings. In this section, R will denote a commu-

tative domain with quotient field Q.

We note that QR is a directed A-module since every cyclic submodule of Q is

free and if a/b, c/de Q, l/bd^a/b and c/d. For convenience, we will take as our

free generators for g the set Q'={l/r \0^r e R] and let u(l/r, l/s) = l/rs.
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6.1 Lemma. Let R' be any ring. Then for any projective R'-module P, P3(R')=£P.

Proof. See Bass [3, p. 474].

6.2 Theorem. Let T be a multiplicatively closed subset of R — {0}, T n 3(R)^ 0.

Let M be the submodule of Q generated by T~1 = {l/t \teT}. ThenhdR(M)=l o M

is countably generated.

Proof. Assume M is countably generated. By 4.2, hdB(M)^l. Since M is

divisible by some x e 3(R), hdB (AO^O by 6.1. Hence hdB (M)= 1.

Assume hds (M) = 1. Let x e T n 3(R). If M is not countably generated, by 5.2,

we may find a countable multiplicatively closed subset S of T such that xe S and

¿ivies'"1) is a direct summand of dxPx(T~x), say dxPx(T-1) = dxPx(S~l) © K. We

apply an argument of Kaplansky [9]. There is a teT such that l/t $P.X(S'X).

Then l/i/>_1(S'-1)çM and l/t-P.^S-^xP.^S'1). Hence

hdR(l/t-P-X(S-1))= 1.

Let

Z= l/i^-'uS"1.

By 3.2, the sequence

I © dx vd0
Po(S-1)@Px(Z)->P0(Z)->P-X(Z)/P_X(S-1)->0

is exact, so kernel vd0=P0(S-1) + dxPx(Z)=P0(S'1) © K n dxPx(Z) is projective.

Hence hd« (i>_1(Z)/P_1(5"1))^ 1. Since P.X(Z)/P_X(S-X) is an R/(t) module, by

Theorem 1.2 of [8], P.X(Z)/P.X(Y) is Ä/(r)-projective. However P_1(Z)//'_1(5-1)

is a nonzero R/(t) module divisible by x+(t) e3(R/(t)), contradicting 6.1.

6.3 Lemma. Let Rbea regular local ring of dimension « ä 2, and let {xx, x2,..., xn}

be a regular system of parameters for R. If {as \ s e R/3} is a complete set of coset

representatives of (3, +) in (R, +), then {xi + 1 + asx¡ | se R/3, l^i^n—l} are

distinct primes in R.

Proof. These elements are prime since they are in 3—32; they generate distinct

ideals since they generate distinct submodules of 3/32.

6.4 Theorem. Let R be a regular local ring of dimension n. Let {xx,..., xn} be a

system of parameters for R, A^R/3, \A\=Hk. Let M be generated by a u-closed

M'çQ' such that M'^.{l/(xl + x-asxi)\ se A, l£i£n-l) and |M'|=Xk. Then

hdR(M) = min{n, k+l}.

Proof. We note that, if k = 0 (as it must if n= 1), hdfl (M)á 1 by 4.2, and since

M is divisible by some nonunit of R, hds (M)j=0. Hence hdß (M) = 1 =k+ l^n.

Now assume fcèl. Then hdR(M)^k+l by 4.2, and hdfl (M)^n = global

dimension of R. Hence we need only show both inequalities cannot hold. We use

induction on n.
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If « = 2, hdÄ (A/)# 1 by 6.2, and M is not projective by 6.1, so hdB (M) = 2=n.

Now assume «2;3. Let hdH (M) = l<n, k+ 1. Select a set A'^A with M'| = Kfc_1

and by 5.2 find a «-closed set Y^M' such that |T| = Xfc_i, no set with fewer

elements generatesP_X(Y), Y2{1 ¡(x¡ + x-asx¡) \ ISiSn-l, se A'}, and d¡P¡(Y) is

a direct summand of ¿/,P,(/A7). Now {xn — asxn_x \ s e A} form a set of primes of

cardinality Xk, so there exists s' e A suchthat \/q= l/(xn — a¿xn_x) is relatively prime

to each I ¡ye Y. Now {xx, x2,..., xn.x, q} is a regular system of parameters for R

so R* = R/(q) is a regular local ring of dimension «-1 with R*/J*xR/J. Also

{xi + 1 — asx¡ I 1 S i S n — 2, s e A'} have exactly the same properties in R* that they had

in R (here we are identifying an element in R with its image in R* for convenience).

As above, setZ= Yvj{q-1y\ye Y). Then P_x(Z)=q~1P_x(Y), so hdR(P.x(Z))

= hdR(P.x(Y))Sl Let dlP,(Z) = dlP,(Y) © A. By 3.2, there is a projective res-

olution ofP-i(Z)/P-x(Y) whose Ith image = [(-</,_!, 7) © d,][P,.x(.Y) © P,(Z)]

z(-dl_x,I)Pl_x(Y)®KzPi_x(Y)®K. Hence hd^^/P^K))^/. As

above, hdR.(P.x(Z)/P_x(Y))Sl-l.

Since P is a unique factorization domain, Y consists of reciprocals of a multipli-

cative semigroup of R, and q is a prime in P, for a/b eq~1P_x(Y) — P_X(Y),

ax/b eP_X(Y) oq\x. Therefore P.X(Z)/P_X(Y) is a torsionless P*-module. Since

P-X(Z) is generated by M*={q~1y'1 \ y1 e Y} and {y \ y'1 e Y) is a multiplica-

tive semigroup of P, P-X(Z)/P_X(Y) is a directed P*-module with upper bound

function «*: M * x M* -*■ M*, u*(q~1y~1,q~1z~1)=q'1y~1z'1. Let «i/w2, fi/fa

e P-X(Z), q \ Ux, vx; u2=qu3, v2=qv3 where q \ va, u3. Then

(ux/u2)-u3vx = (vx/v2)-v3ux$P.x(Y).

Hence P-X(Z)/P_X(Y) as an P*-module is an essential extension of every cyclic

submodule, so the map q '1 —>• 1 extends to an isomorphism between P-X(Z)/P_ x( Y)

and an P*-submodule of <2* = the injective hull of P*. Moreover, the image of M*

consists of reciprocals of a multiplicative semigroup in P*, and if ueP_x(Z),

ye Y, then uy eP_x(Z). In particular, u/(xl + x— asx¡) eP_x(Z) for all se A',

lSiSn — 2. Thus P.X(Z)/P^X(Y) as an P*-module is divisible by l/(xi + x — asxt)

for all se A', lSiSn — 2, so {l/(xi + x — asx¡) | 1 St'Sn-2, se A'}çthe image of

P-x(Z)/P-x(Y) in Q*.
We now have P* a regular local ring of dimension n— 1, |^4'| = ^fe_ 1, and a

directed submodule P.X(Z)/P^X(Y) containing {l/(xi + x — asxi) | 1 SiSn — 2, se A'}.

By the induction hypothesis, hds. (P_1(Z)/P_1(T)) = min {«-1, k}. But by

[8, Theorem 1.2], hds.(P_1(Z)/P_1(T))^/-1, where /<min {«, k+1}, a

contradiction.

6.5 Corollary. Le/ R be a regular local ring of dimension « s«c« that a minimal

set of generators for Q has cardinality S \R/J\ =^k- Then hdB (g) = min {«, k+ 1}.

Proof. If « = 1, hdR(Q)=l=min{n,k+l}. If «ä2, we observe that |Q| = |P|

= |P//| by 6.3. Now apply Theorem 6.4.
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6.6 Corollary. Let R denote the real numbers. Let Rn be the localization of

R[XX,..., Xn] at the origin, and set Qn = the quotient field of Rn. Then

hd/fn(Ô„) = «o2«o à K-i.

Proof. By 6.5, hdÄ„ (gn) = min{n, A:4-1} where 2*»«ltfc. Hence hdRn(Qn) = n

o k+l^n, i.e. k^n — 1.

6.7 Corollary. Let F be a field, J a nonempty set, {X¡ | ieJ} algebraically

independent elements over F, R = F[{X¡ | / e J}}. Let \J\ =a, \F\ = ß. Then

hdB (0 = max (n, k)+ 1       X0ß = K,   « = K,

= min (a, k + 1 )        H0ß = Xfc,   a < S0,

where an infinite ordinal is replaced by oo.

Proof. Since every element in R is a finite sum of finite products of elements in

J, |/?|=X0«/3.

Assume a = Xn. By Small's result (4.2) hdB (0^max (k, ri)+1 since \Q\ =

^max(fc.n). Let RM be the localization of R at the ideal generated by some set of

m>n + k indeterminants. Then RM is a regular local ring of dimension m and

|*WA*M)| = Km«*.»H*|. By 6-5> hdBM(0 = max(/r,«)+l. Since hdB (0

= hdBjf (0, the first case of the theorem follows. (If max (k, «) = oo, one takes a

localization at m indeterminants to get hdB (Q)~¿m for all m.)

Assume «<X0. Then |Ä|=X0jS. If (8<X0, then |/?| = |Ô| = X0 and by 4.2,

hdB (0= 1 =min (0+1, a). So without loss of generality we may assume ¿S2;X0.

Then \R\ = \F\. Let R* be the localization of R at the origin. Then by 6.5, hdB. (Q)

= min (k+l, a)^hdB (0. But the global dimension of R = a, so hdB(0^a and

\Q\ = XksohdR(Q)èk+l. Hence hdB (0 = min (k+ 1, n).

6.5 and 6.7 can be generalized slightly. Let R = K[xx,..., xm] be a finitely

generated ring extension of an infinite field /t (the x¡ not necessarily indeterminants).

Assume R has global dimension n<oo. By Auslander and Buchsbaum [2], some

localization of R at a maximal ideal, say RM, has codimension n. Since the global

dimension of RM £ the global dimension of R, RM is a regular local ring of di-

mension n. (See Kaplansky [8].)

6.8 Corollary. Let R = K[xx,..., xm] have global dimension «<oo, and let

|JSr|-Kfc. Then hdR (Q) = min {n, k+l}.

Proof. Clearly hdB (Q)ún and by 4.2 hdB (Q)-¿k+l. Let RM be a localization

of R of dimension n. Then hdB(0^hdBjV( (0 = min {k+ 1, «} since |/?M| = |/?|

.|JT| =Kfc= \R/J\. Hence hdB (0 = min {k+l, n}.

6.9 Corollary. Let R = K[xx,..., xm]. Assume for all positive integers I there

exists a prime ideal M^R such that /¿gl. d (RM)<oo. If\K\=Xn, then hdB (Q)

= h+l ifhe w, oo otherwise.
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Proof. If he oj, there is an M with h + 2 ̂  gl. d (RM) < oo. Then RM is regular and

hdB„ (0 = h + U hdB (0. By 4.2, hdB (0 = h + 1.

If A £ co, for all / e cu there is an M with /^ hdBjf (0 ^ hdB (0. Hence hdB (0 = oo.

In proving 6.4, we needed some property which would enable us to use induction

from dimension n to dimension n — 1 without having a collapse in the number of

generators of P_X(Z)/P_X(Y). We chose a situation which yielded the desired

result when a set of cardinality [ R/31 generated Q. On the opposite end of the scale

are complete regular local rings. Here too we can calculate hdB (0. In the case

that the characteristics of R and R/3 are equal, these are just power series over a

field (see [15, p. 307]). In the nonequicharacteristic case they are still close enough

to power series to keep track of cardinality of a special set of primes.

6.10 Theorem. Let R be a complete regular local ring of dimension n. Let Q be

generated by Xk but no fewer elements. Then hdB (0 = min (n, k+l).

Proof. Let \R/3\=a. Since J*/Ji+1 is a finitely generated .«//-module, |/V/<+1|

= \R/3\. Hence \R/3i + 1\ = \R/3\. Now the elements of R are limits of Cauchy

sequences in R, so each is completely determined by its sequence of projections in

R/3i + 1. Moreover there are \R/3\ different ways two Cauchy sequences agreeing

in R/3i can differ in R/3i + 1. Hence \R\ = \R/3\*o. Now assume «a2, Let {xx, x2,

..., xn} be a system of parameters for R. There are \R/3\*° Cauchy sequences

{y,} in xx. For each of these, let aiVi) be the element it determines. Any element of

the form x2 — xxa(yi) is prime since it belongs to 3 but not 32 (its projection on

3/32=x2 — xxk for some k e R). Let x2—xxa{Vi) = (x2 — xxa{Zi))y where y is a unit.

Then x2(l — y) = xx(a{y¡} — au¡)y). Since xx\x2, x^l— y, so y=l+xxr. Assume

y=l+xïrn. Then a{y¡)-a{z¡)(l+xpn) = aiyi_Zt)-a{z¡)xnxrn. Since x2(l-y) e3n + 1,

(a(yi-zi}-aui)Xxrn)e3n. Hence alVt_:,i}e3n. «{!/i_2l> is a Cauchy sequence in xx

which lies in 3n, hence x?|a(!/i_2l), and so xl\(aiyi_Zt)-a{Zt}x1ri) so *" + 1|l-y for

all n. This contradicts the unique factorization property of R. We thus have \R\

distinct primes in R of the form x¡ + x —f(x/) which remain distinct in R/(xn) for

«^3. The proof of the theorem now proceeds exactly as in 6.4 with these \R\

primes replacing {l/(xi + 1 —asx¡)}.

Note that, if \R/3\ = \R/3\*<>} since any local ring is a subring of its completion,

\R\ = \R/3\ so 6.5 applies to the ring R. Moreover, if/? is any regular local ring with

\R/3\ ^ X^, then hdB (0 = the dimension of R since 5.2 enables us to find a directed

module Mçg containing Xdims + i elements of the form l/(xi + 1-ax¡) such that

hdB (Af)^hdB (0. We then apply 6.4.

7. Directed modules with linearly ordered free generating sets. In this section we

generalize results in Osofsky [13].

7.1. Lemma. Let M be a directed module with a free generating set M' and upper

bound function u. Assume no set of cardinality ¿ Xn generates M and every set
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X^M' with \X\=Hn has an upper bound in M'. If hdR(M)Sk, then there is a

u-closed subset Y^M' such that the smallest cardinality of a generating set for

P-x(Y) is Xn and hdB (7>_x(Y))Sk-1.

Proof. By 5.2, there exists a «-closed set Y of cardinality Xn such that no set of

cardinality<Xn generates P_X(Y) and dkPk(Y) is a direct summand of dkPk(M').

Let z be an upper bound for Y. Then

Pk.x(M') = Pk.x(Y)@     2     <x0,--.,xk-x>R.
some xiéY

We may subtract any element in the second sum from each free generator of

Pk.x(Y) and still have a direct sum. In particular,

Pk.x(M') = dk[z*Pk_x(Y)] ©     2     <*°■■•**-»>*
somexjey

and

dkPk(Y) S dk[z*Pk„x(Y)] S dkPk(M').

Hence dkPk(Y) is a direct summand of a direct summand of Pk.x(M'). We then

have dkPk(Y) a direct summand of Pk-X(Y), so dk_xPk_x(Y) is projective.

7.2 Lemma (Dual basis lemma). Let R be any ring, P a right R-module. Then P

is projective o there exists {x¡ \ i e J} s p and {/, | ¡e/}ç HomB (P, P) such that for

all xeP, f(x) = 0 for all but a finite number of i e J, and x = 2ie^ xtfi(x).

For a proof see Cartan and Eilenberg [2, p. 132].

7.3 Lemma. Let R be a ring with no zero divisors, AÍ=U™=i xtR an R-module,

XiR^lXjR for all i^j. Then M is not projective.

Proof. Let/: M ->■ R,f+ 0. Then there exists i such that/(jc0^0. Let 0+xeM.

Then there exists y'ä / such that x = x¡r e x,R. Since x{ e x¡R, f(x,)¥^0 and f(x) =

f(Xj)r^0 since P has no zero divisors. Since M is a union of proper submodules,

M cannot be finitely generated. Hence the dual basis property in 7.2 cannot hold

for M.

7.4 Theorem. Let R be a ring with no zero divisors, M a directed R-module with a

linearly ordered set of free generators M '. Then hdR (M) = n + 1 o the smallest

cardinality of a generating set for M is X„.

Proof. If M is cyclic, hdfi (M) = 0, and if M is countably generated but not cyclic,

hdÄ (M)^ 1 by 7.3. Now assume the theorem for «-1. By 4.2, hds (Ai)^«+1.

The linear ordering on M' insures upper bounds for all sets of cardinality <Xn.

By 7.1, there exists a «-closed subset TsA7' such that the smallest cardinality of a

generating set for P_ x( Y) is Xn_ x and hdB (P_ x( Y))S hdB (M) -1. By the induction
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hypothesis, hdB (P-x(Y))=n, so hdB (M)^n+l. If => fails, 7.1 yields an Xn-

generated P-X(Y) of dimension en, contradicting the induction hypothesis.

7.5 Corollary. Let Rbe a ring with no zero divisors and linearly ordered right

ideals. If every ideal of R is finitely generated, the global dimension of R = 0 or 1.

Otherwise, the global dimension of R = 2 + sup {n\R possesses an ideal generated by

Nn but no fewer elements}.

Proof. This is an immediate consequence of 7.4 and the global dimension

theorem (Auslander [1]).

7.6 Corollary. Let R be a ring with no zero divisors possessing a linearly

ordered set of left ideals {Rx¡ \ i e J} such that for all ye R there is an ieJ with

RXi^Ry. Let Q be the left quotient ring of R. Then hdB (Q) = n+ 1, where Xn is the

cardinality of a smallest generating set for QR.

Proof. By hypothesis, R must be a left Ore domain so Q = {x ~ 1r \ 0 ̂  x e

R, r eR}. For y e R, let ry=x¡. Then y~1=xf1r, so {xf1 \i eJ} generate QR, and

they are linearly ordered by ^. We now apply 7.4.

8. Appendix. Cohen has shown [6] that it is consistent to assume that 2f*o = K

for any cardinal k which is not a countable union of smaller cardinals. By Corollary

6.7, if Ä=the real numbers and R = R[XX,..., Xn] for w^3, then hdB (Q) = k<n

o 2No = Xk _ j. In particular, hdB ( Q) = 2 o the continuum hypothesis holds. This is

true odzP^R-fi})'1) is projective and by a result of Bass [4], since ¿¿^((^-{O})-1)

is infinitely generated, it is projective o it is free. In this appendix, we construct a

free basis for d2P2(M') for any directed module with \M'\ =X1. Thus one can show

constructively that 2No = X1=> d2P2((R — {0})~x) has a free basis. The reverse impli-

cation, however, depends on the number of variables in the polynomial ring. If

S=R[X, Y], dzP^S—fi})-1) always has a free basis, regardless of the cardinality

ofÄ.

For the rest of this appendix, M will denote a directed module with free generators

M'.

A.l Lemma. Assume M is countably generated. Then dxPx(M') has a free basis

of the form {dx(a, b}}.

Proof. Since M is countably generated, there exist {x¡ | ieai} s M' such that

x0 < Xj < • • • and M=2i°°= o xtR. For each y e M', let x(y) denote the x, with smallest

index i such thatj e xtR. We show {dx(x(y), y} \ y e M'} is a free basis for dxPx(M').

Let 2"=i dx(x(y,), yf)r¡=0, all r;^0, and assume x(jv) = xfc is the largest xf

occurring. Since rn # 0, x(yn) must appear in another pair <xfc, yj), so in at least one

of its appearances, the second component y^xk-x. But then <\yf)r, is a term of

dx(.xk, y¡) but of no other dx(.x(y¡), y¡}, so the sum cannot be zero.
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Let (a, b} be a generator for PX(M'). Then d2(x(a), a, by = <[a, by - (x(a), by

+ {x(a), aya~1b and since 3PW is a complex,

dx(a, by = dx(x(a), by~dx(x(a), aya~1b.

Let x(a)=xh x(b) = xk. Then

i-x

dx(x(a), by = dx(x(b), ¿>>+ 2 ¿i<*i + i> *i>*f ̂
i=k

Thus every generator for dxPx(M') may be expressed as a linear combination of

elements in the given set.

A.2 Proposition. If M is Regenerated, then d2P2(M') is free.

Proof. Since M is ^-generated, there exist «-closed subsets {Ta | a<Xj}

SAT such that M' n P_1(Ta)^Ttt for all a, P-x(Ta) is countably generated,

Ta<=Te for a<ß, and M=\Ja<«1 P-x(Ta). Set T_1=0. It is sufficient to show

d2Pz(Ta)/d2P2(Ta_x)

has a free basis for all a<S1,sa successor ordinal.

By the conditions on the T„ there exist {jc, | ie to}<=:Ta — Ta-x such that P_1(Ta)

= Ui°°= o *fP- For z e ra_!, y e Ta, define xa-i00 and xa(y) as in A.l. Then

Pi{Ta)=2,(xa(y),yyR®   2   <**-iOO,z>P© 2 <»> V>R
yeTa z<=Ta-x ueT„-x:u*xa-x>.v)

©      2      <a' b>R-
aeTa-Ta-.x:a*xa(.b)

For each (a, by with a = jca_i(è) or aeTa — Ta^x and a^xa(b) there exists a

unique element/) = 2 (^(a), Ji)^ such that i/^a, Vy = dxp. Then <a, by-p = d2qa¡b

for some ?a>i) ePaíTJ-PaíT'a-i). Then g = {ú?2?a.b I a = xa.x(b) or aeTa-Ta_x,

a¥=xa(b)} is a free basis for d2P2(Ta)/d2P2(Ta_x).

5 is independent since «a, by) is independent in P2(Ta) modulo the first and third

sums, and the image of d2qa¡b = the image of {a, by in that module.

To show 5 spans, we need only show that, for all u e Ta — Ta-X, d2(u, v, w> is a

linear combination of elements in g and an element in d2P2(Ta^x).

d2(u, v, w> = <t>, w>-<m, w> + <m, vyv~1w.

Let

9a,t, = tfo       a = xa-x(b)   or   aeTa-Ta.x, a + xa(b),

= 0 otherwise.

If qv¡w is defined or v = xa(w), consider d2((u, v, wy—qViW+qUtW—qUtVv~1w). This

is an element of 2i/6ra (xa(y), >>>P in the kernel of dx. By A.l, it must be 0, so

d2(<u, v, w» = d2qVtW-d2qu<vl-srd2qUtVv-1w.
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Ifr eTa_x, v + xa -x(w), we apply A.l to dxPx(Ta_x) to express dx(v, w} uniquely

as a sum 2 ¿iO^-iCVí), jOn- Then/? = <i>, m>>~2 <,xa.1(yt),#>r, e d2P2(Ta.x) and

d2(u, v, w')=-d2qu.w + d2qu.vv-1w+p + Jid2qx¡¡_l(y0y¡ri.

We note that if M is countably generated, this construction yields a basis for

d2P2(M') by taking a smaller union (or even setting M' = T0).

In the above construction of a free basis, the ring never appears—just the

generators M '. This is not surprising in view of 4.2—the ring is not used in that

proof either. By 6.7 or 7.4 it is impossible to find a free basis for d2P2(M') expressed

only in terms of elements of M' if M is not at most ^-generated. If there is no 1-1

map between R=R[X, Y] and X1; the free basis for d2P2(Q — {0}), which exists

since gl. d. R = 2 and infinite i?-projectives are free, must depend heavily on the

ring R. If one adds another variable to get R' = R[X, Y,Z], the description of

d2P2(Q' — {0}) is formally the same but no free basis exists.
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