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1. Introduction and summary of results. It is well known (Bers [1], Nakai [5])

that an open Riemann surface is determined up to mirror image by its ring of

holomorphic functions. Thus, it is quite natural to expect that one can find an

algebraic characterization of the ring of holomorphic functions on an open Riemann

surface. Also, one expects that all the information about the conformai structure

of an open Riemann surface can be recovered from the ring of holomorphic or the

field of meromorphic functions on it. The purpose of this paper is to investigate

the relationships between the conformai structure of an open Riemann surface

and the algebraic structure of the ring of holomorphic functions on it. Our main

result (Theorem III) characterizes conformai structure in terms of simple algebraic-

topological concepts. In §5 we obtain a purely algebraic characterization of certain

rings of holomorphic functions. It is not as simple or as elegant as one would like.

Alternate algebraic characterization of rings of holomorphic and fields of mero-

morphic functions are discussed in §6. One of the characterizations is due to the

referee. The hypotheses used in the referee's characterization are simpler and more

natural than those appearing in any of the other algebraic characterizations

discussed in this paper. The author thanks the referee for pointing out this alternate

approach and for the various suggestions which have simplified the presentation

of this paper.

Any nontrivial holomorphic mapping F: X ^- Y between two open Riemann

surfaces induces a C-monomorphism F': H(Y)-> H(X) between their rings of

holomorphic functions defined as follows :

(F'f)(x) = f(F(x)\   feH(Y),    xeX.

Essentially these are the only nontrivial morphisms between rings of holomorphic

functions on open Riemann surfaces. We obtain
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Theorem I. Let X and Y be open Riemann surfaces with rings of holomorphic

functions H(X) and H( Y) respectively. Let F: H( Y) -> 77(A0 be any ring homo-

morphism such that

(1) F restricted to the field of constants C is an automorphism oofC which fixes

(-l)ll2,and

(2) the image of F contains at least one nonconstant function.

Then

(1) F is a monomorphism,

(2) a is the identity map, and

(3) there is a unique holomorphic mapping F*: X—> Y which induces F (that is

(Ff)(x)=f(F*(x)),fe 77(T), X e X).

Clearly the requirement that a((-l)ll2) = (— I)112 is a normalization condition.

Under any automorphism of C, (—1)1/2 is either fixed or sent into — (—1)1/2. An

analogous result holds under this assumption. Theorem I is a generalization of

theorems of Bers [1], Nakai [5], and Royden [9],

A similar theorem is proven for homomorphisms between fields of meromorphic

functions on arbitrary Riemann surfaces. We then obtain the following algebraic

characterization of surfaces of finite genus.

Theorem II. Let X be a Riemann surface with field of meromorphic functions

K(X). Then X is conformally equivalent to a domain of a closed surface if and only

if K(X) contains a field C-isomorphic to an algebraic function field in one variable

which separates the points of X.

The property "separation of points" can be characterized algebraically. The

points of X are in one-to-one correspondence with the places of K(X) whose

value group is the group of integers. The value of a function at a point is the

value of the corresponding place at the function. (See Iss'sa [3].)

A characterization of rings of holomorphic functions on an open Riemann

surface is obtained in

Theorem III. Let X be a connected, locally compact, Hausdorff space, and C(X)

the ring of complex-valued continuous functions on X. Let A be a subalgebra of

C(X). Assume that

(1) A separates points and contains the constants,

(2) every nonconstant function in A is an open mapping, and

(3) for every xe X, the ideal M(x)={fe A ; f(x)=0} is principal.

Then X can be given a unique conformai structure which respects the topology such

that every fe A becomes a holomorphic function on X. In particular X is an open

Riemann surface. Furthermore, A is the algebra of all holomorphic functions on X

if and only if A is maximal among subalgebras of C(X) that satisfy conditions (1)

to (3).



1968] ON THE RING OF HOLOMORPHIC FUNCTIONS 233

(A mapping/: X-> Y is called open if for every open set U in X,f(U) is open

in Y.)

2. Homomorphisms between rings of holomorphic functions. In this section X,

Y, and Z always represent open Riemann surfaces. The ring of holomorphic

functions on the open Riemann surface X is denoted by H(X).

Lemma (2.1). Let F: H(X) —>- C be any C-algebra homomorphism, then there is a

unique point xe X such that F(f) =f(x), for fe H(X).

Proof. See Royden [9].

Proof of Theorem I. Since this theorem follows very closely the results of Bers

[1] and Nakai [5], we only outline the proof.

(1) For each xe X and feH(Y), let 8x(f) be defined to be (Ff)(x). Then

a-1 o 8X is a C-algebra homomorphism of H(Y) into C. By Lemma 2.1 there is a

unique point F*(x) in Y such that o-l((Ff)(x))=f(F*(x)); that is, (Ff)(x)

= a(f(F*(x))).

(2) lf{yn}={F*(xn)} is an infinite, distinct, and discrete set of points in Y, then

by the generalized Mittag-Leffler theorem (see, for example, Florack [2]), there is a

function fe H(Y) such that/(j>n)=n. Thus

(Ff)(xn) = a(f(F*(xn))) = o(f(yn)) = o(n) = n;

that is, {xn} is discrete in X.

(3) As an immediate consequence of (2) we obtain that the closure of F*(K)

is compact in Y whenever K is compact in X.

(4) Given ß e C, there is an/g H(Y) and xe Xsuch that

(i) (Ff)(x)=ß, and

(ii) Ff is univalent in a neighborhood of x.

We have assumed that there is an /„ e H( Y) such that Ff0 $ C. Thus there is an

xe X and a neighborhood of x in which Ff0 is univalent. If (Ff0)(x) = a, then

f=f0 + cj~1(ß — a) has the required properties.

(5) The automorphism o is the identity. Since o is the identity on Q[(— I)112]

(the rationals with (—1)1/2 adjoined), it suffices to show that o is continuous with

respect to the usual topology on C. But o is additive ; thus it is enough to show that

it is bounded on a neighborhood of the origin. Choose fe H(Y) and xe X such

that (Ff)(x)=0 and Ff is univalent in a neighborhood U of x. We may assume that

the closure of U (Cl U) is compact. Since (Ff)(U) is open and 0 e (Ff)(U), there

is a S>0 such that \a\ < 8 implies a e (Ff)(U). If a-1 is not bounded on a neigh-

borhood of the origin, we can choose a sequence an ->- 0 for which cr_1(c£n) -> oo.

We may assume | an \ < S for all n. Thus there is a point xne U such that (Ff)(xn) = an.

If yn = F*(xn), then the sequence {yn} is contained in the compact set Cl (F*(Cl U)).

Thus/(>>„) is bounded. But we have the contradiction

f(yn) =f(F*(xn)) = v-K(Ff)(xn)) = *-*(«»)-oo.
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(6) Standard arguments (which may be found in Royden's paper [9], for example)

now show that F* is continuous, holomorphic, and induces F.

Definition (2.2). Let X, Y be open Riemann surfaces with rings of holo-

morphic functions H(X) and 77( Y) respectively. Then a homomorphism F: H( Y)

-*■ H(X) is called admissible if F sends constants onto constants and if the image

of F contains at least one nonconstant function. F is called direct if F((— l)1'2)

= (—l)1'2, and indirect otherwise.

Theorem I describes the direct admissible homomorphisms. Each indirect

homomorphism F is induced by an antiholomorphic map F* in the sense that

(Ff)(x) is the complex conjugate off(F*(x)).

Corollary 1 (Functorial properties of *). (a) Let F: H(X) -> H(X) be the

identity mapping; then F*: X'—> X is also the identity mapping.

(b) If F: 77(7) -> H(X) and G: H(Z) -+ 77(7) are admissible, then so is P° G

and(FoG)* = G*°F*.

Corollary 2 (Bers [1], Nakai [5]). Let X and Y be open Riemann surfaces with

rings of holomorphic functions H(X) and 77(7) respectively. Let F: 77(7) -*• 77(A0

be any ring isomorphism. Then there is a unique homeomorphism F*: X'—> 7 which

induces F. The map F* is conformai if F((— 1)1,2) = (— l)1'2, and anticonformal

otherwise.

Proof. By uniqueness of F*, it suffices to show that F is admissible. For then

F* and P_1* will be inverse mappings. Since Pis an isomorphism, it suffices to

show that Ppreserves constants. This follows from the fact that a function/e 77( 7)

is constant if and only if for each a e Q[(— I)112] there is a g e 77(7) such that

f-a = g2.

3. An algebraic characterization of Riemann surfaces of finite genus.

Theorem (3.1). Let X and Y be Riemann surfaces with fields of meromorphic

functions K(X) and K( 7) respectively. Let F: K( 7) -> K(X) be a homomorphism

mapping constants onto constants. Assume F((— l)1/2) = (—1)1/2. 7« addition, if Y is

closed assume that F(\) = A for A e C. Then there is a unique holomorphic mapping

F*:X-+Y which induces F (that is, (Ff)(x) =f(F*(x)), feK(Y),xe X).

Proof. Assume 7 is open. Iss'sa [3] has shown that every discrete valuation of

rank 1 on K( 7) is equivalent to evaluation of orders at a unique point of 7 Thus

F preserves holomorphic functions. Since F is a monomorphism, it is admissible.

Because every meromorphic function is a ratio of holomorphic functions, the

theorem follows from Theorem I.

For 7 closed the theorem is well known. We sketch a proof. Let x e X. Define

vx(f)—order off at x forfe K(X). Then vx ° Pis a valuation on A(7), and is thus

given by a unique point F*(x) e 7. Arguments similar to those used in the proof of

Theorem I show that P* is holomorphic and induces P.
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For Y closed the assumption that the homomorphism F is the identity on the

field of constants is essential. Let Y= C u {00} and X= C. If a is any automorphism

of C, then it extends trivially to C(z), the field of rational functions. Clearly

0: K( Y) -> K(X) cannot be induced by any continuous map of X into Y whenever

o is not continuous. It is apparently well known that " almost all " compact Riemann

surfaces of the same genus have isomorphic function fields. To the best of the

author's knowledge, the only place to find this result in print is in his doctoral

dissertation [4].

Proof of Theorem II. Assume there exists a holomorphic injection F: X-*■ Y

with Y closed. As usual, define the adjoint F': K(Y) -» K(X) by F'f=f° F for

feK(Y). Then F' is a C-monomorphism. It remains to show that F'(K(Y))

separates points on X. Now x,yeX and x^y implies that F(x)#F(j). Choose

fe K(Y) such that f(F(x))*f(F(y)). Thus (F'f)(x) * (F'f)( y).
Conversely, assume R<^K(X) and R is C-isomorphic to K(Y) with Y closed.

Thus there is a surjective C-isomorphism F: K(Y) -*■ R. By Theorem 3.1 there is a

unique holomorphic mapping F*: X-> Y such that Ff=f° F* for fe K(Y). We

must show that F* is one-to-one. Assume there are points x, y e X with xi^y and

F*(x) = F*(y). Since R separates points, we can choose/e R such that/(x)^/(j>).

Because F is surjective,/= Fg with g e K(Y). We thus have that F(g(x))^F(g(y)),

and F(g(x))=g(F*(x))=g(F*(y)) = F(g(y)). We have arrived at an obvious

contradiction.

The assumption that the subfield of K(X) separates the points of X cannot be

dropped. Let A' be a double covering of the punctured unit disk {z e C; 0< \z\ < 1}

with ramification at z= 1/2, 1/3,.... Then C(z)<^K(X). The surface Xis of infinite

genus. Clearly C(z) does not separate the points of X.

4. An algebraic-topological characterization of the ring of holomorphic functions.

In this section we prove Theorem III. Proposition 4.2 is a direct by-product of the

work required to prove our main theorem.

Definition (4.1). Let A be an algebra of continuous complex-valued functions

on a topological space X which contains the constants. We say that A is regular

at x 6 A" if there is a compact set K with x £ K such that for each /in A |/(x)| ^

sun {\f(y)\; y eK}.
An element t e Ais called a uniformizer at x if

(1) the maximal ideal M(x) = {fe A;f(x) = 0} is the principal ideal generated by

t, and

(2) f\%=xM(xf = {0}.
The assumption that t is a uniformizer at x will enable us to express every fe A

as a formal power series in t. (Note that in Theorem III we do not assume condition

(2). The stronger topological assumptions of the theorem make such a hypothesis

unnecessary. We will point out in the sequel the places where (2) is needed.)

Regularity at x states that A satisfies a maximum modulus principle, and this will

guarantee the convergence of the formal power series. We will obtain
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Proposition (4.2). Let A be an algebra of continuous complex-valued functions

on a topological space X which contains the constants and separates points. Assume

there is a point xe X and a function t e A such that t is a uniformizer at x and

A is regular at x. Then (1) there is a C-algebra monomorphism of A into the algebra

of functions analytic on the closed unit disc, and (2) there exists a Riemann surface

X' and an algebra A' which is C-isomorphic to A such that X' is proper for A'. The

pair (A', X') is unique up to a conformai equivalence.

Proof. (A' is proper for X' means that the field of fractions of A' separates the

points of X', and X' is the largest surface for which A' has this property. (A', X')

is conformally equivalent to (A", X") if there is a conformai homeomorphism r of

X' onto X" such that the adjoint of t maps A" onto A'.) Statement (2) is a direct

consequence of (1) and Proposition 2 of Royden's paper [10]. Statement (1) follows

from Lemmas 4.7 and 4.9. The following lemmas and definitions assume the

hypothesis of this proposition.

Lemma (4.3). (a) Let xeX. Then 0(f)=f(x) for fe A is a C-algebra homo-

morphism onto C with kernel M(x). In particular, A/M(x) = C.

(b) Let t be a uniformizer at xe X, and let y e X. Then t(y) = 0 if and only if

y = x.

Proof. Statement (a) is obvious. Statement (b) follows easily since MOO is a

maximal ideal, and A separates points.

We next show that we may cancel uniformizers in an equation.

Lemma (4.4). Let t be a uniformizer at x. Suppose f ge A andft=gt, thenf=g.

Proof. If y¥=x, then t(y)^0, and thus f(y)=g(y). If x is not isolated (as in

hypothesis of Theorem III) then by continuity f(x)=g(x). In the general case,

assume (f—g)(x) = a^0, and let h= -a~1(f-g-a). Now he A, and «00=0,

h(y)= 1 for y^x. We have « e M(X) and since hn=h, he M(x)n for all integers «.

Thus by definition of uniformizer « = 0. This contradicts the assumption that

h(y)^0for y^x.

Definition (4.5). Let te A be a uniformizer atxel. Let fe A, we say that

the formal power series zZF-o <*%*', with ai e C, is associated with f, and write

/" = " 2T=o 04l if (f-ILo a,V)/tk e M(x)for k=0, 1,2,....

Lemma (4.6). Let te Abe a uniformizer at xe X. Then for every fin A, there is a

unique formal power series in t associated withf.

Proof. Let a0=f(x). Then a0 is the unique complex number such that/— a0 eM(x).

Having chosen a0,...,an uniquely, we show that an + x is uniquely determined. By

the induction assumption

gn= (f-JiaiÀlt"eM(x )■
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Thus there is a unique hne A such that g„ = thn. Let hn(x)=an + x. Then an + x is the

unique complex number such that hn — an + xe M(x). But

f-'foit*    f- i «t*1-*«^«
i = o _        J = o_ - h -a

¿n + l ¿n + 1 "i     "n + l>

which also shows that an + x is unique.

Lemma (4.7). Let te A be a uniformizer at xe X. Then the map which sends

fe A into the formal power series in t associated with fis a C-algebra monomorphism

into the ring of formal power series in t over C.

Proof. Standard arguments show that the map is a C-homomorphism. It is

one-to-one since/" = " 0 implies///'' e M(x) for k=0, 1,2,.... Hence fe M(x)k

for k = 1, 2,..., and thus /= 0 (we used condition (2)).

Lemma (4.8). Let te A be a uniformizer at xeX. Define Tf=(f-f(x))/t for

fe A. Then T is a linear operator in A whose kernel is C. Furthermore if we let

an = (Tnf)(x), then

Tnf=:{f-%attj/tn'

andf"-n2?-*<ktl.

Proof. Clearly/—/(x) eM(x). Thus we can find a uniquege A such that/—/(x)

=gt. Hence Tis a well-defined operator in A. Linearity is clear. Also, it is obvious

that C= kernel T. To deduce the formula for Tn we use induction on n. The formula

holds for n = 1. Assume we have formula for n S 1. Then

Tn + lf= jYjy) = L f-(Tj)(x) _ KlcHA"-"* '-X*'
t t tn + 1

To prove that/" = " 2<" o axt\ it suffices to show, by uniqueness of the associated

power series, that (/- £?. 0 a¡t ')/<" £ M(x). But (/- 2?. o ad f)/rn = Tf- (Tnf)(x) for

n = 0, 1,2,....

Lemma (4.9). Let te A be a uniformizer at xe X. Assume that A is regular at x.

Then for every fe A, its associated power series in t has a positive radius of convergence

which is independent off.

Proof. There is a compact set K with x$K, and |/(x)| ásup{|/Cv)|;y e K} for

all/e A. For/e A, define ||/|| =sup {|/Cv)l ;yeK}. With respect to this seminorm

the operator T of the previous lemma is bounded. For

11771 = sup{\(f(y)-f(x))/t(y)\;y eK},

and t^O on K. Since K is compact and t is continuous, there is an e>0 such that
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|f|ä« on  A.  Hence   ||r/||á2|/||e-1,  or   ||P||^2£-1.  If /" = " 2™= o att',  then

ai = (Tf)(x). And

|«,| ¿ ira s ¡rf lui ̂  2'e-'i/|.
The radius of convergence of the power series in t associated with/is thus at least

e/2.

Corollary of proof. Iff^O, then ||/|| ¿0.

Proof. If II/! =0, then an = 0 for all «. Thus/=0 by Lemma 4.7.

We have completed the proof of Proposition 4.2. The next lemma is needed in

the proof of Theorem III.

Lemma (4.10). Let f be a continuous open mapping from a topological space X

into C, then f satisfies the maximum modulus principle. Furthermore for any open

set U with compact closure

sup (1/001 ;xeClU} = sup {\f(x)\ ;xeClU- U}.

In particular, if A is an algebra of complex-valued continuous functions on a

locally compact space X, and A consists only of open or constant functions, then A is

regular at every point of X.

Proof. Choose an open set U in X. Assume there is an x e U such that |/(x)|

= \f(y)\ f°r a'i ytU. Since/(t/) is an open set containing/(x), there is an e>0

such that the e ball about/(x) is contained in f(U). This contradicts the maximality

off at x. If Cl U is compact, then/assumes a maximum on Cl U. This maximum

cannot be assumed on U, hence it must be assumed on Cl U— U. The validity of

the last part of the lemma is now obvious.

Proof of Theorem III. Let xe X, and let t e A be a generator of the principal

ideal M(x). Let/" = " 2*™ o <M'. (Recall that condition (2) in the definition of a

uniformizer was not needed except in the proof of Lemma 4.7.) Let U be any

relatively compact neighborhood of x. Let e = inf {|f(>0| ', y 6 Cl U— U}. Then e>0,

and the formal power series in / associated with/converges for \t\ ^e/2. We now

show that there is an open neighborhood V of x in which this power series actually

represents the function/ Let V={y e U; \t(y)\ <«/4}. Then Fis a nonempty open

set. Now, using the notation and results of Lemmas 4.8 and 4.9 we have that

Ky)-%ckt\y) = t"+1(y)(T« + 1f)(y).
i = 0

Thus,

/LV)-2>i''(>0 (l/2)«+1||/||,   foryeV,

where we compute the norm off on the set U. The function t must be one-to-one

in V. For t(xx) = t(x2) with xx,x2e V implies f(xx) =f(x2) for all/e,4. This is

impossible since A separates points. The function t is a local parameter in V,
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because it is a one-to-one, open, continuous mapping onto an open neighborhood

of the origin in C. The elements of A are clearly holomorphic functions of the local

parameters. Thus X is a Riemann surface, and A is an algebra of holomorphic

functions on X. The conformai structure obtained in this manner is clearly the

only one in which the algebra A becomes an algebra of holomorphic functions,

since a single nonconstant holomorphic function is enough to determine the

conformai structure of a Riemann surface. The proof of the first part of the theorem

is complete.

LetH(X) be the algebra of all holomorphic functions on the Riemann surface X.

Then it is well known that H(X) satisfies conditions (1) through (3) of the theorem.

If H(X)<=-A'<^C(X), with A' satisfying these conditions, then by the first part of

the theorem X can be given a conformai structure in which the algebra A' becomes

an algebra of holomorphic functions. Thus every function in A' is a holomorphic

function of the local parameter in terms of which the conformai structure is defined.

A function fe A' is a local parameter at x e X if and only if /is one-to-one in a

neighborhood of x. For every x e X, we can find a local parameter for x in the

algebra H(X). Thus every function fe A' is locally a holomorphic function of

elements of H(X). Thus A'<=H(X).

Conversely, a maximal subalgebra A of C(X) satisfying conditions (1) through

(3) defines a conformai structure on X for which A = H(X).

Remarks. (1) The assumption that A separates points can be weakened. It

suffices to assume that A locally separates points.

(2) In general, the open mapping assumption cannot be dropped. The algebra

of complex-valued real-analytic functions on the real line satisfies all the other

assumptions of the theorem.

(3) If we assume that X is a surface, then the open mapping assumption may be

replaced by the assumption that the algebra A satisfies a maximum modulus

principle. The proof that the generators of the principal maximal ideals give local

parameters uses Invariance of Domain.

5. Towards an algebraic characterization of rings of holomorphic functions.    In

this section we obtain an algebraic characterization of certain rings of holomorphic

functions on open Riemann surfaces. The characterization (see condition (C)) is

not as simple nor as elegant as one would like.

Let R he a commutative C-algebra with identity. (Henceforth "algebra" means

"commutative C-algebra with identity".) We are interested in algebras R that

satisfy :

(A) The kernel of every C-algebra homomorphism of R (onto C) is a principal

ideal and

(B) f] {M(8); 8 e S}={0} where M(8) = Kernel 8 and S=Homc(R, C) = set of

C-homomorphisms of R.

We call S the structure space of R. Let F(S) be the set of complex-valued functions



240 IRWIN KRA [June

on S. life R, define/"- e F(S) by ff(0) = 0(f) for 0 e S. Then ~: P -> P(S) is a
C-algebra monomorphism, whose image is denoted by R~. We topologize S by

making/^ a continuous function on S for all/e P. It is easy to see that S is now a

Hausdorff topological space. If 0O e S, then sets of the form

U(0O) = U(0o;fx,.. .,/„; e) = {0 e S; \0(ft)\ < e, i = 1,..., n)

with {fx,.. .,fn}cM(0o), e>0, and « a positive integer, form a basis for the open

neighborhoods of 0O.

The ring R~ is now an algebra of complex-valued continuous functions on S.

If t0 is the generator of the principal ideal M(0O) with 0O e S, then to(0) = 0 if and

only if 0 = 0O. Thus functions in P~ vanishing at a point of S form a principal ideal.

The space S is not yet locally compact, nor are the nonconstant functions in P~

open mappings. We impose one more condition on the ring P:

(C) (1) For every 60 e S, and all sets {fx,.. .,fn}<=M(0o)-{O}, and all e>0,

there is a S>0 such that whenever |a|<S, we can find an element 0 e S with

0(fx) = a and 10(f)\ < e for i=2,..., n.

(2) Furthermore, if fx generates the principal ideal M(0O), then there is a set

if2, ■ ■ ■,fn}cM(0o), and e>0, and a 8>0 such that the element 0 whose existence

is guaranteed by (1) is unique.

Definition (5.1). A ring (that is a C-algebra and) that satisfies conditions (A),

(B) and (C) is called a holomorphic ring.

The ring of holomorphic functions on an open Riemann surface is a holomorphic

ring. We have previously remarked that condition (A) is satisfied (because of

Lemma 2.1 and the generalized Weierstrass theorem). Condition (B) states that

the ring of holomorphic functions separates points. To verify (C) one needs to

know that holomorphic functions are open mappings and that the topology of an

open Riemann surface is the weakest topology making all the holomorphic

functions continuous. This last fact is a consequence of the theorem originally

stated by Remmert [7] and proved by Narasimhan [6] which asserts that any open

Riemann surface has a one-to-one, regular, proper holomorphic imbedding into

C3. Because of the Remmert theorem, we could let n = 3 in condition (C). However,

this assumption does not simplify the arguments that follow. We will hence not use

it. Our task now is to show that holomorphic rings deserve their name.

Lemma (5.2). Let R be a holomorphic ring with structure space S. Let fe R — C,

thenf^ is an open mapping.

Proof. It suffices to show that f~(U) is open in C, where U is an open set in a

basis for the topology for S. We may thus assume that U=U(0o;fx,.. .,/„; e)

with e>0 and/ e kernel 60 for i=l,..., n. Let aef~(U), and choose 8xe U such

thatf~(0x) = a. If ei = 0x(fi), then |e(| <e because 0X e U. Now,

{/-«»/i-«i» • • -,/n-«n} c kernel 01;
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and/-a^0 since f i C. If ij = min{e-|Ei|, i=l,..., n}, then 17 >0. By condition

(C), there is a 8 > 0 such that

8(f-o) = ß with \ß\ < 8

and \8(f — e,)| <ij for 1=1,..., n has a solution for some 8 e S. We next show that

0 e [/. We have that

Wù\  = \e(f-e, + et)\  - |flC/,-«0 + «.|

^ lö(yi-£i)i+kii < v+\£i\ = «-N+W =«•
Thus the 8-ball about a is contained in f~(U).

Lemma (5.3). Let R be a holomorphic ring with structure space S. Then for each

8Q e S, there is an open neighborhood D of 80 that is homeomorphic to the open unit

disc. In particular, S is locally compact.

Proof. Let/i be a generator of the principal ideal M(8Q). Choose {f2,.. .,/„},

e >0, 8 >0, such that for all a e C with |a| < 8,

8(fx) = a with \8(f)\ < e   for / = 2,..., n

has a unique solution 8 e S.

Let D=U(80;fx; 8) n U(80;f2,. ..,fn; e). Then D is open in S, and fx\D is a

homeomorphism onto {z e C; \z\ < 8}.

We have thus obtained the following "algebraic" version of Theorem III.

Theorem (5.4). Let R be a holomorphic ring with structure space S. Let X be a

connected component of S. Let A be the ring R~ restricted to X. Then X can be given

a unique conformai structure such that A becomes an algebra of holomorphic functions

on the Riemann surface X. Furthermore, the map which restricts a function in R^

to X is a C-algebra isomorphism.

The next theorem gives some information about the components of the structure

space of a holomorphic ring. We need two lemmas.

Lemma (5.5). Let R be a holomorphic ring with structure space S. Let 8 e S, and

let 8n e S for «=1,2,.... Then 8n^6 if and only ifP(8n) ->/"(ö) for all fe R.

Proof. The function/^, with fe R, is continuous on S. Thus 8n^-8 implies

that f^(9n) ->• f~(8). To prove the converse, assume that 8n does not converge to

8. Then there is a neighborhood U of 8 such that for every integer n0, we can find

an integer n^n0 with 8n£U. We may assume U=U(8;fx,.. .,fm; e) with

{/1, • • >/m} ckernel 8 and e>0. Choose nx^l such that 8ni $ U. Having chosen

nx<n2< ■ ■ ■ <nk, with dnt$U for i=l,...,k, choose nk + x^nk + l such that

8nk+1 <£ U. Thus |/f(0ni)| ^£ for some je{i,..., m}=3. Because / is a finite set

there is at least one/, e3 such that \f^(8n¡)\ ^e for an infinite set of the «,. This

contradicts the fact that/£(0)=O.
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Lemma (5.6). Let R be a holomorphic ring with structure space S. Let {0n} be a

discrete sequence in S. Then there is anfe R such that limn^ x f^(0n) does not exist.

Proof. Assume otherwise. For/eP, define 0(/) = limn_œ/~(0n). Then 9 is a

C-homomorphism of P. Thus 9 e S, and 0(f)=f~(0) for all/e P. By the previous

lemma 9n -+ 8. We have arrived at an obvious contradiction.

Theorem (5.7). Let R be a holomorphic ring with structure space S. Let X be a

connected component of S. Let A be the ring R~ restricted to X. Then A cannot be

extended to a ring of holomorphic functions on any Riemann surface Y which properly

contains X.

Proof. This theorem is a direct consequence of Lemma 5.6.

Theorem (5.8). Let P¡ 0=1,2) be a holomorphic ring with structure space St.

Let F: R2 -> Rx be a C-algebra homomorphism. Then there exists a unique holo-

morphic mapping F*: Sx^>-S2 which induces F (that is 8(Ff) = (F*0)(f), feR2,

6 e Sx).

Proof. The proof uses only Lemma 5.6 and standard arguments. It is left to the

reader.

Corollary. If F is an isomorphism, then F* is a homeomorphism.

Remarks. (1) The following example shows that the structure space of a holo-

morphic ring need not be connected. Let P be the ring of those rational functions

with poles only on the unit circle. Then it is easy to see that the structure space S

of P is the complement in C of the unit circle. S has "the usual" conformai

structure.

(2) Each of the following guarantees that the structure space 5 of a holomorphic

ring P consists of a single component :

(a) There exists a component X such that P^|Zis the ring of all holomorphic

functions on X.

(b) There is a component X such that/eP^, and 1//holomorphic on X

implies that l//eÄA.

Conditions involving only the elements of P that guarantee the connectedness of

5 are not known to the author.

(3) A holomorphic ring is always an integral domain. Thus a holomorphic ring

cannot be the ring of all holomorphic functions on its structure space when the

latter is not connected. It is fairly easy to modify the definition of holomorphic ring

to allow for this more general case.

6. On alternate approaches. We outline very briefly alternate approaches to

the problem of the last section.

Definition (6.1). Let P be an integral domain and a C-algebra whose field of frac-

tions is A. We call K a meromorphic field if it satisfies conditions (A'), (B') and (C).
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(A') Every C-valued place of K over C whose valuation ring contains R is the

localization of R at some maximal principal ideal of R.

Let 5=set of C-valued places of K over C whose valuation rings contain R.

As before, S is called the structure space of K. If 8 e S, denote by V(8), the valuation

ring of 8, and by M(8), its valuation ideal.

(B') C\{V(8);8eS} = R, and D{M(8); 8 e S}={0}. We endow S with the

weakest topology which makes every/E K a continuous function/^: S-^-Cu {oo},

whereP(8) = 8(f) forfe R, 8 e S. We thus obtain the field K~ = {f~;fe K).

(C) (1) For every 80 e S, and all {fx,f2}'=M(80) n R-{0}, and all £>0, there is

a 8>0 such that \a\<8 implies we can find an element 8 e S with 8(fx) = a and

|0(/2)|<*.

(2) For every 80 e S, there is a neighborhood U of 0O such that f* is bounded

on U for all feR.

It turns out that the field of meromorphic functions on an open Riemann

surface is a meromorphic field and conversely :

Theorem (6.2). Let K be a meromorphic field with structure space S. Then S

can be given a unique conformai structure such that for every fe K, the element

f~ is a meromorphic function on S. In particular, every component of S is an open

Riemann surface.

The proof of Theorem 6.2 is similar to the proof of Theorem 5.4. Condition

(Cl) which is clearly equivalent to (Cl) is used to prove that the elements of

RT~ — C (where R~ is the image of R in K~) are open mappings. For each xe K,

we form a copy 2,x of the compact sphere C u {oo}. Let P=TJX£K 2* with the weak

product topology. Then by the Tychonoff theorem F is a compact Hausdorff

space. The structure space S of A" is naturally imbedded into P. It is not a closed

subset of P. However, the closure in P of a set of places of K consists only of

places. Thus condition (C'2) implies that S is locally compact. Now this theorem

follows from Theorem III.

Other, essentially different, algebraic (algebraic-topological) characterizations of

rings of holomorphic functions on an open Riemann surface will be found in a

forthcoming paper of Richards [8].

The referee has pointed out that the following hypothesis can substitute for

condition (C):

(C*) Given 80 e S, there is a K^S with 80 $ K such that (1) for each/in R we

have |0O(/)| ^sup {|ö(/)| ; 8 e K}<ao, and (2) there is an / in R with \80(f)\ <

inf{\d(f)\;6eK}.

To prove that a ring R that satisfies conditions (A), (B), and (C*) can be realized

as a ring of holomorphic functions on its structure space S, we may proceed as

follows: Let 80 e S, and let t generate the principal ideal M(8Q) = {fe R; 80(f)=0}.

(1) If {f,g}^R andpr=g~r, then f=g.
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(2) If e = inf {|ö(r)|; 6 e K}, then oO(/ns the set whose properties are described

by hypothesis (C*)).

(3) If/e P, then the formal power series in r~ associated with/^ has a radius of

convergence p ̂  e/2.

(4) For aeC, \a\ < p, the map t -*■ a has a natural extension to a homomorphism

0a of P onto C.

(5) As a basis for an open neighborhood system of 0O e S, we take sets of the

form U(8)={8a; \a\ <8} with 0< 8<p. The function t~ is then a uniformizer at 0a.

(6) With the above topology and set of local uniformizers, each component of

S becomes a Riemann surface on which R~ acts as an algebra of holomorphic

functions.

It should be noted that steps (5) and (6) of the above procedure are similar to

the way Royden endows the set of all primitive local representations of an algebra

with a one-dimensional complex analytic structure [10, Proposition 1].
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