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Introduction. Herman Rubin [5] showed that if v(t) is a real valued function

which is monotone nondecreasing on the interval (0, a), where a is possibly +00,

and if 0^i;(i)^l, then there exists a "pure" stochastic process {Xt : t e [0, 00)}

(i.e. for t e (0, 00) the distribution function of Xt, denoted by Ft, is either absolutely

continuous or continuous singular) with stationary independent increments such

that if t<a, then Ft is continuous singular with the dimension of its support,

denoted by dim supp Ft, being v(t); and if (5«, then Ft is absolutely continuous.

This can be interpreted as saying that for a "pure" process with stationary inde-

pendent increments, the only general properties the dimension of the support of

Ft has to have as a function of /, are the obvious ones of being monotone non-

decreasing and being bounded between 0 and 1.

One is now led to remove the restriction that the process be "pure," to isolate

one's attention to the continuous singular component of Ft, denoted by (Ft)c.s.,

and to ask if a similar result to that of Rubin's holds for dim supp (Ft)c.s.

The answer is yes. In§l of this paper, it is shown that if {Xt: t e [0,00)} is a stochastic

process with independent increments then

dim supp (Ft)c.s. = lim inf dim supp (Fz)c.s.

for all t g (0, 00) except at possibly a countable number of points. Conversely, in

§2 it is shown that if/maps (0, 00) into [0, 1] and is a lower semicontinuous

function at all but possibly a countable number of points, then there exists a sto-

chastic process {Xt : t e [0, 00)} with stationary independent increments such that

dim supp (Ft)c.s. =/(/).

These two results are obtained while investigating the relationship between the

total variation of (Ft)c.s., denoted by T.y.(Ft)c.s., and dim supp (F()c.s. for a

process with independent increment.
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I. In this section we establish the following. Let {Xt : t e [0, co)} be a stochastic

process with independent increments. A theorem is proved concerning how

T.V.(F()c.s., having the analytic property of being continuous from the right at t0,

affects the function v(t) = dim supp (Ft)c.s. at t0. Furthermore it is proved that

dim supp (F¡)c.s. = liminft_( dim supp (Ft)c.s. except at possibly a countable

number of points. Secondly for processes with stationary independent increments a

relation along the lines of the obvious one that if T.V.(Ft)c.s. •T.V.(Fd)c.s.=

T.V.(Ft + (i)c.s. then dim supp (Fi+ii)c.s.^max (dim supp (Ft)c.s., dim supp (Fd)c.s.)

is proved.

For completeness we give the following definitions :

Notation. Let A be a Lebesgue measurable subset of the real line; then \A\

shall denote the Lebesgue measure of A.

Definition. Let A be a subset of the real line, then the Hausdorjf dimension of A,

dim (A) is defined as follows:

Let
S((A) = {{F} : /j is an open interval, \J It => A, and |/¡| < ¿r},

let afG4)=inf{2f„i |/,|« : {/,},".! e S¿A)}> and define

dim (A) = inf j« : lim u%(A) = 0|.

Notation. (The word "Borels" will always denote in the sequel the sigma

algebra of Borel sets.) Let G be a nondecreasing function, and let A e Borels; then

G(A) will denote the value that the measure induced by G on the Borels assigns to

A. Also let (G)c.s., (G)a.c. and (G)d. denote the continuous singular, absolutely

continuous, and discrete components of G respectively.

Definition. Let G be a nondecreasing function ; the dimension of the support of

G, dim supp G, is defined as

dim supp G = inf {dim (A) : As Borels, G(A) = T.V.(G)}.

Notation. Let t e [0, oo) ; then let

[t] = max {n e I+ u {0} : n ^ t}.

We shall assume the following six facts which can be proved by straightforward

elementary techniques.

A.l. If {A¡} is a countable collection of sets, then

dim (U At\ = max dim (A¡).

Also if A is a set and x e (-co, oo), then

dim (A) = dim (A+x).
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A.2. Let {Gt(x) : t e Reals} be a collection of distribution functions in x such

that for fixed x, Gt(x) is a Borel measurable function in t. Let rabea bounded

positive measure on the Borels and let V(x) = j™a> Gt(x) dm(t). If A is a Borel set,

then Gt(A) is a Borel measurable function in t and

V{A)=  ¡X   Gt(A)dm(t).
J - 00

Also if V(A) = T.\.(m), then G(/4)=l a.e.fm].

A.3. If G and F are nondecreasing functions, then dim supp G * Fä dim supp F.

A.4. If G and F are nondecreasing functions, and G is discrete, then

dim supp G * F = dim supp F

A.5. Let {Gn} be a collection of nondecreasing functions such that G{x) —

2n G„(x)<oo for every x. If Fis a nondecreasing function then G * F=2n Gn * V

and dim supp G = maxn dim supp Gn.

A.6. Let {Fn} be a sequence of real valued bounded nondecreasing functions

which are continuous from the right at every point x e (—oo, oo). Then Fn^ FQ

if and only if for every Borel set A such that F0(boundary (A)) = 0, then Fn(A) 7*"

F(A) (Fn i£^ F0 means Fn(x) -*■ F0(x) for all continuity points of F0).

Lemma 1.1. Let G(x) be a nondecreasing function in x, and assume dim supp G > a.

Then there exists a 8a > 0 such that if A is a Borel set and dim (/I) ^ a, then

G(A)<T.\.G-8a.

Proof. Suppose not. Then clearly there exists a countable sequence {A^ of

Borel sets such that dim(v4i)^a for each i, and G{A^)-ç> T.V.(G). By the con-

tinuity of measures we see that G(Ui ^¡)=T.V.(G). But by A.l. we see that

dim (U At) ¿ ce which, by the definition of dim supp G, implies that dim supp G^ a,

which is a contradiction.

For the rest of this section we adopt the following notation :

Let {Xt : / g [0, oo)} be a stochastic process; then

m(t) = T.V.f^c.s.,       ma(i) = T.V.(F()a.c,       md{t) - T.V.(F()d.

and if s > t

Ft,, = FXi_Xt,       m(t, s) = T.V.(Ft>s)c.s.,       ma(t, s) = T.V.(Fi>s)a.c,

md(t, s) = T.V.(F(>s)d.,       v(t) = dim supp (F¡)c.s.

Let {Xt : t e [0, oo)} be a stochastic process with independent increments. So if

s, t e (0, e) and s > t, then

Fs = ((F)c.s. + (Ft)a.c. + (F()d.) * ((Fi>s)c.s. + (Fi>s)a.c. + (Ft,s)d.).
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From this equality it is easily seen that the following key relations hold.

R.l. (F,)a.c.=(Fi)a.c. * (FM)+((Ft)cs.+(Fl)d.) * (Ft,s)a.c.+((F()c.s. * (Fi>s)c.s.)a.c,

R.2. (Fs)c.s. = (F()c.s. * (F(,s)d. + (F(,s)c.s. * (F()d. + ((F()c.s. * (FM)c.s.)c.s.,

R.3. (F.)d. = (F()d.*(Ft.,)d.

Theorem. Let{Xt : t e [0, oo)} be a stochastic process with independent increments.

Let d0 = \.\i.b. {x € [0, oo) : wd(x)#0}. Under these assumptions the function v(t) has

the following properties :

1. v(t) is monotone increasing on (0, d0);

2. ifte(d0, oo) is such that m(t + 0) = m(t), then v(t)^lim infs^t+i;(s).

3. v(t) = lim infs_( v(s)for all but a countable number of points.

Proof. In order to establish property 1, we first show that if / e (0, d0) then

md{t)^0. So suppose there exists te(0,d0) such that md(t) = 0. Let se(t,d0].

Then by R.3 we see that md(s) = 0. This contradicts the definition of d0 and estab-

lishes the fact that if t e (0, d0) then md(t)^0.

In order to complete the proof of property 1, we let *i, s2 e (0, dQ) with s1 >s2.

By the definition of d0 we see that md(s2)=£Q and therefore by R.3 we see that

mÁStoSd^O.
Now recalling R.2, A.4 and A.5 we see that v(s2)>v(s1) which shows property 1

holds.

To establish property 2 we let / e (d0, oo) such that m(t + 0) = m(t). By the defini-

tion of d0 we see that md{t) = 0. So referring to R.2 we see that for A e Borels

(Fs)c.s.(A) ^ (F)cs. * (Ft>s)d.04) + (F()c.s. * (Ff,s)c.s.L4)

(1.1) ,.
è (Fi)c.s.(A-x)d((Ft,¡)c.s. + (Fi¡s)d.)(x).

J — oo

The conclusion of the theorem not holding at t means that there exists a real

number ß and a sequence of real numbers {s,} such that for every je I* we have

v(s,) <ß<v(t) and s, j t. For y e / +, we see that by the definition of dim supp there

exists a set A¡ such that

(1.2) (F,,)c.8.(¿y) = m(s})   and   dim (A,) < ß.

Let

A=  (j A,.
i = l

By A.l. dim (A)^ß, and.so by Lemma 1.1 we see that, for every x e (—oo, oo),

(1.3) (Ft)c.s.(A—x) < m(t)-80   for some Sß > 0.

Now by (1.2) (FSj)c.s.(A) = m(sJ) for all j e I+ and therefore by (1.1), (1.3) and

the fact that m(t, s) + md(t, s)^ 1, we see that

(1.4) m(sj) á m(t)-8ß.
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Letting j -> oo on both sides of the inequality in (1.4) we see that, by the fact that

m(t) = m(t + 0), m(t)Sm(t) — 8i¡. But 8ß>0, which gives a contradiction and the

completion of the proof of 2.

Now to prove 3 of this theorem we note the following. R.3 and the fact that

md(t,s)^l implies md(t) is nonincreasing for increasing /, and therefore md(t) is

continuous from the right at all except possible countably many points t. R. 1

clearly implies that ma(t) is a monotone increasing function and therefore is con-

tinuous from the right for all except possibly countably many points t. But

1 —ma(t) — md(t) = m(t) and therefore m is continuous from the right for all except

possibly countably many points t. So by 2 of this theorem

v(t) ^ liminf v(s)

holds for all except possibly countably many points t.

Saks ([6], page 261) shows that any real valued function F has the property that

the set {x : lim inf(^x F(í)<lim¡^x+ F(t)} is at most denumerable. Therefore we

see that v(t)^\im infs_( d(s) for all but a countable number of points /. Showing

that this in turn implies that v(t)=lims^t v(s) at all but a countable number of

points /is a standard argument and is therefore omitted. This then completes the

proof of the theorem.

II. In this section we establish the following theorem :

Theorem. Let a function m(t) which maps, [0, oo) into [0, 1], be such that

1. m(t + d)^m(t)m(d)for t,de [0, oo),

2. there exists t* e (0, oo) such that m(t*) = 0 or 1, and

3. on the interval {x e (0, oo) : m(x) ^ 0 and In m(t)/t ^ w'(0)}, In m(t)/t is a strictly

increasing function.

Let a function v(t) which maps (0, oo) into [0, 1] be such that

1. v(t) = 0 on the interval B = {te (0, oo) : m(t) = 0},

2. v(t) is monotone increasing on the interval A = {t e (0, oo) : m(t)/t = m(0)}, and

3. r(0^1ims^t+ v(s) if te (0,oo)-Band m(t) = m(t + 0).

Then there exists a stochastic process, {Xt : t e [0, oo)}, with stationary independent

increments such that for t e (0, oo) : T.V.fF^c.s. =m(t) and dim supp (Ft)c.s. = v(t).

As a corollary to the above result we find that if a is a real extended number and

if/is a function on (0, a) (or (0, a]) which is lower semicontinuous at all but a

countable number of points and is bounded between 0 and 1, then there exists a

stochastic process {Xt : t e [0, oo)}, with stationary independent increments such

that/(f) = dim supp (FJc.s. for t e (0, a) (or (0, a]) and Ft is absolutely continuous

for / 2: a (or t > a).

In the first two of the following eight lemmas, let {Mn} be a sequence of bounded

negative functions such that Mn(s) increases with increasing x, 2n Mn(x) —

M(x)> -oo for every xe(0, oo), and J¿ x dM(x)<oo. Let A„=T.V.(Mn) and let
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Fn¡m(x) be the distribution function corresponding to the characteristic function

exp (£°+ (exp (*>*)-1) ¿j  2+i M¿x)X}

where m>n, n e {0} u / +, and mel+ u {+co}.

Lemma 2.1. Let ke I+ ; rAew there exists a nondecreasing function F'k{x) such that

ifn>k
{/     n     \^   °°  / n       \ * ' (c)

exp ̂ - 2 A«) j 2 (I ^j   W//! -^ ^W-

T.V.(F¿) = exp (-2 A4),   wirf   F£ * Fn^(x) = F¿(x).

Proof. Let us denote the characteristic function of F by ch.fcn.(F). Clearly

ch.fcn.(Fj?) = exp Í- J M exp (£ (exp (iux)) d(f Mj(x)\\-

But T.V.(2?=k M;) = 2?=íc A, which implies

/   k~1   \

ch.fcn.(Ffc") = exp I - ¿ Mch.fcn.íF^,,,).

By definition 2?=k MXx)-^ 2f=k M/*) and therefore by [3]

ch.fcn.(FJ) —> ch.fcn.(Ffc_1>0O) exp ( - T A,)-
« \       } = 0       /

So let

F¿(x) = jexp (-J A,JJ-Ffc_liq>(x>

Therefore
(c)

But T.V.(FJ) = exp(-2f=To1 A¡) and so by the definition of complete convergence

T.V.(F^) = exp(-2fc-01Ai).

The form of the characteristic function of Ffc_lo0 clearly implies that for m>k,

Fc-i,oo = Ffc_lm * Fmto. Now multiplying both sides of this equation by

exp (-2y=o \) we get the last statement of the lemma and the completion of the

proof.

Lemma 2.2. Let V be a continuous distribution function and kel + . For each

nel + , let J'n = {I'Un :jel+} and Jn={IUn :jel+} be two collections of open

intervals where the collection of endpoints from intervals in Jn has no limit points,

and V[{Jñ= n Uf= 11'iA = 1 for every Ne I*. If
1. there exists an increasing sequence {jn}n = ic=I+ such that 2"=i Œn = i ty'/jV-

<co, and if
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2. there exists a sequence of real numbers {£„} where £„ j 0 and an unbounded

sequence {w¡}<=:/+ such that for n, N,me I+ and m^N:

n T m       oo "1 n r   m      oo "I

* m*<. * v u u //.» ̂  (i-?w) n w u u /;.»
s = /c ln = N 1 = 1        J s = k Ln-N/-1        J

whenever J,l=k e3<j\for each l=nN,.. .,n, then, for every r e I+,

F'* * V[Qr Û//.n] = exp Í- T ^ = T.V.[fS * F].

Proof. Let l/w.m = UïU U"-i A.,, and let C&..-UÎ-» U"-i#.j where m£JV

and m is possibly +00. Now in order to prove this lemma, it is clearly sufficient to

show that for e>0, there exists N(s) el* such that N^N(e) implies

1. Fi * F(C/WiC0)^exp (-2f-f A,)-«.

By hypothesis F is a continuous distribution function and therefore F'k * V is a

continuous distribution function. So if m ̂  +00, then

Ffc * K(Boundary (UN<m)) = F¿ * ^(countable set) = 0

and therefore by A.6

F^ViU^—+Fi*V(UN,m).
k

But from this and the hypothesis that V{U'N^) = \ for every Nel + , we see that

in order to prove 1 it is sufficient to verify the following :

If £>0, then there exists N(e) such that N^N(e) and «amax (nN, k) imply

F* * V(UN¡m) ^ exp (- J A,W¿>M)-*.

So let e > 0. Since {«J is an unbounded sequence of integers we see from hypothesis

1 that there exists N' el+ such that if N^N' then

«pf2A.)    Î   (Î  k)'V Ijvl < e/2.
\s=l      /   v = nN  \n = l      /    /

Since eN j 0 there exists N±e I+ such that if N^N1 then

exp I- 2 A¡)£« < £/2-

Let 7V(£) = max (JVl5 JV') and let N£N„. Finally let «ämax (nw, k).

Let

^ = ^e X{1,...,»}.: 2es =

i?i',r = Ie e i?¡ : for each l=nN,.. .,r; ^ es < j, I,

i?i>r = < e e i?t : for some /, % ¿ I £ r, 2 es = ji r
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Now clearly Rir n R'i>r = 0 and Fi>r U -R,',r = F¡. So

(71 \   /  co     /  n \*i \

- 2 A¡)(2 (2 M) * ̂ 7'!)(^.»)

(n        \   /'"N_1   /  n \ *¡ \

-2/*) (2 (2^j *F//!)

n-l    J'r+l-l n /[_   VS_1e\

+ 2   2 wo* 2 *a/H    z"-k kuN,m)
r = nn     i = iT etR'i.r s~k \ es J

^(l-eN)V(U'N,m)

x I exp Í - 2 M ~exP ( - 2 A'J

(00/71 \i/ 71-1    U +1-1 71 /l   _   "VS_1

2 2A* A'-2  2 o/'0 2 nAH   ¿t=fc

First let us note that by Taylor's theorem

2 Í2 *.)'/« =exp Í2 A*)(2 A^"A'"!-

But recall that n^nN, and therefore

exp(-2A*) 2 (È *.)'/«< «A

Now let n-lär^/and Fe/ + be such thaty'¡áP</, + 1, and let

R\tT = ¡eeRUr :jl + 1 >  ^ es ^ jX

Rlr(P) = h e R\,r : ¿ e. = p\

Clearly if jr£i£jr+1, then

Ú R't.r^Ri.r   and   "+(j1RUP) = Kr
l = nN P = ii

and therefore

eeÄi.rs = fc        \ es j l = n«   p = >i    eeB¡,r(P) s = fc        \ es

But an easy computation shows that

e6B¡ir(P) c = fc

z n4-2:"e')=(;)(¿A.)'(í,y
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This implies that

n      ir + i-1 n //_ Vs-1 pA

2  2 o/iD 2 n*
r-nj»      i = ;'r e6Ä,,r s = fc        \ es y

á 2   2 o/'O 2  2 U 2 m   2 M
r = nw     t-/r ¡ = nw     i> = j,     \J / \s = fc      /    \s = i + l      /

n     il+ 1-1 /I \P in+ 1-1/     n \ i-P   I

= 2   2 o/")(Z M   2    2 M   Am-)«

=   2   (¿A,y,//I!cxp(2A.)exp( J   A,)

< W2)

which clearly completes the proof of the lemma.

The next three lemmas and the conditions on the ¿n's are taken from Herman

Rubin's technical report [5]. The statements of lemmas three and four and the

methods used in their proofs appear here essentially as they appear in his report,

and are included here for two reasons: 1. for completeness, and 2. because the

source is relatively obscure. The statement of lemma five is presented here as it

is found in his report, except that I found I needed the additional hypothesis that

lim sup„ bjbn + i = 0. His proof appears to be incorrect, and I present here a proof

which is probably what Rubin had in mind.

In the next three lemmas, let {bn}<=I + be such that for n sufficiently large:

(1) bn + 3/bn>k>l, and (2) bn + 1 — bn^n. Also let N be an infinite collection of

positive integers.

Let x e (-co, oo), let x be expanded into its binary form, and let 7r¡ map x onto

the zero or the one appearing in the /th place to the right of the decimal. Let

neI + , and let

An = {x e (-co, oo) : TTjX = 0 for bn ^ i S bn_ l - [n/2]}

A'n = {xe(-oo, oo) :7TiX = 0 for bn È i £ èB+1-[»/2]-l}.

Now lemmas three and four are stated in terms of An, but it is quite clear that

they are still true lemmas if An is replaced by A'n.

Lemma 3. |Dm=i (U"=m:ne¡v An)\ = 0, and

dim ( H (    fl     An) ) ^ um sup bn/bn + 1.
\m = l \n = m;neN       // neti

Proof. Let A = (~)%=1 ([J%1 m: neN An). By the countable additivity of measures

and A. 1 in §1 all we need show in order to prove this lemma is that if / is an integer,

then \A n [/, /+1]| =0 and dim (A n [/, /+ l])^lim supneW bjbn+1.
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Now A n [/, /+ l]c \J"=m.neN (An n [/, /+ 1]) for every m e I+ by the definition

of A. But note that An n [/,/+1] can be covered by 2"* intervals of length

2~(6>>+i-in'2». So we first see that for every meI +

oo oo

|y4n[/,/+l]| ^ 2 2i,»-i'"+i + ['l/2! £ 2 2""2
n. = m n = m

by assumption (2) on the ¿>n's. But 2"=i 2" nl2 is a convergent series and therefore

\A O [/,/+1]| =0. Secondly, we see, by the definition of Hausdorff dimension,

that if a is a real positive number and

Y 2»n-a<l,»+i-tn'a3) < oo,

TieN

then dim (A n [/, /+ 1])5=<*. So we let a>lim supneN bn/bn + 1 and shall show this

series converges. Let e > 0 be such that

(l-e)ot > lim supô„/èn + 1.
new

There exists Nxe I+ such that n^.N1 implies ¿>n<¿»n + 1(l —e)a. By condition (2) on

the ¿>n's
n

K+iZ ^i = (n+l)nß;
i = l

so there exists N2el+ such that «Ï:7V2 implies

&n+l~[«/2] > (l-e/2)èn + 1.

By an easy computation using assumption (1) on the èn's, we see there exists

N3e I+ such that n^N3 implies bn^Hk% where H=max (bu b2, b3) and k0 = klli.

So if «^ max (Ni, N2, N3) then

¿n-«(¿n + i-[«/2]) ^ (l-e)aèn + 1-(l-e/2)ocèn + 1

=  -eabn + 1¡2 <   -eaHk% + 1¡2.

By condition (1) on the ¿>n's, k0> 1, and therefore

S   2*»-aa>n+l-t»'a»  <  00

neN

and the proof of lemma three is complete.

Definition. We say a random variable X is of Rubin type with Poissons {An}

and partition {cn} if
co     N„      c„ + i

*= 2 2 2 4*/*.
n=l i = l ;' = ctl + l

where {A/n, ̂0,/,7, n=l, 2,...} are independent random variables, where the

distribution of Nn is Poisson with expectation An, where each Att takes values 0 and

1 with probability 1/2 each, and where {cn} is an increasing sequence of positive
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integers. For notational convenience we let Nn and AUi be denoted by Nn(X)

and Aij(X) respectively.

0.1. Let Xu ..., Xn be a finite collection of independent random variables, with

Xt being of Rubin type with Poissons {\¡ik} and partition {cn} for ¡= 1.n. Let

Y= 2"= i Jfi and 'et F"y be the distribution function of F. Then by glancing at the

characteristic function of FY we see that FY is the distribution function of a random

variable of Rubin type with Poissons {2"=i Kk) ar>d partition {cn}.

We note in passing that, by a result due to Hartman and Wintner [4], X has a

pure distribution.

In lemmas four and five we assume X is of Rubin type with partition {bn} and

Poissons {An} where

1 • 2™= i An = oo, a condition which by [4] implies Xhas a continuous distribution,

and

2. \nin.

Lemma 4. If 2n6*exp(-An) = oo, ,&,„ Pr.[JTE f|»=i ( Un = m:*ew ^n)] = L a«¿

íAere/ore

dim supp (X) á lim sup bjbn + 1.
neN

Proof. Claim 1. If c is a positive real number, then Pr.[Arn + 1(Ar)^2[n,2]-c

infinitely often] =0.

By the Borel-Cantelli lemma we see that in order to prove this claim we only

need show that

2 Vr.(Nn + 1(X) Z 2lnl21~c) < oo.
n = l

But for each neI + , Nn + X(X) is a Poisson distributed random variable and

therefore

Pr.(tfn + ¿X) ä 2™2> "0 = exp (- An + J     ¿     (A„ + J/jl.

So by Taylor's Theorem with remainder we see that

Pr.iNn.^X) ä 2[n'2I"c) Ú (AI, + 1)2t",2]-7(2[n'2]-c)!.

Now combining assumption 2 on the An's with the ratio test we see that our claim

follows.

Using the Borel-Cantelli lemma again with the condition that ^neN exp (—An)

= co, we see that Pr.[Nn(X)=0 infinitely often] = 1. Therefore there exists a set M

such that Pr.(Af)= 1, and, if we M, then (1) there exists N'(a>) e I+ such that if

n^N'(tu) then Nn + 1(X)(w)>2lnl2^-c; (2) there exists a sequence {«,„(tü)}c/+ with

Nnjia)(X)(cu)=0 for every y e I+. In order to prove this lemma it is clearly sufficient

to show that if me I* then Vr.[Xe (J¿°=m An] = l. So let me I*, weM, and let
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je I+ be such that «/a>)ämax (N'(oj), m); then we will show X(w) e Anj(a) which

clearly implies Pr.fA'e (J"=m An] = l. Now by assumption NnfW)(X)(cn) = 0 and

therefore
7i/(ra)-l       co itl„(X){a)   bn + i \

*»,(»>(<•>)= 2   2    2   2 Aaw-'Y
71 = 1     7l=7l/ + l   \     i = 0      J=b„+1 /

But recall that w/íi>)^./v"'(<") and therefore

co /Wn(X)(ûj)    bn+i \ co /brt + 1 \

2     2   2 ^x-»-')á   2   2^-( 2 H
n = n>(w)+l\    i = 0     j = ö„ +1 / n = n/(cd) + l V = bn + 1 /

00

g    y    2[n/2]-''"-c < 2Kn»(<8)+1>/a,-|,n^>+i.

n = nj((i)) + l

Therefore 7rtA"(íu) = 0 for A„i(W)<i^enj(u)) + i-[(«;(cu)-l-l)/2] which by definition

implies X(a>) e An/i<0).

Lemma 5. Let 2„iW exp (-An)<co, lim supmineN:m<n bjbn=0, and

lim sup bn/bn + 2 = 0;

dim supp (X) ä lim inf bjbn + 1.
neíí

Proof. Let

*;.» =   "2  4,¿r)2->,
i=t>„ + i

^i=2 *i.» =    2    zi."+    2    *i.«
TlíAf 7líJV;JVn(X)#0 7IÍN;W„(X) = 0

Z   = ^ ^1,71   = ^ -^1,71+ ¿ Xí¡r¡,

N„(X)#0 neN:N„(X)#0 ntN:Nn<.X)ï 0

co     Wn<X)

^=22 xi.>»
71=1    Í = 2

C/=W+ 2 ^l.n+^1-
7ieJV;W„(X)#0

Now first we note X= W+Z. Secondly we note that W+'2neN;l,nix)^o -^î.n and Vx

are independent random variables and therefore by A.3 dim supp Vx S| dim supp (U).

Note that

x+    2   *i.« = ̂ +z+    2   *i.«
7líW;W„(X) = 0 niN;N„{X) = 0

=   W+V1+ 2 *1,»=£/
neN:N„(X)#o

But by hypothesis 2n*w exp ( —An)<oo, so by the Borel-Cantelli lemma

Pr.(Arn(A') = 0 for all n $ N, except for finitely many) = 1
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which implies 2n*w;Wn<x>*o -^i,n is discrete since X1¡n is discrete for every n. So

byA.4

dim supp (X) = dim supp (£/)•

So in order to prove this lemma, we see that we only need show that

dim(Ki) ä lim inf bjbn + 1.

A theorem proved by S. D. Chatterji [2] says that if kel + , and if {A^ :jel + }

is a collection of independent random variables such that each X¡ assumes values in

{0, 1, 2,..., k-l}, if Pti = Pr.[X, = i], and if F-2," i *i/*', then

dimsupp(7) = liminf j(-l/(«ln/c)) ¿ ( 2 pu ln/>u) j

with the convention that 0 In 0 = 0. Let j(n) = max {i : é¡^«}, and for mel+ let

A» = (l/#w)(     2     (*i + i-*i)+ «-*«»))    KAm) i N,
\jtN; i < Km) I

= (l/m)(    2     (¿í+i-¿í)) if/(m)eiV.

By Chatterji's theorem we find that, by an easy computation,

dim supp (KO = lim inf Dn.
n-*co

Case 1. There exists {«¡}c/+ such that nxe N and «, + 1 e N.

By  hypothesis  lim supm>neW:m<nèm/An = 0 and  therefore  lim sup¡ bnJbni+1=0

which implies lim infneN bn/bn + 1 = 0 and the conclusion of the lemma holds.

Case 2. There exists N0e I+ such that nä jV0 and « e A7 implies «4-1 ^ A7.

Let £>0; then there exists nee 7+ such that «si«,, and « e A imply

*n/6n + i > liminfè„/6n + 1-e/2.
neN

By hypothesis lim sup„èn/èn+2=0 and therefore there exists n'(s) sucn tnat

« ^ «'(e) implies bjbn + 2 < e/2. Let A(e) = max (N0, ns, n'(e)). Let

j'(n) = max {/ : bt^n, i e N}.

Now A is an infinite set by assumption and therefore j'(n)-¡p- oo. So there exists

N'(e) such that «^ A'(e) implies/(")^M». Let «ämax (N(e), N'(s)).

Case i. j{ri) $ N. In this case

A. = (!/»)(    2     (*i+i-*/)+(»-*»i))
\itN;j<jW I

= (l/«)(«-è,.(n) + l+ 2        (¿i + l-2>i)V
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Note that if R,SeI + , then R/S<(R+l)/(S+l), so applying this inequality

n—brin)+1 times to Dn we see

Dn ä (llbrin) + 1)     2     (*<+i-*i)-

Therefore recalling that j'(n)^N(e) and j'(n) e N, we obtain

Dn  ==  (*An)-*A»>-l)/*i'(«) + l

== brwlbnn) + i-e/2 ^ lim inf ¿n/^n +1 - «•
716W

Cfl5e ii. j'(M) e -W. By hypothesis of Case 2, we see thaty'(«) — 1 £ JV and therefore

A, = (!/")     2     (bi+i-bi) = (bjln)-bjM-1)lbjM + 1.
US: j < «71)

Now recall that y(«) = N(e) and j(n) e N, so

A =ï V*i(n)ti-e/2 è liminfôn/èn + 1-e.
new

In both Case i and Case ii, e was arbitrary, and so the proof of the lemma is

complete.

Lemma 6. Let m: [0, oo) -> [0, 1] racA í/zaí

1. m(0) = l,

2. m(t)m(d)^m(t + d)for t,de [0, oo), a«</

3. //¡ere ex/J/s a > 0 jmcA íAaí m(í) ^ Ofor t e [0, a]. Then the right-hand derivative

of m exists at 0, and we call it m'(0), and In m(t)/t -*■ m'(0) as t -* 0+.

Proof. Now clearly, by induction, m(t)m(d)^m(t + d) implies that mn(x/n)

^m(x), and therefore

— In m(x/n) ^ — (In m(x))/n.

Let g=-lnm(jc) for xe[0,4 By hypothesis, m(i)=1=l for every t^0, so this

combined with m(t)m(d)^m(t+d) implies that m is a nonincreasing function.

Since m(t) == 0 on [0, a] there exists c> 0 such that 1 ¡äc and /w(f ) -> c as r -> 0 +.

We will now show that c= 1, i.e. that m is continuous from the right at 0. Suppose

c<l. Then choose te [0, a] and let n be such that m(t)>cn. It was already noted

that mn(t¡n)^m(t). But m is nondecreasing and therefore c~^m(t/n) which implies

cn^m(?); this is a contradiction.

In Bruckner and Ostrow [1, Section 4], one finds the following theorem:

Theorem. Let f be a continuous nonnegative function on [0, c] such that /(0)=0

andf(x/n)^(l/n)f(x)for x e [0, c]. Then fis differ entiable at 0.

Now if one examines the proof that Bruckner and Ostrow give for this theorem,

one sees that they really only use the continuity of/ at 0 and on some countable

sequence of points which converges to 0. We have already shown that our function
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m is continuous at 0, and since m is monotone nonincreasing it is continuous at

all but a countable set of points and therefore certainly continuous on a sequence of

points converging to 0. But note that the function g is clearly continuous if m is,

g is nonnegative since m(x)^ 1, g(0)= —In 1=0, and as was seen at the beginning

of the proof, g satisfies the inequality in the theorem of Bruckner and Ostrow. So

g has a derivative at 0, which in turn implies that m has a derivative at 0. Now

\nm(x)¡x = I dt/t)  x.

Therefore, by the mean value theorem for integrals, there exists t0, where 1 ̂  t0

^ mix), such that
lnm(x)lx = (m(x)—l)/(t0x).

So
(m(x)-l)/x ^ \nm(x)/x ^ (m(x)-l)l(xm(x)).

But m is continuous at 0 and m(0) = 1, so taking limits across the above inequalities,

we see that
lim In m(x)/x = w'(0)

x-0 +

which completes the proof of this lemma.

Lemma 7. Let a function f(t) map (-oo, oo) into (—oo, oo). Then there exists a

countable set D<=(—co, oo) such that if xe (—oo, oo), then there exists a sequence

{xj} c D where x, ->■ x + and f{x,) ->f(x) as j -> oo.

Proof. Let r and s be two rational numbers, and let

Dr., = {t:r< f{t) < s}.

Let TTyS be the set of all points of Dr s which are isolated from the right relative to

Drs. Clearly this is a countable set. Now Drs is a subset of the real numbers, and

therefore there exists a countable dense subset of Drs, call it D'rs. Let ETiS-TrtS

u D'r s and let

D=    U    Er,,
r.seRa

where Ra is the set of rational numbers.

Now we will show that this set D is the set desired. Let x e (—oo, oo). If x e D,

then let x¡ = x for every j e I+ and the conclusion to this lemma is proved. If

x e (-oo, oo) — D, then let (sh r¡) be a sequence of intervals such that st, r¡ e Ra for

every ie / + , (st + 1> ri + 1)<=(st, r,), {/(*)} =fl¡ (st, r¡) and ri-si<l/i. Now clearly by

the definition of Dri¡Si, x e Dr¡s¡ for every iel + . Now x e ( — oo, oo) — D, so x

certainly is not isolated from the right relative to Dr.Si by the definition of D. So

for each /', let {xu}<= .Dr. s. such that xu-f>x+ for each iel+. But there exists,

for each /, an integer /(/) such that xiJ(i)e(x, x+\/i), and let xt=xijm. By the

definition of Du „

\f(x)-f(Xi)\ < l/i

and therefore fix^-^fix) which completes the proof of this lemma.
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Lemma 8. Let {Gt(x) : t e (0, oo)} be a collection of distribution functions such

that for fixed x, Gt(x) decreases for increasing t. Let F be a distribution function and

A a bounded nonincreasing function on (0, oo); then for ie I +

(J"° G, ¿A(r))*' * F(x) = J" • ■ ■ J" 4 <?«, * F(x) dX(Tl) • • • d\(rn).

Let G(i, x) = Gt(x). Note that G(?, x) is a distribution function in x for fixed /*,

and for fixed x it decreases with increasing t by assumption. Standard arguments

imply then that G(t, x) is jointly measurable. Induction and Fubini's theorem

quickly yield the lemma.

We now prove the theorem stated at the beginning of this section.

Proof. We shall first prove this theorem for functions m(t) such that A and B

are both empty, and then we shall indicate how to modify the definitions and

arguments for the general case. The reason for this approach is that all the main

ideas and arguments are used in this case, and yet we are not burdened down with

superfluous cases and lengthy expressions which only tend to obscure what is

really going on.

So let m(t) and v(t) be functions as assumed in the hypothesis with the added

condition that A = B= 0. Let D1 be a countable set contained in (0, oo) such that

if te(0, co) then there exists {ti}<^D1 such that /¡-^/+ and v(tt)-*• v(t). The

existence of D± is of course guaranteed to us by Lemma 7. Let

D2 = {te(0, oo) :m(t) # m(t+)}.

By the monotonicity of m, we see that D2 is countable. Let

D3 = {t e (0, oo) : lim inf v(s) + v(t)}.

By Lemma 1.2 and by hypothesis, we see that D3 is countable. Let

D = Dj_vj D2kj D3.

Let {c¡} be a sequence of positive integers such that c¡ j 1. Now clearly D is count-

able, and D is enumerated as follows:

Let d1 be any element of D. Suppose dn has been defined, and let dn + 1 e D be

such that {or j=\,..., n either dn+1/dJ>cn + 1 or dj/dn + 1>cn + 1. Denote

h = min lj : J, 1/4/ § 1

Suppose /„ has been defined ; then define

/n+1 = min(;:    JT    1/4/ S l).
I i = Z„ + l J

Define

/„ = {4/ : /„_! £ i < /„}.
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Let Pu P2, ■ ■ ■ be an enumeration of the primes. Let ie I + , and let {l(i,j))T=i

be a sequence of increasing integers such that

2 2 linC,+t < li2'-
i=l nef,!«.;)

Define

Pi = y /**».*   ^ = y ^.

Clearly Pt n P¡= 0 if / =tj, and if n,me P, then |«- «?| ̂ 4. If t e [0, 00) we denote

A(0 = -In m(t)/t   if / + 0,

= -«'(0) if í = 0.

By Lemma 6 and the hypothesis we see that A is a bounded nondecreasing function

on all finite intervals of [0, 00) and is continuous at 0.

Let {vn} be a sequence of real numbers such that vn f +00, and for convenience

let t'o = 0. If t e (0, 00), then let us denote

[t]* = max{«e/ + u {0} : vn ¿ t}.

If « e / + and t e (0, 00) we define

t(n) = vn_1 if n^ [t]* + l,

= t if« = [t]* + 2,

= vn.2   if»£ [t]* + 3,

t'(n) = vn       if» ^ [/]*,

= t        if« = [i]* + l,

-»»_!   if ne [t]* + 2,

XJx) = \(t(n))     if xït(n),

= X(x)        if t(n) S x g t'(n),

= X(t'(n))   ifx£ t'(n).

Let A£=T.V.(A&c)), and therefore clearly A^=A(í'(n))-A(í(n)). Let {&(«)} be a

sequence of positive integers such that k(n) f 00, and such that

2 KvkW,)/2n < oo.
n

Let {jn} be a sequence of positive integers such that min (jn>jk(n))>n and

2 (wí/.! < «o.
n = l
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Define j(l)=jr where / e P¡ and d¡ e [»,_!, v,]. Let j'(l) = max (j(l),j¡). Let {an} be a

sequence of positive integers such that if k e I+, then

2   (2/(0 In 0**72«'! < min{l/2*A(Dk+1), 1/2*}.
¡eP;Z2Jc

Finally we define a sequence of positive integers {bn} as follows:

Owe 1. n$P.

Subcase (i). If n -1 £ F, then bn = (bn _ j + 1)«.

Subcase (ii). If n -1 e F;

¿n = [*»-iM¿;)]+"    when d(í/,) == 0,

= [*»-i/0 /»)]+«   when «(d,) = 0.

Case 2. If w e P}, let èn = (bn _ j + an + 1 )n.

By a straightforward computation we see that these Z>n's satisfy the conditions

imposed on the An's in Lemmas 3, 4 and 5.

Claim 1. Let X be a random variable of Rubin type with Poissons {An} and partition

{bn}. Ifkel+ andweDni^unep [Nn(X)<2**], then

N„(X)(a>)       bn+l

**(«*)=     2        2       2   AtXXœV-* < 2->K
ngk + l;neP      ( = 0       ; = b, + l

Proof. If w e OnAfc+üneP (Nn(X)^2a«) then by the definition of the AitJ(X)'s

we see that:

xk(<o) =   2   2°-( 2 2"/) ^   2   2a*~K-
näk + l;neP \i = b„ + l /        në/c + l:neP

By the definition of the èn's we see that an — bn< — ¿„_i — 1 which clearly completes

the proof of Claim 1.

Let Gt and Vt be the distribution functions corresponding to the random

variables Xt and Yt which are of Rubin type with Poissons {An>,}, {An (} respec-

tively and common partition {bn}, where

An,, = 2 In n   if n e Pt, d¡ > r, n > y'M|].,

= 0 otherwise,

A;.( = (t/d,) Inn   if ne P„ n > jm»,

— 2 In n otherwise.

We assume that {Nn(Xt\ Nn(Yt), AUJ(Xt), Au(Yt) : i,j,nel + , te(0,oo)} is a

collection of independent random variables.

Claim 2. For fixed x, Gt(x) decreases as t increases.

Proof. If t2 > t\, then clearly by considering the characteristic function of Gh
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and G(2 we see that Gh = Gh* F where F is the distribution function of a random

variable of Rubin type with Poissons {An} and partition {bn}, where

An = 2 In n   if « e F¡, « ^ y'[d(], t2 > c?t ̂  tu

= 0 otherwise.

Therefore G¡2(jc)=j£ Gh(x-y) dF(y)^Gtl(x) which establishes Claim 2.

Claim 2 shows that for fixed x, Gt(x) is a Borel measurable function of t. So,

for x > 0 and t e [0, oo), let

rt'M

Ml{x)= Glx)dXi(T)-)i   ifnel\
JtW)

= - m'(0) V(x) + m'(0)      if « = 0,

where V(x) is any absolutely continuous distribution function. Note that Mn(x)

increases as x increases and Mln{x) ̂  0 for every x e (0, oo).

Claim 3. If m e I+, ift^vm and ifx^ l/2m, then

Gt(x)> l-l/(2un([t]* + l)).

Proof. Recalling the definition of An( and noting that the condition jn +1 >jn

implies jit],^j[dj], for d,^ t, we see that for all w,

2V„(X|)(W)     t>„+1

*(«) = 2 2 2      AU*t)(a,)2-'.
n'èfw + UneP      i = l       j=i)„ + l

Therefore by Claim 1, if w e f|»*/,«.+i:««p (#„(*,) ^ 2a») then Ari(o)< 1/2^«*.

Since bn andjn are both greater than or equal to «, and x^ l/2m, we see that

x ^ 1/2"«']*.
Therefore

1 - Gt(x) = Pr.(Xt e (x, oo)) ï Pr.(^ e (1/2&««1% oo))

^        2        Pr-0W) > 2a")-

But the A^A^'s are Poisson random variables and therefore

l-Gt(x)^        2        (21n«)2°»/2a»!.
ft3Ei[t]* +1; neP

By this last inequality and our assumptions on the an's we see the proof of Claim 3

is complete.

Claim 4. 2n = o M°(x) > -oo for every x e (0, oo).

Proof. Fix x e (0, oo). Now there exists le I+ such that xg; 1/2'.

So by Claim 3 we see that for «^ /+1

M°n(x) = P"   Gz(x)dX°(r)-\°n ̂ AJG-UGO)

^ -1/2"-1.
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But for n ̂  /, M°(x) is a bounded function on (0, oo) and therefore the proof of

Claim 4 follows.

Let
co

M(x) = 2 M°(x),
n = 0

and by Claim 4, M(x) > -oo for every x e (0, oo).

Claim 5. |¿+ x dM(x) < oo.

Proof. Now clearly ¡\+ xdM°(x)<co since Mq(x) is a bounded function on

(0, oo). So in order to prove Claim 5 we only need show that J¿+ x dM'(x)<co

where M'(x) = 2ñ=i M°(x). Now

fl »      fl/2'
xcM/'(x) = 2 xdM'(x)

^ 2 (M'(l/2! + 0)-M'(l/2i + 1))/2'.
¡ = o

But note that

M'(x) = lim (£" G,(x) rf(2 aXt)) -(A(rn)-A(0)))

which along with the fact that M' increases for increasing x implies that if e > 0,

then

fo+xdM(x) ̂ 2o([ (GzO/^+^-G.a/^1))) rf(2 a«(t)/2!)

^2ÍA(^))+Í"   (l-Gx(l/2! + 1)))^(   2    w/2'V
¡ = 0\ J'KI) /        \7l = fc(() + l /

Recall that in the definition of/ we required that/a)^ 1, which along with Claim 3

implies

r (i-c,(i/2,+i))rf( i a°w)
JvkW \n = k(() + l /

Ú  ^ f"   (1-(1-1/(2»-^»»)))) <ft2(r)
Jn = k¡ +1 Jun-a

^ l/2fc<-2.

This estimate along with the assumption on the /V(/)'s that 2, Kvkm)l2l < co

completes the proof of Claim 5.

By Claims 4 and 5 we see that M is a possible M-function in the Levy repre-

sentation of infinitely divisible distribution functions. Let t e (0, co) be fixed. Now

we let F( be the distribution function corresponding to the characteristic function :

Now we let

ch.fcn. Vt ■ exp Í t       (exp (iux) — 1) dM(x) I •

u*) - exp (-2 v)(S (2 M°Y * w)(*).
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Recalling that 2"= o Mt(x) ^> M{x), then a glance at the characteristic function for

Ft>n shows us that by [3], Fltn^%Ft. Note that since M0 is absolutely continuous,

(F(,n)c.s. = exp {-t 2 K] 2 ((.2 M)*1 * Fi)c-S-ti/il

Claim 6. Let ru..., r{ be i elements of(0, oo) and let t0 = min {t¡ : j e {1,..., /}}.

1. If T0<t, then "äfry«! G%j * Vt is absolutely continuous.

2.IftS t0, and t0 ̂  d{ ̂  i, then

*GIt*Vt\ñ      U     ̂ »1
i = l Ln = lnSm:nePi      J

1.

Proof. As noted before, -5fj=i Gx¡ * Vt is the distribution function of a random

variable of Rubin type with Poissons {A^} and partition {bn} where A¡, = 2'=i K,zf

+ Xnt. Now reviewing the definition of the An('s and the AJ,it's we see that

A; = (t/d¡) Inn   if ne P„ n ^ j[dj),, d¡ ^ t0,

^ 2In« otherwise.

So if dj-¿T0<t, then í/í/,-S://t0 > 1 and therefore clearly 2n exp ( — A¡,)<oo. But a

theorem due to Rubin [5] and easily accessible via Tucker [7] says that if F is the

distribution function of a random variable of Rubin type with Poissons {An} such

that 2n exp (—An)<oo, then F is absolutely continuous. Therefore we see that if

r0<t then indeed ■&}=! GXj * Vt is absolutely continuous. Since Ani and Xn¡i are

at most 2 In « for each « e I+, we see that \'n^(j+l)\nn and therefore for large

enough n, A^ ̂ «. So if í ̂  d¡ á t0, then t/d,- ̂  1. But by the way in which the F('s

were defined we see that

2exp(-A;)^ 2 1/» = »-
nePf nsP,

Therefore by Lemma 4 we see 2 of this claim is proved.

Let F={tg(0, oo) : t>í or r = t if te D}. By assumption on D, there exists

Da — {d[} c D such that d'¡^-1+ and v(d[) -*• y(0> and let us assume that if te D,

then ? e Z)0 also. Let t e F. Let

^(i, t) = {nel+ :ne Pu dt e D0, t g a\ g t}.

Now by Claim 6

4  GZj *Vt(f)        U       ̂ n) - 1
if A(t, t)=£0.

Claim 7. Let ie I+ ; /«e«

//n + 2        \*i \ /n + 2 \*i

((2M') *'/i)cs.w = ^ 2 Mí) *F'W-

For all reTsuch that AiUt)^ 0,

(ff ^))*' * ̂ )c-s-( n    u   4.) = (A(«)-A(oy.
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Proof.

(n + 2        \ *i /   n + 2 \ *i i     /;\/tíI + 1        \*'/   n + 2 \*i-¡

2 MÛ   *Vt = (  2   MÛ   * vt+ 2       2 mû      2   MÛ     * Vt.
i = l / V = [t] + 2 / ¡ = 1   \''\l = l I      \j=[i] + 2 /

Now Claim 6, Lemma 8, and A.2 imply that every term in the second sum is

absolutely continuous.

Lemma 9 implies

(n + 2 \ *í pn ¡>n    i

2    MÛ    * Vt -      • • •      *GZí*VtdAn---dK

where A'n = 2"= w + 2 A¡. Now if m is continuous from the right at t, then A is con-

tinuous from the right at t, and we see we might as well be integrating from / + 0

to n. If m is not continuous from the right at /, then by definition of D we see that

t e D. So by the remark just preceding this claim and A.2 we see that

/   n + 2 \*i / m \

2    M'     * F'( H        U      AA = (A(«)-A(/))<
\j = [iï + 2        / \m = l nim;neAU.z)       /

HA(t,r)^0.

Now if r>t, then >4(f, t)=¿ 0 and the above equality holds. But ^(r", t)^ 0

implies /4(r, t) is an infinite subset of positive integers since Pt is an infinite subset

of positive integers. So by Lemma 3

n    u   a,
m = 1 n^m;neA(t,i)

= 0

which completes the proof of Claim 7.

Clearly M(x) = 2¡°°= 0 M\(x) and the M\"% satisfy the conditions imposed on the

Aii's of Lemmas 1 and 2.

For n> [i]*, we see that by Claim 7, the definition of the Aff"s and the definition

of Ft,„ that

0.2 (F.Jc.s.W = exp (-/ "f aA{2 (   "2    M')*' * Vtt'/iA(x).
\ i = 0      /   U = 0   \J = [(]• +2 / J

So by Lemma 1, there exists a nondecreasing function F' such that

(c) I     [i,'+1   \
(F,,n)c.s. -i-> F',   and   T.V.(F') = exp I -t  2  AH-

But 2STo+1 A| = At0 + A(0-A(0)= -m'(0) + X(t)+m'(0) = KO, which implies

T.V.(F') = exp (/ In m(0/0 = m(t).

Claim 8. FAere exists a sequence of real numbers {en} where en \ 0, and there exists

a sequence of positive integers {nN} such that if
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1. {e¡: : j = [t ] +1,..., «} is a finite set of positive integers with 2F- in« + 2 e¡ <jv for

r¡N = vún, and

2. {t(1, i) : [t] + 2^l^n, nN£i£e¡} is a collection of positive real numbers such

that t(1, i) e [v¡-i, v¡), then

*    *Gttt*vA      U      AU (l-e„)Vtl      (J      A'A
¡ = [(] + 2i = l        ■ \k = N;keA(t,z)       I \fc = N;fce4(i,t)       /

for
t Ú t ^ t0 = min {t(/, /) : [t]+2 á / ¿ «, nN S ¡ ^ e¡}

and A(t,r)r\{kel+ : k = N,..., m}^ 0.

Proof. Let eN = 1/2", nN = N, and assume t e [r, t0] such that

A(t, r)r\{kel+ :k = N,...,m}¥= 0.

By 0.1 we see that W=m + 2 -Jf-fLi GI(lri) is the distribution function of a random

variable Y of Rubin type with Poissons {A£} and partition {bn} where A£ =

2?=[«'+2 2fLi Afc,ta>i). Now let

œe    fi     (JV,(7)<2«.)n(r|e       Ü      A'X

So there exists reA(t, t) with m^r^N such that Yt(w) e A'r. By reviewing the

definition of A(t, t) and the definition of the AteI's we see that A* = A*+1 = 0 and

therefore
r-l <c ,Nn(YX<0)      6,1+1 \

n»)- 2  +   2      2    2 4.xr)H2-j•
fc = l;fceP        fc = r + 2;fceP  \    i = 0     j = bn + l I

Claim 1 implies that the second sum is < 2 ~b'+1. By the definition of A'r we see that

(the first sum)+ Yt((u) e A'r.

Therefore Y(œ)+ Yt(co)eAr. So since {Nn(Y), Yt : « e/+} are an independent

collection of random variables we see that

Pr.(y+ Yte       0       Ak)>Pr.(    f)     (Nn(Y) < 2"«))pr.(Yte       (J       A'X
\ k = N;keA(t.z)       I \n = N;neP /        \ k = N;keA(.t,i)       /

Now by the hypothesis of this claim

A£ ̂  2ji ink    if keP}, d, e [v,.u.v¡) and N á / S «,

^ 2/n In A:    if A: e F;, û?; > «,

£ 2/jv In k   ifke P¡, d, < N.

So for k^N,v/e see that A£ ̂  max (jk,j(k)) In &. Therefore by the definition of the

an's, and by the fact that the Nn( Y) are Poisson random variables we see that

Pr.(    fi    (Nn(Y)<2**)) > 1-1/2"

which completes the proof of the claim.

Claim 9. F'(n*-i Uf-JU»«.« Ak) = m(t)for ¿C. r)* 0.

Proof. Assume t is such that A(t, t) =¡¿ 0.
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Case 1. t e D. By the definition of A(t, t) we see that A(t, t)^ 0. Therefore by

Lemma 2, Lemma 8, and Claim 8 we see that

(co 00 \

0        U       Ak)= m(t).

But A(t, t)# 0 implies t& / and therefore A(t, r)=>A(t, t) which clearly completes

the proof of the claim in this case.

Case 2. t $ D. By the definition of D we see that m is continuous from the right

at t. Let {t¡} be a sequence of positive real numbers such that r¡ 11, and therefore

m(ti)-¡> m(t). Since we are assuming A(t, 1-)=/ 0 and t $ D we see that by the defini-

tion of A(t, t), t > t. So let i be large enough to insure that t > /¡.

Forn>[/¡]* + l, let

(n + 2       \   /■ 00      /     n + 2 \*¡ ^

-'2A''  2    2  m'A *vtm\-
i = 0        /  0 = 0   \j' = [iiJ* + 2 / J

By Lemma 1, there exists a nondecreasing function F(> such that F^^F'i. By

Lemma 2, Lemma 8 and Claim 8 :

W ñ        Ü       ̂ ) = T.V.(F'0.

But /¡>/ implies ^(r, t)^>A(í, /|) and therefore

WO        Ü      Ak) - T.V.ÍF'.).
\N = 1 Je = iV;/cejl(t,i)       /

Glancing back at the definition of F'¡ and recalling 0.2 we see that there exists a

nondecreasing function Sn(x) such that

(Fi>n)c.s.(x) = Sn(x) + Fn'(x).

But by Lemma 1 Fn' * Fn,0O=Ftt and therefore F' = Sn * Fn^+F't, which implies

(CO CO \ /CO CO \

n    u   4=Wn    u   Ak =t.v.(f(o.
¡V = l fc = iV;)ce^(t,j)       / \JV = 1 fc = iV;fce4((,t)       /

Again by Lemma 1

/        Cf¡]* +1      \

T.V.(FV) = exp {-t   2   AS'j-

But

2   A|< = A'o' + AOO-AÍO) = A(ri)
¡ = 0

and therefore

T.V.(FtO = exp(-M(it)).
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Now since m is continuous from the right at t, we see that A is continuous from

the right at t. So letting / go to + co, the claim clearly follows.

Let t e (0, oo) such that A(t, t) =^ 0. Now by Lemma 3

n    u   ak
n = 1 k = n;keA(t,i)

o

and therefore by Claim 9 F' is continuous singular. From Lemma 1

F» = (Ft,»)a.c.*FB,„+F.

But clearly the first term is absolutely continuous, and therefore, since F' is

continuous singular, (Ff)c.s. = F'. Using the fact that bn^n(n + l)/2, an easy

calculation shows that for j e I + ,

0.3. limnePtbJbn + 1 = v(dj).

Claim 10. v(t)^dim supp(F|)c.s.

Proof. By Claim 9, Lemma 4, and 0.3 we see that if A(t, t)^ 0, then

dim supp (F|)c.s. ^ sup {v(dj) : d¡ e A(t, t)}.

If t e D, then A(t, t)^ 0 and by 0.3 Claim 10 is proved. If t $ D, then for each

iel+ take T—d\ and by the definition of D0, we see that

dim supp (Ft)c.s. ^ v(t)

which completes the proof of Claim 10.

Claim 11. dim supp (Ft)c.s. £ v(t).

Proof. From Lemma 2.1 if n ̂  [i]* + 1 then

(F£)c.s. = (Ft,„)c.s. *F„j00

and therefore by A.3

dim supp (F()c.s. ^ dim supp (F(n)c.s.

ByA.5
(n + 2 \

2    Mj * Vt I •
I = DO* + 2 /

Clearly now by the definition of dim supp we see that in order to prove this claim

it is sufficient to show that if F is a Borel set such that

n + 2

2
i = m* + 2

2     MJ*Vt(E) = \(n)-\(t)

then dim (E)^v(t). So let E be such a Borel set. Now by Lemma 8 and A.6 we

see that G, * Vt(E) = 1 for almost all t e [t, vn] with respect to 2?=hi*+2 A'(t).

0.4. Let ru t2 e (0, oo) be such that T~^t^T2. If

2   2 w*'< °°
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then by 0.1,0.3, a review of the definitions of An>1 and An>(, and Lemma 5 we see that

dim supp Vt * Gj à inf {v(d¡) : d¡ e [t2, t]}.

Case 1. te D implies there exists lel+ such that t=d,. Letdj<dt; then by the

way in which we enumerated D we see that:

1. \fj>l, then tld¡>c¡ and therefore, by the way P¡ was defined,

2    2 lintld' < °°-
¡ = l + l;d)<t nePj

2. If j<l, then t¡dj>cl>\; but there can be only finitely many such /"s and

therefore

i-i

2   2 v«""' < °°-
j = l;dj<t nepj

So by 0.4 we see that

dim supp (Gt * Vt) ̂     inf   v(dj),
djeU.il

for all t e [i, pj such that D n [i, t] ^ 0.

Subcase i. «? is not continuous from the right at t. Then, clearly, A is also not

continuous from the right at /, and therefore 2"=ra*+2 A'(t) puts positive mass on

{t}. So G( * Vt(E) = 1, which implies dim (F)^dim supp G¡ * Vt. But by the above

dim supp (Gt * Vt) ̂  v(t)

and therefore the claim follows for this subcase.

Subcase ii. m is continuous from the right at /. Now by hypothesis if e > 0, then

there exists S£ such that t' e (t, t+8s) implies

v(t') ^ v(t)-e.

Also by hypothesis, A is strictly decreasing and therefore 2?ím* + 2 A}(t) puts

positive mass on (/, t+8s). So there exists t" e (t, t + S£) such that Vt * Gr{E) = 1

and therefore dim (F)^dim supp Vt * Gr. But

dim supp Vt * Gr ^ inf {v(d,) : ^ e [t, t"]} ̂  p(0-«

and therefore dim (E)^v(t)-e. But e>0 was arbitrarily selected and therefore

the claim follows in this subcase.

Case 2. t$D. By the definition of D we see that if e > 0, there exists 8C > 0 such

that if t' e (t - 8S, t + 8S) then v(t') >v(t)- e.

By hypothesis A is strictly decreasing and therefore 2üÍm«+2 A!„(t) puts positive



1968]       STOCHASTIC PROCESSES WITH INDEPENDENT INCREMENTS 27

mass on [t, t + 8c). So therefore there exists t" e [t, t+8e) such that Gr * Vt(E) = \,

and so

dim (E) 2: dim supp Gr * Vt.

Choose t* e (t—Ss, t) ; then t\d¡ > t/r* > 1 for all d¡ < r* and therefore

2 2 l/ntld' < °°-
dy<t' nsPf

So by 0.4

dim supp Vt * Gr ä inf {t>(«(,) : d¡ e [t*, f "]} ̂  v(t)-e

and therefore dim (F)^y(i)-£- But e was just some number greater than zero,

and therefore the claim is established in this case, exhausting all possibilities.

Our theorem is now established if m(t)^0 or m'(0) for i>0. To prove this

theorem in general just repeat the above arguments with the following modifications.

Let

a = l.u.b. A       ß = g.l.b. B.

Now let {vn} be a sequence of positive real numbers such that vn ̂  a and vn f ß.

For notational convenience we let v0=a. Now define Du D2 and D3 as before

but now restrict them to (a, ß). Now let

D± = {r e A : v is not continuous at t}.

Since by hypothesis v is monotone on Z)4, we see that Z)4 is countable. Now we

modify D to be

D=(j Dtu{a, ß}.
i=i

Again D is countable and we enumerate D as before with the restriction that

cn<l+/3/n.

The only other modifications we need make is that in the definition of M„ we

restrict t e (a, ß) and

M&x) = {-m'(0)V(x) + \c'Ga(x) + X^U(x)-(\(a) + ^)}

where Xa = m'(0) + X(a),

A" = X(ß)-X(ß-0)   ifm(ß)*0,

= 0 ifw(j8) = 0.

U(x) is the distribution function whose induced measure puts mass one on {0},

and G" is the distribution function of a Rubin type random variable with Poissons

{A£} and partition {bn} where

A£ = 2 In n   if n e F„ d¡ ^ a,

= 0 otherwise.
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Corollary. Let a e (0, +00]. Ifv(t) maps (0, «) into [0, 1] (or (0, a] if a< +00)

such that t;(/)^lim inft-»t+ v(r) at all but possibly a countable number of points of

(0, a), then there exists a stochastic process, {Xt : t e [0, 00)} with stationary inde-

pendent increments such that

(1) if te (0, a) (or t e (0, a]), then dim supp (F,)c.s. =v(t), and

(2) if te [a, 00) (or t e (a, 00)), then Ft is absolutely continuous.

Proof. We prove the corollary for (0, a) ; then a clear modification of this proof

will establish this corollary for (0,«]. Let X={xe(0, a) : y(;c)>lim infT^x+ v(x)}

be countable and let {xj be an enumeration of X. Let {£} be a sequence of real

numbers such that 2 ii<a0- Finally for t e (0, a) let

a(o=(i+2^V-
\ dt<t     I

So for t e (0, 00), let

m(t) = exp - tX(t)   if t e (0, a),

= 0 if t $ (0, a).

Let v'(t) be defined as

v'(t) = v(t)   if t e (0, a),

= 0 if t$ (0, a).

Now p'(r) and m(t) clearly satisfy the hypothesis of our theorem and the corollary

follows.

All the conditions imposed on m(t) and v(t), with the exception that In (m(t))/t

be strictly decreasing on (0, 00) — (A u B) are certainly necessary conditions in

order that there exists a stochastic process, {Xt, t e [0, 00)}, with stationary inde-

pendent increments such that T.V.(F¡)cs. = m(t), and v(t) = dim supp (F,)c.s.

The author has been unable to determine what happens if In m(t)/t is not strictly

decreasing on (0, co) — (A u B). In fact, the author has not even been successful in

finding a process {Xt : t e [0, 00)} with continuous distribution functions and with

stationary independent increments such that In (T.V.(F()c.s.)/i increases over some

interval (a, ß) where a, ß e (0, 00).
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