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1. Introduction. The following discussion is set in the theory of Riesz spaces,

i.e. real linear spaces with compatible lattice structures. An order structure being

available, it is natural to require seminorms on a Riesz space L to be monotone ;

specifically we say that p is a monotone seminorm on L if, as usual, p is a positive

homogeneous and sublinear function on L, with range in [0, +co] (note that +00

is admitted as a value), and, in addition, \g\ S \f\ =^p(g)Sp(f). If p is "continuous"

to the extent that 0Sfn if^p(fn) t pif), we say (following the terminology of

Luxemburg and Zaanen [6, §5]) that p is a-Fatou. It is easily shown that for each

monotone seminorm p there is a corresponding pM which is maximal among the

a-Fatou monotone seminorms dominated by p. The main question treated here is:

in what cases can pM be obtained via the natural construction

Pl(u) = inf jlim p(un) : 0 S un f uj,

i.e. when do we have pL = pM ? A practical answer is given in terms of the almost-

Egoroff property, a condition on the order structure of the space L which is a

variant of the Egoroff condition introduced by Nakano and by Luxemburg for

other purposes (see §2). In fact, we have the following theorem, as a consequence

of results proved in §5.

Theorem 1.1. Let L be a Riesz space. Then pM = pL for every monotone seminorm

p on L if, and only if L is almost-Egoroff.

The more significant part of this theorem is the necessity of the almost-Egoroff

condition. This shows, for example, that even such a highly regarded space as

C[0, 1 ] possesses a monotone seminorm p such that pM / pL (in the case of C[0, 1 ]

we may also assume that p is a norm and finite-valued everywhere). Part of the

interest of these results stems from the observation of Lorentz (see [6, §7]) con-

cerning Riesz spaces L which belong to the important subclass of " Banach function

spaces," i.e. spaces consisting of the real measurable functions over a given

measure space (with identification of functions equal a.e.). In this case, Lorentz

showed that, for each monotone seminorm p on L, pM is just the corresponding

"Lorentz seminorm" pL, provided the underlying measure space is o--finite. For

Banach function spaces, Theorem 1.1 yields a weaker condition on the measure

space which is exactly equivalent to the identity of pM and pL for all p (see §3).
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2. Egoroff conditions. We shall be concerned, for the most part, with abstract

Riesz spaces, for the general properties of which we refer the reader to Bourbaki

[2, Chapter II], to Nakano [10], or to Luxemburg and Zaanen [6, Note VI and

following]. The basic Egoroff condition is a formulation, in the Riesz space setting,

of the property which lies behind Egoroff's classical result (see [3]) concerning

spaces of measurable functions.

It is convenient to introduce first a special notational device. If A is any system

with a partial ordering " ^ ", and {a„, J is a double sequence of elements in A,

we write a«{an¡k}, where a e A, to mean that (Vn)(3k(n)) such that a^anMny

Consider first a Boolean algebra 38. An element be 38 is said to have the Egoroff

property if

[(V«)é».kUb] * [(3èm) :bn\mb and (ym)bm « {bnJ].

The Boolean algebra 38 itself is said to be Egoroff if every one of its elements has the

Egoroff property.

In the case of a Riesz space L, we say that an element ueL+ has the Egoroff

property if

[(V«)0 ^ M„,fc tk«] => [(3«m ̂  0) : Mm fmw and Çim)um « K,J].

We say that the space L is Egoroff if every element in L+ has the Egoroff property.

If 38 is a Boolean algebra, be 38 is said to have the weak Egoroff property if

[(V/î)è„,k tkè] => [b = 0 or (3a == 0) : a « {*„,*}].

Following the pattern above, we have the definitions of weak Egoroff Boolean

algebras, elements having the weak Egoroff property in a Riesz space, and weak

Egoroff Riesz spaces.

It appears that Nakano was the first to isolate the Egoroff property for Riesz

spaces; with certain reservations, the Egoroff property corresponds to his notion of

"total continuity" (see [10, §14]). Luxemburg introduced Egoroff and weak

Egoroff Boolean algebras in [8], using the present definitions. The properties also

occur in the present form in Luxemburg and Zaanen [6] (see, for example,

Definition 20.5).

We wish to introduce here a third Egoroff-type property, which will play an

important rôle in the sequel. If L is a Riesz space, we say an element ueL+ has

the almost-Egoroff property if

[fV»)0S«B,fctfc«]

=> [(V« with 0 < e ¿ l)(3uem £ 0) : «£ t„(l-e)u and (Vm)t4 « {un,k}].
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Of course, the space L is called almost-Egoroff if every element in 7,+ has the almost-

Egoroff property. For Boolean algebras, there is no useful analogue of the almost-

Egoroff property.

We make here the simple observation that the Egoroff property is an "ideal

property".

Theorem 2.1. (a) Ifu^O is an element in the Riesz space L and u has the Egoroff

property, then the ideal generated by u, i.e., {f:feL and (3A7) : |/|^Mw} is

Egoroff. (b) If an element b of the Boolean algebra 3$ has the Egoroff property, then

every element a such that aSb has also that property.

Proof, (a) We need only show that if 0 S v S u, then v has the Egoroff property.

But if 0^i'n,fc tfc», then (vn¡k+(u-v)) \ku, and there exist um such that 0Sum^mu

and um«{(vn¡k + (u-v))}; it follows that 0S(um—(u-v))+«{vn,k} and

(um-(u-v))+ \m(u-(u-v))+ = v.

(b) If an,fcffca, then aUik\/(bAa')\ka\/(bAa') = b. Thus there exist bm such

that bm \mb and bm«{(an<kv (b A a'))}, so that (bmAa) \ma and

(bm A a) « {((an¡k v (b A a')) A a)} = {an¡k}.

3. Banach function spaces; Egoroff's theorem. We wish to discuss here the

significance of which we have called the Egoroff property for the classical case of

Riesz spaces of real measurable functions. We shall also show how the Egoroff

property is involved in the theorem of Egoroff, although it is not our intention to

formulate generalizations ofthat theorem (cf. [10, Theorem 14.2]).

Given a set X, a a-complete Boolean algebra 3~ of subsets of X which is a

subalgebra of the power set p(X), and a countably additive measure p on 3~,

valued in [0, +oo], let L denote the space of all real-valued functions on X,

measurable with respect to 3~ and finite-valued almost everywhere (a.e.), with

identification of almost everywhere equal functions. With the introduction of the

usual linear operations and partial ordering, L becomes a Riesz space. Such a

space is known as a "Banach function space" (more properly, for each monotone

seminorm poní such that L is complete with respect to p we have the Banach

function space Lp = {f:feL and p(/)<co}). The assumption that the measure

space (X, &", p) is a-finite is often included in the definition, but we do not wish

to do this. Let 38 denote the measure algebra associated with (X, 2T, p.), i.e., S3

is the Boolean algebra composed of equivalence classes of elements from !T,

where A, Be if are identified whenever the symmetric difference A ¿\ B has

measure zero.

We shall say the Egoroff theorem holds for (X, 2T, p) if, whenever Fk are measur-

able functions and Fk -> F a.e., there exist Xme3~ such that Xm f , p(X- [Jx Xm)

=0, and Fk -*- F uniformly on each Xm. This is a general form of the well-known

result of Egoroff (cf. [3]) concerning a finite real interval and Lebesgue measure.
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Theorem 3.1. If L and 38 are the Riesz space and Boolean algebra associated

with a measure space (X, tf, p), using the notation developed above, then the following

are equivalent : (a) L is Egoroff; (b) 38 is Egoroff; (c) the Egoroff theorem holds for

(x,tr,p).

Proof. (a)=>(b): Recalling Theorem 2.1(b), we need only consider the situation

where bn.k ffc 1 (for each n) in J1. If we now choose Xn.k e y such that Xn¡k e bn¡k

and let un.k be the element of L containing Xn¡k (now thought of as a measurable

function ; in general we use the same symbol for a set and its characteristic function),

we have 0^un.k \ku (for each ri), where u is the element of L containing the unit

function on X. Assuming the Egoroff property on L, we have 0 g um fm u such that

(im)um«{unk}. Choosing measurable functions Fm e um, we must have Fm(x) f 1 a.e.

so that, if we let Xm={x : Fm(x) > 0}, and let bm be that element of 38 which contains

Xm, we certainly have bm f 1. Moreover, if we fix m for a moment, for each n there

exists k(ri) such that umSunMn); hence Fm^XnMn) a.e. so that p(Xm-XnMn)) = 0.

It follows that bmSbnMn), and hence (Vm) bm«{bn,k}.

(b)=>(c): Given measurable functions Fk on X, such that Fk ->- F a.e., set

*M = {x : (Vk')k' ^ k => \Fk-(x)-F(x)\ < l/n}.

Clearly, for each n, X„¡k \k and p(X-\Jk=x Xn.k) = 0. Thus, if bn%k is the element

of 3$ such that Xn¡k e bn¡k, we have bn¡k ffcl, for each n. Under the assumption

that 38 is Egoroff, we have bm fm 1 with bm«{bntk}, for each m. Let k(m, ri) be such

that k(m, n)fm for each fixed n and bm ̂  bnMm¡n). If we choose Ym e bm, we must have

p(X-{J?Ym)=0 and, for each m, p(Ym-Xm)=0, where Xm = (~)Z=i XnMm,n).

Thus we have p(X— (J™ Xm) = Q, and Xm f because of the choice of k(m,n).

Finally, Ffc ->- F uniformly on each Xm, since k ^ k(m, ri) and x e Xm imply that

\Fk(x)-F(x)\<l/n.

(c)=>(a): Given (Vn) 0^un.k\ku in L, we can choose measurable functions

Fn,k e un.k, Feu such that (Vx e X)(Vn)0iFn,k(x)UF(x). Let

Gn.k = ^l.k A   F2¡k A • • • A  Fn>fc,

and let Gk(x) = mf{l/n : Gn¡k(x)^F(x)-l/ri}. Now, for each x, Gk(x)^-0, since

for each n there is k(ri) such that if k7>k(n) then Gn>k(x)èF(x)-l/« and hence

Gfcfx)^ l/n. Since the Egoroff theorem is assumed to hold, we have XmeJ~ such

that Xm\ , p(X-\JxB Xm) = 0, and Gk^0 uniformly on each Xm. Let Fm=

[(F- l/m)Xm]+ ; clearly Fm(;c) f F(x) a.e. Given m, we have some k(m) such that,

for xeXm, Gk(m)(x)<l/m so that (3«>w) : GnMm)(x)ZF(x)-l/n and, since the

functions Gn¡k decrease in n, GmMm}(x)^F(x)-l/m. Hence Fm^GmMm) and it

follows that Fm«{Fn¡k}, for if n<m then Fm^Gm>k(m)áC7n,Wm)^Fn>Wm), while if

n^m then Fm^Fn^GnMn)^FnMn). Finally, if we let um be the element of L con-

taining Fm, we have um\u and (Vw) um«{un,k}.   Q.E.D.
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Theorem 3.2. If the measure space (X, 5~, p) is a-finite, i.e. if there exist Xme$~

such that Xm f X and (Vm)p(Xm) < co, then 38 is Egoroff.

Proof. In the obvious way, p induces on the a-complete Boolean algebra 38 a

measure, which we again denote by p; furthermore, there exists a sequence am f 1

such that p(am)<oo for each m. Suppose that (yrí)bn¡k ffcl. Clearly, for each

m, n, (amAb'Utk)\k0 and, as p(amAb'n¡x)Sp(am)<oo, we can choose k(m,n) such

that p(amAb'nMm¡n))<2~im + n\ Moreover, we may suppose that k(m+l,n)

è k(m, n) for all m, n. Now let om = A"= i (am A bnMm,n)). Clearly bm S am and bm f ,

because of the choice of k(m, ri). The construction of bm also ensures that (Vw)èm

<<{bn¡k}. Finally

so that p(amAb'm)<2'm, and, p being strictly positive on 38, it follows from am \ 1

that ¿>m t 1. Thus the element 1 e 38 has the Egoroff property and, in view of

Theorem 2.1(b), the proof is complete.

Together these theorems show that there is a good supply of Egoroff Boolean

algebras and Riesz spaces, and incidentally include a proof of the classical Egoroff

theorem which makes clear the role of the "Egoroff property" in this result.

Taken with Theorem 1.1, these theorems yield Lorentz' observation that we have

Pm = Pl for every monotone seminorm p on a Banach function space over a a-

finite measure space; at the same time we see that the weaker condition that the

measure algebra 38 be Egoroff is sufficient for this result. Moreover, this weaker

condition is necessary since for Archimedean Riesz spaces the notions of almost-

Egoroff and Egoroff coincide (see Theorem 4.5).

Concerning the relationship between the Egoroff property and a-finiteness for a

measure algebra 38 it should be remarked that under favorable circumstances the

two are equivalent. More precisely, if J1 is Egoroff and complete (i.e., the measure

space is " localizable") and if p is locally finite (i.e., if O^b e 38, then b majorizes a

nontrivial element of finite measure), then (3S, p) is a-finite, at least if we assume the

continuum hypothesis. Note that both of the additional conditions are, in fact,

necessary if (38, p) is to be <r-finite. This result is due to Luxemburg (cf. [8, Theorems

4.6 and 2.1]). For the sake of completeness we include a sketch of a proof. Using

Zorn's lemma, and the local finiteness of p, we easily construct a maximal family

2 of disjoint nontrivial elements of 3S of finite measure. It must be that sup 3¡ = 1

so that if 3> is countable then, indeed, (38, p) is a-finite. If, however, £> is un-

countable, then, assuming the continuum hypothesis, we must have a one-one

mapping <f> from NN (see Example 4.2 below) into S¡. Let b = sup (</>(NN)) and

¿n,fc = supO/>({x : xeNN and x(n)Sk})); using the argument of Example 4.2, we

see that the double sequence {bn¡k} violates the Egoroff property of the element b.

4. Relationships among the Egoroff conditions; examples. It is clear that if an

element of a Boolean algebra has the Egoroff property, then it has also the weak
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Egoroff property; similarly the elements of a Riesz space which have the Egoroff

property are included among those having the almost-Egoroff property, and all

of these, in turn, certainly have the weak Egoroff property. The examples below,

however, show that no two of these notions coincide.

Example 4.1. C[0, 1], the set of continuous, real-valued functions on the

interval [0, 1], becomes a Riesz space under the ordinary pointwise linear opera-

tions and order. It is easy to show that no positive element in this space has the weak

Egoroff property. To see this, consider a function u > 0. Let {/„} be an enumeration

of the rationals in [0, 1], and, for each n, let un¡k be a sequence of functions in C[0, 1]

such that, for each x, 0^un.k(x)\ku(x), unless x e{rx,r2,..., rn} in which case

un,k(x) = 0. Clearly un¡k \ku in L = C[0, 1], while if 0¿g«{un¡k}, then g(rn) = 0 for

all n, so that, since g is continuous, g=0.

Example 4.2. Consider the space Rx of all real functions over the set X=NN

(all functions from JV={1,2,...} into A'), with the natural pointwise linear opera-

tions and order. Define the following subsets of X : Xn¡k = {x : x e NN and x(n)^k}.

For each n, we have Xn.k tkA^in Rx); nevertheless, this double sequence has the

rather surprising property that for no choice of k(n) do we have sup XnMn) = X.

In fact, we can construct xeX such that (V«)x ¡£ XnMn) simply by setting x(ri)

=k(n)+ 1 for all neN. We can now see that the unit function in Rx has not the

Egoroff property, nor even the almost-Egoroff property. Suppose we have (Vw)0

úum«{Xn.k}; then in particular we can choose k(m), for each m, such that

um i£ XmMm). Since there exists xeX such that (Vm)XmMm)(x) = 0, so that [sup um](x)

=0 while X(x)=l, it is clear that X cannot have the almost-Egoroff property.

On the other hand, it is clear that the whole space L is weak Egoroff. This dis-

cussion shows equally well that the power set p(NN) furnishes an example of a

Boolean algebra which is weak Egoroff but not Egoroff.

Example 4.3. For this example it is convenient to have available an non-

Archimedean extension *R of the real numbers R, i.e. we assume *R to be a totally

ordered field containing R as a subfield and containing elements h, called infinitesi-

mals, such that h + 0, but \h\<r for every r>0, r e R. A general construction for

such *R is discussed in [9] ; however, all we really need here is a totally ordered

non-Archimedean linear space over R.

Let L consist of the functions/on the set X=NN (see Example 4.2) with values

in *R, and having the following form : f(x) = r(f) + hf(x), where r(f)eR and, for

each x e X, hf(x) is infinitesimal or zero. Upon the introduction of the pointwise

linear operations and the pointwise ordering induced by the order in *R, L becomes

a Riesz space. Note that if r(f)<r(g) then/<g, regardless of the values of the

functions hf and hg. Now the unit function u in L(r(u) = 1, hu = 0) has the almost-

Egoroff property. To see this, suppose that (V«)0^un¡k \ku; certainly r(un¡k)f kr(u)

= 1, so that, given £>0, we have some k(ri), for each n, such that r(unMn))> l—e

= r((l —e)u); thus, for any e>0, (1 — e)u«{un<k}.

Consider now the element hX in L, where h is a fixed positive infinitesimal.
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Using the notation of Example 4.2 we have hXn¡k \khX (for each ri), and, arguing

just as we did in the discussion of Example 4.2, we see that hX has not the almost-

Egoroff property with respect to this double sequence. As OShXSu, we have

shown that the almost-Egoroff property is not an ideal property ; what is more

important, we see that u has not the Egoroff property, for in that case hX would

have that property as well, in view of Theorem 2.1(a). Thus we have exhibited an

element which has the almost-Egoroff property but not the Egoroff property.

Example 4.4. We can demonstrate the existence of a Boolean algebra 38 not

having the weak Egoroff property, at least if we assume the continuum hypothesis.

Consider the algebra p(X) of all subsets of a set X having cardinality c (e.g.,

X~ [0. !])• It was proved by Banach and Kuratowski (see [1]), as the basic tool in

their demonstration of the nonmeasurability of the cardinal c, that, if the con-

tinuum hypothesis holds, there exist subsets Xn¡k of X such that (i) (Vn)Xn,k \kX, and

(ii) for any choice of k(n), Hn=i ^»,kB) is countable. This result is also discussed

(as Proposition Cxx) in Sierpinski's well-known book [11]. If we now form the

quotient algebra p(X)/C, where C is the ideal in p(X) consisting of those subsets

which are at most countable, we have our example 3$. Indeed, if h is the canonical

map of p(X) onto 3§, it is evident that (Vn)h(Xn¡k)f k 1 e J1, while, for any choice

of k(n), An=i ^(Xn.Mn)) = 0. Thus 1 has not the weak Egoroff property and it is an

easy consequence that no nonzero element of 38 has that property.

Thus we cannot hope to show that every Boolean algebra is weak Egoroff,

since Gödel has shown (see [4]) that the continuum hypothesis is consistent with

the other axioms of set theory (if those axioms are consistent). The importance for

this example of the Banach-Kuratowski construction was pointed out by Professor

Luxemburg.

We have now completed our list of examples designed to separate the various

Egoroff conditions in Riesz spaces and Boolean algebras. It is important to note

that the non-Archimedean character of the example (Example 4.3) of an element in

a Riesz space having the almost-Egoroff property without the Egoroff property is

essential, as the following result shows.

Theorem 4.5. IfueL+ is such that inf {(l/n)u : n = I, 2, 3,.. .}=0 (inparticular,

if the Riesz space L is Archimedean), then u has the Egoroff property if and only if

u has the almost-Egoroff property.

Proof. We have already noted that one implication always holds. For the other,

suppose that u has the almost-Egoroff property, and that (V«)0áwn¡k \ku. Choose

a sequence of real numbers ep and elements uvm such that ep\ 1, 0Suvm \m£Pa, and

K«Wn,k} (for all m, p). Now let um = u\ v • • • vi Clearly 0Sum f and umSu.

Moreover, if f is such that (Mm)umSv, then (im)u^Sv, so that v~¿,evu; but sup evu

=u, since ep f 1 and we have assumed that u is an "Archimedean element". Hence

um f u. Since u^«{un¡k} for p = 1, 2,..., m, it is clear that um«{un¡k} also. Thus u

has the Egoroff property.
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5. Central theorems. We now demonstrate the connection between the almost-

Egoroff property and the relation pM = pL for monotone seminorms p on a Riesz

space L; included is the proof of Theorem 1.1. The existence of pM for every

monotone seminorm p is easily established; in fact, we can construct pM(u) as

sup (pi(w) : px is a d-Fatou monotone seminorm dominated by p}, simply verifying

that this pM is again a a-Fatou monotone seminorm. It is also easy to check that the

"Lorentz seminorm" pL is indeed a monotone seminorm for each p; moreover,

p is a-Fatou precisely when pL = p. Thus, since p^pM, we have pl^Pml = Pm,

so that pL = pM if and only if pL is a-Fatou, i.e., pLL = pL. This accounts for the form

of the following theorems.

Theorem 5.1. Iff is an element ofL+ and f has the almost Egoroff property, then

for every monotone seminorm p we have pLL(f) = pL(f)-

Proof. It is clear that pu.(f) = PL(f)- On the other hand, suppose A>pLL(f);

in this case there must exist 0 á/n f„/and, for each«, 0^fn.k \kfn such that p(fn,k)

< X for all n, k. Now if we let gn.k=fn.k + (f-fn), we have gn_k ffc/, for each n.

Since/has the almost-Egoroff property there exists, for each e (0 < e ̂  1), a sequence

f¿ such that 0^/¿tm(l-£)/ and f¿«{gn,k} for all m. Now if we set hem =

(fm+fm—f)*', we have hem fm(l-£y. Moreover, for each m there is some k(m)

such that f¿úgmMm) and hem¿gmMm)+fm-f=fmMm). We then have p(hem)^

p(fmMmy)<K so that pL((l -eff)á A, i.e. pL(f)è(l-e)~1X. Since this is true for

every e>0, we have pL(f)¿X; hence pL(f)-âpiL(f)-

We now prove a strong converse to Theorem 5.1 ; the full strength of this result

will be useful in our subsequent discussion.

Theorem 5.2. Letf be an element of L*, where L is a Riesz space; if'pLL(f) = Pt(f)

for every monotone seminorm p on L such that p(f) < co, then f has the almost-

Egoroff property.

Proof. Suppose that 0¿fn¡k \kf for each n. Let

K,k = /l.k A /2>fc A • • • A f„y,

then Ä„,ktk/> for each n, and [«im]=>[li,,k^hm>fc]. We shall show that, given e

(1 ae>0), there exists a sequence f£ such that 0^/,J fm(l -e)f and fm«{hn¡k}, for

each m; since hn¡k^fn¡k we also ha\ef£«{fn¡k}.

(a) First we show that, given any ex > 0, there exists a sequence gn such that

0^nt/and [(3ri)Mfúgn]^[Múexl For each n, let /3„ = sup{j8 : (3k)ßf^hn.k).

Clearly, for all n, ßn ̂  0; on the other hand, if ßn ̂  1 for all n, then we can construct

fl immediately by setting fa = (l -¿)fi since [(Vn)(l -e)<ßn]=>(l-e)f«{hnJ. We

can assume, then, that there exists p such that 0 ¿ ßp < 1. Consider, for ß < ßp, the

sequence hk = (l —ß)'1(hp.k—ßf); clearly hk ffc/and the terms of the sequence are

nonnegative after a finite number, since ß < ßp. Denote the nonnegative tail of the
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sequence {hk} by gx, g2,_If there exists k such that MfSgk, then there is a corre-

sponding k' such that MfS(l-ß)~1(hp,k--ßf) and it easily follows that MS

(l-ß)~1(ßp—ß). Thus, by taking ß sufficiently close to ßp, we can ensure that

[(3n)MfSgn\~[MSex].

(b) Next, given 0 < e2 < 1, we set gn¡k = (hn¡k A gn) V e2f Then, for each n,

gn.k tfc((/ A g„) V e2f) = gn V e2f

and (gnVe2f)\n(fy e2f)=f Now, for xel+, set p(*) = inf {]>>„ : «„^0 and

2n «,gn,w«) § * f°r some k(ri)} ; the sums involved are understood to be finite,

i.e., all but a finite number of the an are zero ; set p(x) = + oo if there is no such finite

sum covering x. p is a monotone seminorm on L. That p is monotone and positive

homogeneous is clear, p is also sublinear, for if A > p(x) + p(y), then there exist

«n, k(n), yn,j(n) such that A > £„ an+2„ y» and 2„ «„£».«„) ^ », 2* ynSn.«n)=?! thus

2(an + yn)gn,max(fc(n).J(ii)) ä X+3'
n

so that p(x+j)^2n(«n+yn)<^- Moreover, p(f)<ao; in fact, gXiX^e2f, so that

pCO^)"1.
Now p(g„.fc)^l so that, since gn,k \k(gnV e2f), we have pL(gnVe2/)^l, for all

n. But (gnVea/)tn/> so that pLL(f)Sl- Hence, by our assumption, pL(f)S 1. This

means that, for any e3>0, there exists a sequence /m such that 0Sfm fm/and, for

each m, p(fm)<l + e3.

(c) If we now set f£=(fm-ef)+, we have OSfA tm(l -¿)fi The remainder of the

proof consists in showing that, by appropriate choices of ex, e2, e3, we can ensure

that f^«{hnJ.

Let us find, then, conditions on ex, e2, e3 which imply that, for a particular mx,

nx, there exists some k such thatf^Sh^y, we shall find conditions independent

of mx, nx, thereby establishing our result.

Now p(fm) < 1 + e3 so that there exist o# ^ 0, km(n) such that 2n < < 1 + e3 and

2n «ngn.fcm(n)^/m- If we now let y = inf {(2B<ni «») : m^mx}, then, for mem!,

2 < = 2<- 2 «¡?< i+«8-y-
nèni n n<ni

Thus 2n&ni «^B,k»(n)á(l+e3-y)/"so that

fm-il + »0-YVSfm-  2 «*?«».*"<»)

=   2   «?«».*-<») ^ (l+«sX^x V «a/) ^ (l+«8)(*»i+ «*/)•
nSri!

But/= sup {/»:mâ/n^ so that we have

f-(l+e3-yY S (l+e3)(gni+e2f),
i.e.

((y-«3Xi+«8)-1-»ayáj»1.
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Hence, by the construction of part (a), (y-e3)(l +e3)~x—ea<[e1. Clearly, then, if

we let Ei = (l + E3)(ex + e2)+2e3, there must exist m^mx such that 2„<ni ¿%<eé.

Now, for such an m^mx, we have

fm á £4/+ 2   angn,kmw

^ Hf+ 2 «ï(A».k-(»)+«a/).

If we let k = max {km(n) : a^^O} and recall that, for n£nu hn.k^hni¡k, we see that

fmâeif+(2   <\(Kx,k + e2f).
\ninx       J

Now mtmx so that we have

fmx áfmñ Hf+(i+e3)(h„x,k + e2f)

^ (^Jre3 + (l+e3)e2)f+hnitk S 'f+Kuk

provided we choose eu e2, e3 such that ((1 +e3)(ex + 2e2) + 3E3)^E, which we clearly

can do. In this case, f^ = (fmi -ef)+ èhni,k, as required.

Theorem 1.1 follows directly from Theorems 5.1 and 5.2; note that, in view of

Theorem 4.5, we can replace the almost-Egoroff condition in Theorem 1.1 by the

simple Egoroff condition, provided we consider only Archimedean Riesz spaces.

6. Comments, (a) We have seen that on Riesz spaces which are not almost-

Egoroff there must exist monotone seminorms p which are "singular" in the sense

that ph^pl, in certain cases such p may actually be "Riesz norms", i.e. we may

have (V«#0)(0<p(w)<oo). For example, in the Riesz space C[0, 1], the unit

function u certainly has not the almost-Egoroff property (see Example 4.1). Hence,

there exists a monotone seminorm p, with p(u) finite, such that pll(u)¥= piifi)

Theorem 5.2). Since the ideal generated by u is all of C[0, 1], p is everywhere

finite and to obtain our singular Riesz norm on C[0, 1] we simply add the uniform

norm to p.

(b) In his paper [5] of 1958 S. Koshi proved that, under certain conditions on a

Boolean algebra 38, every finitely additive measure on 38 is countably additive on a

suitable super order dense ideal (a subset A of a partially ordered system X is said

to be super order dense if every element in X is the supremum of an increasing

sequence taken from A). Luxemburg subsequently showed that the Egoroff

condition on 38 was sufficient for this result (cf. [8], Theorem 5.1), and a number of

similar theorems dealing with linear functionals and seminorms on Riesz spaces

have appeared (see [6, Note VI, Corollary 20.7], [7, Note XIV, Theorem 44.2],

and [7, Note XVI, Theorem 64.9]). The Egoroff condition is assumed in these

theorems, but often it can be replaced by the almost-Egoroff condition. These

results converge on the following question : if L is almost-Egoroff, does it follow
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that p = pL on some order dense ideal Ip, for every monotone seminorm p ? While

this question apparently remains unanswered, we can see that such a result would

be best possible. This follows from Theorem 5.2 since if pL = p on a super dense

ideal, it is easy to show that pLL = pL (throughout the space) ; hence if, for every p,

pL=P on a super order dense ideal Ip, our theorem ensures that the space must be

almost-Egoroff.

(c) For any monotone function p: 38 -» [0, co] on a Boolean algebra 38 we can

define pL just as in the Riesz space case. We then have the following analogue of

Theorem 1.1: 38 is Egoroff if, and only if, pLL = pL for every (finite-valued) outer

measure p on 38. The argument proceeds along the lines of the proofs of Theorems

5.1 and 5.2, but in the Boolean algebra case the techniques are needed only in a

rudimentary form.
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