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Introduction. Suppose G is a locally compact group. By the dual space G of G

we mean the set of all equivalence classes of irreducible unitary representations of

G equipped with the "hull-kernel" topology. The definition of the hull-kernel

topology is a bit unwieldy since it involves the structure of the group C*-algebra

C*(G). Determining the structure of a C*-algebra is a very difficult task in itself,

and it is hoped that the topology of the dual space of a group can be described in

terms of parameters having only to do with the group structure. For example, if

G happens to be abelian, then the dual space G is the group of all characters on G,

and the topology of G is given in terms of uniform convergence of the characters

on compact subspaces of G. In this paper we prove that the topology on the dual

spaces of certain groups can be described in terms of appropriate group-theoretic

parameters.

Consider the case when G contains a closed normal subgroup N. Then, if G

and N satisfy certain technical conditions, G. W. Mackey has shown, in [13], that

the elements of the dual space G can be obtained, loosely speaking, as induced

representations Us of G. The situation here is roughly as follows.

Notice first that G acts to the left as a group of continuous transformations on the

dual space Ñ of N.

If x is an element of Ñ, let the stability subgroup G, for x be the set of all elements

x of G such that xx = x-

Let Y be the set of all pairs (K, S), where K is the stability subgroup Gx for

some element x of Ñ, and where 5 is an irreducible unitary representation of K

whose restriction to N is a multiple of x-

Mackey's result asserts that the inducing map /, which sends an element (K, S)

of Y to i/s, is onto the dual space G of G. Further, there is a precise equivalence

relation = on Y such that I(K, S) = I(K', S') if and only if (K, S) = (K', S'). The

relation = is, again roughly speaking, that (K, S) and (A", 5") are conjugate under

some inner automorphism of G.

Received by the editors February 24, 1967.

(l) This paper is the major portion of the author's doctoral dissertation which was completed

at the University of Washington in 1966 under the direction of Professor J. M. G. Fell.

The author wishes to express his thanks to Professor Fell for his patient and persistent

advice.

175



176 LAWRENCE BAGGETT [June

Thus, if G and N satisfy some technical assumptions, we may "catalogue" the

elements of G by means of "cataloguing pairs" (the elements of Y). These catalogu-

ing pairs are "group theoretic" parameters, and the question arises whether we

may describe the topology of G in terms of this cataloguing.

Now the cataloguing pairs are special kinds of "subgroup-representation pairs."

A subgroup-representation pair is a pair (K, S), such that A is a closed subgroup

of G and 5 is a unitary representation of K. In [7], J. M. G. Fell has defined a

topology on the space of all subgroup-representation pairs. We come now to a

conjecture.

Conjecture 1. The dual space G is homeomorphic to the quotient space obtained

from the set of all cataloguing pairs, considered as a subspace of the space of all

subgroup-representation pairs, modulo the equivalence relation = mentioned

above. This conjecture is false. (See 10.1-D.)

Here is a more sophisticated conjecture.

Conjecture 2. Suppose (K, S) is a cataloguing pair for an element W of G,

and suppose B is a subset of G. Then, W is contained in the closure of B if and

only if there exist a subgroup-representation pair (J, T) and a net [(Ja, Ta)] of

cataloguing pairs which satisfy:

(i) For each a, the pair (Ja, Ta) catalogues an element of B.

(ii) The net [(Ja, Ta)] converges to (J, T) in the space of all subgroup-

representation pairs.

(iii) y is a subgroup of K, and the representation KUT, i.e., the representation of

K induced from T, weakly contains S1.

We prove the truth of Conjecture 2 in the special case when N is abelian and G

is the semidirect product of N with either an abelian group or a compact group.

These are our main theorems. (See Theorems 3.3 and 6.2-A.)

Fell, in [6, Theorem 4.3], has shown the truth of Conjecture 2 in the special

situation where there exists an element \ of Ñ such that, for each element x of

Ñ not equal to y', the stability subgroup Gx for y is A itself. Also, in this connection,

Professor Fell has made use of a theorem of J. Glimm, Theorem 2.1 of [9], and has

shown the truth of Conjecture 1 in the following special case.

Let M be the subset of Ñ on which the function which sends an element \ to

its stability subgroup Gx is continuous. Define GM to be the subset of G consisting

of those elements W which can be catalogued by elements (K, S) where S\N is a

multiple of some element of M. Then Conjecture 1 is true if we restrict down to the

subset GM of G. This result is stated precisely in 6.4.

In §1 we present the background material and notation which will be used in this

paper. Some propositions, which can not be referred to specifically in the literature,

are proved here. §§2 through 6 are devoted to the specific development toward

and proof of our main theorems. The last sections contain assorted side effects

and interesting consequences of the main results. If G is a locally compact group

whose dual space is a Hausdorff space, then it has been conjectured that G must
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be the direct product of anabelian group and a compact group. In §10.3 an example

is given which shows that this conjecture is false.

We introduce here the following conventions in notation,

(i) If A' is a locally compact topological space, then L(X) denotes the linear

space of all continuous complex-valued functions with compact support on X.

(ii) If/is a function on a set X, and if Z is a subset of X, then/|z denotes the

restriction of the function/to the subset Z.

(iii) Nets and sets will be indicated by square brackets instead of braces, as in

the net [Ta] or the set of all [s,].

(iv) We write e for the identity of all groups. Whenever any confusion could

arise, we will be precise.

(v) A topological group Gis called separable if, as a topological space, G satisfies

the second axiom of countability.

(vi) If H is a Hubert space, we denote the inner product in H by ( , )H. If E is

a normed linear space, let ||    ||E denote the norm in E.

1. Preliminaries.

1.1-A. If G is a locally compact group, then there exists a norm on the linear

space L(G) (equipped with the usual convolution and involution) for which the

completion of L(G) with respect to this norm is a C*-aIgebra called the group

C*-algebra and denoted by C*(G). Further, there is a one-to-one equivalence-

preserving correspondence between the set of all unitary representations of G

and the set of all nowhere trivial star-representations of C*(G). There is induced

therefore a one-to-one correspondence between the points of the dual space G

of G, i.e., the set of all equivalence classes of irreducible unitary representations

of G, and the points of the dual space [C*(G)]~ of C*(G), i.e., the set of all equiv-

alence classes of irreducible star-representations of C*(G).

Remark. For purposes of simplicity, we often think of the elements of a dual

space as being irreducible representations, although this is not logically correct.

In [3], Fell has defined the notion of "weak containment" for star-representations

(unitary representations). Then the hull-kernel topology on the dual space can be

defined as follows. (Theorem 1.2 of [3].)

Let W be an element of G ([C*(G)D and let B be a subset of G ([C*(G)P).

Then W is contained in the closure of B if and only if W is weakly contained in B.

1.1-B. Definition. A locally compact group G is called an R-group if the left

regular representation R of G weakly contains each irreducible unitary repre-

sentation of G.

Remark. Abelian and compact groups are /?-groups.

1.1-C. Definition. Suppose G is a locally compact group and let N be a closed

normal subgroup of G. Denote by K the quotient group G/N. A mapping p of K

into G is called a cross-section of K into G if:
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(i) For each y in K, p(y) belongs to the coset of N which y determines,

(ii) p effects a Borel isomorphism of K and p(K).

(iii) If C is a compact subset of K then p(C) has compact closure in G.

Theorem. Let G, K, and N be as in the definition above, and assume that G is

separable. Then, a cross-section p of K into G always exists.

See Proposition 1 of [13].

1.2-A. Suppose G is a locally compact group and suppose A is a closed subgroup

of G. If S is a unitary representation of K, we define the induced representation Us

(the representation of G induced from S) to be the following unitary representation

of G.

The Hilbert space H(US) of Us consists of all functions/on G into 77(5) which

are locally Bochner measurable (see [2]) and which satisfy the following three

conditions.

(i) If x is in G and k is in K, then

f(xk) = [UkyUk^S^iñx)).

(8K and 8G refer to the modular functions on K and G respectively.)

(ii) The map jc->- ||/(jc)||h(S) is locally summable on G.

Before stating condition (iii), we make the following remark. If / and g are

locally Bochner measurable functions on G into H(S) which satisfy (i) and (ii)

above, then it can be shown that the pair (/ g) defines a regular complex-valued

measure A/iS on the locally compact Hausdorff space G/K of left cosets of K. In

fact, as a linear functional on L(G/K), A/9 acts as follows. Let h be in L(G/K).

Then there exists an element /?' in L(G) such that, for all elements x in G,

h(xK) = f h'(xk) dk.
Jk

Then A/,g(«) = |G h'(x)(f(x), g(x))mS) dx.

It turns out that A/>g(A) is independent of the choice of the element «' of 7.(G).

We may now state condition (iii).

(iii) The measure XfJ has finite total mass.

The inner product in H(US) is given by:

(/,/jW> = A,.,(G/tf).

Finally we define the action of Us on G. If x and y are in G and/is in H(US),

put

[W)]00=/0'-1*).

1.2-B. Now let A7 be a closed normal subgroup of G, and let y be an irreducible

representation of N whose space 77(y) is a separable Hilbert space. Assume further

that a cross-section p exists from G/N, which we call K, into G. (If G is not separable,

assume for convenience that p is actually continuous.)
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Theorem. The induced representation Ux is equivalent to the representation T

defined as follows.

H(T) is the Hilbert space L2(K, H(x)), i.e., the space of all functions h on K into

H(x) which satisfy:

(i) For each vector q of H(x), the map k -*■ (h(k), q)mx) is locally measurable

onK.

(û)}K\\h(k)\\2mx)dk is finite.

The action of T is given as follows. If k and I are in K, n is in N, and h is in

L2(K, H(x)), then

[TP(k)n(h)](l) = Xwir'-pmn^k-hÄKk-H)].

For a proof, see §1.2 of [1].

1.2-C. Again let G be a locally compact group and let / and K be closed sub-

groups of G such that 3 contains K. Then, if S is a unitary representation of K,

we may form the representation of 3 induced from S. In case of confusion, we

indicate the group on which an induced representation acts by a subscript to the

left. For example, the representation of 3 induced from 5 is written }US.

1.2-D. Let G and K be as above. Assume that T is a representation of G and S

is a representation of K. Then T ® Us is equivalent to t/[T|K®S] (see Lemma 4.1

of[l]).

1.2-E. Proposition. Suppose that G and K are as in the above and suppose that

N is a normal subgroup of G which is contained in K. Let v be the natural mapping

of G onto G/N, and let S be a representation of K/N. Then

Us'" is equivalent to [<.GiN)Us]-Tr.

Again we sketch a proof. We need the following lemmas. The overall hypotheses

for the first three lemmas are : N is a closed normal subgroup of the locally compact

group G. 77 denotes the natural mapping of G onto G/N. If X is a locally compact

group, then 8X denotes the modular function on X.

Lemma 1. We may fix the left Haar measures on G, N, and G/N such that for each

finL(G),

f f(y)dy=  f       f f(yn)dndn(y).
Jg J(GiN) Jn

For the proof, see §33 of [12].

Lemma 2. If x is an element of G, then there exists a positive number d(x) such

that:

Iff is in L(N), then

f /(xnx"1) dn = d(x) f f(n) dn.
Jn Jn
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The proof follows from the uniqueness of left Haar measure, up to a multipli-

cative constant, on N.

Lemma 3. If x is in G, then

SG(x) = d(x)S(GIN)(iT(x)).

Proof. Let /be in T,(G). Then

*a(x) f /(y) dy =  f f(yx ~1)dy=  f       f f(ynx ~ 0 dn My)
Ja Ja J<aiN) Jn

— f(yx~1xnx~1) dn d-rr(y)
J(c/jV) Jn

= d(x)\       f /(yx-^dnMy)
J(gin) Jn

= d(x)S,Gm(tr(x)) f(yn) dn dtr(y)
J(.aiN) Jn

= d(x)8WIN)(7r(x)) J f(y) dy.

Now the lemma follows from the arbitrariness off.

Lemma 4. Now assume the hypotheses of the proposition. Then ifk is in K,

[8K(k)ßG(ky] = [W4))/W«

This follows from Lemma 3.

To prove the proposition, we need to set up a linear isometry of H(Ustr) and

77([(G;¡v)í/s]f). The latter Hilbert space consists of functions on G/N into 77(5),

while the former Hilbert space consists of functions on G into 77(5). Thus if/

is in H([(GIN)Us]tt), define 6(f) as follows: If x is in G, then [6(f)](x)=f(rr(x)).

To show that 6 is in fact the intertwining operator we want, we first must show

that 0(f) is in H(USn). Clearly the measurability and summability requirements are

satisfied. Lemma 4 is what is needed to show that condition (i) of 1.2-A is satisfied.

Notice that the measures \fJ and A[9(/)-8(/)] act on the same measure space G/K,

and as linear functionals on L(G/K), XtJ and A[9</)>9(/)] are identical.

One final comment should be made to verify that 0 is onto H(US"). This follows

because, if« is an element of TV, then oG(n) = 8K(n) = 8N(n). Hence we may show that

0 has an inverse which is defined on all of H(US").

1.3. We come now to a brief discussion of the cataloguing of elements of G by

means of subgroup-representation pairs. These results are essentially due to

Mackey in [13]. We fix a locally compact group G and a closed normal subgroup

TVofG.

1.3-A. If x is in G and % is an irreducible representation of TV, define x% to be

the following representation of N. If n is in TV, put [xx]n = xix-1nx¡-
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Thus G acts to the left as a group of continuous transformations on Ñ. If x is

in Ñ, let the stability subgroup Gx for x he the set of all elements x of G such that

xx = X-

Definition. The normal subgroup N is said to be regularly imbedded in G if,

for each element x of Ñ, the natural mapping of G/(GX) onto the orbit (under G)

of JVto which x belongs is a homeomorphism. (See [10].)

1.3-B. We want now to state two inequivalent sets of hypotheses of the pair

(G, N) with which we will deal simultaneously in the following sections.

1. N is abelian and G/N is compact.

2. G is separable, N is of type I, and A' is regularly imbedded in G.

When case 2 holds, then, by Theorem 1.1-C, there exists a cross-section p of

G/N into G. Henceforth we assume that, if 1 holds and 2 does not hold, there exists

a continuous cross-section of G/N into G.

1.3-C. Now assume that (G, N) satisfies 1 or 2 of B above. Let 7be an irreducible

representation of G. Then there is an orbit 8T (under G) of Ñ which is canonically

associated with the representation T. Further, if x is an element of Ñ, then T\N

weakly contains x if and only if x belongs to the closure of the orbit 8T.

In case hypotheses 2 hold, this is a combination of theorems of Mackey in [13]

and Fell in [6]. This procedure can be generalized in a straightforward manner to

cover the case when hypotheses 1 hold.

1.3-D. Continue to assume that (G, N) satisfies 1 or 2 of 1.3-B.

Proposition 1. Let T be an irreducible unitary representation of G and let 8

be the orbit of Ñ with which T is associated. Suppose x is an element of 8. Then T is

equivalent to a representation of the form Us, where S is an irreducible unitary

representation of the stability subgroup Gxfor x and S\N is a multiple ofx-

See [13].

Proposition 2. Let T and 8 be as in the above proposition. Assume x and </> are

elements of 8, i.e., tfi = xxfor some element x ofG. Suppose further that Tis equivalent

to Us, where S is an irreducible representation of Gx and S\N is a multiple of x,

and T is equivalent to Us', where S' is an irreducible representation ofG$ and S'\N

is a multiple of </>■ Then :

(i) Gll/ = xGxx~1.

(ii) S' is equivalent to the representation Sx defined by: if z is in Gé, put

Sz   =  Síx-¡zx].

See [13].

Proposition 3. Let x be an element ofÑ and let S be an irreducible representation

of Gx whose restriction to N is a multiple ofx- Then Us is irreducible.

Again, see [13].
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Definition. If x is an element of TV, let GJ denote the set of all irreducible

unitary representations 5 of the stability subgroup Gx for x which satisfy S\N is

a multiple of x-

1.3-E. Definition. An orbit 0 is accommodating if, for each element x of 0, there

exists a unitary extension of y to its stability subgroup Gx, i.e., there exists a unitary

representation x of Gz such that x'\n = x-

Proposition. Assume (G, TV) satisfies one of the sets of hypotheses of 1.3-B. Let

0 be an accommodating orbit of TV and let x be an element of 0. Denote by n the

natural mapping of Gx onto (Gx)/N. Then the mapping T —>- [y/ <8> T- tt] is a one-to-

one equivalence-preserving correspondence between [(Gx)/N]~ and Gf. (Here, y/ is

the unitary extension of x guaranteed by the definition of"" accommodating''''.)

See [13] and [15].

1.4. In the last section we have seen that the elements of G can be catalogued,

under certain technical conditions, by means of pairs (K, S), where K is the stability

subgroup Gx for some element x of TV, and where 5 is a particular kind of irreducible

unitary representation of K. We present next a discussion of the topology on the

space of all such pairs, as given by Fell in [7].

1.4-A. Let G be a locally compact group. By Jf(G) we mean the space of all

closed subgroups of G equipped with the compact-open topology. (§2 of [7].)

Definition. By a smooth choice of left Haar measures on Jf (G) we mean an

assignment K-> \K of a particular left Haar measure \K to each closed subgroup

A of G in such a way that, if/is in L(G), then the mapping A-> \Kf\K dXK is

continuous on Jf(G).

Smooth choices always exist (see the appendix to [9]).

Proposition. If G is compact, then a smooth choice for Jf(G) is the assignment

of normalized Haar measure to each subgroup K of G.

The proof follows from the existence of some smooth choice together with the

fact that the function which is identically 1 is in 7.(G).

1.4-B. Now let Z be the subset of X(G)x G consisting of those pairs (K, x)

such that x is contained in K. Z is locally compact and Hausdorff, and the linear

space L(Z) can be given an algebraic structure (involving convolutions on the

subgroups of G) in such a way that it becomes a normed star-algebra. The C*-

completion of this star-algebra is called the subgroup-C*-algebra and is denoted

C*(G).

Definition. Let s#(G) denote the set of all pairs (K, T) where A is a closed

subgroup of G and T is an irreducible unitary representation of K.

Proposition. The irreducible star-representations of C*(G) are in a natural

one-to-one correspondence with ¿¡4(G).
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See §2 of [7].

Thus we may topologize sá(G) by transferring the hull-kernel topology of

[C*(G)r to jf(G).
1.4-C. In this paragraph we introduce a more useful description of the topology

ofsá'G).

Let & be the set of all functions / which satisfy :

(i) The domain off is a closed subgroup of G.

(ii) /is complex-valued and continuous on its domain.

In §3 of [7], Fell has defined a topology on $>.

Definition. The Fell topology on 3F is that topology, convergence in which is

defined as follows. Let [fa] he a net of elements of &. For each n, let Ka be the

domain of/a. Let/be in ¡F and denote by K the domain off. Then the net [/"]

converges to/in the Fell topology if and only if the following two conditions hold.

(i) The net [A"a] converges to K in Jf(G).

(ii) For each subnet [fa\ of the net [fa], and for each net [kb] of points of G

such that, for each b, k" is an element of Ka" and such that the net [kb] converges

to an element k of K, the net of complex numbers [fab(kb)\ converges to f(k).

Now in §3 of [7], Fell describes the topology on j¡sí(G) in terms of the elements of

!F and in terms of the Fell topology on !F. Here is one consequence of that

description.

Theorem. Let [(Ka, Sa)] be a net of elements of ¿é(G) and let (K, S) be an

element of stf(G). Assume that, for some function of positive type f associated with

S, there exists a net [fa] of functions which satisfies:

(i) Eachf is a finite sum of functions of positive type associated with Sa.

(ii) The net [fa] converges to fin the Fell topology of^.

Then the net [(Ka, Sa)] converges to (K, S) in j#(G).

Remark. This theorem is the tool by which we show convergence of a net of

subgroup-representation pairs in our main results.

1.4-D. Here are some propositions about the topology of jtf(G).

Proposition 1. Let [(Ka, Sa)] be a net of elements of s/(G) which converges to

an element (K, S). Further, suppose that, for each a, the representation U'-sa) is

irreducible. Then the net [Ulsa)] converges to each element W of G which is weakly

contained in Us.

The proof of this follows on applying Theorem 4.2 of [7] to each subnet of the

net [(Ka, Sa)].

Proposition 2. Suppose the net [(Ka, Sa)] converges to (K, S), and suppose the

net [(Ka, T")] converges to (K, T) in sá(G). Further, suppose that, for each a,

Sa ®Ta is irreducible, and suppose that S (g) T is irreducible. Then the net

[(Ka, Sa <g> Ta)] converges to (K, S®T) in sé(G).
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The proof follows easily from the description of the topology on -^/(G) in terms

of the Fell topology on &.

Proposition 3. Assume that N is a closed normal subgroup of G and denote by

■n the natural mapping of G onto G/N. Suppose that [Ka] is a net of elements of

■A'(G) such that, for each a, Ka contains N. Let K be a closed subgroup of G which

contains N. For each a, let Ta be an irreducible representation of the quotient group

Tr(Ka), and let T be an irreducible representation ofn(K). Then the net [(Ka, Ta-ir)]

converges to (K, T-n) in rJ(G) if and only if the net [(tt(K"-), Ta)] converges to

(tt(K), T) in .i/(G//V).

Again the proof follows immediately from the definitions.

Proposition 4. Suppose G is a compact group. Let [Ka] be a net of elements of

.'MT(G) which converges to the subgroup K. For each a, let f be a continuous complex-

valued function on Ka, and assume that the net [/"] converges in the Fell topology

to a function f on K. Then the net of complex numbers [for«)/0] converges to \Kf.

(Here all integrals are taken with respect to normalized Haar measure.)

This follows from Proposition 3.3 of [7] and from 1.4-A above.

1.5-A. Proposition I. Let (G, N) satisfy 1 of 1.3-B. Suppose T is an irreducible

representation of G and let 0 be the orbit of TV with which T is associated. Assume

further that 0 is accommodating. Then T is contained as a direct summand in Ux

for each element x of 0.

See Theorem 4.1-Bof [1].

Proposition 2. Let (G, N) satisfy 2 of 1.3-B and assume that G/N is an R-group.

Let T be an irreducible representation of G and let 0 be the orbit of TV with which T

is associated. Then T is weakly contained in U' for each element x of 0.

See Theorem 4.1-A of [1].

1.5-B. Theorem. Let (G, TV) satisfy I of 1.3-B and denote by K the group G/N.

Then:

(i) Each of the representations U', for y in Ñ, acts in L2(K).

(ii) If fis in C*(G), then the mapping x   > U) is continuous on TV into the C*-

algebra of bounded operators on the Hilbert space L2(K) with respect to the norm

topology of the operators.

The proof is straightforward.

Theorems on the Topology of G

2. The semidirect product.

2.1. Let N and K be locally compact groups, and suppose Z is a homomor-

phism of K into the group of automorphisms of TV such that the  mapping
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(n, k) -> [Z(k)](n) is continuous on N x /Tonto N. For simplicity, we write the action

of the automorphism Z(k) on an element n of N as kn.

2.1-A. Definition. The semidirect product N * K of the groups N and K is to

mean the following locally compact group.

The underlying topological space is Nx K.

Multiplication in N * K is given as follows:

(n,k)(m,l) = ((n + k-m),kl),

where we write the operation in N as plus and the operation in K as times.

2.1-B. Let G be the semidirect product N * K. Then Wean be homeomorphically

and isomorphically identified with the closed normal subgroup of G consisting of

all pairs (n, e), where n is an element of N. Also, K is homeomorphic and iso-

morphic to the closed subgroup of G consisting of all pairs (0, k), where k is an

element of K. (We write 0 for the additive identity of A', e for the multiplicative

identity of K, and (0, e) for the identity of G.)

In certain situations, we will make the above identifications.

Observe that G/N is isomorphic and homeomorphic to K.

The right Haar measure for G can be taken as the product of the right Haar

measures for N and K.

2.1-C. We denote the modular functions for N, K, and G by 8iV, oK, and S0

respectively.

To each element k of K there corresponds a positive number d(k), such that, if

A is the right Haar measure for N, and if V is a Borel subset of N, then

X(kV) = d(k~1)X(V).

The mapping k -> d(k) is a continuous homomorphism into the group of

positive real numbers, and we have

oa(n,k) = 8N(n)SK(k)d(k-1).

Proposition. If N is unimodular and K is compact, then G is unimodular.

This follows because d(K) is a compact subgroup of the positive reals, hence the

set containing only the number one.

2.1-D. Proposition. Any closed subgroup of G which contains N is of the form

N * 3 where 3 is a closed subgroup of K. Further, a net [3a] of closed subgroups of K

converges to a subgroup 3 in Jt"(K) if and only if the net [N * (/a)] of subgroups of G

converges to the subgroup N*3 in Jf(G).

Proof. Let tt be the projection of G onto K. Then the proof of the proposition

follows from the continuity and openness of it, together with the fact that, for each

compact subset Y of K, there exists a compact subset Y' of G such that tt( Y') = Y.

2.2-A. Definition. If n is an element of A', we define the neutral group 3n for

n as the set of all elements k of K such that k-n = n.
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Proposition. The neutral group J(n+m) contains the intersection of the neutral

groups Jn and Jm.

2.2-B. Proposition. Let [na] be a net of elements of TV which converges to an

element « of N. Suppose that Jin") is the neutral group for na, and suppose that the

net [/(„<>)] converges to a subgroup J in JT(K). Then J is a subgroup of the neutral

group Jnfor n.

Proof. Let k be an element of J. We will show that kn = n. From the definition

of the topology of $~(K), we know that there exists a subnet [/(n0",] of the net

[/(„<>)], and a net [kb] of elements of K such that:

(i) For each b, k" is contained in /(„«",.

(ii) The net [kb] converges to k.

Hence the net [kb ■ («"")] converges to kn. But by (i), the net [nab] converges to

kn. Since TV is Hausdorff, the net [nab] can only converge to the point «. Thus

n = kn.    Q.E.D.

Remark. The mapping « -> Jn is not in general continuous, but the proposition

above shows that a certain semicontinuity prevails.

2.3. We turn our attention to the special case when G is the semidirect product

TV * K and TV is abelian.

2.3-A. In the presence of the semidirect product structure, the existence of a

cross-section p of K, which equals G/N, into G is apparent: p(k) = (0, k).

In this case p is a continuous isomorphism of K into G and p clearly satisfies the

conditions in 1.1-C.

If x is an element of G, we wish to write x in its unique canonical form x=p(k)n,

so that we may apply the formulae in 1.2-B.

Thus, if x = (n, k), then

x = (0, ky(k-ln, e) = p(k)(k-1-n).

(Here we have made the identification of TV with the subgroup of G consisting of

all pairs of the form (m, e) for m in TV.)

Now we assume, in addition to the commutativity of TV, that G and TV satisfy

one of the sets of hypotheses in 1.3-B. In our present context, we may state these

hypotheses as follows:

1. G/N, which equals K, is compact.

2. G is separable and TV is regularly imbedded in G.

2.3-B. If x is in TV, i.e., y is an irreducible representation (character) of TV, then

the representation Ux acts in L2(K). (See 1.2-B for what follows.)

Thus, if x, which equals (n, k), is in G, « is in L2(K), and / is in K, we have:

[Ux(h)](l) = [C/^kxfc-i. „,](«)](/) = Xipar1v(k)(k-1-n)pík-1mh(k~10

= Xuo,r1kxk-1.n.exo.k-1nMk~1r) = X<r1n.«A(*~1J)

= Xa-i-nMk-1!).



1968] TOPOLOGY ON THE DUAL SPACES OF CERTAIN GROUPS 187

(Here again we have thought of N as being identified with the subgroup Nxe of

G, and we have let x act on elements of N and pairs (m, e) without comment.)

2.4-A. Proposition. Each element k of K defines an automorphism Z'k of Ñ,

namely:

If X is in Ñ, define Zk(x) of N as follows:

[K(x)]n = Xifc-'n).

2.4-B. Let x be a character of N. Recall the definition of the stability subgroup

Gx of G for x: Gx equals the set of all (n, k) in G such that

XKn.kr^m.eXn,*)]  = Xm

for all elements m of N. (See 1.3-A.)

Thus Gx equals the set of all (n, k) in G such that Xoc-1 m>=Xm f°r all m in N.

Hence we see that the neutral group 3X for x (see 2.2-A) is the intersection of K

with the stability subgroup Gx for x- Further, GX = N * (3X).

2.4-C. Let x be in Ñ.

Proposition. There exists a unitary representation x of the stability subgroup

Gxfor x which extends x, i-e-, x'\n = X-

Proof. If (n, k) is in Gx, define x<n,M as Xn-

Remark. The above proposition asserts that every orbit 8 of Ñ is accommodating.

2.4-D. As usual, denote by n the natural mapping of G onto K and also denote

by 77 the restriction of that natural mapping to any closed subgroup of G which

contains N.

Definition. By a cataloguing triple we mean a triple (x, 3, T), where x is a

character of A*", 3 is the neutral group 3X for x, and T is an irreducible unitary repre-

sentation of 3.

Definition. If (x, /, T) is a cataloguing triple, let W(x, 3, T) be the element of G

determined by the representation uix'®T'*'>, where x is the unitary extension of x

constructed in C above.

Remark. In order for this definition to be valid, we must be sure that i/u'®T'I)

is irreducible. But this follows from C above and 1.3-E.

Proposition. The mapping (x, /, T) -> W(x, 3, T) is onto G.

Proof. Let W be in G. Then by Proposition 2 of 1.3-D there exists a character

X of N and an irreducible representation S of the stability subgroup Gx such that

Wis determined by the representation Us, i.e., Us is contained in the equivalence

class W. Then by 1.3-E the representations S which occur as in the preceding

sentence can be assumed to be of the form S=x <8> T-n, where x is the extension

of x constructed in C above and where T is an irreducible representation of GJN,

which equals 3X. But this says that W is equal to W(x, 3, T).   Q.E.D.



188 LAWRENCE BAGGETT [June

2.4-E. Suppose (x, 3, T) and (x, /, S) are cataloguing triples such that T and S

are equivalent. Then W(x, 3, T) equals W(x, 3, S). Hence we may think of the

elements of G as being catalogued by triples (x, 3, T'), where x is a character of

N, 3 is the neutral group 3X, and T is an element of 3. Further, we may think of

the triple (x, 3, T') as (x, (3, T')), where x is an element of Ñ and where (3, T')

is an element of the subgroup-representation space j¡/(K).

Hence, we have catalogued the members of G by elements of the topological

space Ñ x stf(K). We want to relate the topology of G with the topology of these

parameters.

2.5. We are now ready to prove the easier half of our main results.

2.5-A. Let [xa] be the net of characters of N which converges to the character

X in Ñ. Let the net of pairs [(3a, Ta)] converge to the pair (3', T) in sé(K), and

suppose that, for each a, 3a is the neutral group 3lx*> for xa. Denote by 3 the neutral

group 3X for x- By 2.2-B, /' is contained in /.

2.5-B. We preserve the notation of A above.

Theorem. The net [ W(xa, (3a, Ta))] converges to every element W(x,(3,S)) of

G such that the element S of 3 is weakly contained in ]UT.

Proof. We let -n be the natural mapping of G onto G/N, and we write 77 for the

restriction of this natural mapping to any closed subgroup of G which contains yV.

Let xa denote the extension of x" to its stability subgroup G(/, (2.4-C) and let

X be the extension ofx to its stability subgroup Gx. Then:

1. The net of pairs [(G(x«), xa')] converges to the pair ((N*3'), x'lw./o) m

s/(G). This follows immediately from the description of the topology of s/(K)

in terms of the Fell topology.

2. The net of pairs [(Ga°), (Ta ■ n))] converges to the pair ((N*3'), (T-tt)) in

sf(G) (Proposition 3 of 1.4-D).

3. The net of pairs [(G(I°), (x"' ® (Ta-77)))] converges to the pair ((N * 3'),

(x'\(nt) <8> (T-rr))) in sf(G) (Proposition 2 of 1.4-D and 1 and 2 above).

4. The net [W(xa, (3a, Ta))], which is determined by the net [(7(*0'®<r""»],

converges to every element W of G such that W is weakly contained in the repre-

sentation £/[A*./ .®<r-»)j (Proposition 1 of 1.4-D).

Hence our theorem depends on the analysis of the representation Ulx'^»"^e>(T'mi.

But r/bV"->®<r-»» is equivalent to t7Dt'®[<o»)c'T"']], by 1.4-D, which is equivalent

to uu&ijUTi-xn^y 1.2-E.

Now, if S is an irreducible representation of 3 which is weakly contained in

jUT, then Ux'®s-" is weakly contained in f/I*'®ttjl?,>*B. (Compare Theorem 1 of

[8].) Hence the net [W(xa, (3a, Ta))] converges to every element W(x, (3, S)) such

that S is weakly contained in jUT.   Q.E.D.

Remark. This is half of a theorem which describes the topology of G in terms

of the topology of the cataloguing triples. There are no conditions on K in this



1968] TOPOLOGY ON THE DUAL SPACES OF CERTAIN GROUPS 189

theorem other than our general sets of hypotheses (see 1.3-B). To prove the other

half of this theorem, we will need to make some restrictions on K.

3. The special case when K is abelian.

3.1. In this section we prove a theorem which is complementary to Theorem

2.5-B in the special situation where G is separable, TV and K are both abelian, and

TV is regularly imbedded in G. (See Theorem 3.3.) However, we present first some

very general constructions which will be needed in later sections as well as

throughout §3.

3.1-A. Throughout subsection 3.1 we do not require that G be the semidirect

product TV * K, but we merely require that G and N satisfy one of the two sets of

hypotheses in 1.3-B, and we require that G/N, which we shall denote by K, be an

7?-group (see 1.1-B).

Suppose W is an element of G which is contained in the closure of a subset B

of G. Let [Wa] be a net of elements of B which converges to W in G. Suppose x

is an element of TV which is contained in the orbit with which W is associated.

Then W\N weakly contains x by 1.2-C. Hence, by Theorem 3.2 of [7], there exists

a subnet [rVab] of the net [Wa] and, for each b, there exists an element xb of Ñ

such that :

(i) The net [yb] converges to x-

(ii) For each b, (Wa")\N weakly contains xb-

In view of the fact that each y" is contained in the closure of the orbit 0„ with

which Wa" is associated, we may actually choose the net [xb] such that:

(iii) For each b, xb is contained in the orbit of TV with which Wa" is associated.

Hence,

(iv) For each b, Wa" is contained in Ulxb). ((iv) follows from the propositions in

1.5-A.)

3.1-B. We maintain the same notation as developed in A above. Now the net

[G,/,] of stability subgroups for the elements [xb] is a net in the compact Hausdorff

space Jf(G). Therefore we may choose a subnet [G(/c,] of the net [G(/,] such that

the net [G(^c,] converges to some unique subgroup G' of G.

3.1-C. Proposition. Assume that G and N satisfy hypotheses I or 2 of 1.3-B

and assume that G/N is an R-group. Let W be an element of G which is contained in

the closure of a subset B ofG. Let x be an element of Ñ which is contained in the orbit

of TV with which W is associated. Then there exists a net of pairs [( Wa, ya)] such that :

(i) Each element Wa is contained in B, and the net [ IVa] converges to W in G.

(ii) For each a, xa is an element of TV which is contained in the orbit of TV with

which Wa is associated, whence, (Wa)\N weakly contains xa-

(iii) For each a, IVa is weakly contained in Ui%a) and W is weakly contained in Ux.

(iv) The net [ya] converges to x in TV.

(v) The net [G(x«)] of stability subgroups for the elements [xa] converges to a

subgroup G' of G.
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Remark. The subgroup G' mentioned in property (v) is not in general the

stability subgroup Gx. Yet, this is precisely the difficulty we overcome in some

special cases in this paper.

The proof of this proposition is contained in A and B above.

3.2. We present two propositions in this subsection, one a very general result

which has particular application to the problem to be considered in this section

and the other a special proposition relating to the present situation.

3.2-A. Let G be an arbitrary locally compact group, and let TV be a closed normal

subgroup of G such that G/N, which we call K, is an 7?-group. Denote by n the

natural mapping of G onto K.

Proposition. Let T be an irreducible representation of G. Then T is weakly

contained in UiTl»\

Proof. U(Tín} equals [/<t|n®", where 7 is the trivial one-dimensional represen-

tation of TV. Thus Um«y is equivalent to T ® (U!) by 1.2-D.

But 7 equals /'•«•, where 7' is the trivial one-dimensional representation of the

one-element subgroup of K. So, by 1.2-E, U' is equivalent to [kU'']tt. Thus

£/(r|j»> is equivalent to T ® [[*£/''] •"■]• Now since Ais an 7?-group, KUr, which is

the regular representation of K, weakly contains the trivial one-dimensional rep-

resentation 7" on K. Therefore, observing that I"-it is the trivial one-dimensional

representation I'" of G, we have

t/(rU> weakly contains T <g> F,

and this latter representation is precisely T. This completes the proof.

Remark. The proof in the separable case follows from Corollary 1, p. 260,

of [6].

Corollary 1. Let G be an R-group, N any closed normal subgroup and T any

irreducible representation of G. Then T is weakly contained in U{T¡"\

This follows because G/N is an 7?-group.

Corollary 2. Let J be an abelian group. If<f> is a character ofJ and K' is a closed

subgroup of J, then </> is weakly contained in Í/'*1* ■).

3.2-B. Now assume that G and TV satisfy hypotheses 2 of 1.3-B. Further, let G

be the semidirect product N * A of two abelian groups. Then G/N, which equals K,

is an abelian group, and hence an 7?-group (1.1 -B).

Let T be an irreducible representation of G, 0 the orbit of TV with which T is

associated, and x an element of 0. Write y/ for the unitary representation of the

stability subgroup Gx for y (2.4-C). Let Jx denote the neutral group for y. Then,

by 1.3-E, there exists an irreducible representation <f> of Jx such that Tis equivalent

to uix'<s<"'\ where </>' is the irreducible representation of Gx lifted from <p as follows:

</>'inJ) = fa, where («, j) is in Gx, whence j is in Jx.
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Of course in this case </> is a character of the abelian group 3X, and the repre-

sentation x <8> 41' acts as follows :

If (n,j) is in Gx, then (x' <g </>'\nj) = Xn4>j-

3.2-C. We preserve the notation in B above.

Proposition. T\u¡¡) is a multiple of the character </>. (This is a special case of

Mackey's "restriction theorem." See [13].)

Proof. We prove the  assertion  for  the  equivalent  representation   {/<*'«*'>,

i.e., we prove that U<-x'^'""l\Ux) is a multiple of the character </>.

The proof hinges on the following property of the functions / in the space of

£/(x'®*')

If (n, k) is in G, (m,j) is in Gx, and/is in H(Uix'®*'"'), then using property (i) of

1.2-A and 2.1-C,

f[(n,k)(m,j)] = [8<Gx)(m,j)/8a(m,j)Y'2(x'®<l>\mjrb(f(rik))

- [h(m)8Ux)(j)d(j-í)/8N(m)8K(j)d(j-í)Yl2(x' (g f )<„,.,->(/(«, *))

= X-tA<j-hAn,k).

Now recalling how jy <*'«*'> acts, we have:

If/is in 7/(t/(Jt'®'*'>), (n, k) is in G, and y is in 3X, then

W*"\mn, k) = /[(0, j - lX», k)] = f(j -1 • n, j - lk)

= f[(0J-ík)(k-í-n,e)] = *_*-'. niAO,*/-1)

= Xi-H-i.nMWPJ-1)] = Xi-k-i-nihmk) = </>,f(n,k).

Hence, Ujx'<s*') equals </>,- times the identity operator, and the proposition is

proved.

3.3. Continue to assume that G and N satisfy hypotheses 2 of 1.3-B and that G

is the semidirect product of two abelian groups N and K. Recall from 2.4-E that

each element WofG can be catalogued by a triple (x,(J, T)), where x is a character

of N, 3 is the neutral group 3X for x, and T is an element of 3. (In the present

instance, T is actually a character of 3.)

Theorem. Let B be a subset of G and W an element of G. Then W is contained

in the closure of B if and only if there exist : a cataloguing triple (x, (3, </>)) for W,

a net [(xa, (3a, </>a))] of cataloguing triples, andan element (K', ifi) ofs>i(K), such that:

(i) The net [(xa, (3a, </>a))] converges to the triple (not necessarily a cataloguing

triple) (x, (K1, 0)) in Nxs/(K).

(ii) K' is a subgroup of 3.

(iii) jU* weakly contains </>.

(iv) For each a, W(xa, (3a, </>"■)) is in B.

(See 2.4-D for the meaning of W(xa, (3a, </>a)).)
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Proof. 3.3-A. If the cataloguing triples (x, (J, <f>)) and [(xa, (Ja, fr))] and the

element (A', <]>) can be found so that properties (i)-(iv) are satisfied, then Theorem

2.5-B guarantees that the net [W(xa, (Ja, fr))] converges to W; hence W is in the

closure of B.

3.3-B. Assume W is in the closure of B. Choose an element y of the orbit of TV

with which Ifis associated. By 3.1-C, choose a net of pairs [(Wa, ya)] which satisfies

the five properties of that proposition.

Since x is in the orbit of TV with which W is associated, fix a cataloguing triple

(x, (J, fr) for W, and similarly, since for each a, xa is in the orbit of TV with which

W is associated, fix cataloguing triples (xa, (Ja, fr)) for each Wa.

Now, by property (v) of 3.1-C and by 2.1-D, the net [Ja] converges to a subgroup

of K which we call K'. Then, by 2.2-B, K' is a subgroup of J and this establishes

property (ii) of the theorem.

Define «/> as the character <p\K. of A". Then, by Corollary 2 of 3.2-A, (iii) of the

theorem is satisfied.

Since by property (iv) of 3.1-C the net [ya] converges to x, we have left to show

only that the net [(.7a, fr)] converges to (K', fr in s4(K), because property (iv)

of the theorem is implied by 3.1-C.

W\K- is equivalent to (W\f)K. which is equivalent to a multiple of <f>\K-, by 3.2-C.

Since (K'Y~ is Hausdorff, the only element of (K')~ which is weakly contained

in W\K. is <f>\K..

Now since the net [/a] converges to A', Theorem 3.2 of [7] proves the existence

of a subnet [Wab] of the net [Wa] such that there exists, for each b, an element fr

in (Jaby such that

(i) (rV^lu"") weakly contains fr.

(ii) The net [(Jab, fr)] converges to (A', <f>\K.). But, (Wab)\ua") is a multiple of

fr". Hence fr must equal fr, and we have that the net [(Jab, fr")] converges to

(A", 4>\r).
This completes the proof of the theorem.

4. A convergence theorem.

4.1. Assume now that G is the semidirect product TV* A of an abelian group

TV and a compact group A. Recall that, for each x in TV, the representation Ux acts

in the Hilbert space L2(K), and also recall that, under the usual definitions of

convolution and involution of functions, 7_2(7i) is an 77*-algebra. (See [12].)

4.1-A. If x is a character of N, then UX\K is the left regular representation of K:

[U&mO = f(k-H).
Proposition. Suppose Z is a subspace of L2(K) which is stable under some

representation Ux,for x in TV. Then Z is a left ideal of L2(K).

Proof. By the comment just preceding this proposition, Z is stable under the

left regular representation of A, hence is stable under left translations and therefore

is a left ideal.    Q.E.D.
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4.1-B. Definition. If/is in L(G) and g is in L(K), define the function gf on

G as follows :

g f(n, k) = j  g(p~ YiP ■ ». Pk) dp.

Now, since /is in L(G), we may take as the support of/a compact set of the

form KxC, where C is a compact subset of N which is stable under the action of

K. Then g -/also vanishes off the set KxC. Since g fis continuous in the variable

(n, k) and has compact support, gfis in L(G).

4.1-C. Now let V be a vector in L2(K) of the form V=[Uf(h)], where /is in

L(G) and h is in L\K)

[Ux.f(h)](l) =

Remark 1. The • operation defined in B above is a special case of the convolution

of measures on the group G. (See [11].)

Remark 2. We showed in A above that any subspace of L2(K) which is stable

under some representation Ux must necessarily be a left ideal. From the above

calculation, we see somewhat more clearly how left multiplication is accomplished.

4.1-D. We give here a theorem somewhat out of context, but there seems no

better place for it.

Theorem. Let G be the semidirect product of an abelian group N and a compact

group K. Then G is a CCR-group.

Proof. Proposition 1 of 1.5-A assures us that each irreducible representation of

G occurs as a direct summand of some representation Ux, for x ¡n N. Hence, it

will suffice to prove that, for each /in C*(G) and each representation Ux of G,

the operator Uf is completely continuous.

If K is a compact group, recall that a representative function on K is an element

g of L(K) such that the two-sided ideal of L2(K) generated by g is finite dimensional.

Further, recall that the set of representative functions constitutes a dense subspace

in L2(K).

Then, if g is in L(K), we have:

f   f gf(n,k)[U^k)(h)](l)dndk
Jk Jn

g(p'1)fÍP-n,pk)xa-ín)h(k-1l)dpdndk
Jk Jn Jk

gÍP~í¥in,pk)xa-lp-1nKk~íl) dn dk dp
Jk Jk Jn

g(p~1)f(n, k)xa--ív-ínfiik~'Lpl) dk dn dp
Jk Jn Jk

f g(p-1)[Uf(h)](pl)dp = [g*[V¡(h)W).
Jk
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Now if/ is in L(G) and g is a representative function on K, then the operator

U¡.¡ is completely continuous for all x; in fact, its range is finite dimensional since

it is contained in the right ideal of 7.2(A) generated by g.

Define B to be the linear span of the set of all functions on G of the form g ■/,

where/is in L(G) and g is a representative function on A. We claim that B is dense

in L\G).

Proof of the claim. Let « be in LX(G) and such that (gf, «) = 0 for all elements/

of L(G) and all representative functions g on A. (Here the ( , ) indicates the duality

between T-^G) and L"'(G).) Hence, we have:

0 =  f   f   f g(p~Y(P■ n,pk)h(n, k) dp dn dk
Jk Jn Jk

= /^(tOJX jNf(P»,Pk)h(n, k) dn dk] dp.

Since these equalities hold for all representative functions g on K, we conclude

that

0 =  [   [ f(pn, pk)h(n, k) dn dk
Jk Jn

Áo,p){n, k)h(n, k) dn dk = (/«,,„), «),
Jk Jn

for almost all p in K and for all elements /in 7,(G). But the function p -> (f(0,v), ")

is continuous in the variable p, and hence 0 = (/0,p» «) for all elements/in L(G)

and all elements p in A. Thus, for all elements/in 7.(G), (/ «) = 0, and thus « is the

zero element of La>(G). This shows that B is dense in L1(G). Therefore, B is dense in

C*(G). Hence, UXC.(G)] is the same as the set Ufa-, which is contained in the norm

closure of the set [Ufa]~, which is contained in the norm closure of the set of all

finite dimensional operators on L2(K), which is precisely the set of completely

continuous operators.    Q.E.D.

4.2-A. Suppose that W is an element of G which is contained in the closure of a

subset B of G. (The element W and the set B can be considered as belonging to the

dual space \C*(G)Y~ of C*(G).) Let x be an element of TV which is contained in

the orbit with which Wis associated. Now Proposition 1 of 1.5-A assures us that

there exists a subspace P of H(UX), which equals L2(K), such that U*\P is contained

in the equivalence class W.

By 4.1-A, P is a left ideal of L2(K), and therefore can be written as the direct

sum of minimal left ideals.

Let « be a nonzero vector of L2(A) which is contained in some minimal left ideal

of P. Let 7 be the minimal two-sided ideal of L2(K) to which « belongs.

Define </> to be the positive functional on C*(G) given as follows :

If/is in C*(G), then </>(f) = ([Uf(h)], h). <j> is then a positive functional associated

with W.
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Lemma. There exists a net of pairs [(Wa, <f>a)] such that:

(i) For each a, IVa is an element of G and the net [ ¡Va] converges to W.

(ii) For each a, <j>a is a positive functional on C*(G) which is associated with Wa.

(iii) The net [<f>a] converges to <f> in the weak-star topology offunctionals on C*(G),

and, for all a,

Ha\\ £ HI
The proof follows from [3],

Proposition. Assume the same hypotheses as above. There exists a net of triples

[(Wa, </>a, xa)] which satisfies:

(i) For each a, ¡Va is an element of B and the net [ Wa] converges to W in G.

(ii) For each a, </>a is a positive functional associated with Wa, and the net [<f>a]

converges to <f> in the weak-star topology of functionals on C*(G). Also, \\(f>a\\ g \\<f>\\

for all a.

(iii) For each a, x" « contained in the orbit of Ñ with which ¡Va is associated,

whence rVa\N weakly contains xa-

(iv) The net [xa] converges to x in Ñ.

(v) The net [Gu°,] of stability subgroups for the element [x°] converges to a

subgroup G' ofGx in X~(G).

(vi) For each a, there exists a subspace Pa ofL2(K) such that U(xa\Pa) is contained

in the equivalence class IVa.

Proof. Properties (i), (iii), (iv), and (v) are consequences of 3.1-C. Property

(ii) follows by combining 3.1-C with the lemma above. Property (vi) follows from

property (iii) and Proposition 1 of 1.5-A.

4.2-B. We preserve the above notation. For each a, choose a vector ha of

L2(K) such that:

(i) ha is in Pa.

(ii) The positive functional </>a is given by: if/is in C*(G),

r(f) = mta)(ha)i K).

Proposition. The net [<f>a] of positive functionals guaranteed by Proposition 4.2-A

above may be chosen in such a way that all the vectors [ha] lie in the minimal two-

sided ideal I ofL2(K) which contains H.

Proof. Let g be the identity for the minimal two-sided ideal I. Then, if/ is in

L(G),

</>(/) = ([Umi h) = ({Uxf(g * h)], g*h) = (g* [Ux,(g * h)], h)

= (Wig * h)], h) = (g* h, [Uk9.m(h)]) = (h,g* [U^.m(h)])

= (h, [£/'.«,.„.,(«)]) = ([U¿g.Ug.mm(h)lh) = <f>l((g-((g•/)*))*)]

= lim n((g((g /)*))*)] = i™ ([Ur(g * ha)], g * K),
a a

where the last equality follows by reversing some of the above calculations.
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Hence we see that the vectors [g * ha] define positive functional fr°- on 7.(G),

and, if/is in L(G), we have lima </>'a(f) = </>(f). Also, for each a, and for each element

f of L(G),

W\f)\   Ú   |k*«a||3I/|U0,.

Hence each functional <f>'a can be extended to all of C*(G).

Now for all a,

llf'll   =   \\g*K\\2^   ||Aa||2=   \\P\   ̂    Ul

This sequence of inequalities tells us, first of all, that the weak-star convergence

of the net [<f>'a] to <p on L(G) can be extended to weak-star convergence on all of

C*(G). Secondly, the fact that the set [||^'a||] is bounded by ||*|| is the remaining

condition needed in order to assert that the net [</>'"] suffices for the net of positive

functional called for in 4.2-A.

Since the vectors [g * ha] all lie in 7, the proposition is proved.

4.2-C. Lemma. Let W be an element of G which is contained in the closure of a

subset B of G. We assume the results and notation of A and B above. Then, there

exists a subspace Z ofL2(K),for which Ux\z is contained in the equivalence class W,

such that, for every vector g in Z, there exists a subnet [Pat] of the net [Pa], and to

each b, there corresponds a vector gb such that :

(i) For each b, gb is contained in Pab.

(ii) T«e net [gb] converges to g in L2(K).

Proof. Let « be as in Proposition A above, and let the net [ha] of elements of 7

be as in B above. Then, for each a,

\\haV =   ||*1   S   ¡fr   =   \\h\\2.

Thus the set [ha] of vectors is bounded in norm. Since 7 is finite dimensional, there

exists a subnet [«aJ of the net [ha] such that the net [«„J converges to a vector

v in 7.

Define Z to be the closed subspace generated by the vector v under the repre-

sentation Ux. Let Z' be the dense subspace of Z consisting of vectors of the form

Uj(v), where/is in C*(G).

If v', which equals U}(v), is an element of Z', then the net [[/}*" \hati)] of vectors

in 7,2(A) satisfies :

(i) For each b, U(x" '("aJ is contained in Pa¡¡.

(ii) The net [U}*a \hati)] converges to U}(u).

(ii) follows because the net [«aJ converges to v and by Theorem 1.5-B.

But, Z' is dense in Z, and hence if v" is an element of Z, then there exists a subnet

[Pabc] of the net [PaJ, and to each c, there corresponds a vector gc such that:

(i) For each c, gc is contained in P„   .

(ii) The net [gc] converges to v".
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Now the theorem would be complete if we knew that tV*|z were contained in the

class W.

We observe that, for any/in C*(G),

([U!(v)],v) = limpb(f)
b

= 4>(f)-
Hence, UX\P and Ux\z are two cyclic representations of C*(G) whose cyclic

vectors define the same positive functional on C*(G). Therefore Ux\Pis equivalent

to U'\z.

This completes the proof.

4.2-D. Theorem. Let W be an element of G which is contained in the closure of a

subset B of G. Let x be an element of the orbit of Ñ with which W is associated.

Then there exists a subspace Z ofL2(K),for which Ux\z is contained in the equivalence

class W, such that, if I is a minimal two-sided ideal ofL2(K), then there exists a net

of triples [(IVa, xa, Za)\ satisfying:

(i) Each Wa is an element of B and the net [Wa] converges to W in G.

(ii) For each a, xa is a character of N which is contained in the orbit of Ñ with

which Wa is associated.

(iii) For each a, Za is a subspace of L2(K) such that U{x"\z^¡ is contained in

the equivalence class Wa.

(iv) For each element h of Z r\ I, there exists a net [ha] of elements of L2(K)

such that, for each a, ha is in Za n I, and such that the net [ha] of functions converges

uniformly to h.

(v) The net [xa] converges to x in Ñ.

(vi) The net [G(x»,] of stability subgroups for the elements [xa] of Ñ converges to

a subgroup G' of Gx.

Proof. This theorem is mostly a combination of the lemma above and the

proposition in 4.2-A. We do need to comment on property (iv) however.

If h belongs toZn/, then, by Lemma C above, there exists a net [ha] such that,

for each a, ha belongs to Za and such that [ha] converges to h in the L2(K) norm.

But, if g is the identity of I, then the net [g * ha] has the required properties for

(iv) of the theorem.

5. Two final lemmas.

5.1. Let K be a compact group and 3 a closed subgroup of K. Let RK and R1

be the left regular representations of K and 3 respectively. Suppose M is a finite

dimensional left ideal of L2(K) and denote by 7 the representation RK\M-

Lemma, (i) The set M\j of all functions f\: where fis an element of M, constitutes

a left ideal of L2(3).

(ii) If N is a minimal left ideal of L2(3) contained in M\}, and if S denotes the

representation RJ\N, then T\j contains S as a direct summand.
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Proof, (i) follows because M\¡ is a closed subspace of L2(J) which is closed under

left translations by elements of J.

To prove (ii), we define the operator 6 on M as follows: If « is in M, then

0(h) = h\j.
Now observe that, if y and k are in J and h is in M,

l0[TAh)]](k) = [[TMMk) = [Tj(h)](k) = Kj-'k) = [R,(0(!i))](k).

Hence 0 intertwines A>/|(M|,) and T\Jisi. Also, since M is finite dimensional, 0 is

continuous.

Write M as Z © A7', where Z is the kernel of 0. Then, by Theorem 1.2 of [14],

we have:

7/|j|M. is equivalent to R\U\»

and this latter representation contains 5 as a direct summand.   Q.E.D.

Corollary. If the Tin the above lemma is riT', where n is a positive integer, then

T'\j contains S as a direct summand.

5.2. Assume now that G is the semidirect product of an abelian group TV and a

compact group K. Suppose x is an element of TV and let N * J be the stability

subgroup Gx for x- Let V be the representation <N.nUx of N *J.

Now we know by Theorem 2.2 of [1] that V is equivalent to the representation

X ® R', where x' is the unitary extension of x to TV * J (2.4-C), and where R' is the

representation of TV * J lifted from the left regular representation 7? of /. By [2] we

know that Uv is equivalent to Ux. We now make this explicit. We examine the

representation [/<*'»*'>. Recall that (x' <g> R')(n,fí=xnRj-

5.2-A. The space of the representation Uix'®R"> consists of all locally Bochner

measurable functions f on G into 7,2(.7), which equals 77(x' ® 7?'), which satisfy

the following three conditions:

(i) If («, k) is in G and (m,j) is in TV * J, then

/[(«, k)(m,j)] = (x' ® R\njr !,[/(«, k)]

= X-mRu-hW(n, k)].

(ii) The mapping («, k) -> |/(«, A:)||2a(;) must be locally summable on G.

(iii) The measure on G/(N * J), denoted by \u, must have finite total mass.

5.2-B. We may compute the norm of an element/of 77(C/('l8B'>) as follows:

Let h be the function identically one on G/(N * J). Since G/N is compact,

Gj(N * J) is compact, and hence « is an element of L(G/(N * J)). Then the norm

squared of an element / of 77(t/u'®B')) is \,f(h).
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Choose an element q of L(N) such that fN q(ri) dn equals one. Define h' as the

element of L(G) which sends the pair («, k) to q(n). Then observe that

h'[(n, k)(m, j)] d(m,j) = h'((n + k-m), kj) dm dj
J(N'j) Jj Jn

= <?(« + k-m)dmdj = q(n + m) dm dj
Jj Jn Jj Jn

= q(m) dmdj = 1 = h(n(n, k)),

where 77 denotes the mapping of G onto the space of left cosets of the group N *3.

Hence, by 1.2-A, the total mass of XfJ is given by:

XfJ(h)=  f A'(x)||/(x)||!s(/)i/x=  f   f h'(n,k)\\f(n,k)\\hU)dndk
Jg Jk Jn

=  f   f q(ri)dn\f(0,k)\\hQ)dk=  f   f \[f(0,k)](j)\2djdk.
Jk Jn Jk Jj

5.2-C. The action of Uix'®m is as follows:

If/is in H(U{X'®R'\ (n, k) and (m, I) are in G,

Wítr(f)](m, I) = /[(«, k)-\m, I)}.

5.3. We now set up the equivalence mentioned above.

5.3-A. Definition. If A is in L(K), define Q(h) to be the following function on G

to L(3).

If (n, k) is in G and j is in 3,

[[Q(h)](n,k)](j) = x<-k-*nMkj).

5.3-B. One may verify that Q(h) satisfies the three conditions of 5.2-A. Further,

|ß(«)||&W''®«')= f \h(k)\2d(k).
Jk

Hence we see that Q is an isometry.

5.3-C. We wish now to show that Q is onto a dense subspace of H(U{x'®R'y).

Since 3 is compact the representation (x' (g> R') is completely reducible, and in

fact L2(3), which equals H(x (g R'), is the direct sum 2t (A)> where each subspace

7¡ is (x' (g i?')-stable, and each /, is a finite dimensional (minimal) two-sided ideal

ofL%/)-

Combining this fact with [2], we see that there exists a dense subspace X of

H(U{X'®R">) consisting of functions/which satisfy:

(i) /is continuous from G into L2(3).

(ii) For each x in G, f(x) is a continuous function on /.

(iii) There exists a finite-dimensional subspace I¡, depending upon / of L2(3)

such that, for each x,/(x) lies in the subspace I,.

Now if/is in X, define P(f) to be the following function on K.

If k is in K, then [P(f)](k) = [f(0, k)](e).
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Now since I¡ is a finite-dimensional topological vector space of continuous

functions, evaluation at the identity element of J is continuous on I,. Hence P(f)

is a continuous function on K.

Observe that Q[P(f)]=f
Hence Q maps 7_(A) onto a dense subspace of 77(tT(*'®B')). Since we have seen

that Q is an isometry, we may extend Q to all of L2(K) and conclude that Q maps

L2(K) onto H(U(X'®R,)).

One may now show that Q is the intertwining operator needed to display the

equivalence of Ux and [/(*'®B').

5.4. Let Z be an irreducible subspace of L2(K) under the representation Ux.

Choose an irreducible representation T of J so that Ux\z is equivalent to U<-X'®T'\

where T' is the representation of TV * J lifted from T. Denote by RK and RJ the left

regular representations of K and J as in 5.1.

5.4-A. Lemma. Let Y be the set of restrictions to J of the continuous functions in Z.

Then RJ\y is equivalent to nT, where n is a positive integer.

Proof. Decompose L2(J) into a direct sum of its minimal closed two-sided ideals

7j. We may then decompose the space H(U<X'®BJ 0 into a direct sum of subspaces

Mu where each M¡ consists of the functions on G and in H(U(X'®RJ}) taking values

only in the ideal 7¡. Let 70 be the minimal two-sided ideal of L2(J) associated with

the representation T of J. Then the t/(,t'®3")-subspace of H(Uix'®R'">) is exactly M0.

Now ÍT()Í''S'B''')|«3(Z)) is equivalent to Ux\z, which is equivalent to U(-X'®T'\ Hence,

by [14], Q(Z) must lie in the subspace M0. Therefore, if A is a continuous element

of Z, then the function h\}, which equals [Q(h)](0, e), must lie in the ideal 70.

Hence Y lies in the ideal 70 and is clearly a subspace of 70 which is closed under left

translation by elements of J. This completes the proof of the lemma.

5.4-B. Corollary. Let X be a minimal left ideal of Z. Then the set X' of

restrictions to J of the functions in X is a nonzero left ideal of L2(J), and, R^x- is

equivalent to nT, where n is a positive integer.

6. The main theorem.

6.1. Assume that G is the semidirect product N * K of an abelian group TV and

a compact group K.

Theorem. Let W be an element of G which is contained in the closure of a subset

B ofG. Then there exist: an element (A', 5') of sé(K), a cataloguing triple (x, (/, T))

for W and a net of cataloguing triples [(xa, (7a, Ta))] (2.4-E), which satisfy :

(i) K' is a subgroup of J.

(ii) jUs' contains T as a direct summand.

(iii) For each a, the triple (xa, (Ja, Ta)) catalogues an element Wa of B.

(iv) The net [(xa, (Ja, Ta))] converges to (x, (K', 5')) in the product topological

space TV x sé(K).
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Proof. Let x be an element of the orbit of TV with which Wis associated. Choose

a subspace Z of L2(K) as guaranteed by Theorem 4.2-D. Let A' be a minimal left

ideal of Z and let 7 be the minimal two-sided ideal of L2(K) which contains X.

Denote as usual by J the neutral group Jx for x- For each character xa, given by

Theorem 4.2-D, let Ja denote the neutral group Jlx«> for x°- Then by property (vi)

of 4.2-D, and by 2.1-D, we know that the net [Ja] converges to a subgroup A'

of A, and by 2.2-B, K' is a subgroup of/. This establishes (i) of the theorem.

Denote by 7?^ the left regular representation of a locally compact group A.

Define M to be the subspace of restrictions to J of the elements of X. For each

a, define Ma to be the subspace of restrictions to Ja of the continuous elements of

Z°. Now, by Lemma 5.4, we have:

(i) RJ\M is equivalent to nT, where T is an irreducible representation of J such

that the triple (x, (J, T)) catalogues W.

(ii) For each a, A)</a>|(M<') is equivalent to naTa, where Ta is an irreducible repre-

sentation of Ja such that the triple (xa, (Ja, Ta)) catalogues Wa.

Thus, with these choices of cataloguing pairs, we have established (iii) of the

theorem.

Let L be a minimal left ideal of L2(K') which is contained in M\K., where M\K-

is defined in 5.1. Denote by 5' the representation RK'\L. Then, by Corollary 5.1,

T\K. contains 5', and by the Frobenius reciprocity theorem, }US' contains T.

We have thus established (ii) of the theorem.

We have left to prove (iv), and, in view of property (v) of 4.2-D, we need show

only that the net [(.7a, Ta)] converges to the pair (K', 5') in s4(K). We use 1.4-C.

Choose a nonzero element / in L. Then define the function of positive type <f>

associated with 5' as follows:

If k is in A", ¡-
frk)=     f(k-HY(t)dt.

Jk'

Now/=«|K. for some « in the left ideal X. Now by (iv) of 4.2-D, there exists a

net [ha] of elements of L2(K) such that:

(i) The net [ha] converges uniformly on A to h.

(ii) For each a, ha belongs to 7 n Za.

For each a, define/" as ha\u*y Then/a is in Ma. Let fr be the following function

onJa.

If j is in J", r
nj)=    ru-'onodt.

Ja")

Then, for each a, fr is a function of positive type on Ja associated with the

representation naTa, i.e., fr is a finite sum of functions of positive type associated

with Ta. Hence, in order to show the convergence of the net [(Ja, Ta)] to the pair

(A', 5'), 1.4-C assures us that it is sufficient to show the convergence of the net

[fr] to </> in the Fell topology of functions on subgroups of K. (See 1.4-C.)
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Thus assume, without loss of generality, that the net [</>a] has been replaced by a

subnet of itself without changing notation. Let [ja] he a net of elements of K

satisfying:

(i) For each a, ja is contained in 3a.

(ii) The net [ja] converges to an element k of K'.

We need to show that the net [</>a(ja)] converges to <f>(k). Hence, if e>0,

\</>(k)-r(ja)\ = I f f(k-'t)j\T)dt- f nuT'tf^dt
I J K' J (J   )

= |f  h(k-H)W)dt-\    ha((ja)-'t)hJT)dt
\Jk' Ja")

(1) Ú I f   Kk^tjnlT) dt- f a Hfc-HWf) dt

(2) +|f     [h(k-H)-h((ja)-'t)\W)dt

(3) +|f    [KU')-1t)W)-kJXjarlt)W)}dt.

Now (1) is eventually less than e/3 because of the continuity of H, the definition

of a smooth choice, and by Proposition 1.4-A.

(2) is eventually less than e/3 because of the uniform continuity of h.

(3) is eventually less than e/3 because of the uniform convergence of the net [ha]

toh.

The theorem is now completely proved.

Corollary. Suppose [IVa] is a net of elements of G which converges to an

element W. Then there exist: an element (K', S') of sé(K), a cataloguing triple

(x, (3, T))for W and a net of cataloguing triples [x°, (3°, T")], such that:

(i) The net [W(xb, (3°, T"))] of elements of G is a subnet of the net [IVa].

(ii) Properties (i), (ii), and (iv) of the theorem hold for the pair and triples above.

6.2. We may now state the main theorem of this paper.

6.2-A. Theorem. Suppose G is the semidirect product N * K of an abelian group

N and a compact group K. Then the topology of G may be described as follows:

Let B be a subset of G and W an element of G. W is contained in the closure of B

if and only if there exist: a cataloguing triple (x, (3, S))for W, an element (K', S')

of sá(K), and a net [(xa, (3a, Ta))] of cataloguing triples, such that:

(i) For each a, the element W(xa, (3a, Ta)) of G is an element of B.

(ii) The net [(xa, (3a, Ta))] converges to (x, (K', S')) in Ñxsf(K).

(iii) 3 contains K', and jUs' contains S.

The proof follows from Theorems 2.5-B and 6.1.
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6.2-B. This theorem is stronger than the conjecture in the introduction ; added

strength is only in the statement about "containment" rather than simply "weak

containment." This strength might well be expected in the presence of the compact-

ness hypothesis.

6.3. It might be well to mention the status of the hypotheses TV is abelian and

K is compact.

6.3-A. The commutativity of TV is part of what is needed to prove Theorem

1.5-B. This theorem is needed in §4.2. Without 4.2, the rest of the theorem, i.e.,

Theorem 6.1, seems stymied.

The fact that TV is abelian also crops up in the following way.

Suppose [xa] is a net of characters of TV which converges to a character x- Then

we have concluded that if the net of neutral groups [Jr(xa)] converged to a group

A', then A' was contained in the neutral group for x- This fact depends upon

Proposition 2.2-B as applied to the group TV * A. Similar results can be obtained

for arbitrary groups TV such that TV is Hausdorff, but this is not a major step forward.

(See §§9 and 10.)

6.3-B. It would seem that by far the more important hypothesis is that of the

compactness of K. This is essential in theorem 1.5-B, and therefore assists in §4.2.

Also, throughout 4.2 the finite dimensionality of the minimal ideals of 7_2(A) is crucial.

There are, of course, occasions when compactness and commutativity have

been used when, in their absence, something else would have sufficed, but, on the

whole, these two hypotheses are extremely strong and cannot be dropped.

6.3-C. One might expect at least that Theorem 6.2-A could be generalized to an

arbitrary compact extension of an abelian group. However, difficulties arise. These

difficulties seem to hinge on the lack of continuity conditions on the "minimal"

functions in 7,2(A) under the representations Ux. In the general compact extension

case, we must consider cocycle representations of compact groups, and, despite

the fact that the regular a-representation of a compact group is completely re-

ducible, and can be decomposed into irreducible finite-dimensional subspaces,

there is no assurance that these finite-dimensional subspaces will consist of

continuous functions.

The arbitrary compact extension of an abelian group can be reduced to the semi-

direct product case in certain instances.

If G is the compact extension of an abelian group TV, where TV is a vector group,

i.e., some Euclidean space, then it has been shown that G is isomorphic and

homeomorphic to TV * K. See [16].

6.4-A. As stated in earlier sections, the difficulty which is overcome in Theorem

3.3 and 6.2-A is the discontinuity of the map x -*■ Gx, where Gx denotes the stability

subgroup for the element x- In fact, Fell, in [4], has pointed out that by making

use of a theorem of Glimm (Theorem 2.1 of [9]) one can prove a very general

theorem which has application to the problem considered here. We state it in B

below in the context of our terminology.
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First, suppose G and TV satisfy the second set of hypotheses of 1.3-B. Then

recall that, if W is an element of G, then there exists a cataloguing subgroup-

representation pair (A, 5) which satisfies:

(i) A is the stability subgroup Gx for some element x of TV.

(ii) 5 is an element of Ê such that 5 \N is equivalent to a multiple of x-

(Hi) The representation Us is irreducible and is contained in the equivalence

class W.

Of course, this is simply a restatement of Proposition 2 of 1.3-D.

6.4-B. Theorem. Let G be a separable locally compact group, TV a closed normal

subgroup of G which is of type I and which is regularly imbedded in G. Let M be a

subset of Ñ which satisfies the following conditions:

(i) M is a Borel subset of TV, and the topology of M relativized from the hull-

kernel topology of TV is locally compact and Hausdorff.

(ii) The subset M is stable under the action ofG, i.e., M is a union of orbits.

(iii) The mapping x —>- Gx of M into K(G) is continuous.

Define GM to be the subset of G consisting of those elements W such that the orbit

6W of Ñ associated with W is contained in M.

Then, the topology ofGM can be described as follows:

Let W be an element of ôM and B a subset of GM. Then W is contained in the

closure ofB if and only if there exists a net [Wa], a net of cataloguing pairs [(Ka, Sa)],

and a cataloguing pair (K, 5), such that:

(i) K=Gxfor some element y of M, and S\N is equivalent to a multiple of x-

(ii) Each Ka is the stability subgroup G(x")for some element x" of M, and Sa\N

is equivalent to a multiple of xa-

(iii) (A, 5) is a cataloguing pair for W. For each a, (Ka, Sa) is a cataloguing

pair for Wa.

(iv) For each a, Wa is an element of B.

(v) The net [(Ka, Sa)] converges to (A, 5) in s/(G).

This is the verification of the first conjecture of the introduction.

7. A theorem on the topology of sd(K) for A a compact group.

7.1. We have seen in the last sections that, if G is the semidirect product TV * A

of an abelian group TV and a compact group A, then the topology of G can be

described in terms of the topological space Ñxj>/(K). In order to show that this

reduction is, in some cases, a simplification, we examine the topological space stf(K).

7.1-A. Let A be a compact group and T and 5 be irreducible representations of

A. Denote by dim (T) the dimension of the representation T. Let xT be the function

on A which sends an element x to the trace of the operator Tx. Note that the

function xT is constant on equivalence classes of irreducible representations, and

therefore we may speak of xT, where T is an element of K. The function xT is

called the character of the element T of Ñ.
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Proposition 1. The following formulae will be presumed.

(i) Let T be an element of Ê. Then

f \xT(x)\2dx= 1.
Jk

(ii) Let T and S be distinct elements of K. Then

XT(x)xs(x) dx = 0.
Jk

For the proofs of these formulae, see §§39 and 40 of [12].

If T is an element of Ñ., let IT denote the T-subspace of L2(K) under the left

regular representation of K acting in L2(K). IT is then a minimal finite dimensional

two-sided ideal of L2(K). Denote by [IT] ' the ideal of L2(K) consisting of all

functions /such that /is in IT. Then [IT]~ is a minimal ideal of L2(K). Further, if

g is the identity of IT under convolution, then g is the identity of [IT] ' under

convolution.

Proposition 2. Let T be an element of K and let G be the identity for IT under

convolution. Then,

(i) If f is a function of positive type on K associated with T, then f is in [IT]~■

(ii) The function xT=g/[dim(T)], and therefore, xT is a finite sum of functions

of positive type of K associated with T.

Again see §§39 and 40 of [12].

7.1-B. Recall that ¿d(K) is the space of all subgroup-representation pairs (/, 7),

where 3 is a closed subgroup of K and T is an element of 3. The topology of s/(K)

is that of the dual space [C*(K)Y~ of the subgroup C*-algebra of K (1.4-B).

Lemma. Let (3, T) be an element of stf(K) and assume that the net [(3a, Ta)] of

elements of sé(K) converges to (3, T). Then there exists a subnet [(3"", Ta")] of the

net [(3a, Ta)] such that the net [x(r° }] of characters converges to xT in the Fell

topology of functions on subgroups of K. (See §3 o/[7].)

Proof. By Proposition 2 of A above, xT is a finite sum of functions of positive

type associated with T. Hence, using §3 of [7] finitely many times, we may assume

that there exists a subnet [(3a\ Ta")] of the net [(3a, Ta)], and, for each b, a

function </>", such that:

(i) For each b, </>" is a finite sum of functions of positive type associated with

Ta\ Hence, </>" lies in the ideal [/(Ta6)]".

(ii) The net [(/>"] converges to xT in the Fell topology.

Define 8" on 3a" as follows: If x is in 3a\ then

8\x) = ^abt\t-ixt)dt.
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Now, by §39 of [12], 0" is central, contained in [IlTa")] " and therefore is a multiple

X"x<-Tab) 0f the character x(^°1', of the element Ta". Also, note that lb is nonnegative

for each b. This follows because 0b(e) and x(T°6,00 are both nonnegative numbers.

First, let us show that the net [0b] converges to xT m the Fell topology.

Thus, assume, without loss of generality, that the net [0b] has been replaced by

a subnet of itself without changing notation. Let [xb] be a net of elements of K

such that :

(i) For each b, xb belongs to Ja".

(ii) The net [xb] converges to an element x of J.

We wish to show that the net [f7ö(xb)] converges to xr00-

Define fr as the function on J0-" which sends an element t of Ja" to fr(t'1xbt).

Now it is easy to see that the net [fr] converges to the function on J which is

constant with constant value xr00- Hence, by Proposition 4 of 1.4-D, we have:

The net [fy«», fr(t) dt], which is the same as the net [/„<■") fr(t ~1xbt) dt], which

in turn is the same as the net [0b(xb)], converges to the number J, xT00 dt, which

equals xr00- This establishes the fact that the net [0b] converges to xT in the Fell

topology.

Now, the net [|0°|2] converges to |xr|2 in the Fell topology, and hence, by

Proposition 4 of 1.4-D again, the net [JV0) 10b\2] converges to J"7 |xr|2. This implies

that the net [\Xb\2 J^a", |x<rol,)l2]> which is the same as the net [|A&|2], converges to

the number Jy |xr|2» which equals 1. Therefore, since each A" is nonnegative, we

may conclude that the net [A6] converges to 1. Hence, the net fx'1""6'] must itself

converge to xT in the Fell topology. This completes the proof of the lemma.

7.2. Theorem. Let K be a compact group. Then the topological space ¿é(K) is

locally compact and Hausdorff.

Proof. The fact that ¿&(K) is locally compact follows from the fact that sé(G)

is locally compact for an arbitrary locally compact group G. (See 1.4-B and

Theorem 2.1 of [3].)

Suppose s4(K) is not Hausdorff. Then let [(.7a, Ta)] be a net of elements of

s/(K) which converges to two distinct points (/, T) and (J', 5). By Lemma 1.5 of

[7], we know that J' equals J.

Let x and <j> be the characters of T and 5 respectively. Then, by passing to a

subnet, again without changing notation, we may assume that the net [x<Ta>]

converges to x in the Fell topology. Passing once more to a subnet, we may assume

that the net [x(ra>] converges to </> in the Fell topology.

Now since the Fell topology of functions defined on subgroups is Hausdorff

(see §3 of [7]), we conclude that x and <j> are the same function. Therefore, T and

5 have the same character, i.e., Tand 5 are identical. This contradicts the distinct-

ness of the pairs (J, T) and (/, 5), and the theorem is proved.

7.3. Theorem. Suppose (J, T) is an element ofs#(K) which is the limit of two nets

[(Ja, Ta)] and [(Ja, Sa)] such that the corresponding elements Ta and Sa in these
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two nets are elements of the dual space (3a)^ of the same subgroup 3a of K. Then

eventually Ta must be equivalent to Sa.

Proof. Assume false. Then, without loss, we may assume that, for each a, Ta

is inequivalent to 5°.

Let x denote the character of T. For each a, denote by xa the character of Ta

and denote by ¡f>a the character of Sa. Then by passing perhaps twice to subnets,

we may assume that:

(i) The net [xa] converges to x in the Fell topology.

(ii) The net [</>a] converges to x in the Fell topology.

Then, it is easy to see that the net [xa(<t>a)'] converges to xx in the Fell topology.

Hence, the net [ju„) xa(<£a)~] converges to f, \x\2- However, for each a, ¡aa) xa0£a)~

is zero, while J", |x|2 equals 1. This gives a contradiction and the theorem follows.

Remark. This theorem shows that, once we know the path of approach to an

element (3, T) of ¿rf(K) with respect to the subgroup space Jf(K), the path of

approach via subgroup-representation pairs is unambiguously determined.

Corollary. Let K be a compact abelian group. Suppose x is a character of K

and that 3 is a closed subgroup of K. Then a net [(3a, </>a)] of elements of si(K)

converges to the element (3, x\j) if and only if eventually </>a equals x\uay

Proof. This follows from the theorem and Theorem 3.2 of [7].

8. The quotient space Q(G).

8.1. Theorem 6.2-A asserts that, if G is the semidirect product N * K of an

abelian group N and a compact group K, then the elements of G can be catalogued

by means of cataloguing triples (x, (3, T))—elements of the space TV x ¿tf(K)—and

that the cataloguing mapping possesses certain topological properties. Also, by

2.4-E, we know that two cataloguing triples catalogue the same element of G if

and only if they are related in a certain way. We are led then to study the quotient

space mentioned in the Introduction, and in preparation for that, we make the

following observations and definitions.

8.1-A. If (x, (3, T)) is an element of Ñxs/(K), and if p is an element of K,

define Tp to be the element of the dual space (p3p~Y of the subgroup p3p~x

given as follows : Let T be a representation of 3 which belongs to the equivalence

class T. Define the representation T'p on p3p~x as the homomorphism which

sends an element x of p3p~x to the operator T[p-ixp). Then define Tp to be the

equivalence class of representations to which T'p belongs.

Definition. If (x, (3, T)) is an element of Ñ x stf(K) and if p is an element of K,

define p(x, (3, T)) to be the following element of Ñ x stf(K) :

p(x,(3,T)) = (px,((p3p-i),Tp)).

Proposition. The mapping of Kx[Ñx ¿¡/(K)] into Ñx stf(K) which sends the

pair (p, (x, (3, T)) to p(x, (3, T)) is continuous, and, for a fixed element p of K, the

mapping (x, (3, T))^>p(x, (3, T)) is a homeomorphism of Ñ x si(K) onto itself.
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This proof is a routine result of the definitions of the topologies in Jf(K) and

¿tf(K). It also depends on the continuity of functions of positive type associated

with representations.

8.1-B. We define a relation on Ñxs/(K) as follows:

If x and y are elements of Ñxstf(K), we say that x=y if and only if x=py for

some element p of K.

This relation = is an equivalence relation on TV x ¿é(K). We denote by R(G) the

quotient space derived from Ñxs/(K) by the equivalence relation = defined

above, and we let 77 denote the quotient mapping of TVx sé(K) onto R(G).

Let us denote by Q'(G) the subset of TV x ¿/(K) consisting of cataloguing triples.

Let Q"(G) be the subset n(Q'(G)) of R(G), and denote by Q(G) the closure in

A»(G) of Q"(G).

8.1-C. Proposition 1. The quotient mapping -n is open on Ñxsé(K).

Proof. Let U be an open subset of TVx ¿é(K). We must show that ir_1(7r(£/)) is

open. But 7r_1(7r(f/)) is the set of all elements x of TVx s/(K) which are equivalent

to elements of U, i.e., 7r_1(7r((7)) equals KU. But AÍ7 equals the union over all p

in A of pU. By the proposition in A above, pU is open for all p; hence KU is open.

Q.E.D.

Proposition 2. If z is an element of R(G) then ■n~1(z) is compact, hence closed;

hence R(G) is a Tx topological space.

Proof. 7T_100 is the set of all elements x of TVx ¿/(A) which are equivalent to

some fixed element z in 7r_1(z). Hence ■n-~1(z) is equal to Kz'. Since A is compact,

Kz' is compact by proposition A above.   Q.E.D.

8.1-D. Theorem. R(G) is locally compact and Hausdorff.

Remark. This theorem is a special case of the more general result: Let A be a

compact group of homeomorphisms of a locally compact Hausdorff space X.

Define the relation = on X by the following: x=y if and only if there exists an

element p of A such that x=p(y). Let R be the quotient space derived from X and

=. Then Ä is locally compact and Hausdorff. The proof here goes through in the

general case as well.

Proof. By Theorem 7.2, we know that Ñxjtf(K) is locally compact and

Hausdorff. We prove the theorem in two steps.

(i) Let z be an element of R(G) and U a neighborhood of z. Then there exists a

closed compact neighborhood C of z which is contained in U.

Proof of the first claim. Let z be an element of tr~1(z). Choose a compact

neighborhood C of z' in TVxj/(A). Define C" as tt-^OKC')). Then C" is the set

KC and hence is compact. Define C to be tt(C). Then C is compact since C is

compact. C is closed since C" is closed. C is a neighborhood of z because C is a

neighborhood of z' and 77 is open. End of proof.

We have established that R(G) is locally compact.
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(ii) To prove that R(G) is Hausdorff, let z and y he two distinct points of R(G).

Then by Proposition 2 of C above, y is closed, and hence z is contained in the open

set R(G)—y. Now by (i) above choose a closed compact neighborhood C of z

which is contained in R(G)-y. Then z is contained in the interior of C, while y is

contained in the open set R(G) - C. This completes the proof of (ii) and the proof

of the theorem.

Corollary. Q(G) is locally compact and Hausdorff, and Q"(G) is Hausdorff.

8.1-E. Proposition. If x is an element of R(G) which is contained in the closure

of a subset B of R(G), then there exists an element yof-!r~1(x) such that y is con-

tained in the closure of the set [t7_1(1?)].

Proof. This follows immediately from the openness of the mapping 77.

Corollary. If x is in Q(G), then each element yofn~l(x) is the limit of a net

[ya] of cataloguing triples.

8.1-F. If W is an element of G, choose a cataloguing triple (x, (3, T)) for W.

Define 8(W) to be the element -n(x, (3, T)) of Q(G).

Since any two cataloguing triples for W are equivalent (Proposition 2 of 1.3-D

and 2.4-E) we see that 8 is a well-defined mapping of G into Q(G).

Although 8 is not in general continuous, it is one-to-one and maps G onto a

dense subspace of the locally compact Hausdorff space Q(G). Therefore we have

identified G with a dense subspace of a locally compact Hausdorff space. This

identification is not an imbedding, i.e., the identification map is not a homeo-

morphism. This process has application to the "regularized dual space" introduced

by Fell in [5]. It turns out that Q(G) is not in general the regularized dual space, but

the regularized dual space is always the continuous image of Q(G).

8.2. Here is a ramification of Theorem 6.1.

Theorem. Let [(xa, (3a, Ta))] be a net of cataloguing triples which converges to

the triple (x, (3', T)). Suppose further, that the net [W(xa, (3a, Ta))] (2.4-D, E), of

elements of G converges to an element W. Then there exists a cataloguing triple

(x, (3, S)) for Wsuch that S\y contains T.

Remark. This theorem resembles the corollary in 6.1. That corollary asserts

that, if a net [Wa] of elements of G converges to an element W, then a net

[(xa, (3a, Ta))] of cataloguing triples can be chosen in accordance with certain

conditions. This theorem asserts that, if we begin with a convergent net

[(xa, (Ja, Ta))} of cataloguing triples, and if, in addition, the net of elements [IVa]

of G determined by the triples [(xa, (3a, Ta))] is also convergent, then the net of

triples guaranteed by the corollary in 6.1 may be taken as the net with which we

began.

Proof. Write the net [fV(xa, iJa, Ta))\ as simply [IVa]. Then, by the corollary in

6.1, there exists a subnet [Wa\ of the net [IVa], a cataloguing triple (</>, (L, V))
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for W, an element (If, V) of s/(K), and a net [(fr, (V, V))] of cataloguing triples

such that:

(i) 7/ is a subgroup of L, and the representation JJV' contains V.

(ii) For each b, (fr, (V, V)) is a cataloguing triple for Wa".

(iii) The net (fr, (Lb, V)) converges to (</>, (L1, V')) in TVx ¿/(A).

Now, for each b, we have two cataloguing triples for Wa" ; hence for each b

there exists an element pb of A such that (xb, (Jb, Tb))=pb(fr, (Lb, V)).

We also may assume, without loss, that the net [pb] converges to an element p

in the compact group K. Therefore, by 8.1-A, (x,(J',T))=p(<f>,(L', V')). This

implies that p(4>, (L, V)) = (x, (J, V)). This latter, therefore, must be a cataloguing

triple for W, which proves the first statement of the theorem.

Also, of course, V is contained in jU(V'"\ which is equivalent to }UT.

Now the theorem follows if we define 5 to be V.

Corollary. Suppose [ Wa] is a net of elements of G, and suppose that a net of

cataloguing triples [(xa, (Ja, Ta))] can be found such that, for each a, Wa is catalogued

by the triple (x°, (Ja, Ta)), and such that the net [(xa, (Ja, Ta))] converges to a triple

(x,(J',T)). Then the net [Wa] is convergent and each element W, in the set of

limits to the net [Wa], is catalogued by a triple of the form (x, (J, 5)) where S\y

contains T.

Remark. This corollary shows us that the description of the topology of G in

terms of the topology of the cataloguing triples has certain advantages. Namely,

we may identify all the limits of a given net of elements of G merely by considering

one limit of that net.

9. The Hausdorff property of the dual space.

9.1. Of course it is well known that the dual spaces of abelian and compact

groups are Hausdorff. It has been a plausible conjecture that every group G whose

dual space G is a Hausdorff space must in fact be the direct product of an abelian

group and a compact group. This is not the case. (See Example 10.3.)

In this section we show the equivalence of the Hausdorffness of the dual space

and the continuity of the neutral subgroup mapping, and using this theorem, we are

able to show the validity of the above conjecture under certain circumstances.

9.1-A. Lemma. Let J be a compact group and A' a proper closed subgroup of J.

Denote by I the trivial one-dimensional representation of K' and denote by I' the

one-dimensional representation ofj. Then the representation U' contains at least two

distinct elements of J.

Proof. Since K' is proper, U' is at least two-dimensional. By the Frobenius

reciprocity theorem, U' contains 7' exactly once. Therefore U' must contain some

other element of /.    Q.E.D.
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9.1-B. We present next the main result of this section. Let G be a semidirect

product N * K of an abelian group N and a compact group K. Denote by M the

neutral subgroup mapping, i.e., the mapping of Ñ into ,T(K) which sends an element

X of TV into the neutral group 3X for x- (2.2-A)

Proposition. The dual space G is Hausdorff if and only if the mapping M is

continuous.

Proof. Assume first that the mapping M is not continuous. Then there exists a

net [xa] of characters of N which converges to a character x, but for which the net

If xa)], written simply as [3a], of neutral subgroups does not converge to the neutral

subgroup 3X, written simply as 3. We may, however, assume that the net [3a] does

converge to some subgroup K' in Ctf(K). By 2.2-B, K' is a subgroup of 3, and by

assumption, K' is a proper closed subgroup of /.

For each a, let Ia denote the trivial one-dimensional representation of 3a, and

denote by / the trivial representation of K'. Then the net of cataloguing triples

[(xa, (3a, Ia))] converges to (x, (K\ I)). Hence, by 6.2-A, the net [W(xa, (3a, Ia))]

of elements of G converges to every element W(x, (3, S)) such that S is contained

in the representation jU'. By the lemma in A above, we know that there exist at

least two distinct elements S of 3 such that ,U! contains S. Hence the net

[W(xa, (3a, Ia))] converges to at least two distinct points of G, and thus G is not

Hausdorff.

Now assume that G is not Hausdorff. Then there exists a net [ Wa] of elements of

G which converges to two distinct points W and W of G. Let x be an element of the

orbit of Ñ with which W is associated. Then, by Corollary 6.1, there exist: a cata-

loguing triple (x, (3, T)) for W, an element (K1, S') of st(K), and a net [(x\ (3°, T»))]

of cataloguing triples, such that:

(i) K' is a subgroup of 3 and the representation jUs' contains T.

(ii) The net [W(xb, (3", T"))] is a subnet of the net [Wa].

(iii) The net [(xb, (3b, T»))] converges to (x, (K', S')).

Now, the net [W(xb, (J°, T"))] converges to W, and hence, by Theorem 8.2,

there exists a cataloguing triple (x, (3, S)) for W. Since W and W are distinct, T

and S are inequivalent. Also, T and S are both contained in ,US'. Therefore K'

must be a proper subgroup of 3. Thus, the net [3b], which is the same as the net

[/(/")], does not converge to the neutral group 3X. But the net [xb], which is the

same as the net [xa"], does converge to x- Thus, the mapping M is not continuous

at the point x-

Now the proof of the proposition is complete.

9.2-A. Definition. A locally compact abelian group G is called topologically

divisible if, for each neighborhood W of the identity in G and for each element x

of G, x=yn, where y is an element of W and n is an integer.

Proposition 1. If G is topologically divisible, then G is compactly generated.
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Proposition 2. Let G be a topologically divisible group. If G contains a nonvoid

connected open subset, then G is connected.

Proposition 3. A connected abelian Lie group is topologically divisible.

9.2-B. Theorem. Let G be the semidirect product TV * A, where A is a compact

group and where N is an abelian group whose dual group TV is connected and topologi-

cally divisible. Then the dual space G is Hausdorff if and only if G equals the direct

product TV x A of TV and K.

Proof. Of course the "if" part is obvious. Assume then that G is Hausdorff.

We will show first that, if x is an element of TV, then the neutral group Jx equals A.

Thus, let U be a neighborhood of the element A in Jf(K). Now by Proposition

9.1-B, the mapping M which sends each character x of N to its neutral group Jx is

continuous. Hence choose a neighborhood W of the identity character of TV such

that for each element </> in W, the neutral group J$ lies in U.

Now if x is an element of TV, then by assumption there exists an element <j> of

W and an integer « such that x=<f>n- Hence, by applying Proposition 2.2-A « times,

we conclude that Jx contains J$.

Finally, observe that, if Jis an element of the open set U, and if J' is a subgroup

of A which contains /, then J' is also contained in the open set U.

The last two paragraphs now give the fact that, for each x in TV, the neutral group

Jx is contained in U. Since this is true for arbitrary neighborhoods U of the element

A, we conclude that JX = K for all characters x of TV.

Now, let « be an element of TV and let k be an element of K. We show that k-n

is always equal to «.

For each character x of TV, we have x(k-n)=[(k~1-x)](n) = x(n).

Now since no character separates the points n and k-n, it follows that n = k-n.

Therefore each automorphism of TV defined by an element of K is the identity

automorphism. Thus the semidirect product structure is trivial, i.e., G is the

direct product TVx A.

9.2-C. Corollary. Suppose G is the semidirect product N * A, where A is

compact and where N is a compactly generated abelian group such that the only

compact subgroup of TV is the subgroup containing only the identity. Then, the dual

space G is Hausdorff if and only if G equals TV x A.

Proof. This follows because N=Z' x Rk, where Z1 denotes the direct product of

j copies of the group of additive integers, and Rk denotes the /c-dimensional

Euclidean space. (See [11], Theorem 24.30.)

10. Examples.

10.1. First let TV be the additive group of real numbers and let A be the two

element group [e, k]. Define the automorphism of TV corresponding to the element
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k of K as follows: If x is in N, then kx=—x. Then we may form the semidirect

product N * K.

10.1-A. In order to apply the results of the previous chapters, we must determine

what are the orbits of Ñ and what are the neutral groups for the elements of Ñ.

In this case, TV is again the group of additive real numbers.

If X is a nonzero element of Ñ, then the orbit containing x is the two element set

\x, ~x\- The orbit containing the zero character is the set containing only the

character 0.

The neutral group 3Q for 0 is of course all of K. The neutral group 3X for a nonzero

element x of A^ is the trivial group [e].

10.1-B. The cataloguing triples which will occur in this instance are as follows:

(i) (0, (K, T)), where T is one of the two elements of ft.

(ii) ix, i\e\, I)), where x is a nonzero character of N, and Us the one-dimensional

trivial representation of the group [e].

10.1-C. The dual space G may be described as follows:

Consider the nonnegative real line modified by splitting the point 0 into two

copies 0' and 0". This modified nonnegative real line is in one-to-one correspondence

with G as follows :

If j is a positive real number, then s corresponds to the element of G catalogued

by the triple (s, ([e], I)). 0' and 0" correspond to the two elements of G catalogued

by the triples (0, (K, Sx)) and (0, (K, S2)).

A subset B of G is closed if and only if B satisfies the following two conditions.

(i) Having identified B as above, we require that the intersection of B with the

positive real numbers be closed relative to the positive real numbers.

(ii) If B contains a sequence of positive real numbers which converges, in the

usual sense, to 0, then B contains 0' and 0".

10.1-D. We observe that G is not a Hausdorff space. The first conjecture in the

introduction asserts that G is always homeomorphic to the quotient space Q"(G).

(See 8.1-B.) But, by 8.1-D, Q"(G) is Hausdorff, and hence, the above example

shows that this conjecture is false.

10.2. Now let N be three-dimensional Euclidean space, and let K be the group

of proper rotations of N. Then, since K can be realized as a group of matrices, there

is an obvious mapping of K into the group of automorphisms of N. Thus we may

form the semidirect product G = N * K.

10.2-A. Ñ is of course Euclidean three-space. If x is a character of N, we denote

by x the vector in three-space determined by x- The orbit of Ñ containing the zero

character is the set [0]. If x is a nonzero character, then the orbit of x is the spherical

shell determined by the vector %.

The neutral group for the zero character is again all of K. If x is nonzero, then

the neutral group 3X is the subgroup of K consisting of all rotations which leave the

vector x fixed. Hence, for each nonzero element x of Ñ, 3X is homeomorphic and

isomorphic to the circle group C.
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10.2-B. The  cataloguing  triples which  occur in  this case are as follows:

(i) (0, (A, 5)), where 0 is the zero character of TV and 5 is an element of K.

(ii) (x, (Jx, fr), where x is a nonzero character of TV, and where <f> is a character

of the abelian group Jx.

10.2-C. G may be described as follows: Let P be the set of positive real numbers

and let Z be the set of integers. Then G may be identified with the set [P x Z] u K.

In fact, if (s, n) is an element of PxZ, then (s, ri) corresponds to the element of

G catalogued by the triple (x, (Jx, fr), where x lies along the z-axis and has co-

ordinates (0, 0, s), and where <f> is the character of the group Jx, i.e., the circle group,

given by the integer «. Also, if 5 is an element of K, then 5 corresponds to the

element of G catalogued by the triple (0, (K, Sy).

We make the identification of G with [PxZ] u K. Then, a subset B of G is

closed if and only if B satisfies the following two conditions.

(i) The intersection of B with PxZ is a closed subset of PxZ.

(ii) If B contains a sequence (s}, n¡) of elements of PxZ such that the sequence

[s¡] converges, in the usual sense, to 0, and such that the sequence [n,] is eventually

constant with constant value «, then B must contain all points 5 of K such that 51 c

contains «. (Here C represents the subgroup of A consisting of all rotations about

the z-axis.)

10.3. We come now to the conjecture mentioned in 9.1. The following example

shows that this conjecture is false, i.e., there does exist a group G whose dual space

is Hausdorff and such that G is not the direct product TV x A of any abelian group

N and any compact group A.

10.3-A. Let TV equal ZxC, where Z is the group of integers and C is the multi-

plicative group of complex numbers of absolute value one. Let A be the two

element group [e, k]. Define the automorphism of TV corresponding to k as follows :

If («, u) is an element of TV, then

k-(n,u) = (n,(-ln)u).

We may construct therefore the semidirect product G = TV * A. The elements of

G can be thought of as triples (a, «, u), where a is in A, « is in Z, and u is in C.

10.3-B. TV equals CxZ. It is easy to see that if (v, m) is an element of TV, then

the neutral group </(1)>m) is all of K if m is even, and the trivial subgroup [e] if m is odd.

We observe then that the mapping x -> Jx of TV into Jf(K) is continuous. There-

fore, by Proposition 9.1-B, G is Hausdorff.

10.3-C. Now assume that G is the direct product TV'x A' of an abelian group

TV' and a compact group A'.

Then, since TV' is abelian and is a direct factor, TV' must be contained in the

center of G. It is easy to see that an element (a, n, u) of G is in the center of G,

if and only if « is even.

The mapping of G which sends an element (a, n, u) to n, i.e., the projection of G

onto the second coordinate, can be easily seen to be a continuous homomorphism
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of G onto the group of integers. If 8 is this homomorphism, then 8(K') must be a

compact subgroup of Z, i.e., 8(K') equals [0], Therefore, if (a, n, u) is an element of

K', then n equals 0.

Now every element of G is the product of an element (a, n, u) of N' and an

element (b, m, v) of K'. This product is (ab, (n + m), uv), since m and n are both

even. Therefore, every element of G has as its second coordinate the sum of two

even integers. This is, of course, a contradiction.

Thus G cannot be written as the direct product of an abelian group and a

compact group.
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