THE STEFAN PROBLEM IN SEVERAL
SPACE VARIABLES

BY
AVNER FRIEDMAN()

Introduction. The Stefan problem is a free boundary problem for parabolic
equations. The solution is required to satisfy the usual initial-boundary conditions,
but a part of the boundary is free. Naturally, an additional condition is imposed at
the free boundary. A two-phase problem is such that on both sides of the free
boundary there are given parabolic equations and initial-boundary conditions, and
neither of the solutions is identically constant. In case the space-dimension is one,
there are numerous results concerning existence, uniqueness, stability, and asymp-
totic behavior of the solution; we refer to [1] and the literature quoted there
(see also [8]).

In the case of several space variables the problem is much harder. The difficulty
is not merely due to mathematical shortcomings but also to complications in the
physical situation. Thus, even if the data are very smooth the solution need not be
smooth, in general. For example, when a body of ice having the shape

keeps growing, the interfaces 4B and CD may eventually coincide. Then, in the
next moment the whole joint boundary will disappear. Thus the free boundary
varies in a discontinuous manner.

This example motivates one to look for “weak” solutions. In [4] the concept of
a weak solution is defined. Furthermore, existence and uniqueness theorems are
proved. The existence proofs are based on a finite-difference approximation.

In the present work we give a simpler derivation of the existence theorems of [4].
Our method has also the advantages that (i) it yields better inequalities on the
solution and on its first derivatives than in [4], and (ii) it enables us to find certain
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regions where the weak solution is a smooth function. We also derive (in §4) a
stability theorem for the weak solution. This roughly states that, in the L? norm,
the solution varies continuously with the initial and boundary data. In §5 we prove
an asymptotic convergence (in L?) of the solution as ¢ — co. Some generalizations
of the results of §§2-5 are given in §6.

In the next sections (except for the last one) we are concerned with the one-phase
problem. Existence and uniqueness of weak solutions follow by the methods for the
two-phase problem. We also derive asymptotic bounds on the set where the solution
is (i) positive and smooth, (ii) identically zero. Asymptotic bounds for classical
solutions of the Stefan problem, in several space variables, were obtained by a
different method in [2].

In the definition of a weak solution enters a function a(x) defined by

a(u) = o,u if u>0,

=ou—ca if u 20,

where «,, a,, « are positive constants which occur in the setting of the problem.
For each weak solution u(x, t) {(# is a bounded measurable function) the function
a(u(x, t)) is defined as o, u(x, t) if u(x, t)>0 and as ou(x, t)—« if u(x, t) <0; at the
points where u(x, t)=0 the function a(u(x, t)) is only required to satisfy —a=
a(u(x, r)) =0 and to be such that it is altogether a measurable function. The set where
a(u(x, t))=0 can be interpreted as being the set occupied by the liquid of the
problem, whereas the set where a(u(x, t)) < —« can be considered to be the set
occupied by the solid of the problem. It is of fundamental interest to find the nature
of the set W where —a<a(u(x, t))<0. This set may be conceived as a “cloud”
lying between the solid and the liquid.

In §8 we show (for the one-phase problem) that the set G;(c) occupied by the
liquid at time ¢=¢ increases with o. Some results on the strict increase of G,(o)
are given in §9. The result of §8 is used in §10 to prove that the set W(o)=W
N {t=o0} is contained in the boundary of G,(s). Thus, in particular, W has no
interior points. Miscellaneous results on the one-phase problem are given in §11.
Finally, in §12 we consider briefly other free boundary problems.

All the functions in this paper are real valued.

1. Reduction of the classical problem to a generalized one. Let G be a bounded
domain in R", whose boundary consists of two C! hypersurfaces: 9,G and 9,G,
and let 9,G lie in the interior of 9,G. For any T, 0<T <00, set Q=G x (0, T).
We introduce the elliptic operators

n

o2 & 0
L= (X, 8) s——+ D bi(x, ) 5— + c'(x, ¢ i =1,2
o= 2 B gt > B gt e (=12

with coefficients satisfying: a';, V.al, V2aly, bi, V,b!, ' are continuous in Q..
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Consider the following system of equations for a triple (u,, 43, P):

(1.1 owfot = Ly, forxeG(t), 0<t<T (i=12),

(1.2) =g forxeoG,0<t<T(i=1,2),

where g, >0, g,<0.

(1.3) wy=h onG@O) (i=12)

where h, >0, h,<0.

(1.4) =0 forxel(t),0=t<T (@(=1D2).

(1.5) Mil ak Zz :;D ,il 2 giﬂ g)i %’ forxeT(t),0 <t < T,

where o is a positive constant. Here I'(¢) is a hypersurface lying in G(t)=G x {t},
G(?) in the domain lying in G(t) and bounded by I'(t) and 9,G(¢)=9,G x {t}, and
®(x, t)is a C* function in Q; such that I'(2) ={(x, t) € Qr; ®(x, t)=0}, V. O(x, t)#0
on I'(¢), ®(x, ) <0 in G,(¢), and ®(x, t)>0 in G,4(¢). The functions A, g; are the
initial and boundary data for u;, and S={J,<;<r I'(?) is the “free boundary”.

The classical (two-phase) Stefan problem is to find a solution (u,, u;, ®) of
(1.1)—(1.5).

We recall that the transversal vector u, with respect to L, at I'(¢) is given by
{3 a; cos (x, v)} where v is the normal vector on I'(t). We shall always take the
normal v on I'(¢) to point into Gy(¢). Since 9®/x, = A cos (x;, v), 0®/0t= A cos (¢,v)
for some A#0, we can write (1.5) in the form

(1.6) aul/aﬂl-’auzla[lva = a(l)t/IV(DI (IV(D|2 = (th'i'lvxq)lz).

It has already been pointed out in the Introduction that classical solutions do not
exist in general (even for smooth coefficients, data and @, G, 9,G). We shall therefore
transform the problem (1.1)(1.5) into a ““generalized” one, as in [4].

Set 0G=0,G L 0,G,

au) =u—« ifu 20,
=u ifu >0,
g =g ondG(),
= g2 on 0,G(1),
h = h; on Gy(0),
= h2 on G2(0)»
ay(x, t,u) = ay(x,t) for(x,1)eQup,u =0,
=a}(x,t) for(x,?)eQqu,u <O.
We define by(x, ¢, u), c(x, ¢, u) in a similar way to a,(x, ¢, «) and then set

1.7

(1.8) Ly = i au(x, t u)ﬂ-+i byx, t u)ﬁ+c(x t, uu.
jok=1 T 0xy o, i=1 755 ox, 7
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Denote by L¥ the adjoint of L,, and define L*u by L*u=L,u at points where u>0
and L*u=L,u at points where u<0. The function u; on 9,G(¢) is defined as the
outward transversal vector with respect to L,. Set

= ono,G(r),
= Mg On azG(t).

DEFINITION. A bounded measurable function # in Q is called a weak (or
generalized) solution of (1.1)<(1.5) if

(1.9) f fn, [uL*¢+a(u)%] dx dt = fT

(1]

od J‘
== dS, dt—
G g op

G(0

a(h)¢ dx
)

holds for any function ¢ in Q, with V. ¢, V24, D,¢ continuous in OQr and $=0 on
G(T) and on oG x (0, T).

In this definition, a(u(x, ?)) is not to be defined by (1.7) when u(x, ¢)=0. Instead,
it is defined as any function B(x, ¢) subject to the following restrictions: (i) a(u(x, t))
is a measurable function in Qr, and (ii) a(0—0)= —a=<B(x, ) <0=a(0+0). The
functions ay(x, t, u(x, t)), bi(x, t, u(x, t)), c(x, t, u(x, t)) are defined in a similar
way when u(x, t)=0. Since, however, on the set where u=0 the integrand uL*¢ is
equal to zero, the latter definitions are of no significance.

By a classical solution of (1.1)~(1.5) we mean a solution (u,, uz, ®) of (1.1)-(1.5)
such that u;, V.4 are continuous in g s, <1 Cl (G(?)) (here Cl (4) stands for the
closure of A) and VZu,, D are continuous in | <; <7 Gi(2).

THEOREM 1. A4 classical solution of (1.1)~(1.5) in Qy is also a weak solution of
(1.1)-(1.5) in Q.

THEOREM 2. Let u be a weak solution of (1.1)~(1.5) in Q. Assume that there
exists a C* function ® in Q satisfying

T@)={(x, t) € Qr; u(x, t)=0}={(x, t) € Qp; O(x, )=0} and V,0#0 on I'(z),
® <0 in Gy(t), ©>0 in Gy(t), where Gy(t) is the domain bounded by T'(t) and 8,G(¢).
Setting uy=u in G(t), assume that w,, Vu, are continuous in Jo; .y Cl (Gi(t)) and
that Viu,, Du are continuous in \ Jo<;<r Gi(t). Then (uy, us, ®) is a classical solution
of (1.1)~(1.5).

For the sake of completeness we give here the proofs (which are given also in
[4], for the case n=1).

Proofs. To prove Theorem 1 we multiply both sides of (1.1) for i=1 by ¢ and

integrate over | G,(#). Recalling that u, =0 on I'(¢), we obtain, after integration
by parts,

T T
f f (u, g?+ ulL’{‘qS) dx dt+J' f ¢ z a}e % cos (x;, v) dS, dt
(l . 10) 0 JGi(d) 0 JI® 4,k R

T a¢
= —ds, dt—f h .
fo J;a; “ Opy G1(0) 16 dx
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Writing 0u,/0t=08(u,— «)/0t in (1.1) for i=2, and multiplying by ¢, we obtain,
upon integrating over |J G,(?),

f : (—o)cos (1, ) dS, dr+ f: Lzm [(ug— 92+ u2L§¢] dx di

T
(.11 —f f 83 a2 cos (x,, v) dS, dt
0 JI) a

7k Xk

T
=f f uza-?ﬁdsxdt—f (h= o) dx.
0 Jage (2] Ga(0)

Set u=u, for x € G,(t), u=u, for x € G,(t). Adding (1.10), (1.11), and using (1.5),
the equation (1.9) follows.

Suppose, conversely, that » is a weak solution satisfying the assumption of
Theorem 2. Taking in (1.9) ¢ with compact support in |J G,(¢), we find that », is a
“weak” solution of (1.1). Since u; is smooth, it is easily seen to be a (classical)
solution of (1.1). Next, taking ¢ in (1.9) with support in a neighborhood of a point
lying on 9,G(¢) and integrating by parts, we find that (1.2) holds. (1.3) is proved in a
similar way. Taking ¢ in (1.9) with support in a neighborhood of a point (x, s),
where x € I'(s), and with ¢ =0 on I'(¢), and integrating by parts, we find that (1.4)
holds. Finally, if we take in (1.9) ¢ with support in a neighborhood of a point (x, sy
where x € I'(s) and use (1.4), we see that (1.5) is valid.

In the following sections we restrict ourselves, for simplicity, to elliptic operators
L, with a},= A3, (4, constant), b,=0, but our methods extend also to the case
where al,=Aa,., bi=Ab, (see §6). We also assume that c'(x, £)<0. It will be
convenient to write the parabolic equations in the form

(1.12) oou /ot = Auy+c(x, t)u,
where o, is a positive constant and A is the Laplace operator. We accordingly set
(1.13) L =A+c

We introduce
a(u) = ayu ifu>0,

= ogu—a ifu=0,
&/o  on 0,G(t),
h = hje; on G(0),

]

(1.14)

u= ul/al iful > 0,

u2/a2 if Uy < 0.

Then (1.9) is still the equation for weak solutions of (1.1)(1.5), with L, given by
(1.13). Note that yu, is now the normal v.

We conclude this section with the observation that if « is a weak solution in Q,
then it is also a weak solution in Q, for any o < T. Indeed, let x.(¢) be a C* function
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such that x.(2)=1if t<o—¢, x.(t)=01if 1> 0, and x;(¢) £0. Let ¢ be as in (1.9) with
T replaced by o. Apply (1.9) (in Q) with ¢ replaced by ¢y, and take ¢ — 0.

2. Existence and uniqueness of weak solutions. Unless the contrary is explicitly
stated, we shall always assume that T'< 0.

The following assumptions will be needed:

(i) @G is of class C2*" for some 7 >0.
(i) c'(x, t)=c'(x) (for i=1, 2) are Holder continuous in G, and c¢'(x) 0.

(iii) g =2y:>0 on 9,Gx [0, T] and g,<y,<0 on 9;G x [0, T'], where y,, y, are
constants.

(iv) A, 20 in Cl(G1(0)) and A, =0 only on I'(0); A, <0 on CI (G»(0)) and h,=0
only on I'(0).

(v) g, h are continuous functions in G x [0, T'] and Cl (G(0)) respectively, and
g=hon oG.

Sometimes we shall need stronger assumptions on g, A; namely:

(vi) A is continuous in Cl (G(0)) and it belongs to W*:%(G) (i.e. it has first strong
derivatives in L%(G)).

(vii) There exists a function ¥ with V,¥, VZ¥, D,¥ Holder continuous (say,
exponent 7) in Qr, such that ¥'=g on G x [0, T] and ¥'=h in ¥ N G(0), where
V is an (n+ 1)-dimensional neighborhood of G.

REMARK. (vii) is equivalent to stating that (a) g has two continuous derivatives
with respect to x € 9G and one continuous derivative with respect to ¢, (b) h(x) is
in C%*"in some neighborhood of G, and (c) g, 4 satisfy some consistency conditions
on 9G(0).

THEOREM 3. Assume that (i)~(iv), (vi), (vii) hold. Then there exists a weak solution u
of (1.1)«(1.5). u belongs to W**Q;) and moreover, the function [ |V u(x, t)|* dx
is essentially bounded.

In [4] the assertion that u € W*:%(Q;) was proved only under the restrictions that g
is independent of ¢ and ¢!=0. The last assertion of Theorem 3 was not proved in [4].

Proof of Theorem 3. Let {a,(u)} be a sequence of smooth functions such that
a,(u) — a(u) uniformly in any closed interval which excludes the -origin. We may
choose the a,(x) in such a way that

(2.1) ag § a,',,(u) Whel'e g = min (al, az).

Let {y(u)} be a sequence of smooth functions such that y,,(x) — sgn « uniformly
in any closed interval which excludes the origin. We may choose the y,,(x) so that

2.2 -1 S yn@) = 1.
Define
23) em(x, ) = 3 (X)[1 +ym()]+3c2(X)[1 — ym(@)],

24 L™ = Au+cp(x, u)u.
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Consider the system

2.5 an(v) dvfot = L™ in Qy,
(2.6) v=g on dG x (0, T),
2.7 v=~h onG(0).

By [6] there exists a unique solution v=uv,,. (One needs actually to assume that A
belongs to C2*"(G). But by standard approximation arguments (¢employing a priori
inequalities and barriers [1]) we find that a solution exists even if 4 belongs to
C%G).)

We claim that there exists a 8,-neighborhood W}, of 9,G (i=1, 2), independent
of m, and an ¢, >0, also independent of m, such that

(2.8) (=D tou(x, 1) > & in QF = (W}, N G)x(0, T).
To prove this we consider the system
L™w =0 in G,
(2.9) w=c¢e on o0,G,
w = —K ond,G,

where K, ¢ are positive numbers, and K> sup |g,|, ¢ <inf g,. By a standard fixed-
point-theorem technique (using Schauder’s estimates) we find that there exists a
solution w, of (2.9) (not necessarily unique). Furthermore, w,, — w, uniformly in
G as j— oo, where {¢,} is a sequence which decreases to zero and where w, is a
solution of (2.9) when e=0. By the maximum principle, w, <0 in G; hence w,, <h,
on G,(0) provided j is sufficiently large. The inequality w,,<g on oG x (0, T) is
also obvious. We shall now prove that w,, < h, on Cl (G5(0)) provided j is sufficiently
large. It suffices to show that w,<h, on Cl(G4(0)). We compare w, with the
function Kv,, where v, satisfies

AUO—‘yUo =0 in G,
vo=0 on 9,G,

vo = —1 on .G,

and |c,(x, wo)| Sy. Since vy <0 in G, Avy+ cp(x, Wo)vo = [y + cn(X, Wo)lvo 0. Hence,
by the maximum principle, Kv,—w,20 in G. Now, v,<0 in G. Consequently,
Kv, < h, on Cl (Go(0)) if X is sufficiently large. It follows that w, < h; on Cl (G4(0)).

Having proved that v, >w,, on G(0) and on 9G x (0, T'), we can apply the maxi-
mum principle and conclude that v, >w,, in Q. This implies (2.8) for i=1. Since
¢n, is bounded by a constant independent of m, by examining the above arguments
we find that the constants &y, 8, can be taken to be independent of m. The proof
of (2.8) for i=2 is similar.
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From (2.8) it follows that there exists an m,=my(ey, 8,) such that if m = m, then
an(Vp) =0y, cp(x, u)=c'(x) provided (x, t) € QF.
Consider v,, in QF. It satisfies
dvpf0t = L, in QF,
(2.10) Up =g on 9,Gx(0, T),
Um=h on QF N {t = 0}.

Note also, by the maximum principle, that
2.11) loml £ 4' in Qg

where A’ =max {sup |A|, sup |g|}.
We shall prove

LEMMA 1. There is a constant A" independent of m such that
2.12) |ovmfov] £ A” oneGx (0, T).

Proof, It suffices to prove (2.12) on &,Gx(0, T). Introduce the function
w=uv,— ¥, It satisfies:

o, 0w[dt = Lyw+f in QF,
w=0 on 9,Gx (0, T) and on QFf N {t = 0},

where f=L,¥—«, 0¥/0t is a bounded function. Let (y,s) be any point on
0,Gx (0, T) and denote by (y,, s) the center of a ball with radius R=|y—y,|
which does not intersect G(s). Then (compare [1, p. 87]) the function wy(x)
=k{R~?—|x—y,| -} for some positive k, p satisfies

alaw.,/at = Liwo+1,
wo 20 ond,Gx(0,T) and on QF N {t = 0},
wo = 1 on the remaining part of the boundary of Q¥ which lies in ¢t < T.

Let ko=max {supqs | f|, supa, |w|}. Applying the maximum principle to kowo+w
we conclude that kowo+w=0 in QF. Since kowo+w=0 at (y,s), we have
A(kowo + w)/ov=0 at (y, s). Hence, |ow/ov| < —k, Ow,/ov < A*. Note that k, and,
consequently, also A* are independent of m. (2.12) now follows.

We return to the system (2.5)-(2.7). We shall first suppose that 4 is sufficiently
smooth on G. Then v, is continuously differentiable in G x [0, T]. Multiplying
both sides of (2.5) by dv,/0t and integrating over Q,, we obtain

f fn. a,,.(v,,.)(—a-t—) dx dt+ j  VonV 52

o OV, OV, OV
= J; ogE_%Tde dt—J];}a c,,.v,,.—adedt.
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Using (2.1)-(2.3), we get
av,,, a 1 2
o dxdt+ |Voal2dx £ 5 |Vh|? dx
2, 2 Jew 2 Jow

LLI
0o Jog

where A is a constant independent of m.
Using Schwarz’s inequality and (2.11), (2.12), it follows that

(2.13

?\dsx dt+ 4 f (0n)? d db,
t Q,

2.14) ff (3""') dxdt+f Voul? dx < 4' f VA2 dx+ 4,
Qg G(o) G0

where A’ is a constant independent of m.

If h is not sufficiently smooth (but still satisfies (vi), (vii)), then we first take a
sequence {#'} of smooth functions which converge to % in the norm of W2(G)
and which coincide with 4 near G. We apply (2.14) to each solution v, of (2.5)-(2.7)
with A replaced by #’. We then take j — co.

From (2.11), (2.14) it follows that there exists a subsequence of {v,,}, which we
denote again by {v,,}, such that

(2.15) vm—u  inLAQy),
(2.16) Voom— Vo in L(Qy),
2.17) Dyn— D inLX(Qy),

where “—”’ means weak convergence. Since bounded sets in W*+%(Q;) are contained
in compact subsets of L%(Q7) (see [9]), we may also assume that

(2.18) | om =4l 2@p — O.

We may further assume that {v,,} is almost everywhere convergent to ». Hence, by
(2.11),

2.19) |u(x, t)] < max {sup |A|, sup |g|}.

From (2.15), (2.16), (2.18), and (2.14), it follows, by standard arguments, that
u belongs to W'-%(Qg) and the function [ |Vu(x, t)|? dx is essentially bounded.

To complete the proof of the theorem, we shall show that u is a weak solution.

Since v,, — u almost everywhere in Qy, for almost all (x, ¢) for which u(x, t)#0
we have a,(vn(x, 1)) — a(u(x, t)). Next, the sequence {a,(vn(x, t))} is a bounded
sequence of measurable functions. We may therefore assume that it converges
weakly to some bounded measurable function B(x, ¢). It then converges to B also
in measure, and we may assume that the convergence is also almost everywhere
(otherwise we take a subsequence). It is now clear that B(x, t)=a(u(x, t)) for almost
all the points (x, ¢) for which u(x, t)#0. If, on the other hand, u(x, t)=0, then,
since v,(x, t) — 0, we conclude that a(0—0) £B(x, t) =a(0+0).
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Next we may assume that the sequence {c,(x, v,(x, 1))} is weakly convergent to
some bounded measurable function 8(x, ¢). Hence it is also convergent in measure
to &(x, t). It follows that there exists a subsequence, which we again denote by
{cm(x, vm(x, 1))}, such that it converges almost everywhere to 8(x, ¢). As easily
seen from (2.3), 8(x, t)=c(x, u(x, t)) for almost all (x, ¢) for which u(x, t)#0.

We shall now show that u(x, ¢) satisfies (1.9). Multiply both sides of (2.5) by ¢
and integrate over Qr. Using (2.6), (2.7), we obtain

(V) o dx dt+ Un[Ad + cu(x, v,)P] dx dt
ar ot ar

=fT % as dt—f alhy$ dx
o Jog & v G(0) )
Taking m — co and using (2.15), (2.18), we obtain (1.9).

COROLLARY 1. For any 0<o<T and for every ¢ as in (1.9),

(2.20) f ! J; [uL*¢+a(u) g] dx dt = J' ! X %-f ds, di— f alu) dx.

G(o)

Furthermore,
@21) fa V. lx, 0)|3do < B <
for all e € (0, T].
Proof. We claim that for almost all ¢ in (0, T),
(222 On(x, 1) — u(x, 1),
(2.23) ap(Vm(x, t)) — a(u(x, t))
in L*(G). Indeed, since v,, — u in L*(Qy), for any ¢ € L% G)
2.24) fa o (%, £)b(x) dx — J:; u(x, £)p(x) dx.

Hence, by taking a subsequence we may assume that the convergence is also almost
everywhere. Now take ¢ to vary in a dense sequence {¢,} of L%(G). It follows that

(2.25) f vn(x, 1)P(x) dx — J’G u(x, t)p(x) dx asm — oo,
G .

for each ¢=¢, and ¢ € Z where [0, T]—Z is a set of measure zero.

Since the v,, are uniformly bounded, we deduce that (2.25) holds for all ¢ € L*(G)
and ¢ € Z. This completes the proof of (2.22). The proof of (2.23) is similar. In
what follows we denote by Z a subset of [0, 7] such that (2.22) and (2.23) hold for
all 1 € Z and such that [0, T]—Z has measure zero.

Now multiply both sides of (2.5) by ¢ (¢ as in (1.9)) and integrate over G x (o, T')
where o € Z. Using (2.23) we obtain (2.20).
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We shall next redefine # and a(v) on t=o,, for any o, ¢ Z, in such a way that
(2.20) holds for o=0,. We can choose a sequence {o,} =Z converging to o, such
that

(2.26) u(x, on) = yo(x),  a((x, on)) = y1(x)

as m — oo, where y,, y; are some bounded measurable functions. By taking a
subsequence we may assume that

(_2'27) u(xs am) g 70(x)9 a(u(x, om)) - )’1(X)

almost everywhere. But then it is clear that we may well redefine u and a(u) on
t=0o * by

(2.28) u(x, ox) = yo(x),  a(ulx, ox)) = y1(%).

Writing (2.20) for ¢=o0,, and letting m — oo, we find, upon using (2.26), (2.28),
that (2.20) holds for o=o,.

We may assume that (2.21) holds for all o € Z. Using (2.26) it then follows that
(2.21) holds also for ¢=0, where o, is any point in (0, T]—-Z.

COROLLARY 2. If n=1 then u(x, t) is a continuous function in Q.

Proof. From (2.21) and the Sobolev inequality it follows that u(x, ¢) is con-
tinuous in x, uniformly with respect to ¢. It remains to prove that u(x,, t) is con-
tinuous in ¢ for any x, € G. The proof is analogous to an argument used in [10).
Suppose the assertion is false. Then there exists a sequence {z,,} in (0, T) and an
£>0, such that z,, — 7 and |u(x,, t,)— u(x,, 7)| > ¢ for all m. By the continuity of
u(x, t) in x it follows that the inequalities persist in some neighborhood
{x; |x—xo| <8} N G. Hence,

(2.29) |a(u(x, tn)) —au(x, 7))| > ve

for some y >0 independent of m, .
Writing (2.20) for o=, and o=, and subtracting one equation from another,
we easily find that

f [a(u(x, t,))—a(u(x, 7))}¢(x, 7) dx —0 asm — 0.
G

But this relation is readily seen to contradict (2.29).

COROLLARY 3. Let (g, h) vary in a family M such that infy 7, >0, supy y5 <0,
supy |g| Sconst<oo, supy |h| Sconst<oo, and infy (—1)' " h(x)2ys>0 for x
in some yq-neighborhood V; of 0,G (i=1, 2). Then there exists a 8,-neighborhood
Wi, of .G (i=1, 2) such that (—1)'"*u(x, t)2 e, >0 for xe Wi, N G,0=t<T, and
V.u, Viu, Du are Holder continuous on these sets; 8, and e, are independent of
(8 h) in M.
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Proof. From the proof of (2.8) it follows that ¢, &, can be taken to be inde-
pendent of (g, A) in M. Now recall that {v,} is convergent to « almost everywhere
and also use Schauder-type estimates [1] for the v, in [W}, N G1x [0, T].

THEOREM 4. Assume that (1)~(v) hold. Then there exists a unique weak solution of
(1.1)~(1.5).

Proof. In case c!=¢2=0, an elegant proof of uniqueness was given in [4]. We
shall extend it to the present case. If u, v are two weak solutions, then

(2.30) J' fn [a()—a(®)] [%w A¢+eé’¢] dxdt =0
for every ¢ as in (1.9) where

e(x, 1) = a(u‘g’t‘);:zgi ;’)t» if u(x, 1) # o(x, 1),

(2.31)

=0 if u(x, t) = v(x, t),
and

1) = o(x, u):-_—z(x, L N
(2.32)

=0 ifu=o.
Noting that for u#v,

(2.33) &(x, t) = c(x, u) +C(X, u)—c(x, v) v

Uu—v

and recalling the definition of c(x, u), we easily conclude that é&(x, ¢) is a bounded
function.

We can now proceed analogously to [4]. We approximate e by a sequence of
smooth functions e,, (in [4] the notation of ¢ and c,, are used instead of e and e,,).
We also approximate ¢ in L?*(Q;) by smooth é&,. For any fin C*(Q;) with compact
support, we solve

a¢m/ ot+ (4 A¢m + eé’m¢m = f in QT’
¢n =0 on G(T) and on oG x (0, T).
By multiplying the differential equation by A¢,, and integrating, we find that

fo(o) |Vénl* dx+J'ng en(Mdn)?dx dt < A

where A is independent of m. If we now substitute ¢ =4, into (2.30), then we find,
by slightly modifying arguments given in [4], that

I= f L, [a(u)— a(0)1f dx dt
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satisfies |I| <e,, where &, — 0 as m — co. Hence I=0, from which it follows that
u=v almost everywhere.

To prove existence, let ¥ be a continuous extension into Q of the function
defined as g on dG x [0, T] and as 4 on G. Let ¥, be a sequence of C* functions in
Q. which converge uniformly to ¥'. For each m there exists (by Theorem 3) a weak
solution u,, of (1.1)—(1.5), with the initial and boundary values given by ¥,,. Since
{un}, {c(x, u,)} and {c(x, u,)u,} are uniformly bounded sequences of functions in
Q., we may assume (compare the proof of Theorem 3) that they all are convergent
weakly in L3(Q;) as well as almost everywhere. Denote by u the weak limit of {u,,}.
It follows that for every ¢ € L%(Q;)

lim f f %, 1)c(x, un)un(x, 1) dx dt = f J'n $(x, 1)e(x, wu(x, 1) dx dr.

If we now write down (1.9) for u=u,, and with g, h replaced by ¥,,, ¥, and let
m — oo, then we obtain the relation (1.9). Thus u is a weak solution of (1.1)~(1.5).

REMARK 1. Note that from the uniqueness proof it follows that not only u(x, t)
but also a(u(x, t)) is uniquely determined almost everywhere.

REMARK 2. The uniqueness proof clearly remains true also if the ¢! are functions
of (x, t). The use of Theorem 3 (in the existence proof) can be avoided if we replace
u,, by the solution of (2.5)-(2.7) with g, h replaced by ¥,,.

Suppose now that the assumptions of Theorem 4 hold for all 7> 0. Denoting by
up the solution in Q; and recalling that u; is a weak solution in Qg if T'<7T, it
follows, by uniqueness, that ur=ur in Qp. Thus there exists a unique weak
solution of (1.1)~(1.5) in Q.

CoROLLARY 1. Corollary 3 to Theorem 3 holds for T=co.

Indeed, this follows from the proof of that corollary.

We shall now draw some further conclusions in the case T=co. For simplicity
we consider first the case c!=¢?=0.

Denote by D, the (n—1)-dimensional vector of tangential derivatives on 0G(t)
(in terms of a fixed parametrization on 8G). By H,(f;t) we denote the Holder
coefficient of f (with respect to the exponent 5) on 9G(¢).

We now give a better estimate on the constant 4” appearing in (2.12) than the
one which results from the proof of Lemma 1. Let us assume that
2.34) lgl+|D.g|+|D:g| < 4o on G x (0, ),

' H(D,g;t) £ Ay for0 <t < oo,
and consider the function w=0v,/dt on QFf*=(W}, N G) x (1, ). It satisfies
(2.35) o dw[ot = Aw in QF*, w=g, onoGx(l, ).

Denote by 2Q}* the part of the boundary of QF* which lies in G x (1, c©), and
denote by oG} the projection of 9Q¥* on G(1). By decreasing &, if necessary, we
may assume that a,(v,)=c; in ¥*x (4, o) where V'* is a neighborhood of 9G¥.
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But then one can conclude that w=0v,,/0t is a bounded function on 0G¥ x (1, o).
Using this result and (2.35), it follows, via the maximum principle, that w is a
bounded function in Q*.

We now consider, for fixed ¢, the system

Av, =f in (Wgon G) x{t} (f = «0v,/01),
v, = g ono,G(?).

We can write v, =0vn+0v, Where Av, =0, Av,=f in (W}, N G)x{t}, v,=g on
0,G(t), vyy=v,, on 9G¥ x {t}, and v, =0 on 9,G(¢) and on oG} x {t}. By results of [5],
(2.12) on 9,G x (1, <o) holds for vy,, with 4" depending on 4, (in (2.34)) but not on ¢.
Representing vy, in terms of Green’s function and using standard estimates, we find
that (2.12) holds also for vy, with 4” depending only on sup | f|. Since f has already
been estimated above, we conclude that the constant A” in (2.12) is independent of
T, i.e. (2.12) holds on 2G x (0, o).
Using (2.13) we then easily obtain

COROLLARY 2. Assume that c*=c?=0, that (i), (iii), (iv), (vi), (vii) hold for
T=oo0, that (2.34) holds, and that

(2.36) f ) f |g| dS, dt < oo.
1] oG
Then
t
2.37) f f |u4y|2 dx dt +ess supf [Vu(x, t)|2 dx < oo.
0JG O<t<o Jg

If ¢'#0, then the assertion of Corollary 2 remains true (with slight modification
in the proof).

RemArKk 1. If g, 20, g, =0, then there occurs a difficulty in the proof of Theorem
3, since the regions QF cannot be constructed. One can, however, consider a
modified problem with g; replaced by g,, such that (—1)'~g,,>0 and g, — g
uniformly. From the family of solutions # of the modified problems we can then
choose a sequence which converges weakly and almost everywhere to a weak
solution w.

If b, 20 or h; <0, then there occurs an additional difficulty in constructing A,
satisfying the assumptions of Theorem 3 such that a(h,) — a(h). There is no
difficulty, however, in extending Theorem 4 (see §6).

3. Some properties of solutions. We prove a comparison theorem.

THEOREM 5. Assume that the conditions of Theorem 4 hold for g, h and for another
pair g, h. Denote by u and @ the corresponding weak solutions. If §= g, hZ h, then
@ Z u almost everywhere.

Proof. Since §—g and A—h form a continuous nonnegative function on
G U [0Gx [0, T]], we can extend them to a continuous function N(x, t) in Qr
which is also nonnegative (see [3], [7]). Let {¥;} and {N;} be sequences of smooth
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functions in Qp which approximate ¥ and N uniformly in Q;. We can take the N,
to be positive. Set ‘f’,=‘P’,+N,. Denote by u,, 4, the weak solutions of (1.1)—(1.5)
corresponding to the data ¥, ‘i’, respectively.

Each , is the pointwise limit (almost everywhere) of a sequence {v;,}, where v,
satisfies (2.5)~(2.7) with g, & replaced by ¥';. Next, #; is the pointwise limit of a
sequence of solutions ?,, of (2.5)~(2.7) with g, h replaced by ‘f’, and L™ replaced
by L™v+1/m. Since ‘f’,>‘l",, the Lemma of Westphal-Prodi (see [1, p. 52]) shows
that &, > v,, in Q. Hence #;2u, almost everywhere.

By the proof of Theorem 4, u and i are the pointwise limits (almost everywhere)
of subsequences (with the same indices) of {w;} and {#,} respectively. The assertion
now follows.

Theorem 5, under stronger smoothness restrictions on g, h, g, h, was proved
(by a different method) in [4].

THEOREM 6. Let the assumptions of Theorem 3 hold. In any open subset M of Q;
where u20 and a(u)20 (u<0 and a(u)< —«), u is a classical solution of
oy 3u/9t=L1u (az 3u/3t=L2u).

Proof. In M, u is a weak solution of «yu,—L,u=0. Since u € W'-2(Qy,), it is also
a “strong” solution. From [6] it follows that u is Holder continuous, and it is then
easy to see that u is a classical solution of «,u,—L,u=0.

REMARK. If ¢(x, 1)=0, then the assertion of Theorem 6 is obviously valid even
under the assumptions of Theorem 4.

4. Stability of solutions. In this and in the following section, we assume, for
simplicity, that ¢'=c2=0. Denote by H,(k) the Holder coefficient of a function k
(in a set to be specified) with respect to the exponent 7.

Let M be a family of functions (g, A) satisfying (iii), (iv), (vi), (vii), and let

@.1) &1 2% >0, 8257, <0, (=1 h(x) 2 73
in a 8-neighborhood ¥, of 0,G (i=1, 2),
4.2 |h| =4, gl =4,

for all (g, A) in M, where #,, 72, 73, 6, 4 are independent of (g, A).

Take any two elements (g, /) and (&, ) in M and denote by u, i the correspond-
ing weak solutions of (1.1)—(1.5). Denote by ¥ the function ¥ which occurs in (vii)
when g=g, h=h.

THEOREM 7. Under the foregoing assumptions, there exists a constant B depending
Only on 7719 '}-’2’ ')-’Sa Sa Z, aGs 0y, Ggy SuCh that
(i—wa(ii)—a(u)] dx dt
Q.
@3
< Bf Jh—hj2 dx+ B ff ¥ — |2 dx dt + B ” V¥ — V%2 dx d.
G Qr Qr
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Proof. We shall denote various positive constants depending only on %;, 93, 73,
s, Z, aG, oy, Ogy O by Bo Sct

e(x, 1) = (d—u)l(a@)—a@) if @# u,

4.4
“4) =0 if d=u

Then 0 < e < 1/as. Choose a sequence {&,,} of nonnegative C* functions in Qr such
that ||, —e| <1/m (““|-|” means the L% Q7)-norm). If we take the &, to be appro-
priate mollifiers of ¢ (see [1]) then we have &, <1+ 1/«;. It easily follows that the
functions e, =é,+ 1/m satisfy

4.5) en < 2+41/as,
4.6) len—el —0,
4.7 lefen] = B(1+T*3).

Let f be any function in C*(Qy) and consider the system:
4.8 O¢p/Ot+ ey Ady, = f in Qp,
4.9) én=0 ondGx(0,T),
4.10) én =0 onG(T).

Since (1.9) holds with ¢=4,, for both u, g, h and 4, £, A, we get, by subtraction,

ﬂ [a(@)— a(u)][ =+ e A¢m] dx dt = f [a(@) - a(u))(en—€) Ad,, dx dt
4.11
o o[ [ G- Zras.a-| (athy-athnds = IotTut Ke.
G(0)

Multiply both sides of (4.8) by A¢,, and integrate over Qr— Q,. Integrating by
parts and using (4.9), (4.10), and the inequality 2 [[ | fAdn| < [ (f2/em) + [[ €m|Adm|,
we find that

1 2 f 2
4.12) | Vén|? dx+ e,,.|A¢,,J dxdt £ = 2 dx dt.
G(o)

Since ¢,,=0 on 9G(c), we also have

@.13) ¢2dx<3f IV |2dx<BjJ‘fdxdt
G(o)
Using Schwarz’s inequality and (4.13), it follows that
2 12 f?
4.14) (K,) < B( fa h—h| dx) J' J'm Eaxa

Let p(x) be a nonnegative C* function in G which is equal to 1 on 9G and which
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vanishes outside Wi N G (i=1,2). W} is a d-neighborhood of 9,G, and we take
8=29§,/2 where 8§, is the constant appearing in Corollary 3 to Theorem 3.
Next, we write

Tl e O
al = | [ [, 0¥-py S s, a
0o Jog 4

< U (V=) Mg, dx dt| +
Qr

f J' V(¥ —p¥)- Vo, dx di| = J3+J2.
Qr

In both J; and J2 the integrand vanishes outside Q' and Q2 respectively, where
Q'=(Win G x(0,T). If, on the other hand, (x,?)e Q! then (—1)'"i>0,
(—1)!"u>0, and these inequalities persist, in fact, also in a (8,/2)-neighborhood
of Q' Thus, in that neighborhood we have e=«,. Hence (recalling that &, is a
mollifier of e), e,, = o, in Q' provided m = m,.

We now have

a7 < B[ f fm Y- W) dx dr] f fmmz pen(Bby)? dx dt
@ < B[ f . ¥ - ) ax dt] f fnT en(Ddy)? dx d.

Next,
@.16) (J2¢ < B{ f fm [(‘i’—‘F)2+|V‘i’—V‘P'|3]dxdt} f fm Vénl? dx dr.

Using (4.12) to evaluate the last integrals in (4.15), (4.16), and combining the result-
ing inequalities, we conclude that

@17 () s B{ f LT (= W)+ |V — V7] dx dt} f f {—2 dx dt.

Qr ©m

It remains to estimate I,,.

| < B J f len—e| |Ady| dx df = B f f ((€n)"2 + €42)| (€)% — 12| | Ahy| dix di
Qr Qr

- B f f (em)2|(en) 12— 12| | Ad,| dx dt + B f f €42|(e,)112 — ¢112) | Ay dix di
Qr Qr
= L+12

Given 7>0, let E,={(x, t) € Qr; |(en)*'>—€'?| > 7}. Since e, — e in measure,
for any A> 0 there exists an m; =my(, A) such that meas. (E,) <A if m=m,. Setting
F,=Q;—E, and using (4.5), we have

II<B f J;" +B f L, < By f f,, (€n)""%| Ahy| dx it + B f L (€n)3| A dx .
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Hence, by Schwarz’s inequality and (4.12),

(127 < By? f fn en(Aby)? dic di+ BA J’ fE en(Aby)? dx dt
o < B(»*+)) j L {;dx dt.

Next,
B < By j f ¢13|Ad,| dx di+ B f f €% A dx di.
Py En
Writing e*/2=(e,)**(¢!/?/(e,,)!'?) and using Schwarz’s inequality and (4.12), we get

2
2y s (quf £ dvdr+B eidxdt)f L a
Ep “m

Qr “m Qr “m

Since, by Schwarz’s inequality and (4.7),

ff £ axdt < BT?| L
ﬂrem €

< BT, f j £ dxdt < BOT)'™,
Ey (2
we conclude that

4.19) (12 < (BTy*+ B(TA") f ) 12 ax d.
r €m
Combining (4.19) with (4.18), we have
(4.20) (In)? = [B(1+T)n*+ B(TX)*2+ BA] Jf — dx dt.
We now combine the estimates (4.20), (4.17), (4.14) and find, from (4.11), (4.8),

@.21)

f J' [a(@)—a@)]fdx dt| < BI(1+T)p+TNP+A+N] J' f L e ar,

where, for brevity, we have denoted by N the sum of the three integrals on the
right-hand side of (4.3).

We have proved (4.21) for any fe C*(Qr). Now let f be any function in L3(Qy)
and construct a sequence of functions f; in C ®(Qy) such that || f—f;| = 0. Then
(4.21) holds for f=f; (with B independent of f;). Hence the inequality holds also
for f.

Taking, in particular, f=i#—u, and denoting the left-hand side of (4.3) by p,
we get

@422) S Bl(1+ T3 +(TN"+A+N] ff Paca (= i—u),

provided m =m, (m; may depend on u, 4, T).
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LEMMA 2. If f=1ti—u, then

2 2
lim f—dxdz=f L,
m-» o Qr €m Qr e

where, by definition, f2[e=0 whenever i=u (i.e. wherever e=0).

Suppose the lemma is true. Then, letting m — oo in (4.22), we obtain

p? < BI(1+ T+ (T2 + A+ N] f fn (ﬁ_Tu)zdx dt

= B[1+T)2+(TA)2+ X+ Nlp.
Since 7 and A are arbitrary positive numbers, it follows that p< BN, which is
precisely the inequality (4.3).
Proof of Lemma 2. In the following proof, the constants B may depend also on
T. For any 8>0, set
Qb = {(x, t)E Qr; 'ﬁ(x, t)"'u(xs t)l < 8}’ P, = QT"Q6~
Write
2 2 2
4.23) f L e = '[ Lona+ ([ Laca,
Qr €m Qs m Ps Em
and set 0= Q,—{(x, t) € Qz; i(x, t)=u(x, t)}. We have
2
f L gxar = H @—w? “) dx dt

Qs “m

(4.29) f fo i-u_ a@)=a®) ;. g dr

a(#)—a(u) en

gaﬂ i|a—u|dxdt§33ff £ dxdt < BS,
Qs m Qs €m

where (4.7) has been used. We also have

f NI f fm(ﬁ—i})-zdx dt = j . [at0) —a()a—u) d dr
4.25)
< Bﬂ li—u| dx dr < BS.
Qs

P, is a measurable set. Hence almost every point (x, ¢) of P, is a density point,
ie.
f"(P [ N Ke)
Im———= =1
§-0 l"(Kc)

where K. is a ball with center (x, ¢) and radius ¢ and p is the Lebesgue measure.
Set

En={(x1); (P, N K,) 2 3u(K,)forall 0 < & < 1/m}.
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Then E,<E,,, and u(P;—P$) =0 where P?=n-, E,. It follows that for any
&>0 there exists a j=j(¢) such that u(P;— E;) <e. Hence (compare (4.24)),

2
(4.26) ﬂ f—dxdngff £ dxdt < Be®,
Py~Ey €m Ps-E; €m
where (4.7) has been used. Similarly,
f2
@.27) [ Laxassen
Ps-E; €
Note next that e(x, t)=A(8) on P, where A(8)>0, A(8) =0 if & —0. Since
e20in Qg and &, is a mollifier of e, it follows that e, = &,,> A(8)/2 on E,, provided

m is sufficiently large. Thus 0 < f2/e,, < B in E;. Since e,, — e almost everywhere, the
Lebesgue Bounded Convergence Theorem yields

2 2
4.28) lim ff Loaar =f Loaca.
m-w JJg, €n E; €
Combining (4.23)—(4.28), we find that
2 2
f L g dr— f L g ar
Qr €m Qr e

Since 8 and e are arbitrary positive numbers, the proof of the lemma is complete.

< B(o+e'?),

lim sup

m-—+ o

COROLLARY 1. Under the assumption of Theorem 1, if T> 2,
J' f (6= 1)[a(i) — au)] dx dr
Qr

4.29) < Bf (ﬁ—h)zdxwf:f [V —¥)2+ |V, ¥ — V%% dx dr

T
+B [ [ ((6-gy+|Dsg—Dogl7ds, ar.
1 G
Proof. We first construct an extension ¥'* of §—g into Q;— Q,, such that
T T
@30 [ [ 1o+ 1vpPlaxar s B[] [ ((6-g7+1Dsg~ Daglt ds. .
1 JG 1 G

To do this, we introduce a family of parallel surfaces 0G, (0G,=9G, G, < oG, if
e>¢') for 0Se<e¢, and orthogonal curves /,(c), where p is the (n— 1)-dimensional
parameter on G and /,(¢) € 2G.. Next we introduce a C® function {(o) with
{0)=1, ¢(e)=0 for e='¢,. If we now define ¥* at /,(¢) to be equal {(e) times §—g
at the point /,(0), then we obtain the desired extension.

Let A;, A, be C* functions in Qp such that A, =0 if £>2, A,=0 if 1< 1, and
M+A=1 in Qg If we use \,(¥'—¥)+ A, ¥* instead of ¥~V in the proof of
Theorem 7, then we obtain (4.29).
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Since (4 —u)[a(i) — a(u)] Z os(ti — u)*> where oz =min (o, «3), We get

COROLLARY 2. Under the assumptions of Theorem 7, the integral ||, , (i—u)?dxdt
is bounded by the right-hand sides of both (4.3) and (4.29).

We give an illustration of Corollary 2. Let u be a classical solution of (1.1)-(1.5)
and let i be a weak solution with data 4, § satisfying

T
f |ﬁ-h|2dx+f f (¥ — W)+ |V ¥ — VW% dx df < &2
G 0 JG
Assume also that (g, h), (&, h) belong to a class M as in Theorem 7. Then
@4.31) J' J' li—ul® dx dt < B,
Qr

Now denote by S, some (small) neighborhood of the free boundary of u in Q.
Then |u| 2 p>0in Do=Qr—S,. It follows that ##0 at all the points of D, with the
exception of a set S, of measure =< Be/p. By Theorem 6, i is a classical solution in
Qr—(So Y S4).

REMARK. If ¢'#0, then one can still prove Theorem 7 and its corollaries, but the
constants B depend, in general, on T. Thus, instead of (4.8) one considers the
equation

395,,,/ ot+en A¢m + em5m¢m = f in QT’

where {C,} is a sequence of smooth functions which converge in L%(Q;) to the
bounded function ¢ given by (2.32) (or (2.33)) when v=4i.

5. Asymptotic behavior of solutions. We shall need the following assumption:
(viii) g»(x) is a function in C2*"(8G), positive on 9,G and negative on 9,G.
Denote by w the solution of ‘

(5.1) Aw =0 ingG, w =g, ondégG.

Then w satisfies

6.2) f LT [a(w) % iw A¢] dx dt = fo ’ & % 45, dr- L a(wyp dx

for any ¢ as in (1.9). Applying Corollary 1 to Theorem 7 with #4=w and with
T — oo, we obtain the following.

THEOREM 8. Let (i), (iii), (iv), (vi), (vii), (viii) hold for T=00 and assume that g is a
bounded function on 8G x [0, 00). Assume also that

5.3) N=[" [ (g-gol+IDug—DugultldSidt < .
G
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Denoting by w the solution of (5.1), we have

[7 [ w=wiatw-a0n) ax ar
(5.9 .
S BN+B [ w-hpdetB [ [ (0—0P+|Vw- V] dr dt

where B is a constant. If (g, h) varies in a family M as in Theorem 7, then B depends
only on 719 7-’2’ 73’ s’ Z’ 3G, o1, g, O

COROLLARY. Under the assumptions of Theorem 8,

¢.5) fo ” J:; |uCx, £)—w(x)|? dx di < .

THEOREM 9. Let the assumptions of Theorem 8 hold and, in addition, assume that
(2.34), (2.36) hold. Then

(5.6) L u(x, )—w(x)[2dx >0 a5 t—» oo,
Proof. From Corollary 2 to Theorem 4 we have
5.7) [7 ] 1t iz ax at < co.
Set v=u—w. If (5.6) is false, then there exists a sequence {o,,} — o0 such that
(5.8) fo ox, on)[2dx 2 p > 0 for all m.
We may assume that o, ,, — 0, = 1. Writing

t
o(x, 1) = (x, op)+ f vi(x, 7) dr,
Om
we get

.9 L [o(x, o) dx < 2 L lo(x, )| dx+2 fa * dx.

ft v(x, 7) dr

om

If 0=t—o0,<1, then, by Schwarz’s inequality, the last integral is bounded by

t
(5.10) f f o, 7)|2 dx dr < e
om JG

where, in view of (5.7), e, — 0 as m — .
It follows from (5.8)—(5.10) that

J;Iv(x, DPdr 24 foro, 15 ontl

provided m = m,. This, however, contradicts (5.5).
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As is well known (see, for instance, [11]), if 2<p<2n/(n—2) when n=2 and
2 <p<oo when n=1, then the inequality

K -
(5.11) I#llre < * I#]2 + 8~ Vo] 26

holds for any ¢ € W*%(G) and all 0< &< 8, where K, 8,, A are positive constants
and A< 1. Using this relation for ¢(x)=u(x, t)—w(x) and employing (5.6) and
(2.21) (which holds with B independent of T'), we easily get

COROLLARY. If n=2 and p<2n/(n—2), then

.12) f lu(x, )= w(x)|? dx—0 a5t - co.
G

If n=1, then

(5.13) u(x, t) — w(x) ast— oo,

uniformly with respect to x in G.

6. Generalizations. We first extend Theorem 4 to very general data.

DEFINITION. Let A(x) be any bounded measurable function on G and let B(x)
be a measurable function defined as a(h(x)) if A(x)#0 and satisfying —«<B(x)<0
at the points where h(x)=0. We then write a(h) (or a(h(x))) for the function B(x).
We now define a weak solution of (1.1)~(1.5) with a(u)=a(h) on t =0 by the condition
(1.9).

For example, we note that Corollary 1 to Theorem 3 in fact asserts that for any
0< o <T, the weak solution of (1.1)-(1.5) is also a weak solution for ¢ < ¢ < T with
a(u)=a(k) on t=o, where k(x)=u(x, o).

Note that a(#) determines A(x) uniquely.

THEOREM 10. Assume that (i), (i) hold and let g, h, a(h) be any bounded measurable
Sunctions. Then there exists a unique weak solution of (1.1)-(1.5) with a(u)=a(h)
on t=0.

Proof. Uniqueness follows from Theorem 4. To prove existence, define functions
b, by a.(h.)=a(h). The A, are uniquely defined and are bounded measurable
functions. Let {g,}, {A.;} be sequences of smooth functions which are uniformly
bounded and which approximate g and 4, respectively, in the L*-norm. Consider
the system (2.5)—(2.7) with g, h replaced by g, and A,,, respectively, and denote the
corresponding solution by vp,;.

The v,; are uniformly bounded, and (by taking a subsequence) we may assume
that they form a sequence which is convergent, both weakly in L%(Q;) and almost
everywhere in Qr, to some function v,,.

Multiplying (2.5) (with v=v,,) by ¢ (¢ as in (1.9)), performing integration by
parts, and then taking j — oo, we find that

J:LT [n(On)de +vnL"$) dx dt = fo ' fa & Z—f ds, dt - fm anlbin)p dx.
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If we take a subsequence of {v,} which is convergent to some function », both
weakly in L%(Q;) and almost everywhere in Qr, and such that also c,v,, — cv, then
from the last relation we obtain the relation (1.9).

CoOROLLARY. If g*, h*, a(h*) are also bounded measurable functions, and if
g*2g, a(h*)=a(h), then u* Zu almost everywhere, where u* is the weak solution
with data g*, a(h*).

The proof is similar to the proof of Theorem 5. In fact, we can approximate
g*, k% by g, k%, such that A%,>h,;, §*>$, and then use the same comparison
argument as in that proof.

We shall now give various other generalizations of the previous results.

(I) The results of the previous sections extend to nonlinear parabolic equations
of the form

a0 5 = 3 [k 5]

In fact, one can transform the classical Stefan problem for such equations into the
weak form (1.9) with a function a(u) which is monotone and piecewise continuously
differentiable (see [4]). We then can proceed as in the linear case.

(II) All the results of the previous sections extend with minor changes to the
more general parabolic equations

8u¢ > 02 oy 4
= 2 gt Z bx) 2 o+t

(III) One can define a weak solution of (1.1)~(1.5) in a different manner, namely,
by replacing (1.9) by

,Un [uLM 1 IZn by(x) 33;.:, é+a(w) —ati ] dx dt
(6. 1) T, =1
J;T oG g zﬁ x dt f a(h)d’ dx

G(0)

where Lou is the operator obtained from Lu by omitting the terms b, ou/ox,. The
proof of Theorem 3 can then be modified to yield a solution to the present problem.
Thus, instead of (2.5) we now take

s oy OV X ov
an(v) % L v+jz1 b m(x, ) 6_x,’

where b, ,(x, u) is defined analogously to c,(x, %) in (2.3). An inequality of the
form (2.14) can be derived. A subsequence of the {v,} is then convergent in L*(Qy)
to a function v in W*-3(Q;) for which (6.1) holds.

Thus, there exists a weak solution (in the sense of (6.1)) of (1.1)—(1.5) also in case
the b} do not vanish identically. The proof of uniqueness in Theorem 4, however,
does not seem to extend to solutions of (6.1).
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(IV) All the results of the previous sections extend with trivial changes to the
case where 9,G, 9,G each consists of a finite number of hypersurfaces in R".

(V) All the results of the previous sections extend to the case of m-phase Stefan
problems. In the classical formulation of this problem, there are m—1 different
types of surfaces S; (j=1,..., m—1). On §; the solution has a fixed value r;, and
m,#7; if i#j. The generalized formulation of this problem (see [4]) still has the
form (1.9), but now the function a(u) has m— 1 points of discontinuity.

(VI) Most of the results of §§1—4 and §7 extend to the case where the first initial-
boundary conditions are replaced by the second or third initial-boundary conditions.
Instead of (1.2) we now have

ow[oT +Buy = g

where 7, is some external oblique derivative and 8;=0. One must impose suitable
conditions on the g; or else restrict T to be sufficiently small. For otherwise, the set
A, (t) (or Ay(2)) on G(t) where v,, is strictly positive (or strictly negative) may shrink
to zero. The existence proof of §2 would then fail.

7. Asymptotic bounds for the one-phase problem. In [2] we have considered the
one-phase Stefan problem and derived asymptotic bounds on the free boundary.
In this section we derive, by a different method, similar bounds for the weak solu-
tion. We first state the classical problem and its generalized form and prove the
existence and uniqueness of a weak solution.

Instead of (1.1)-(1.5) we have

7.1 oulot = Au for x € Gy(2),t > 0,

(1.2) u=g, forxed,G,t>0 (g, >0),
(7.3 u=h onGy0) (h >0),

7.4 u=0 forxel(),t 20,

.5) Veu-V,® = ad®/ot forxel(t),t > 0.

Here |, I'(¢) in the free boundary and G,(¢) is bounded by I'(¢) and 8, G(t)=0,Gx{t}.
0,G is a bounded hypersurface in R

Let (4, ®) be a solution of (7.1)=(7.5) for t<T. Introduce any smooth hyper-
surface 9,G in R™ which contains ,G in its interior, and let v be the zero function
defined for 0 <¢ < T and x in the shell bounded by I'(f) and 2,G(t) = 9,G x {t}. Then
(u, v, D) is a classical solution of a two-phase Stefan problem as in (1.1)~(1.5),
except that now A, =0, g,=0.

We now define a(x) as in (1.7) and then (temporarily) define a weak solution of
(7.1)~(7.5) as a bounded measurable function # in Q, which satisfies (1.9) with
L*=A. Defining a(h;)= —«, one can easily extend Theorems 1, 2 to the present
case.

In trying to carry out an existence proof analogous to the proof of Theorem 3,



76 AVNER FRIEDMAN [August

we encounter the need for some changes (compare Remark 1 at the end of §2).
First, we must satisfy the relation (g an(vn)$ — [;a(0)p=—a [ ¢ as m— 0.
Hence we must take the a,(v) such that a,(0) - —«. Note that this implies
a,(v) <0 in some interval (0, ¢,). But then it is impossible to find a region Q¥ as in
(2.10). Fortunately, however, it is not needed to prove (2.12) for x € 9,G (and
thus one need not consider the system (2.10) for i=2) since dg,/0t=0 in (2.13).

Theorems 4-7 and 10 extend to the present case with minor changes in the
proofs.

We shall assume that

YI+10-D2) < gi(x, 1) < ¥[1+1%-92]  ifn 23,
(7.6) ylog2+1) £ gi(x,t) < y' log(2+1) ifn = 2,
Y = gl(x’ t) = 7’ ifn = l’
where y, ¢’ are positive constants. Note that if g, is given only for ¢ in a finite
interval [0, T'] and if it is a positive function, then we can extend its definition to
9,G % [0, o0) so that (7.6) is satisfied.

We take 9,G to be such that its interior contains a ball |x| < 8(7+ 1)*/2 where 8
is a constant to be determined later on; it depends on y, ¥’ but not on 7. We shall
prove that u(x, t)=0 if |x| = 8(T+1)*2. The proof will be based on Theorem 5,
which remains true for the present (one-phase) problem.

Let
7.7 a(x, 1) = fllx[/¢+ D2,  d(x, 1) = |x|-8(+1)*"

where
(7.8) f)==0C I ° rexp{—-C3/4}dl—-C’ (C, C’ constants).

The conditions (7.4), (7.5) for 4, ® become
(7.9) 2C8 " exp {— 62%/4} = @b,

(7.10) cf” {17 exp {— L34} d[—C' = 0.

We take 8 such that I'(0) is contained in the sphere |x|=38. From (7.9), (7.10) it
follows that C=(e/2)s" exp {%/4} whereas C’ remains bounded as & — co. Hence
we find that if 8 is sufficiently large, then

> g1 on 3IG><[0, n,
@ > h; on G,(0).
Defining ,(x, t)=d(x, t) for x outside 9,G and inside the ball |x|=8(t+ 1)}/
and dy(x, ) =0 for x outside the sphere |x| = 8(¢+ 1)*/? and inside 9,G, we can apply

Theorem 5 to compare u with the weak solution corresponding to (i, #,, ®). We
conclude that u(x, t) <dy(x, t)=0 for x outside |x|=58(t+1)"/? and inside 2,G.
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We can now show that the definition of a weak solution does not depend on the
choice of 9,G provided 9,G contains the ball |x| < 8(7T+1)!2 in its interior. Take,
in fact, another smooth hypersurface 8,G which contains the ball |x| < 8(T+1)4/2
in its interior, and let # be the corresponding weak solution. We shall prove that
u=4 in the set where both solutions are defined. Denote by Q. and 3 the cylinders
where u and # respectively are defined. We may assume that ;> Qg since otherwise
we can introduce a third weak solution defined in a cylinder which contains both
Q, and Q. We now claim that # is a weak solution also in Q7. Indeed, this is easily
seen by using the fact that @(x, ¢) vanishes for |x|> &8(7T+ 1)'/2. Since » and # are
then both weak solutions in Q;, by uniqueness, we conclude that #=u in Q.

Let {9,G,} be a sequence of spheres |x| =m, m> 8T+ 1)'/2, and denote by u,, the
weak solution when 0,G is 9,G,,. By what we have proved, the u,, define uniquely a
function u(x, t) for x outside 9,G and 0 = ¢t < T. We shall call this function the weak
solution of (7.1)~(7.5) for t<T.

It is clear that the weak solutions defined for < T and for ¢ <7’ must coincide
for 0=<¢t<min (T, T'). Thus there exists a unique weak solution for all > 0.

We shall now find a region where the weak solution u is positive.

We assume that there exists a ball

(7.11) B = {x; |x| £ B} containing 9,G and contained in I'(0).
We first prove the following lemma.

LEMMA 3. Denote by G(t) the set of points (x, t) with x outside 0,G such that
u(x, t)>0. Then G,(0) x{t} = Gy(2).

Proof. Let {G,} be a sequence of domains with smooth boundary such that
G,<Gy .1, G=Ji G, and such that 9,G is a part of the boundary 9G, of G,. Take
k fixed. Then h;(x) = 8, >0 on G,.. By decreasing 8, if necessary we may also assume
that g,(x, ) 2 8, on 9,G x [0, c0). Consider now the solutions v,, of (2.5)~(2.7) with
suitable a,(v) such that v, — v, where v is the weak solution. Recall that v,=0.
We shall compare v, with a function w satisfying

Aw =0 inG,, w= 3§, onoQG, w=0 ondG,—o,G.

We may consider w to be a solution of a,(v,)w,= Aw in G, x (0, T). Since v, —w=0
on the lateral boundary and on the base of this cylinder, the maximum grinciple
shows that v,=w in G, x(0, T). Hence also v2w>0 in G, x (0, T). Since k is
arbitrary, the assertion of the lemma follows.

Using the assumption (7.11), we conclude that u(x, ¢)>0 in G’ x (0, T), where G’
is the domain bounded by 9,G and the sphere |x|=pB. u then satisfies the heat
equation in G’ x (0, T).

Consider the function

z(x, t) = elexp [—A[x[*]—exp [-A*P(A+1)*"22 (¢ > 0)
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for n= 3. Choose A sufficiently large such that Az—2z,20 in G' x (0, T). If ¢ is suffi-
ciently small, then u—z2>0 on the lateral boundary and on the base of the cylinder
G’ x(0, T). Applying the maximum principle to u—z, we conclude that u—z20
throughout the cylinder. Hence, for any 0 <’ <8, there exists >0 such that

(7.12) u(x, o) = 7o =22 for any o 2 1, x outside 9,G, |x| < B'.

Consider
(7.13)  u*(x,t) = f(|x][t?),  ®*(x,t) = |x|-Bt}? (Bo'? = f)
for t> 0, where f is the function defined by (7.8)(7.10) with 6=B. Set u¥(x, t)
=u*(x, t) if |x| <Bt'? and x outside 9,G, and uf(x, 1)=0 if |x|> Bt'/2. Then the
classical solution (u¥, u¥, ®*) of the appropriate Stefan problem for ¢ > o defines a

weak solution w. If ¢ is sufficiently large, then, by (7.12), a(u) = a(w) on t=0. We
can now employ the corollary to Theorem 10 and thus conclude that

(7.14) u(x, t) = f(|x|/t*?) if |x| < Bt'2,t > o.

(7.14) was proved under the assumption that n = 3. The proof in the cases n=1, 2
is similar.

We sum up most of the results obtained above.

THEOREM 11. Let &,Ge C?*", 5>0; let g,, h, be continuous functions on
8,G x [0, o0) and C1 (G,(0)) respectively, coinciding on 0,G, and assume that (1.6) holds

and that h> 0 in G,(0). Then there exists a unique weak solution u of (7.1)-(1.5) for all
t>0. u=0 outside some region |x| > 8(t+1)'/2 and, if (7.11) holds, u satisfies (7.14).

8. Monotonicity of G,(o) for the one-phase problem. Throughout the next three
sections we denote by G,(o) the set on t=0 which lies outside 9,G x {0} and for
which a(u(x, ¢)) 20, and by G(o) the set on =0 which lies outside 3,G x {o} and
for which a(u(x, ¢))= —«. Physically, G,(c) is the set occupied by the liquid and
G,(0) is the set occupied by the solid. We shall prove in this section the following
theorem, which includes Lemma 3 as a special case.

THEOREM 12. Let 8,G, hy, g, be as in Theorem 11. If ¢’ <o, then almost all the
points of G,(d') lie in G,(0).

We shall express the assertion of the theorem also by saying that G,(¢") = G,(o)
almost everywhere.

Proof. We shall need the following lemma.
LeEMMA 4. Let w satisfy
a(x, t)%-‘;' —Aw inQ = Gx(,T),

w20 ondGx(0,7),
w1l on G,
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where G is a bounded domain, w € C(G x [0, T)) and a(x, t) is a bounded measurable
Sfunction satisfying a(x, t)Zy, > 0. Then, for any ¢>0, there exists a 6,0<é< 1, and
a subdomain G* of G with meas. (G — G*) <e, such that w(x, t)> 8 on Q¥=G*x (0, T).
8 and G* depend only on e, y,, G.

Proof. Let G' be a subdomain of G with smooth boundary such that
meas. (G—G') <¢/2. Let A, be the first eigenvalue of the Laplacian A in G’ and ¢,
its eigenfunction, i.e. Ady+ Agho=0 in G', ¢o=0 on 9G’, $,£0. As is well known,
Ao >0 and ¢y(x)>0 in G'. We normalize ¢, by supe ¢o=1.

Consider the function

vo(X, 1) = ¢o(x)e™** where u = Aofy,.
Then
Avy—adv,ot = doe " (—Ag+ap) 20 inG,

and vo(x, 0)=¢o(x)S1=w(x,0) on G, vy(x,t)=0=w(x,t) on G’ x (0, T). By
the maximum principle, w2 v, in G’ x (0, T'). The assertion now easily follows.

We proceed with the proof of Theorem 12. For simplicity we may take o' =0
provided instead of u=h at t=0 we are given a(u)=a(h) (i.e. u is a weak solution
for 0=t < T with a(u)=a(h) on t=0, a(h) =0 on G,(0), — =< a(h) <0 outside G,(0),
and provided G,(0) is any measurable set (since G,(¢’) is a measurable set as it
coincides with {(x, ¢); x outside 9,G, a(u(x, ¢')) Z0}).

Take a sequence {D,} of open sets, D,>D,,,, D,>G,(0) such that
meas. (Dx—G,(0))<1/k, and set D,=\J, Dy, where each D,, is a domain,
Dyp, N Dyy= 7 if p#q. We may assume that the D, are bounded sets lying outside
9,G.

Let &,=(e+ 1)y, where x; is the characteristic function of D, —G,(0), and let
&.=%x/k where g, is the characteristic function of D,.

We can approximate a(v) by smooth functions a,(v) such that if a(v)=a,(v*),
then v* Z v and such that a,(v) 2 min («;, ;) =1. Note that a,(0) < —e.

Define A, by

@®.1) an(hmc) = a(h) + e(x) + &(x)

in G, where G is bounded by 0,G and 0,G (see §7); we may take G to contain all
the sets D,. Then

hye >0 inG,

8.2
®2) hme > m on both Gy(0) and on D, — G,(0).

7, is @ positive constant independent of m and we can assume that 7, <g, on
0,Gx [0, T).
For k fixed and for a given ¢ > 0, we take p, such that meas. (> 5, Dip) <&/2%**.
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Let D;, (p <po) be a subdomain of D,, with Cl (Dj,) <= Dy, such that

Po ’
> meas. (Dy,— D) < /251,
p=1
Set D =372, Di,. Then meas. (D, — D) <e/2*.
Consider the system

a,(v)ovjor =Av  inGx(0,7T),
8.3) v=g; on 9,Gx (0, T) (where g, = 0),

v="{_m; OngG,
where (. ; are smooth functions satisfying

ka.} g hmk in LI(G)9
(8.4) Cnk,s 2 Mk in Dy,
0<{m;<H onG,

where H is a constant independent of m, k, j. Such functions {, ; can be constructed
as mollifiers of A, (see, for instance [1]) provided the parameter of the mollifiers
is sufficiently small (depending on &, &).

If g, is sufficiently smooth and if it agrees smoothly with {,,. ; on 8,G, then a
unique solution of (8.3) is known to exist. In the more general case where g, is
only continuous, we can approximate it by such smooth functions g; ;. Denoting
the corresponding solution of (8.3) by v, ;; and using a priori estimates, we can
extract a subsequence which will converge to a solution vy, ; of (8.3). vy, need not
be continuous on 9,G (since g and {,, ; need not agree on 0,G). By the maximum
principle, vy ;>0 1in Gx (0, T).

We now apply Lemma 4 to vy, ; in D, x (0, T) for any p <p,. It follows that
there exists a subdomain Dy, of Dj, such that meas. (D, — D;,) < /2*p,, and such
that

8.5) Umk,; > Om  in Dy x (0, T).

Here 6= 48(e, k) is independent of j, m.
From the definition of a,(v) it follows that if m is sufficiently large, i.e. m=m,,
mo=mo(k, 8)=mylk, ¢], then

(86) am(vmk.j) >0 in Dl:p x (Oa T)

Now take j— oo through such values that v, ; — v, both weakly in L%(Qp)
and almost everywhere in Q;. From (8.6) we get

P
8.7 a,(Vn) = 0 almost everywhere in le Dipyx (0, T)if m = m,.
p=
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The integrated form of (8.3) is
6o [ f [0n(Omi )b+ U AB] dix it = f f 2 as, ar- f () dx

for any function ¢ with D,$, D3¢, D,¢ continuous in Qp and which vanishes on
G x{T} and on G x (0, T).

In order to prove (8.8), we first derive its analog for vy, then take i — oo and,
finally, j — 0.

Now take m — oo through such values that v, — v, both weakly in L%(Q;) and
almost everywhere in Q. From (8.1), (8.8) we get

(8.9) j [a(v.)+ v, AP] d dif = f j 8 %ds,, di— fa a(h)$ dx - J; (e + 50 dx,

where a(v,) is the limit, almost everywhere, of {@,,(vn)}. Note that a(v,) is a measur-
able function and all we know about its values at points (x, £) where v,(x, ¢)=0
is that —e =a(v,(x, 1)) <0.

Take now k — oo through such values that v, — v both weakly in L%(Qr) and
almost everywhere in Q7. From (8.9) we then obtain

(8.10) f f [a(0)b,+0 Ad] dx dt = f

Thus, v is a weak solution, for 0<¢=<T, of the Stefan problem with a(v)=a(h) on
t=0. By uniqueness, it coincides with u almost everywhere.

Now, by (8.7) it follows that a(v,)=0 almost everywhere in Dy x (0, T') where

=Jse, Dy, and meas. (D, — D¥) < 2e/2" Hence a(v,) =20 almost everywhere in

(G,(0)—G¥) x(0, T), where G¥=(D.—D¥) N G1(0). Let G*=>-, G¥. Then
meas. G* <2¢ and a(v,) 20 almost everywhere on (G,(0)—G*) x (0, T). It follows
that also a(x) 20 almost everywhere on this set. Since e is arbitrary, we find that
a(u) 20 almost everywhere on G,(0) x (0, T).

Recalling that the map ¢ — a(u(x, t)) is weakly continuous from (0, T) into
L*G), we easily see that for each t, a(u(x, t))=20 for almost all x € Gy(0). This
completes the proof of Theorem 12.

¢ as, ar- f allyb dx.

0,G

9. Strict increase of G,(o) for the one-phase problem. Denote by I'(0) the outer
boundary of G,(0). We assume in this section that A(x) € W-%(G) and that there
exists a function ¥ with D,¥, D2¥, D,¥ continuous in Q; such that ¥=g on
9G x [0, T) and ¥'=h on ¥, N G(0), where V, is a neighborhood of 9G.

THEOREM 13. If T'(0) is of class C2*" (>0), then, for any 0<t<T,
meas. (G,(t)—G4(0))>0.

Proof. If the assertion is false, then, in view of Theorem 12, G,(t)=G,(0) almost
everywhere, for some ¢=o0. The same relation then holds for each ¢ with 0<¢<o.
In the cylinder Q, =G,(0) x (0, o) we have a(x) =0. Hence u satisfies u,=Au in the
classical sense in Q,.
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If ¢ € C* and has a compact support in Q,—Q,, then clearly [ a(u), dx dt=0.
Now take ¢ € C* with compact support in Q, and let {{;(x)} be a partition of unity
for G—Cl1(G,(0)) such that the support of each i; is a compact subset of
G—Cl1(G,(0)). By the previous remark [ a(u)(:$); dx dt=0 for each i. Hence

f j a(uyd dx dt = 0.
0 Jo-cua, 0

From the definition of a weak solution it then follows that

©.1) f ’ f [aGi)be+u Ag] dx dt = 0.
0 JG1(0)

Note that here a(u)=u.
Let T, be the set of all points of G,(0) whose distance to I'(0) is equal to .
Integrating by parts in (9.1) we find that

©.2) lim fo i j,, (uby—ud) dS., dt = 0,

&=0

where v is the normal to I',.
Recall now that [, |V, u(x, #)|? dx < C where C is a constant independent of ¢.

Hence
f°° {f (w,)? dS, dt}de <o
0 o Jr,

for some ¢, >0 sufficiently small. It follows that the inequality
J' ’ f ()2 dS, dt >
o Jr, €
cannot hold for all £>0 sufficiently small. Hence

f’ f () dS, dt < L
0 Jrey, €m

where {,,} is a sequence which decreases to zero.
It follows that for any smooth ¢ in Q,, if =0 on I'(0) x (0, 0), then

If'f ush dS,, dt gaf"f |u,| dS, dt
0 JI, 0 JTg

©.3)
< Cle f f (W)? dS, dt S C'e'3 =0
0 JIe

if e=e, — 0; here C, C’ are constants.
From (9.2) we then infer that

©.4) f ub, dS, do—>0 asm — .
o Jre,
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(9.4) was established only for smooth ¢ satisfying $=0 on I'(0) x (0, ¢) and with
compact support in Q,. If ¢(x, ) does not vanish in a neighborhood of =0 or
t=o, then we can multiply it by a function {(#) vanishing in such a neighborhood.
By applying (9.4) to {¢ and choosing appropriately a sequence of such functions
{(), we find that (9.4) holds for ¢.

By truncating ¢ outside a neighborhood of I'(0) x (0, o) we also find that (9.4)
holds for any ¢ smooth in Q, which vanishes on I'(0) x (0, o).

Finally, if ¢ is defined only in ¥ x (0, ¢] where V is a neighborhood of I'(0) and if
it vanishes on I'(0) x (0, o), then we can extend it smoothly into Q, and conclude
that even for such ¢ the relations (9.3), (9.4) are valid.

Now let K be Green’s function of u,=Au in the cylinder G,(0) x (0, T) (see [1]).
We represent u(¢, o) in terms of the fundamental solution K in the cylinder
G* x (0, o), where G* is the domain bounded by &,G and I',. Applying (9.3), (9.4)
to =K, we find that

9.5) 6,0 = [  K(, 03 %, 0ulx, 0) .

This shows that u is a continuously differentiable function in ClI (G,(0)) x (0, ¢].
Since u20 in Q,, the maximum principle shows that ¥>0 in Q,. Since, by
(9.4) (or (9.5)), u=0 on I'(0) x (0, o), we also have (see [1]) u,<0 on I'(0) x (0, o).
But, by (9.2), #,=0 on I'(0) x (0, o), a contradiction.
The proof of Theorem 13 applies also locally. In fact one easily establishes the
following result.

THEOREM 13’. Let V be an open domain on t=0 with V N G,(0)# &, such that
VA T@0)=TI"(0) is in C2*" (1>0). Then for every t,0<t<T,

meas. {[V x{t}] N G,(t)—[V N G,(0)] x{t}} >0.

In Theorems 13, 13’ we assume that A(x)>0 in G;(0). The proofs, however,
remain true if we only assume that h(x) =0, A(x)#0 in Theorem 13, and A(x) =0 in
G,(0) and A(x)#0 in ¥V N G,(0) in Theorem 13'.

10. Nonoccurrence of a ¢ cloud >’ for the one-phase problem. Using Theorem 12,
we shall prove in this section the following result:

THEOREM 14. For any 0< ¢ <T, the complement on t=o of Cl (G,(0)) is contained
in Gg(o) almost everywhere.

Introducing the sets
W ={(x,t) € Qp; —a < au(x, t)) < 0}, W)= Wn{t=o},
we conclude that

(10.1) W(o) < Cl (G1(0))— Gy(o).
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We may consider W as the weak free boundary. W is determined only up to a
set of measure zero. (10.1) yields:

COROLLARY 1. W (o) has no interior points on t=o.
COROLLARY 2. The weak free boundary W has no interior points in Q.

Proof of Theorem 14. If the assertion is false, then there exists in R" a bounded
set S of positive measure such that [S x {v}] N Cl (G,(c))= @ and such that

(10.2) —a < a(u(x,t)) <0 forxesS.

S x {0} is contained in a bounded open set $ x {o} lying outside G,(c). By Theorem
12, (§ x{t}) N Gy(t)= o for all 0 <t < 0. Hence u=0 in $ x (0, o). Taking ¢ smooth
and with compact support in $ x (0, o), we get

LLa(u)qs,dxdt ~o0.

Thus, the weak derivative of the function ¢ — a(u(x, t)) from (0, o) into L3(S) is
zero. It follows that, for almost all 7, a(u(x, t)) is a constant element of L(S).
Since the function ¢ — a(u(x, t)) is also weakly continuous, we conclude that
a(u(x, t)) is independent of ¢ for all ¢, 0 <t <o. Hence

(10.3) a(u(x, o—1/m)) = a(u(x, 1/m)) m=12...)

for almost all x € $. Recalling the weak continuity of the map 7 — a(u(x, t)), and
taking in (10.3) m — oo through an appropriate subsequence, we obtain

(10.9) a(u(x, o)) = a(u(x, 0)) for almost all xe S.

From (10.2), (10.4) it follows that —a<a(u(x, 0)) <O almost everywhere on the
set S of positive measure, which is impossible.

11. Miscellaneous results. Set V,={(x, o) € Qp; u(x, 0)>0}, Wy=Uosos¢ Vo
We shall make below the assumption that u(x, t) is continuous in Q. Note (by the
proof of Corollary 2 to Theorem 3) that if u(x, ¢) is known to be continuous in x,
uniformly with respect to ¢, then it already follows that u(x, ¢) is continuous in
(x, 1).

The continuity of # implies that each ¥V, consists of open domains. The number
of these domains may increase with o.

THEOREM 15. Let u be continuous in Qr. For any 0 <o < T, the set W, is connected.

Proof. We only have to prove that W, is connected. It suffices to take an arbi-
trary open component R of ¥, and show that it can be connected in W, to G,(0)
(the set on t=0 where A(x)>0).

A continuously differentiable curve x=x(s), t=1¢(s) along which #'(s)#0 will be
called a monotone curve. Let Q be the maximal subdomain of W, with the property
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that each of its points can be joined to some point of R by a monotone curve lying
in Q (except for one endpoint). Let M =sup, u. We shall prove

LeMMA 5. If (x°, t°) is a boundary point of Q and 0<t°<a, then u(x°, t°)< M.

Proof. If the assertion is false, then u(x°, 1°)= M. Clearly M is the supremum of
u(x, t°) taken over all the boundary points (x, £°) of Q. We introduce the set Z of
all the boundary points (x, ¢°) of Q where u(x, °)= M. Z is obviously a closed set.
If we prove that Z is also an open set in G x{t°}, then Z=G x{t°}, which is
impossible.

Let then (x*, ¢°) € Z. Since u(x*, t°)= M >0, there exists an (rn+ 1)-dimensional
ball K about (x*, ¢°) such that #>0 in K. We take X such that it lies in <o, and
we denote by K+, K~ the intersections of K with #>1¢° and ¢ <¢° respectively.

Employing the definition of Q one finds that K* N Q= @ and K~ < Q. By the
maximum principle in K ~;

(11.1) M = u(x*, t°) < max (sup u, max u) =M
L Lo

where L is the portion of the boundary of K ~ lying in ¢ < ¢° and L, is the intersection
of the boundary of K with ¢t=¢°,

From (11.1) it follows that the inequalities are in fact equalities and, by the strong
maximum principle, u=M in K~. Thus, in particular, K N {t=1¢°} belongs to Z,
and Z is an open set.

LEMMA 5. Lemma 5 remains true also if t°=o.

The proof is obtained by minor modifications in the proof of Lemma 5. Thus we
introduce K - (but not K *)and note that K~ < Q and Cl (K~) N {t=¢° lies on the
boundary 9Q of Q.

If we show that 9Q intersects =0 at some points of G,(0), then R can be con-
nected in W, to G,(0) and the proof of Theorem 15 is complete. Suppose then that
20 has no points in common with G,(0). From Lemmas 5, 5’ it then follows that
the maximum of « in { is obtained in the set Q U R. The strong maximum principle
then shows that, for some 0<&=<o, u(x, t)=M in (a nonempty set) Q N {t<5}.
But then the closed set 0 N {t=5} (which we may assume to be nonempty) must be
an open subset of G x {5} (the maximality of Q is hereby used). Hence § N {t=5}
=G x {5}, which is impossible.

REMARK 1. It is clear that Theorem 15 extends to the case of 2-phase Stefan
problems. The set where # <0 is then also a connected set.

REMARK 2. We do not know whether the weak solution w(x, ¢) is a continuous
function when n> 1. However, the integral

i(x,t) = J:u(x, t)dt

which, by Fubini’s Theorem, exists for almost all x (and all #<T) is equal almost
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everywhere to a function #(x, t) which is continuous in Q7. Furthermore, V,(x, )
is a continuous function of x, uniformly with respect to ¢.

The above statement is valid also for the 2-phase Stefan problem.

To prove it, we employ the sequence {v,} which approximates u. We integrate
the differential equation of v,, once with respect to ¢. Introducing

t
6x, 1) = j omCx, 1) db,
0

we get |On(x, 1)] = C in Qr, where C is a constant independent of m. A subsequence

of {f,,} converges weakly in L% Q) and almost everywhere in Q, to a function 3.

Employing the Sobolev inequalities for each #,, we find that & has the continuity

properties listed above. Thus it remains to show that #=i almost everywhere.
Now, since v,, — u in L%*(Qy), for fixed 1< T,

(11.2) f Bux, 1)p(x) dx — fa d(x, )p(x) dx asm — oo,
G

for any bounded measurable ¢. By the lemma of Ascoli-Arzeld, d,(x, t) — d(x, ¢)
uniformly in x (for a subsequence of the m’s). Hence (11.2) holds with i replaced
by & (and with a subsequence of the m’s). It follows that, for each ¢, d(x; t)=8(x, ¢)
for almost all x. Thus =9 almost everywhere in Q.

12. Other free boundary problems. The methods of the present paper extend
without difficulty to other free boundary problems. As an example, consider the
problem of condensation of one drop in a supersaturated vapor of its own substance.
This one-phase problem was treated in [0] in the case that the initial data are
symmetric with respect to the center of the drop and the drop is spherical. If these
restrictions of symmetry are removed, then the existence and uniqueness of a weak
solution can be established as follows.

First consider the system for a solution ug(x, t) in |[x| SR, 0=t<T; here uy is
the *“normalized” density of the vapor outside the drop and uz =1 inside the drop.
Existence and uniqueness of a weak solution are proved by the methods of the
present section. We next take limy_, ,, 45 to be the weak solution for 0<¢<T.

By a comparison argument one can also show that (under suitable assumptions)
the set N(¢) where u(x, t)=1 contains a ball of radius B(¢+ 1)*/? and is contained in
another ball of radius 8(z+1)*2. For comparison functions one can use solutions
of the symmetric case whose asymptotic behavior has been studied in [0].
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