
THE STEFAN PROBLEM IN SEVERAL

SPACE VARIABLES

BY

AVNER FRIEDMAN^)

Introduction. The Stefan problem is a free boundary problem for parabolic

equations. The solution is required to satisfy the usual initial-boundary conditions,

but a part of the boundary is free. Naturally, an additional condition is imposed at

the free boundary. A two-phase problem is such that on both sides of the free

boundary there are given parabolic equations and initial-boundary conditions, and

neither of the solutions is identically constant. In case the space-dimension is one,

there are numerous results concerning existence, uniqueness, stability, and asymp-

totic behavior of the solution; we refer to [1] and the literature quoted there

(see also [8]).

In the case of several space variables the problem is much harder. The difficulty

is not merely due to mathematical shortcomings but also to complications in the

physical situation. Thus, even if the data are very smooth the solution need not be

smooth, in general. For example, when a body of ice having the shape

keeps growing, the interfaces AB and CD may eventually coincide. Then, in the

next moment the whole joint boundary will disappear. Thus the free boundary

varies in a discontinuous manner.

This example motivates one to look for "weak" solutions. In [4] the concept of

a weak solution is defined. Furthermore, existence and uniqueness theorems are

proved. The existence proofs are based on a finite-difference approximation.

In the present work we give a simpler derivation of the existence theorems of [4].

Our method has also the advantages that (i) it yields better inequalities on the

solution and on its first derivatives than in [4], and (ii) it enables us to find certain
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regions where the weak solution is a smooth function. We also derive (in §4) a

stability theorem for the weak solution. This roughly states that, in the L2 norm,

the solution varies continuously with the initial and boundary data. In §5 we prove

an asymptotic convergence (in L2) of the solution as f ->■ oo. Some generalizations

of the results of §§2-5 are given in §6.

In the next sections (except for the last one) we are concerned with the one-phase

problem. Existence and uniqueness of weak solutions follow by the methods for the

two-phase problem. We also derive asymptotic bounds on the set where the solution

is (i) positive and smooth, (ii) identically zero. Asymptotic bounds for classical

solutions of the Stefan problem, in several space variables, were obtained by a

different method in [2].

In the definition of a weak solution enters a function a(u) defined by

a(u) = «i«        if m > 0,

= a2u—a   if u ^ 0,

where au <x2, a are positive constants which occur in the setting of the problem.

For each weak solution u(x, t) (u is a bounded measurable function) the function

a(u(x, 0) is defined as axu(x, t) if u(x, t) > 0 and as a2u(x, f) - a if u(x, f ) < 0 ; at the

points where u(x, f)=0 the function a(u(x, t)) is only required to satisfy — a g

a(u(x, t)) ̂  0 and to be such that it is altogether a measurable function. The set where

a(u(x, 0) = 0 can be interpreted as being the set occupied by the liquid of the

problem, whereas the set where a(u(x, t)) <; — a can be considered to be the set

occupied by the solid of the problem. It is of fundamental interest to find the nature

of the set W where — a<a(«(x, f))<0. This set may be conceived as a "cloud"

lying between the solid and the liquid.

In §8 we show (for the one-phase problem) that the set GA\à) occupied by the

liquid at time f=a increases with a. Some results on the strict increase of Gi(a)

are given in §9. The result of §8 is used in §10 to prove that the set W(a)= W

n{f=a} is contained in the boundary of Gx(a). Thus, in particular, W has no

interior points. Miscellaneous results on the one-phase problem are given in §11.

Finally, in §12 we consider briefly other free boundary problems.

All the functions in this paper are real valued.

1. Reduction of the classical problem to a generalized one. Let G be a bounded

domain in Rn, whose boundary consists of two C1 hypersurfaces : ôxG and d2G,

and let d^G lie in the interior of d2G. For any T, 0<T^oo, set £2T=Gx(0, T).

We introduce the elliptic operators

u = J=i -M* o 0*7^+2èK*' ° è,+ cXx>,}   (/ -l> 2)

with coefficients satisfying: a\k, V^a^, ^%a)k, b\, VX6J, c* are continuous in £2«,.
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Consider the following system of equations for a triple (ux, u2, <t>):

(1.1) dui/dt = Ltu¡   for x e G(t), 0 < t < T (i = 1, 2),

(1.2) w, = gi   for x g 3,G, 0 < t < T (i = I, 2),

where g1>0,g2<0.

(1.3) m, = hi   onG,(0) 0 = 1,2)

where hx > 0, h2 < 0.

(1.4) «, = 0   for x g r(f), 0 g f < T (i = 1, 2).

0-5)     J^siasr^»*^ = «a ^^^.0<I<T,
where a is a positive constant. Here T(t) is a hypersurface lying in G(f) = Gx{f},

Gt(t) in the domain lying in G(f) and bounded by T(t) and 3,G(f) = d,Gx{f}, and

<D(x, f ) is a C1 function in QT such that T(f )={(x, f ) g Qt ; <S>(x, t)=0}, VA0)(x, f ) ̂  0

on T(f), <D(x, f)<0 in Gi(f), and 4>(x, f)>0 in G2(t). The functions A,, g, are the

initial and boundary data for «,, and S=(J0êt<T f(f) is the "free boundary".

The classical (two-phase) Stefan problem is to find a solution (ux, u2, <t>) of

(i.D-0-5).
We recall that the transversal vector /x, with respect to L, at T(t) is given by

{2 ajk cos (xk, v)} where v is the normal vector on T(f). We shall always take the

normal v on T(f) to point into G2(t). Since d<b¡8xk = \ cos (xfc, v), 8<t>/dt=A cos (f, 0

for some A^0, we can write (1.5) in the form

(1.6) duxldp.x-du2ldp.2 = a<S>tl\V<S>\       (|V4>|2 = 3>2+|Vx<I>|2).

It has already been pointed out in the Introduction that classical solutions do not

exist in general (even for smooth coefficients, data and dxG, d2G). We shall therefore

transform the problem (1.1)-(1.5) into a "generalized" one, as in [4].

SeteG=8!Gu82G,

a(u) = U — a    if M ̂  0,

= M if U > 0,

g = gx on 8xG(t),

, = Í2 on S2G(f),

h = hx on d(0),

= h2 on G2(0),

a„(x, t, u) = a¡j(x, t)   for (x, î) g Ûœ, u è 0,

= afj(x, t)   for (x, f) g £2M, m < 0.

We define è,(x, f, m), c(x, t, u) in a similar way to atj(x, t, u) and then set

w Q2«. n o..

(1.8) L« = 2   ajk(x, t, u) + 2 **(*. '- ") 7T7 + C(*' '' ")"•
i.k=l OXytfXfc      j=x OXj
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Denote by Lf the adjoint of Lu and define L*u by L*u=L1u at points where w>0

and L*u=L2u at points where u<0. The function^, on #¡(7(0 is defined as the

outward transversal vector with respect to L(. Set

p. = /¿!   on diG(f ),

= /x2   on d2G(t).

Definition. A bounded measurable function u in QT is called a weak (or

generalized) solution of (1.1)—(1.5) if

o.» JLh**+*)|]**-fL'g*-*-.)»*»*
holds for any function <f> in £2r with V .,.<£, V2<f>, Dt</> continuous in £2r and <f>=0 on

0(71 and on dG x (0, T).

In this definition, a(u(x, t)) is not to be defined by (1.7) when u(x, f) = 0. Instead,

it is defined as any function ß(x, f) subject to the following restrictions: (i) a(u(x, t))

is a measurable function in £2T, and (ii) a(0-0)= -agß(x, f)gO=a(0+0). The

functions ajk(x, t, u(x, t)), b,{x, t, u(x, t)), c(x, t, u(x, t)) are defined in a similar

way when u(x, f)=0. Since, however, on the set where «=0 the integrand uL*<j> is

equal to zero, the latter definitions are of no significance.

By a classical solution of (1.1)—(1.5) we mean a solution (uu u2, 3>) of (1.1)—(1.5)

such that Mi, VA«¡ are continuous in Uost<r Cl (G,(t)) (here Cl (A) stands for the

closure of A) and V2u¡, Dtu( are continuous in Uo<«<r d(0-

Theorem 1. A classical solution o/ (1.1)—(1.5) in £2r is also a weak solution of

(1.1ML5) in £2r.

Theorem 2. Let u be a weak solution of (1.1)—(1.5) in £2r. Assume that there

exists a C1 function <D in £2r satisfying

T(0={(x, f)e^r;«(x, 0=0}={(x, f)e£2r;0(x, f)=0} and VxO#0 on T(f),

<D < 0 in Gi(f ), O > 0 in G2(0, where G((0 is the domain bounded by T(f ) and diGit).

Setting ut = u in Gtit), assume that uiy Vxut are continuous in Uosf<r Cl iGtit)) and

that V2ut, Dtu are continuous in (Jo<t<r d(0- Then iuu u2, <J>) is a classical solution

o/O.lHi.5).

For the sake of completeness we give here the proofs (which are given also in

[4], for the case n = 1).

Proofs. To prove Theorem 1 we multiply both sides of (1.1) for i'= 1 by j> and

integrate over (J Gx(t). Recalling that 1^=0 on Y(t), we obtain, after integration

by parts,

(1.10)

¡T (     (uM+U1LU) dxdt+f f    ¿2 < f? cos (** ") dS* dt
Jo Jci«) \    Cl I Jo Jr«)    uí      oxic

= f   f    Uip-dSxdt-¡      hrfdx.
Jo JiOi      ^Mi Joi(0)
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Writing 8u2l8t = 8(u2 — a)ldt in (1.1) for i=2, and multiplying by <f>, we obtain,

upon integrating over (J G2(t),

f   f    ( - a)cp cos (f, v) dSx dt+\    )       \(u2 - a) ^+u2L$cf>) dx dt
Jo Jr(0 Jo JGam L °t J

(l.ii) - f f  ¿2«fcf?cos(** ")dS*dt
Jo Jnt)    j,k      °xk

=  f f    u2 p- dSxdt- [      (h-aypdx.
Jo   Jd2G        °H-2 JoaiO)

Set u=ux for x g Gx(t), u=u2 for x g G2(í). Adding (1.10), (1.11), and using (1.5),

the equation (1.9) follows.

Suppose, conversely, that « is a weak solution satisfying the assumption of

Theorem 2. Taking in (1.9) </> with compact support in (J G,(f), we find that «, is a

"weak" solution of (1.1). Since k, is smooth, it is easily seen to be a (classical)

solution of (1.1). Next, taking <f> in (1.9) with support in a neighborhood of a point

lying on 8tG(t) and integrating by parts, we find that (1.2) holds. (1.3) is proved in a

similar way. Taking <j> in (1.9) with support in a neighborhood of a point (x, 0»

where x g T(s), and with ^=0 on r(f), and integrating by parts, we find that (1.4)

holds. Finally, if we take in (1.9) <f> with support in a neighborhood of a point (x, s)

where x e T(s) and use (1.4), we see that (1.5) is valid.

In the following sections we restrict ourselves, for simplicity, to elliptic operators

L, with fljfc=/4,8rt (Ai constant), è'=0, but our methods extend also to the case

where aijk=Aiajk, b\=Aib¡ (see §6). We also assume that c*(x, f)áO. It will be

convenient to write the parabolic equations in the form

(1.12) a¡8uil8t = A«,+c'(x, f )«,

where a, is a positive constant and A is the Laplace operator. We accordingly set

(1.13) L, = A + c'.

We introduce
a(u) = axu        if u > 0,

= a2U — a    if M g 0,

g = gM   on 8tG(t),

h = A,/o,   on G,(0),

u = ux/ax   if «! > 0,

= u2/a2    if «2 < 0-

Then (1.9) is still the equation for weak solutions of (1.1)—(1.5), with L, given by

(1.13). Note that ^, is now the normal v.

We conclude this section with the observation that if « is a weak solution in QT,

then it is also a weak solution in ü.„ for any a < T. Indeed, let vc(f ) be a C" function

(1.14)
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such that xe(0 = 1 if f < <t—e, x£(f )=0 if t > a, and x'eiO = 0- Let <j> be as in (1.9) with

T replaced by a. Apply (1.9) (in £2r) with <f> replaced by <f>xe and take e -> 0.

2. Existence and uniqueness of weak solutions. Unless the contrary is explicitly

stated, we shall always assume that r<co.

The following assumptions will be needed :

(i) dG is of class C2+" for some i?>0.

(ii) c'(x, i) = c'(x) (for i'=l, 2) are Holder continuous in G, and c'(x)^0.

(iii) Sieyi>0 on dxGx [0, T] and g2gy2<0 on S2Gx [0, 71 where ylf y2 are

constants.

(iv) nx^0 in Cl (G^O)) and n1=0 only on T(0); n2^0 on Cl (G2(0)) and n2=0

only on I\0).

(v) g, h are continuous functions in dG x [0, T] and Cl (G(0)) respectively, and

g=h on dG.

Sometimes we shall need stronger assumptions on g, h; namely:

(vi) h is continuous in Cl (G(0)) and it belongs to W 1,2(G) (i.e. it has first strong

derivatives in L2(G)).

(vii) There exists a function Y with V^T, VJY, D?¥ Holder continuous (say,

exponent r?) in £2r, such that Y=g on dGx [0, T] and T=n in Fn G(0), where

F is an (n + l)-dimensional neighborhood of dG.

Remark, (vii) is equivalent to stating that (a) g has two continuous derivatives

with respect to x e dG and one continuous derivative with respect to t, (b) n(x) is

in C2+v in some neighborhood of dG, and (c) g, h satisfy some consistency conditions

on SG(0).

Theorem 3. Assume that (i)-(iv), (vi), (vii) hold. Then there exists a weak solution u

of (1.1)—(1.5). u belongs to Wl-2(QT) and moreover, the function JG \Vxu(x, t)\2 dx

is essentially bounded.

In [4] the assertion that u e FF1,a(£2r) was proved only under the restrictions that g

is independent of f and c'=0. The last assertion of Theorem 3 was not proved in [4].

Proof of Theorem 3. Let {am(u)} be a sequence of smooth functions such that

am(u) -+■ a(u) uniformly in any closed interval which excludes the origin. We may

choose the am(u) in such a way that

(2.1) o£3 á ain(ü)   where a3 = min (alf a2).

Let {ym(u)} be a sequence of smooth functions such that ym(u) -*> sgn u uniformly

in any closed interval which excludes the origin. We may choose the ym(«) so that

(2.2) -lSy*(«)ál.

Define

(2.3) cjx, u) = ±c\x)[l +Ymiu)]+ic2ix)[l -ym(«)],

(2.4) Lmu = An+cm(x, u)u.
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Consider the system

(2.5) a'm(v) 8v\8t = Lmv   in Qr,

(2.6) v = g       onSGx(0, T),

(2.7) v = h      on G(0).

By [6] there exists a unique solution v = vm. (One needs actually to assume that h

belongs to C2 + \G). But by standard approximation arguments (employing a priori

inequalities and barriers [1]) we find that a solution exists even if h belongs to

C°(G).)

We claim that there exists a 80-neighborhood W¡0 of <5,G (i= 1, 2), independent

of ra, and an e0 > 0, also independent of w, such that

(2.8) (-ly-'v^x, t) > £0   in Of = (Wl0 nG)x(0, T).

To prove this we consider the system

Lmw = 0        in G,

(2.9) w = e        on 8XG,

w = -K   on 82G,

where K, e are positive numbers, and K>sup \g2\, £<inf gx. By a standard fixed-

point-theorem technique (using Schauder's estimates) we find that there exists a

solution we of (2.9) (not necessarily unique). Furthermore, we¡ -*■ w0 uniformly in

G as j -> oo, where {e;} is a sequence which decreases to zero and where w0 is a

solution of (2.9) when e=0. By the maximum principle, u>o<0 in G; hence we¡<hx

on Gi(0) provided y is sufficiently large. The inequality we/<g on 5Gx(0, T) is

also obvious. We shall now prove that wS) < h2 on Cl (G2(0)) provided./ is sufficiently

large. It suffices to show that w0 < h2 on Cl (G2(0)). We compare w0 with the

function Kv0, where v0 satisfies

At>0 -yv0 = 0       in G,

v0 = 0       on dxG,

v0 = -1    on 82G,

and |cm(x, w0)| úy. Since v0<0 in G, Av0 + cm(x, w0)v0 = [y+cm(x, wo)]vo = 0. Hence,

by the maximum principle, Kvo — wo^0 in G. Now, t>0<0 in G. Consequently,

Kv0 < h2 on Cl (G2(0)) if K is sufficiently large. It follows that w0 < h2 on Cl (G2(0)).

Having proved that vm > we¡ on G(0) and on 8G x (0, T), we can apply the maxi-

mum principle and conclude that vm> we¡ in fíT. This implies (2.8) for /= 1. Since

cm is bounded by a constant independent of m, by examining the above arguments

we find that the constants e0, S0 can be taken to be independent of ra. The proof

of (2.8) for 2 = 2 is similar.
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From (2.8) it follows that there exists an m0 = m0(£0, S0) such that if we Wo then

a'mivm)=cii, ¿mix, u)=c\x) provided (x, f) e £2(*.

Consider vm in £2?. It satisfies

aidvjdt = Ltvn   in £2f,

(2.10) vm = g        ondfixiO,T),

vm = h       on £2f n {f == 0}.

Note also, by the maximum principle, that

(2.11) |t>m| g A'   in£2r

where ,4' = max {sup |A|, sup |g|}.

We shall prove

Lemma 1. There is a constant A" independent of m such that

(2.12) \8vJ8v\ á A"   on dG x (0, T).

Proof. It suffices to prove (2.12) on ojGx(0, T). Introduce the function

w=vm—T. It satisfies:

Uidw/dt = LjW+Z  in £2f,

w = 0 on d-fix(0, T) and on £2? n {f = 0},

where/=L1xF—a1 8T/Sf is a bounded function. Let iy,s) be any point on

dyGxifi, T) and denote by iy0,s) the center of a ball with radius R=\y-y0\

which does not intersect Gis). Then (compare [1, p. 87]) the function w0(x)

=k{R~p—\x—y0\""} for some positive k,p satisfies

a^woldt ^ 7^m>o + 1,

w0 ̂  0   on diG x (0, T) and on £2? n {f = 0},

w0 ~¿ 1   on the remaining part of the boundary of £2? which lies in f < T.

Let k0 = max {supnj |/|, supßT \w\}. Applying the maximum principle to k0w0±w

we conclude that kowo±w^0 in £2f. Since k0wo±w=0 at (j, s), we have

dik0w0±w)¡dv=\0 at iy, s). Hence, \dwjdv\ g -A:0 dw0¡dv¿A*. Note that k0 and,

consequently, also A* are independent of m. (2.12) now follows.

We return to the system (2.5)-(2.7). We shall first suppose that h is sufficiently

smooth on G. Then vm is continuously differentiable in G x [0, T]. Multiplying

both sides of (2.5) by dvjdt and integrating over £2ff, we obtain
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Using (2.1)-(2.3), we get

(2.13)

where A is a constant independent of ra.

Using Schwarz's inequality and (2.11), (2.12), it follows that

(2.14) if   l^fYdxdt+í     \Vvm\2dx£A' f     \Vh\2dx+A',
JJac \ vt ] Jaw Jam

where A' is a constant independent of ra.

If h is not sufficiently smooth (but still satisfies (vi), (vii)), then we first take a

sequence {h1} of smooth functions which converge to h in the norm of W1,2(G)

and which coincide with h near 8G. We apply (2.14) to each solution vmj of (2.5)-(2.7)

with h replaced by W. We then take./-*-oo.

From (2.11), (2.14) it follows that there exists a subsequence of {vm}, which we

denote again by {vm}, such that

(2.15) o«-" «       inL2(£2r),

(2.16) Vxvm^Vxu   inL2(Qr),

(2.17) Dtvn^Dtu   inL2(QT),

where "-»" means weak convergence. Since bounded sets in Wí¡2(ClT) are contained

in compact subsets of L2(QT) (see [9]), we may also assume that

(2.18) ||i>m-M|U!W->'0.

We may further assume that {fm} is almost everywhere convergent to u. Hence, by

(2.11),

(2.19) |u(x, f)| g max {sup |A|, sup |g|}.

From (2.15), (2.16), (2.18), and (2.14), it follows, by standard arguments, that

u belongs to W1,2(Qr) and the function j" | Vm(x, f)|2 dx is essentially bounded.

To complete the proof of the theorem, we shall show that « is a weak solution.

Since vm -> u almost everywhere in QT, for almost all (x, t) for which u(x, 0^0

we have am(vm(x, t)) -*■ a(u(x, f )). Next, the sequence {am(vm(x, t))} is a bounded

sequence of measurable functions. We may therefore assume that it converges

weakly to some bounded measurable function ß(x, t). It then converges to ß also

in measure, and we may assume that the convergence is also almost everywhere

(otherwise we take a subsequence). It is now clear that ß(x, t)=a(u(x, t)) for almost

all the points (x, f) for which u(x, f)^0. If, on the other hand, u(x, f)=0, then,

since vm(x, t) ->0, we conclude that a(0-0)^ß(x, t)£a(0+0).
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Next we may assume that the sequence {cm(x, vmix, t))} is weakly convergent to

some bounded measurable function 8(x, t). Hence it is also convergent in measure

to Six, f). It follows that there exists a subsequence, which we again denote by

{cm(x, vm(x, t))}, such that it converges almost everywhere to 8(x, f). As easily

seen from (2.3), 8(x, f) = c(x, u(x, t)) for almost all (x, f) for which u(x, f)^0.

We shall now show that u(x, t) satisfies (1.9). Multiply both sides of (2.5) by <f>

and integrate over £2r. Using (2.6), (2.7), we obtain

J]    am(vm) -^dxdt+jj    vm[A</> + cn(x, vm)<f>] dx dt

= f f   gd-ÍdSxdt-[    a(h)<j,dx.
Jo Jda    dv JGm

Taking m -> oo and using (2.15), (2.18), we obtain (1.9).

Corollary 1. For any 0<a<Tandfor every <f> as in (1.9),

(2.20) f f \uL*<p + a(u) |£1 dx dt = F j   g^ dSx dt-¡     a(ü)<f, dx.

Furthermore,

(2.21) f | Vxti(x> cr)|2 da g B < oo

for all o e (0, T].

Proof. We claim that for almost all f in (0, T),

(2.22) vm(x, t) -- u(x, t),

(2.23) am(vm(x, t)) — a(u(x, t))

inL2(G). Indeed, since vm—>-uvnL2(£2T), for any <f>eL2(G)

(2.24) j  vm(x, t)<l>(x) dx -* i u(x, t)<f>(x) dx.
Ja Jg

Hence, by taking a subsequence we may assume that the convergence is also almost

everywhere. Now take ¡f> to vary in a dense sequence {<j>¡} of L2(G). It follows that

(2.25) f vm(x, f)^(x) dx -+ Í u(x, t)<p(x) dx
Jo Ja

as m -> oo,

for each <p = <j>j and teZ where [0, T] -Z is a set of measure zero.

Since the vm are uniformly bounded, we deduce that (2.25) holds for all (f> e L2(G)

and î e Z. This completes the proof of (2.22). The proof of (2.23) is similar. In

what follows we denote by Z a subset of [0, T] such that (2.22) and (2.23) hold for

all f eZ and such that [0, T]-Z has measure zero.

Now multiply both sides of (2.5) by <f> (<f> as in (1.9)) and integrate over G x (a, T)

where a e Z. Using (2.23) we obtain (2.20).
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We shall next redefine u and a(u) on f=<r*, for any a* <£Z, in such a way that

(2.20) holds for o=o*. We can choose a sequence {u,}cz converging to a* such

that

(2.26) u(x, am) -* y0(x),        a(u(x, orj) -- yx(x)

as ra->oo, where y0, yx are some bounded measurable functions. By taking a

subsequence we may assume that

(2.27) u(x, am) -> y0(x),       a(u(x, am)) -+ yx(x)

almost everywhere. But then it is clear that we may well redefine u and a(u) on

t=<r* by

(2.28) u(x, a*) = y0(x),       a(u(x, a*)) = yx(x).

Writing (2.20) for a=o-m and letting ra ->• oo, we find, upon using (2.26), (2.28),

that (2.20) holds for o=o*.

We may assume that (2.21) holds for all a eZ. Using (2.26) it then follows that

(2.21) holds also for 0=0* where a* is any point in (0, T]-Z.

Corollary 2. Ifn=l then u(x, t) is a continuous function in QT.

Proof. From (2.21) and the Sobolev inequality it follows that u(x, t) is con-

tinuous in x, uniformly with respect to f. It remains to prove that u(x0, t) is con-

tinuous in f for any x0 g G. The proof is analogous to an argument used in [10].

Suppose the assertion is false. Then there exists a sequence {fm} in (0, T) and an

e>0, such that tm-+r and |k(x0, tm)-u(x0, t)\>s for all ra. By the continuity of

u(x, t) in x it follows that the inequalities persist in some neighborhood

{x; |x—x0| < 8} nG. Hence,

(2.29) \a(u(x, tm))-a(u(x, r))| > ye

for some y > 0 independent of w, e.

Writing (2.20) for <r=fm and o=t, and subtracting one equation from another,

we easily find that

[a(u(x, tm))—a(u(x, r))]<p(x, t) dx -> 0   as ra -> oo.
Ja

But this relation is readily seen to contradict (2.29).

Corollary 3. Let (g, h) vary in a family M such that infM y1 > 0, supM y2 < 0,

suPm I g\ =const < oo, supM |h\ ^const < oo, and infM (- l)1 " 1A,(x)^y3 > 0 for x

in some y^-neighborhood VK of 8XG (f=l,2). Then there exists a ^-neighborhood

Wi0 of8fi 0 = 1, 2) such that (- ly-hQc, t)^e0>0for xeW\or\ G, OètâT, and
Vxu, V2m, Dtu are Holder continuous on these sets; S0 and eQ are independent of

(g, h) in M.



62 AVNER FRIEDMAN [August

Proof. From the proof of (2.8) it follows that e0, 80 can be taken to be inde-

pendent of (g, h) in M. Now recall that {vm} is convergent to u almost everywhere

and also use Schauder-type estimates [1] for the vm in [W¡0 n G]x [0, T].

Theorem 4. Assume that (i)-(v) bold. Then there exists a unique weak solution of

(1.1M1.5).

Proof. In case c1 = c2=0, an elegant proof of uniqueness was given in [4]. We

shall extend it to the present case. If u, v are two weak solutions, then

(2.30) JT   [a(u) -a(v)] fê+e A<¿ + ec<t>] dx dt = 0

for every <f> as in (1.9) where

(2.31)

and

(2.32)

,      . u(x, f) — v(x, t) ..   ,    _.    ,    ,      .

^0 = a(u(x,f))-aW,f))   *-feO*«ÍM>,

= 0 ifw(x, f) = v(x,t),

..    #.      c(x, «)«-c(x, v)v   ..     ,
c(x, t) =   v       -       y     if« ¿ V,

u-v

= 0 if u = t;.

Noting that for u±v,

(2.33) c(x,f) = c(x,«) + c(jC'")-C^t,)i;

and recalling the definition of c(x, u), we easily conclude that c(x, t) is a bounded

function.

We can now proceed analogously to [4]. We approximate e by a sequence of

smooth functions em (in [4] the notation of c and cm are used instead of e and em).

We also approximate c in L2(£2r) by smooth cm. For any/in C°°(£2T) with compact

support, we solve

d<f>Jdt+em A</>m + ecm<ßm = /  in £2r,

4>m = 0   on G(7;) and on dG x (0, T).

By multiplying the differential equation by A^m and integrating, we find that

f     |V¿m|2dx+íí   em(A<pn)2dxdtïA
Jaw JJaT

where A is independent of m. If we now substitute (p=<f>m into (2.30), then we find,

by slightly modifying arguments given in [4], that

= jj    [a(u)-a(v)]fdxdt



1968] THE STEFAN PROBLEM IN SEVERAL SPACE VARIABLES 63

satisfies \I\ ¿em where em -> 0 as ra -* oo. Hence 1=0, from which it follows that

u=v almost everywhere.

To prove existence, let Y be a continuous extension into ÙT of the function

defined as g on 8G x [0, T] and as h on G. Let Tm be a sequence of C" functions in

Qr which converge uniformly to XV. For each w there exists (by Theorem 3) a weak

solution um of (1.1)—(1.5), with the initial and boundary values given by Tm. Since

{wm}> {c(x, um)} and {c(x, wm)wm} are uniformly bounded sequences of functions in

QT, we may assume (compare the proof of Theorem 3) that they all are convergent

weakly in L2(Q.T) as well as almost everywhere. Denote by u the weak limit of {wm}.

It follows that for every <f> e L2(D.T)

lim <f>(x, t)c(x, um)um(x, t)dxdt = <f>(x, t)c(x, u)u(x, t) dx dt.
m-00 JJnT JJaT

If we now write down (1.9) for u=um and with g, h replaced by Tm, *Fm, and let

ra -> oo, then we obtain the relation (1.9). Thus m is a weak solution of (1.1)—(1.5).

Remark 1. Note that from the uniqueness proof it follows that not only u(x, t)

but also a(u(x, t)) is uniquely determined almost everywhere.

Remark 2. The uniqueness proof clearly remains true also if the c' are functions

of (x, f ). The use of Theorem 3 (in the existence proof) can be avoided if we replace

um by the solution of (2.5)-(2.7) with g, h replaced by T^,.

Suppose now that the assumptions of Theorem 4 hold for all T> 0. Denoting by

uT the solution in QT and recalling that uT is a weak solution in Q.T, if T' < T, it

follows, by uniqueness, that uT = ur in £2r. Thus there exists a unique weak

solution of (1.1)-(1.5) in £2„.

Corollary 1. Corollary 3 to Theorem 3 holds for 7=oo.

Indeed, this follows from the proof of that corollary.

We shall now draw some further conclusions in the case T=co. For simplicity

we consider first the case c1 = c2=0.

Denote by Dx the (n— l)-dimensional vector of tangential derivatives on 8G(t)

(in terms of a fixed parametrization on 8G). By H„(f; t) we denote the Holder

coefficient of/ (with respect to the exponent tj) on 8G(t).

We now give a better estimate on the constant A" appearing in (2.12) than the

one which results from the proof of Lemma 1. Let us assume that

\g\ + \Dxg\ + \Dtg\ è A0   ondGx(0,co),

Hn(Dxg;t) = A0   forO < f < co,

and consider the function w = 8vJ8t on Q?* = (W¡0 n G)x(l,oo). It satisfies

(2.35) aßn/dt = Aw   in Q,**,       w = gt   on 8tG x (1, oo).

Denote by dQ,** the part of the boundary of £2f* which lies in Gx(l, oo), and

denote by 8G* the projection of SÍÍ,** on G(l). By decreasing 80 if necessary, we

may assume that a'm(vm) = ai in V*x(±, oo) where V* is a neighborhood of 8Gf.
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But then one can conclude that w=dvjdt is a bounded function on dGf x(l, oo).

Using this result and (2.35), it follows, via the maximum principle, that w is a

bounded function in £2,**.

We now consider, for fixed f, the system

A»»=/  in (rnonG)x{t}       (f = afivjdt),

vm = g   on 8,G(f).

We can write vm = v'm + v'ñ where A¡4=0, Av"m=f in (W¡a n G)x{t), v'm=g on

dtG(t), v'm = vm on dGf x {t}, and v"m=0 on dtG(t) and on dGf x {t}. By results of [5],

(2.12) on dtG x (1, oo) holds for v'm, with A" depending on A0 (in (2.34)) but not on f.

Representing v*n in terms of Green's function and using standard estimates, we find

that (2.12) holds also for v"m, with A" depending only on sup |/|. Since/has already

been estimated above, we conclude that the constant A" in (2.12) is independent of

T, i.e. (2.12) holds on dG x (0, oo).

Using (2.13) we then easily obtain

Corollary 2. Assume that c1sc2=0, that (i), (iii), (iv), (vi), (vii) hold for

T=oo, that (2.34) holds, and that

(2.36) T f   \gt\
Jo   Jda

_% dSx dt < oo.
Jo   Jda '"

Then
¡•t r r

< oo.(2.37) i  i |«t|2axdf+esssup Í |V«(x, f)|2dx
Jo Ja o<í<oo Ja

If c'^0, then the assertion of Corollary 2 remains true (with slight modification

in the proof).

Remark 1. If gx ̂  0, g2 é 0, then there occurs a difficulty in the proof of Theorem

3, since the regions £2? cannot be constructed. One can, however, consider a

modified problem with g, replaced by gie such that (-l)i-1gie>0 and gie->gi

uniformly. From the family of solutions u of the modified problems we can then

choose a sequence which converges weakly and almost everywhere to a weak

solution u.

If n^O or n2^0, then there occurs an additional difficulty in constructing hu

satisfying the assumptions of Theorem 3 such that aihis) —* a(/i(). There is no

difficulty, however, in extending Theorem 4 (see §6).

3. Some properties of solutions.   We prove a comparison theorem.

Theorem 5. Assume that the conditions of Theorem 4 hold for g, h and for another

pair g, h. Denote by u and û the corresponding weak solutions. Ifg^g,fi^h, then

û^u almost everywhere.

Proof. Since g—g and fi — h form a continuous nonnegative function on

G U [dG x [0, J]], we can extend them to a continuous function Nix, t) in £2r

which is also nonnegative (see [3], [7]). Let {Ty} and {N}} be sequences of smooth
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functions in ür which approximate Y and N uniformly in QT. We can take the Nj

to be positive. Set Y^Yj + Nj. Denote by u¡, u¡ the weak solutions of (1.1)-(1.5)

corresponding to the data T/; T, respectively.

Each u¡ is the pointwise limit (almost everywhere) of a sequence {vjm}, where vjm

satisfies (2.5)-(2.7) with g, h replaced by T;. Next, uf is the pointwise limit of a

sequence of solutions vjm of (2.5)-(2.7) with g, h replaced by Y; and Lmv replaced

by Lmv+l¡m. Since W}>Yf, the Lemma of Westphal-Prodi (see [1, p. 52]) shows

that vjm > vjm in Q.T. Hence ú¡ = u,- almost everywhere.

By the proof of Theorem 4, u and û are the pointwise limits (almost everywhere)

of subsequences (with the same indices) of {u¡\ and {«,} respectively. The assertion

now follows.

Theorem 5, under stronger smoothness restrictions on g, h, g, h, was proved

(by a different method) in [4].

Theorem 6. Let the assumptions of Theorem 3 hold. In any open subset M of Q.T

where h2:0 and a(i/)^0 (w = 0 and a(«)_— a),  u  is  a  classical solution  of

ax 8u\8t=Lxu (a2 8u\8t=L2u).

Proof. In M, u is a weak solution of axut—Lxu=0. Since u e WXA(Q^), it is also

a "strong" solution. From [6] it follows that u is Holder continuous, and it is then

easy to see that m is a classical solution of axut-Lxu=0.

Remark. If c(x, 0—0, then the assertion of Theorem 6 is obviously valid even

under the assumptions of Theorem 4.

4. Stability of solutions. In this and in the following section, we assume, for

simplicity, that c1 = c2=0. Denote by Hn(k) the Holder coefficient of a function k

(in a set to be specified) with respect to the exponent r¡.

Let M be a family of functions (g, h) satisfying (iii), (iv), (vi), (vii), and let

(4.1) gx = yx > 0,       g2úy2< 0,       (- ly-'hlx) Z y3

in a 8-neighborhood Vt of 8tG (/= 1, 2),

(4.2) \h\ ÚA,        \g\ul,

for all (g, h) in M, where yx, y2, y3, 8, A are independent of (g, h).

Take any two elements (g, h) and (g, h) in M and denote by u, û the correspond-

ing weak solutions of (1.1)—(1.5). Denote by T the function Y which occurs in (vii)

when g=g, h = h.

Theorem 7. Under the foregoing assumptions, there exists a constant B depending

only on yx, y2, y3, 8, A, 8G, ax, a2, a such that

(4.3)
//,

(û — u)[a(û) — a(u)] dx dt

= B ¡ \h-h\2dx + B íí    \Y-Y\2dxdt+B ÍÍ   \VXW~VXY\2 dxdt.
Ja JJaT JJaT
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Proof. We shall denote various positive constants depending only on yu y2, y3,

8, A, dG, a1; a2, a by 7i. Set

e(x, t) = iû-u)Haiû)-aiu))   if   û ï u,
(4-4)

= 0 if    M = tí.

Then Oge^ l/a3. Choose a sequence {ëm} of nonnegative C°° functions in £2T such

that |ëm-e|| ^ 1/m ("|| ■ ||" means the L2(£2T)-norm). If we take the ëm to be appro-

priate mollifiers of c (see [1]) then we have emg 1 + l/a3. It easily follows that the

functions em=ëm+l/m satisfy

(4.5) CS2 + 1K

(4.6) lkm-e||-»0,

(4.7) \\e/em\\ Ú Bil + T1'2).

Let/be any function in C^Qj.) and consider the system:

(4.8) tyjdt+en A<pm = /  in £2r,

(4.9) «¿m = 0   onSGx(0,7),

(4.10) <Am = 0   onG(J).

Since (1.9) holds with </>=<f>m for both u, g, h and w, g, h, we get, by subtraction,

jjn [a(«)-a(«)][^ + emA^]dxa-f = J£ [a(«)-a(M)](em-e) A¿m dx^f

+ T Í   (8-g) ^= rfS, *- f     [a(«)-a(«)]¿m dx = 7m+/m+tfm.
Jo   JdG OV JGi0)

Multiply both sides of (4.8) by A<f>m and integrate over £2r-£2ff. Integrating by

parts and using (4.9), (4.10), and the inequality 2 ft |/A^m| S $j if2¡em) + (j em\A<f>m\,

we find that

(4.12) f     | V¿m|2 dx + ± f f em| A¿m|2 dxdtúUT¡ Çdx dt.
Jaw ^ Ja Ja ¿ Ja Ja em

Since <¿m=0 on 3G(a), we also have

(4.13) f     ildxèBÏ     | V¿m|2 dxgBÍ ¡ Çdxdt.
Jaw Jaw Ja Ja em

Using Schwarz's inequality and (4.13), it follows that

(4.14) (tfm)2 Ú 7?( jG \h-h\2 dx) jja £ dx dt.

Let pix) be a nonnegative C00 function in G which is equal to 1 on dG and which
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vanishes outside W\ n G 0=1, 2). W\ is a 8-neighborhood of 3,G, and we take

8 = S0/2 where 80 is the constant appearing in Corollary 3 to Theorem 3.

Next, we write

w=ir í (p*-pv)e-^dsxdt\
I Jo Jda 0v I

= I ÍÍ   p&-Y)&<pmdxdt\ + I if    V(pW-pY).V<pmdxdt
I JJtij. I JJnT

T1 + J2

In both Jm and •/„ the integrand vanishes outside Q1 and Q.2 respectively, where

Q.i = (Wiir\G)x(0, T). If, on the other hand, (x,t)eü', then (-1)'-1¿2>0,

(— 1)1_1M>0, and these inequalities persist, in fact, also in a (S0/2)-neighborhood

of Qf. Thus, in that neighborhood we have e=a,. Hence (recalling that em is a

mollifier of e), em 2: a, in Ü1 provided ra S ra0.

We now have

(Jà)2 = ̂ [JJn /»(Y-T)2^*] JJ^^ÍA^)2^

áfiíff   CF-T^dXíf-flff   em(A<f>mf dx dt.
UJaT jJJnT

JaT

(4.15)

Next,

(4.16) (J2)2 = b{\\   [(Y-Y)2+\VW-VY\2]dxdt\ ff    |V¿m|2dx¿f.
LJJnT J JJnT

Using (4.12) to evaluate the last integrals in (4.15), (4.16), and combining the result-

ing inequalities, we conclude that

(4.17) (Jm)2 ¿ bIJT   [(t-T)2 + |VT-VT|VxrfîjJÏ   Çdxdt.

It remains to estimate Im.

|/m| g B if    |em-e| | A¿m| ¿¿( = 5 fí   ((ej1'a + *1/a)l(e111)l'a-e1/a| | A¿m| ¿x ¿f

= B¡¡   (emy'2\(emyi2-exl2\ \A<f>m\ dxdt+B ÍÍ   ex'2\(em)xl2-exl2\ \A<pm\ dxdt
JJaT JJciT

Given tj>0, let Ev={(x, t) e Qr; |(em)1,2-e1/2| >•>?}. Since em-+e in measure,

for any A>0 there exists an mx=m2{f\, A) such that meas. (En)< X if m^mx. Setting

FV=ÙT-E„ and using (4.5), we have

Ixûb\\   +B H   è Br, \\   (em)xi2\A<f,m\ dxdt+B iï   (en)xl2\A<pm\ dxdt.
JJFji JJev JJFff JJEjj
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Hence, by Schwarz's inequality and (4.12),

(4.18)

(I1)2 S Br,2 ff   em(A<f>m)2dxdt + BX ff   em(AJ,m)2 dx dt
JJaT JJe„

g B(r¡2 + X) ff   f-dxdt.
JJa? €jniaT '

Next,

72 g BV ff  ell2\A<pm\ dxdt+B ff  ell2\A^,m\ dx dt.
JJfv JJb„

Writing e112 = (em)ll2(ell2l(em)112) and using Schwarz's inequality and (4.12), we get

(I2)2 g (bv2 ff   —dxdt+B ff  — dxdt) ff   f—dxdt.
\ JJnT em JJe„ €m I  JJaT em

Since, by Schwarz's inequality and (4.7),

f f   -dxdtè BT1121 — I g BT,        ff  -dxdt Ú B(XT)112,
JJnT &m II ̂m II JJev ^m

(4.19) (72)2 è (BTt]2+B(TX)112) ff   f—dxdt.
JJar &m

Jar

we conclude that

?
)aT t

Combining (4.19) with (4.18), we have

(4.20) (7m)2 Ú[B(\ + 7V + B(TXy2+BX] f f   f— dx dt.
JJaT &m

We now combine the estimates (4.20), (4.17), (4.14) and find, from (4.11), (4.8),

(4.21) I f f   [a(û) - a(u)]fdx dt    ^ B[(l + T)r¡2 + (JA)1'2 -+A + 7V] ff   ^ dx dt,
\JJaT JJar &m

where, for brevity, we have denoted by N the sum of the three integrals on the

right-hand side of (4.3).

We have proved (4.21) for any/e C°°(£2T). Now let/be any function in L2(£2r)

and construct a sequence of functions/ in C°(QT) such that ||/—f¡\\ ->0. Then

(4.21) holds for /=/ (with B independent of/). Hence the inequality holds also

for/

Taking, in particular, f=û—u, and denoting the left-hand side of (4.3) by p,

we get

(4.22)     p2 é B[(l+T)v2 + (TX)1I2 + X+N] ff   ¿-dxdt      (f= ú-u),
JJaT €m)aT <

provided m ̂ m2 (m2 may depend on u, û, T).
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Lemma 2. Iff=û-u, then

lim  f f   í-dxdt = if  ¿- dx dt,
m-"»JJaTem JJciT e

where, by definition, f2/e=0 whenever û=u (i.e. wherever e=0).

Suppose the lemma is true. Then, letting ra -> oo in (4.22), we obtain

P2 á B[(l+T)v2 + (TX)xl2 + \+N] jï   {VZÉL dx dt

= B[(l+Tyq2 + (TX)XI2 + X + N]p.

Since r¡ and A are arbitrary positive numbers, it follows that p = BN, which is

precisely the inequality (4.3).

Proof of Lemma 2. In the following proof, the constants B may depend also on

T. For any 8>0, set

Qô = {(x, f) g ÜT; \û(x, t)-u(x, 01 < 8},       Pô = Or- Q6.

Write

(4.23) ff   f—dxdt= ff  ^-dxdt+a G-dxdt,
JJcij &m JJot &m JjP{ &m

and set Q6 = Q6-{(x, t)eQ,T; u(x, t) = u(x, t)}. We have

ff £**-ff «=£**
JJqs &m JJOt      &m

i a ~,a\ Cf      u~u     a(û)-a(u),„     . j    .
(4.24) = -pr:-¡r-?-^-—(u-u)dxdt

))Qia(u)-a(u)       em

è B ff  — \û-u\ dxdt S B8 ff  — dxdt g B8,
JJSd &m JJSe ^m

where (4.7) has been used. We also have

ff  f2dxdt= ff  ^LU*tdxdt = ff   [a(û)-a(u)](û-u)dxdt
JJqô JJss     e JJsô

(4.25)

g B f f   \û-u\ dxdt g B8.

P6 is a measurable set. Hence almost every point (x, f) of P6 is a density point,

i.e.

¡¡{ft n Ks)
lim -7T7T—  =   1

where A; is a ball with center (x, f) and radius e and p. is the Lebesgue measure.

Set

Em = {(*, 0; KP i n *«) ^ iM#«) for all 0 < e < 1/ra}.
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Then Em<^Em+1 and /x(Pd-Pd°)=0 where P4° = Um = i En. It follows that for any

£>0 there exists &j=j(<¡) such that p.(P6-E¡)<e. Hence (compare (4.24)),

(4.26) f f       ¿- dx df é B f f       — dx dt è Be112,
JJp¿-Ej &m JJpi-E) &m

where (4.7) has been used. Similarly,

(4.27) ff       Çdxdt á Be1'2.

Note next that e(x, f)^A(S) on Pô where A(S)>0, A(S)-*-0 if 8-^0. Since

e^0 in £2r and ëm is a mollifier of e, it follows that em^ëm> A(8)/2 on E¡, provided

m is sufficiently large. Thus 0 Sf2/em ^ 7? in E¡. Since em -> e almost everywhere, the

Lebesgue Bounded Convergence Theorem yields

(4.28) lim  f f f—dxdt= f f ¿- dx df.
m-» JJe, em JJEí e

Combining (4.23)-(4.28), we find that

lim sup — dx dt- if    '— dx dt
m-.«    | jjn em JJaT e

è B(o + e112).
Jaj cm JJar

Since 8 and e are arbitrary positive numbers, the proof of the lemma is complete.

Corollary 1. Under the assumption of Theorem 7, ifT>2,

ff   (û-u)[a(û)-a(u)]dxdt

(4.29) S B f (h-h)2dx+B f   f [CP-T)2 + |V^- VÄ*F|2] dxdt
Ja Jo Ja

+B¡T(   [(g-g)2+\Dxg-Dxg\2]dSxdt.
Jl   JdG

Proof. We first construct an extension T* ofg—g into £2,.—Qj, such that

(4.30) f f [(T*)2 + |V,Y*|2] dx dr á * f f   [(#-g)2 + |A,S-A,*|a] ¿S, dt.
Jl   Jg Jl   JPg

To do this, we introduce a family of parallel surfaces dGc (dG0 = dG, dGc c dGe. if

e>e) for 0^e^£0 and orthogonal curves lu(a), where p. is the (n-l)-dimensional

parameter on dG and /„(e) e dGs. Next we introduce a C° function £(o) with

£(0)=1, £(e)=0 for e^e0. If we now define T* at /„(e) to be equal £(e) times g—g

at the point /„(0), then we obtain the desired extension.

Let Aj, A2 be C°° functions in £2r such that Aj=0 if f>2, A2=0 if f<l, and

Ai + Aa^l in £2r. If we use X^-^ + Xtf* instead of V-W in the proof of

Theorem 7, then we obtain (4.29).
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Since (û—u)[a(û)-a(u)]^a3(û-u)2 where a3 = min (ax, a2), we get

Corollary 2. Under the assumptions of Theorem 7, the integral J"J"n (û—u)2 dx dt

is bounded by the right-hand sides of both (4.3) and (4.29).

We give an illustration of Corollary 2. Let m be a classical solution of (1.1)—(1.5)

and let û be a weak solution with data h, g satisfying

f \h-h\2dx+ Í f [(Y-Y)2 + \VxY-VxY\2]dxdt g e2.
Jg Jo Ja

Assume also that (g, h), (g, h) belong to a class M as in Theorem 7. Then

(4.31) \û-u\2dxdt = B2e2.

Now denote by S0 some (small) neighborhood of the free boundary of u in Q.T.

Then | u \ = p > 0 in D0 = QT - S0. It follows that û ̂  0 at all the points of D0 with the

exception of a set S* of measure ^ Bel p. By Theorem 6, « is a classical solution in

Qr-(50 u S*).

Remark. If c'^0, then one can still prove Theorem 7 and its corollaries, but the

constants B depend, in general, on T. Thus, instead of (4.8) one considers the

equation

8<f>J8t + em A<pm + emcm<f>m = /   in QT,

where {cm} is a sequence of smooth functions which converge in L2(Q.T) to the

bounded function c given by (2.32) (or (2.33)) when t;=t2.

5. Asymptotic behavior of solutions.   We shall need the following assumption :

(viii) goo(x) is a function in C2+V(8G), positive on 8XG and negative on 82G.

Denote by w the solution of

(5.1) Aw = 0   in G,       w = gœ   on 8G.

Then w satisfies

(5-2) JLHl+H**-£L*'*ds'*-L«i»dx
for any </> as in (1.9). Applying Corollary 1 to Theorem 7 with û=w and with

r^- oo, we obtain the following.

Theorem 8. Let (i), (iii), (iv), (vi), (vii), (viii) hold for T=od and assume that g is a

bounded function on 8G x [0, oo). Assume also that

(5.3) N= ¡X f   [(g-g„)2 + \Dxg-Dxgoo\2]dSxdt < <x>.
Ji   Jsa
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Denoting by w the solution of (5.1), we have

(5.4)

f    \ (u-w) [a(u) - a(w)] dx dt
Jo   Jg

ï BN+B f (w-h)2dx+B f f [(w-Y)2 + \Vw- VT|2] dx dt
Jg Jo Ja

where B is a constant. If(g, h) varies in a family M as in Theorem 7, then B depends

only on y1; y2, y3, o, A, dG, au a2, a.

Corollary. Under the assumptions of Theorem 8,

(5.5) I     I   \u(x, t)-w(x)\2dxdt < co.
Jo   Jg

Theorem 9. Let the assumptions of Theorem 8 hold and, in addition, assume that

(2.34), (2.36) hold. Then

(5.6) f |k(x, f)-w(x)|2dx-s-0       as   f-^oo.

Proof. From Corollary 2 to Theorem 4 we have

(5.7) f°° f \ut(x, 0|2 dx dt < oo.
Jo   Jg

Set v=u-w. If (5.6) is false, then there exists a sequence {om} -> oo such that

(5.8) f |t>(x, <rm)|2 dx ^ p, > 0   for all m.
Jg

We may assume that <xm + x — om S 1. Writing

v(x, t) = v(x, o-m)+      vt(x, t) dr,
Jam

we get

2

dx.(5.9) f \v(x, om)\2 dxú2Í \v(x, t)\2 dx+2 f I f i;,(x, r) dr
Jg Jg Jg I J»m

If O^f-o-mg 1, then, by Schwarz's inequality, the last integral is bounded by

(5.10) f   f K(x,r)|2dxdT^em
JamJa

where, in view of (5.7), em -* 0 as m ->• oo.

It follows from (5.8)-(5.10) that

dx £ -.   foram ^ f S am + l

provided m^m0. This, however, contradicts (5.5).
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As is well known (see, for instance, [11]), if 2<p<2nj(n — 2) when n^2 and

2<p^co when n= 1, then the inequality

(5.11) ||^IU^)<§II^IU2(G, + a1-1|Ví¿||£2(C)

holds for any <f> e W1,2(G) and all 0< 8 < 80, where K, 80, A are positive constants

and A<1. Using this relation for <f>(x) = u(x, t)-w(x) and employing (5.6) and

(2.21) (which holds with B independent of T), we easily get

Corollary. If n^2 andp<2nj(n-2), then

(5.12) f \u(x,t)-w(x)\"dx^0   ast->oo.

7/n = l, then

(5.13) u(x, t ) -> w(x)   ast^-co,

uniformly with respect to x in G.

6. Generalizations.   We first extend Theorem 4 to very general data.

Definition. Let n(x) be any bounded measurable function on G and let ß(x)

be a measurable function defined as a(h(x)) if n(x)^0 and satisfying -a^ß(x)^0

at the points where n(x)=0. We then write a(h) (or a(h(x))) for the function ß(x).

We now define a weak solution of (1.1)—(1.5) with a(u)=a(h) on f=0 by the condition

(1.9).
For example, we note that Corollary 1 to Theorem 3 in fact asserts that for any

0<a<T, the weak solution of (1.1)—(1.5) is also a weak solution for o-<f<rwith

a(u)=a(k) on t=o, where k(x) = u(x, a).

Note that a(h) determines h(x) uniquely.

Theorem 10. Assume that (i), (ii) hold and let g, h, a(h) be any bounded measurable

functions. Then there exists a unique weak solution of (1.1)—(1.5) with a(u)=a(h)

on f=0.

Proof. Uniqueness follows from Theorem 4. To prove existence, define functions

«m by am(h~m) = a(h). The hm are uniquely defined and are bounded measurable

functions. Let {g¡}, {hmj} be sequences of smooth functions which are uniformly

bounded and which approximate g and hm, respectively, in the L1-norm. Consider

the system (2.5)-(2.7) with g, h replaced by g¡ and hmj respectively, and denote the

corresponding solution by vmj.

The vmj are uniformly bounded, and (by taking a subsequence) we may assume

that they form a sequence which is convergent, both weakly in L2(£2r) and almost

everywhere in £2r, to some function vm.

Multiplying (2.5) (with v=vmi) by <f, (<f, as in (1.9)), performing integration by

parts, and then takings -* oo, we find that

ff    [am(vm)<f>t + vmLm<f,]dxdt =  f   f  gd-Í-dSxdt-[    am(hm)<pdx.
JJaT Jo Jbg     ov Jc(0)
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If we take a subsequence of {vm} which is convergent to some function v, both

weakly in L2(Q.T) and almost everywhere in Qr, and such that also cmvm -» cv, then

from the last relation we obtain the relation (1.9).

Corollary. If g*, h*, a(h*) are also bounded measurable functions, and if

g*^g, a(h*)}îa(h), then u*^u almost everywhere, where u* is the weak solution

with data g*, a(h*).

The proof is similar to the proof of Theorem 5. In fact, we can approximate

g*, ffa by gf, f&j such that Ä^>Ämj, gf>g¡ and then use the same comparison

argument as in that proof.

We shall now give various other generalizations of the previous results.

(I) The results of the previous sections extend to nonlinear parabolic equations

of the form

*»*-££ Ml'
In fact, one can transform the classical Stefan problem for such equations into the

weak form (1.9) with a function a(u) which is monotone and piecewise continuously

differentiable (see [4]). We then can proceed as in the linear case.

(II) All the results of the previous sections extend with minor changes to the

more general parabolic equations

du,       v       t .    82ut    , v t / \ ÔMi ,   u \
- Sf = ¿t aAx)8x78x-k + Á m ******

(III) One can define a weak solution of (1.1 )-( 1.5) in a different manner, namely,

by replacing (1.9) by

(6.1) ' J

= ff   g^dSxdt-í    a(hypdx
Jo Jda     Op. JGm

where L0u is the operator obtained from Lu by omitting the terms b, 8u¡8x¡. The

proof of Theorem 3 can then be modified to yield a solution to the present problem.

Thus, instead of (2.5) we now take

,,,2d      Tm      ^ ,    ,     s dv
am(v)Yt = L^2bUm(x,v)w;

where bi¡m(x, u) is defined analogously to cm(x, u) in (2.3). An inequality of the

form (2.14) can be derived. A subsequence of the {vm} is then convergent in L2(QT)

to a function v in WX'2(QT) for which (6.1) holds.

Thus, there exists a weak solution (in the sense of (6.1)) of (1.1)—(1.5) also in case

the b) do not vanish identically. The proof of uniqueness in Theorem 4, however,

does not seem to extend to solutions of (6.1).
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(IV) All the results of the previous sections extend with trivial changes to the

case where dxG, d2G each consists of a finite number of hypersurfaces in Rn.

(V) All the results of the previous sections extend to the case of w-phase Stefan

problems. In the classical formulation of this problem, there are m -1 different

types of surfaces St (j= 1,..., m - 1). On 5, the solution has a fixed value rh and

Ti^Tj if ijtj. The generalized formulation of this problem (see [4]) still has the

form (1.9), but now the function a(u) has m — \ points of discontinuity.

(VI) Most of the results of §§1-4 and §7 extend to the case where the first initial-

boundary conditions are replaced by the second or third initial-boundary conditions.

Instead of (1.2) we now have

duJd^+ßiU, = g,

where t, is some external oblique derivative and ft ^ 0. One must impose suitable

conditions on the gt or else restrict T to be sufficiently small. For otherwise, the set

Aj(f) (or A2(f)) on G(t) where vm is strictly positive (or strictly negative) may shrink

to zero. The existence proof of §2 would then fail.

7. Asymptotic bounds for the one-phase problem. In [2] we have considered the

one-phase Stefan problem and derived asymptotic bounds on the free boundary.

In this section we derive, by a different method, similar bounds for the weak solu-

tion. We first state the classical problem and its generalized form and prove the

existence and uniqueness of a weak solution.

Instead of (1.1 )-( 1.5) we have

(7.1) dujdt = A«   for x e d(t), t > 0,

(7.2) w = gi     for x e dxG, t > 0   (gx > 0),

(7.3) u = Aj     on Gi(0)   (hx > 0),

(7.4) u = 0     for x e Y(t), t ^ 0,

(7.5) Vxu- VXQ> = adO/öf   for x e T(í), f > 0.

Here \Jt T(t ) in the free boundary and G^t) is bounded by T(f ) and dxG(t)=diGx{t}.

dxG is a bounded hypersurface in Rn.

Let (u, <I>) be a solution of (7.1)-(7.5) for t<T. Introduce any smooth hyper-

surface d2G in Rn which contains 8XG in its interior, and let v be the zero function

defined for 0 < t < T and x in the shell bounded by T(f ) and 62G(f ) = d2G x {f}. Then

(u, v, O) is a classical solution of a two-phase Stefan problem as in (1.1)—(1.5),

except that now h2=0, g2=0.

We now define a(u) as in (1.7) and then (temporarily) define a weak solution of

(7.1)—(7.5) as a bounded measurable function u in £2r which satisfies (1.9) with

L* = A. Defining a(h2)= -a, one can easily extend Theorems 1, 2 to the present

case.

In trying to carry out an existence proof analogous to the proof of Theorem 3,
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we encounter the need for some changes (compare Remark 1 at the end of §2).

First, we must satisfy the relation J"G am(vm)</> -»■ J"G a(v)<f> = — a j"G <f> as ra->oo.

Hence we must take the am(v) such that am(0) -*■ —a. Note that this implies

am(v) < 0 in some interval (0, em). But then it is impossible to find a region QJ as in

(2.10). Fortunately, however, it is not needed to prove (2.12) for xe82G (and

thus one need not consider the system (2.10) for i=2) since 8g2/8t=0 in (2.13).

Theorems 4-7 and 10 extend to the present case with minor changes in the

proofs.

We shall assume that

y[l+í(n-2)/2-j  ^ g¿Xf ,)  É y'[l+f<»-2"2] if» à 3,

(7.6) y log (2+0 Ú giix, t) < y log (2+0 if « = 2,

y g gx(x, t) ú y if« = 1,

where y, y are positive constants. Note that if gx is given only for f in a finite

interval [0, 2"] and if it is a positive function, then we can extend its definition to

8XG x [0, oo) so that (7.6) is satisfied.

We take 82G to be such that its interior contains a ball |x| < 8(7+1)1/2 where S

is a constant to be determined later on ; it depends on y, y but not on T. We shall

prove that u(x, f)=0 if |x| ^8(7+l)1/2. The proof will be based on Theorem 5,

which remains true for the present (one-phase) problem.

Let

(7.7) «(x, i) = /[|x|/(f + l)1'2],       $(x, f) = |x| -8(t+1)1'2

where

(7.8) f(t) = C f" ix-ntxo{-i2lA}di-C      (C, C'constants).

The conditions (7.4), (7.5) for û, 4> become

(7.9) 2CS1-"exp{-82/4} = «8,

(7.10) C f " ix - » exp {- £2/4} dt, - C = 0.

We take 8 such that I\0) is contained in the sphere |x| = S. From (7.9), (7.10) it

follows that C=(a/2)8n exp {82/4} whereas C remains bounded as 8 -> oo. Hence

we find that if 8 is sufficiently large, then

û > gx   ondxGx[0,T),

û > hx   on G^O).

Defining ûx(x, t) = û(x, t) for x outside 8XG and inside the ball |x| = S(f+l)1/2

and m2(x, f)=0 for x outside the sphere |x| = 8(t+1)1'2 and inside 82G, we can apply

Theorem 5 to compare u with the weak solution corresponding to (0^ û2, Ô). We

conclude that «(x, t)gû2(x, f)=0 for x outside |x| = 8(f+l)1/a and inside 82G.
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We can now show that the definition of a weak solution does not depend on the

choice of d2G provided d2G contains the ball |x| ^ 8(7'+1)1'2 in its interior. Take,

in fact, another smooth hypersurface d2G which contains the ball |x| ^8(r+l)1/2

in its interior, and let w be the corresponding weak solution. We shall prove that

m=ö in the set where both solutions are defined. Denote by £2r and £2T the cylinders

where u and ü respectively are defined. We may assume that £2r=> £2T since otherwise

we can introduce a third weak solution defined in a cylinder which contains both

£2r and ÙT. We now claim that it is a weak solution also in £2r. Indeed, this is easily

seen by using the fact that ü(x, t) vanishes for |x| > S(T+1)112. Since u and ü are

then both weak solutions in £2r, by uniqueness, we conclude that w=« in £2r.

Let {d2Gm} be a sequence of spheres |x| =m, m> 8(7/+1)112, and denote by um the

weak solution when d2G is d2Gm. By what we have proved, the um define uniquely a

function u(x, f ) for x outside d-fi and 0 g f ̂  T. We shall call this function the weak

solution of (7.1)-(7.5) for f <T.

It is clear that the weak solutions defined for f < T and for f < 7" must coincide

for O^fgmin (T, 7"). Thus there exists a unique weak solution for all f>0.

We shall now find a region where the weak solution u is positive.

We assume that there exists a ball

(7.11) B = {x; |x| è ß} containing dxG and contained in T(0).

We first prove the following lemma.

Lemma 3. Denote by Gx(t) the set of points (x, t) with x outside d-fi such that

u(x, f)>0. Then G^x^czG^t).

Proof. Let {Gk} be a sequence of domains with smooth boundary such that

Gk <= Gfc+u G=Ufc Gfc and such that dxG is a part of the boundary dGk of Gk. Take

k fixed. Then hx(x) ̂  80 > 0 on Gk. By decreasing 80 if necessary we may also assume

that gx(x, f)^ 80 on dxG x [0, oo). Consider now the solutions vm of (2.5)-(2.7) with

suitable am(v) such that vm -» v, where v is the weak solution. Recall that vm ̂ 0.

We shall compare vm with a function w satisfying

Aw = 0   inGfc,       w = 80   on ö-fi,       w = 0   on dGk-dxG.

We may consider w to be a solution of a'm(vm)wt=Aw in Gk x (0, T). Since vm - w ̂  0

on the lateral boundary and on the base of this cylinder, the maximum principle

shows that vm^ w in Gkx(0, T). Hence also v^ w>0 in Gkx(0, T). Since k is

arbitrary, the assertion of the lemma follows.

Using the assumption (7.11), we conclude that u(x, t) > 0 in G' x (0, T), where G'

is the domain bounded by dxG and the sphere |x| =ß, u then satisfies the heat

equation in G' x (0, T).

Consider the function

z(x, t) = e{exp [-A|x|2]-exp [-A¿32]}(1 +f)<«-2"2       (e > 0)
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for n i 3. Choose A sufficiently large such that Az- zt ̂  0 in G' x (0, T). If e is suffi-

ciently small, then m-z^O on the lateral boundary and on the base of the cylinder

G'x(0, T). Applying the maximum principle to u-z, we conclude that u—z = 0

throughout the cylinder. Hence, for any 0<ß'<ß, there exists r?>0 such that

(7.12) u(x, a) > ■nain-2m   for any o ^ 1, x outside 8XG, \x\ < ß'.

Consider

(7.13) u*(x, t) = /(|x|/f1/2),       <P*(x, f) = \x\-Bt112   (Ba112 = ß')

for t>a, where/is the function defined by (7.8)-(7.10) with 8=B. Set uf(x, t)

= u*(x, t) if |x| <Bt112 and x outside 8XG, and w^x, f)=0 if |x| >Bt112. Then the

classical solution (u*, uf, i>*) of the appropriate Stefan problem for f > a defines a

weak solution w. If a is sufficiently large, then, by (7.12), a(u)^a(w) on t = a. We

can now employ the corollary to Theorem 10 and thus conclude that

(7.14) u(x, t) £ f(\x\lt112)   if |x| < BtX12, t > a.

(7.14) was proved under the assumption that «^3. The proof in the cases n = 1, 2

is similar.

We sum up most of the results obtained above.

Theorem 11. Let 8xGeC2+n, 77>0; let gx, hx be continuous functions on

8XG x [0,00) and Ci (Gx(0)) respectively, coinciding on 8XG, and assume that (7.6) holds

and that h>0in Gx(0). Then there exists a unique weak solution u of (7.1)—(7.5) for all

f >0. «5Û outside some region |x| > S(f+1)1'2 and, if (7.11) holds, u satisfies (7.14).

8. Monotonicity of Gx(a) for the one-phase problem. Throughout the next three

sections we denote by Gx(a) the set on t=a which lies outside 8xGx{a} and for

which a(u(x, <j))^0, and by G2(a) the set on t=a which lies outside 8xGx{a) and

for which a(u(x, a)) = — a. Physically, Gx(a) is the set occupied by the liquid and

G2(a) is the set occupied by the solid. We shall prove in this section the following

theorem, which includes Lemma 3 as a special case.

Theorem 12. Let 8XG, hx, gx be as in Theorem 11. If a <o, then almost all the

points of Gx(o) lie in Gx(o).

We shall express the assertion of the theorem also by saying that Gx(o') <= Gx(o)

almost everywhere.

Proof. We shall need the following lemma.

Lemma 4. Let w satisfy

8w
a(x, t) g- = Aw   in Or = G x (0, T),

w = 0      ondGx (0, 70,

w ^ 1      on G i
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where G is a bounded domain, w e C(G x [0, T)) and a(x, t) is a bounded measurable

function satisfying a(x, t)^y1>0. Then, for any e>0, there exists a 8, 0<8< 1, and

a subdomain G* of G with meas. (G - G*) < e, such that w(x, t ) > 8 on Q.% = G* x (0, T).

8 and G* depend only on e, y1; G.

Proof. Let G' be a subdomain of G with smooth boundary such that

meas. (G—G') < e/2. Let A0 be the first eigenvalue of the Laplacian A in G' and <j>0

its eigenfunction, i.e. A<¿„ + A0<£0 = 0 in G', <f>0=0 on dG', <t>0£0. As is well known,

Ao>0 and (f>o(x)>0 in G'. We normalize <p0 by supG- <£0= 1.

Consider the function

v0(x, t) = <p0(x)e'ut   where ju. = A„/yi.

Then

Av0 - advo/dt = <f>0e " "'( - A0+ap.) ^ 0   in G',

and i\>(x,0)=&,(*)= l = w(*»0) on G', v0ix, f)=0g»v(x, f) on oG'x(0, 7). By

the maximum principle, w ̂  y0 in G' x (0, 7). The assertion now easily follows.

We proceed with the proof of Theorem 12. For simplicity we may take o-'=0

provided instead of u = h at f=0 we are given a(n) = a(n) (i.e. m is a weak solution

for 0 è t â T with aiu)=aQi) on f=0, aQi) ̂  0 on G^O), - a ̂  aQi) < 0 outside G^O),

and provided G^O) is any measurable set (since Gi(a') is a measurable set as it

coincides with {(x, a'); x outside ofi, a(«(x, a'))SO}).

Take a sequence {Dk} of open sets, Dk^>Dk+1, D^G^O) such that

meas. (7>fc-Gi(0))<l/A:, and set Dk = \Jp Dkp where each Dkp is a domain,

73/cp n 7)fc5= 0 if/)5ea. We may assume that the 7Jfc are bounded sets lying outside

dA3.

Let efc=(a + l)xk where xk is the characteristic function of Dk — Gi(0), and let

** = Xfc/^ where xk is the characteristic function of Dk.

We can approximate a(v) by smooth functions am(t>) such that if a(v) — am(v*),

then v**iv and such that a'm(v) ̂ min (a1; a2) = 1. Note that am(0) g - a.

Define hmk by

(8.1) am(«mfc) = a(h)+ek(x) + ëk(x)

in G, where G is bounded by dxG and d2G (see §7); we may take G to contain all

the sets Dk. Then

nmfc > 0     in G,
(8.2)

hmk > Vk   on bothGi(0) and on Dk-G1(0).

r\k is a positive constant independent of w and we can assume that r¡k<g1 on

dxGx[0,T).

For k fixed and for a given e > 0, we take p0 such that meas. (\JP > Po Dkp) < e\2k +1.
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Let D'kv (p <p0) be a subdomain of Dkv with Cl (D'kp)c Dkp such that

Po

2 meas. (Dkv -D'kp) < e/2k + 1.
p=i

Set D'k = 2l°=i D'kp. Then meas. (Dk-D'k)<e/2k.

Consider the system

a'm(v) 8v\8t = Av       in G x (0, T),

(8.3) v = gi        on 8,G x (0, T)   (where g2 = 0),

v = Cmfc.i    on G,

where £mfcii are smooth functions satisfying

Lk.i^hmk        in LX(G),

(8.4) U.i ^ % in D'k,

0 < £mfc>/ < H   on G,

where //is a constant independent of ra, k,j. Such functions t,mkJ can be constructed

as mollifiers of hmk (see, for instance [1]) provided the parameter of the mollifiers

is sufficiently small (depending on k, e).

If gx is sufficiently smooth and if it agrees smoothly with £mkJ on 8XG, then a

unique solution of (8.3) is known to exist. In the more general case where gx is

only continuous, we can approximate it by such smooth functions gXi. Denoting

the corresponding solution of (8.3) by vmk¡H and using a priori estimates, we can

extract a subsequence which will converge to a solution vmkJ of (8.3). vmkJ need not

be continuous on dxG (since g and lmkJ need not agree on 8XG). By the maximum

principle, vmkJ > 0 in G x (0, T).

We now apply Lemma 4 to vmkJ in D'kp x (0, T) for any p <p0. It follows that

there exists a subdomain D"kp of D'kp such that meas. (D'kp - D"kp) < e/2kp0, and such

that

(8.5) vmkJ > 8Vk   inD"kpx(0,T).

Here 8 = 8(e, k) is independent ofj, ra.

From the definition of am(v) it follows that if ra is sufficiently large, i.e. ra^ra0,

m0=m0(k, 8)=ra0[A:, «], then

(8.6) am(vmkJ) > 0   in Dkp x (0, 7").

Now take j -> oo through such values that vmkJ -*• vmk both weakly in L2(íír)

and almost everywhere in Q.T. From (8.6) we get

Po

(8.7) am(fmfc) ̂ 0 almost everywhere in U D'kp x (0, T) if w S ra0.
p=i
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The integrated form of (8.3) is

(8.8) ff   [am(vmk)<pt + vmkA<p]dxdt = f   f    gd-^dSxdt-\    am(hmk)<p dx
JJnT Jo  Jd^G     ov Jg(0)

for any function <f> with Dxj>, Dx<l>, Dt</> continuous in £2r and which vanishes on

G x {7} and on dG x (0, T).

In order to prove (8.8), we first derive its analog for vmkJi, then take i-^-oo and,

finally,/-> oo.

Now take m -> oo through such values that vmk -*■ vk both weakly in L2(£2T) and

almost everywhere in DT. From (8.1), (8.8) we get

(8.9) f   {a(vk)<pt + vkA<f>}dxdt=\    f   g-f dSxdt- f a(h)<j>dx- f (ek+ëk)<pdx,
JaT Jo Je,.a    vv Ja Ja

where a(vk) is the limit, almost everywhere, of {am(vmk)}. Note that a(vk) is a measur-

able function and all we know about its values at points (x, f) where vk(x, f)=0

isthat -a^a(vk(x,t))^0.

Take now k -» oo through such values that vk -> v both weakly in L2(£2T) and

almost everywhere in £2r. From (8.9) we then obtain

(8.10) f f   [a(v)<pt + vA<f>]dxdt = T [    g^dSxdt-( a(h)<f> dx.
JJnT Jo Jd¡o     ov JG

Thus, v is a weak solution, for 0 ̂  f ̂  7, of the Stefan problem with a(v) = a(h) on

f=0. By uniqueness, it coincides with u almost everywhere.

Now, by (8.7) it follows that a(vk)^0 almost everywhere in 7Jfx(0, T) where

D* = Up°= i T>"kp, and meas. (Dk - Df) < 2e/2\ Hence a(vk) ̂  0 almost everywhere in

(GM-Gftx&T), where G? = (Dk - Dt) n G^O). Let G* = U"-i G%. Then
meas. G* < 2e and a(vk) ̂  0 almost everywhere on (Gi(0) — G*) x (0, T). It follows

that also a(u) 2; 0 almost everywhere on this set. Since e is arbitrary, we find that

a(u) ä 0 almost everywhere on G^O) x (0, T).

Recalling that the map f -^ a(u(x, t)) is weakly continuous from (0, T) into

L2(G), we easily see that for each t, a(u(x, 0) = 0 for almost all xeGi(0). This

completes the proof of Theorem 12.

9. Strict increase of Gx(a) for the one-phase problem. Denote by T(0) the outer

boundary of G^O). We assume in this section that h(x) e W1,2(G) and that there

exists a function Y with Dx*¥, Dl^Y, Df¥ continuous in £2r such that T=g on

dGx [0, T) and Y=n on Va n G(0), where V0 is a neighborhood of dG.

Theorem 13. If T(0) is of class C2 + n (r¡>0), then, for any 0<t<T,

meas. (G1(t)-G1(0))>0.

Proof. If the assertion is false, then, in view of Theorem 12, G1(f) = Gi(0) almost

everywhere, for some f = o-. The same relation then holds for each f with O^t^o.

In the cylinder £2* = Gj(0) x (0, o-) we have a(u) è 0. Hence u satisfies ut=Am in the

classical sense in £2,.
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If <p e C°° and has a compact support in £2„ — Q.+,_then clearly fj" a(u)<pt dx dt = 0.

Now take </> e C°° with compact support in Í2„ and let {0,(x)J be a partition of unity

for G—Cl(Gi(0)) such that the support of each i/i, is a compact subset of

G-Cl (Gi(0)). By the previous remark ¡j a(u)(ifii<p)t dxdt=0 for each /. Hence

f  f a(u)<pt dx dt = 0.
JO Jo-Cl(Oi(0»-Cl(Oi(0»

From the definition of a weak solution it then follows that

(9.1) f f      [a(u)<pt + u AoS] dx dt = 0.
Jo Jgi(O)

Note that here a(u)=u.

Let I\ be the set of all points of Ga(0) whose distance to T(0) is equal to e.

Integrating by parts in (9.1) we find that

(9.2) lim f f  (u<f>v~uv<p)dSxdt = 0,
e-o Jo Jre

where v is the normal to Te.

Recall now that jG |Vxw(x, f)|2 dx-C where C is a constant independent of f.

Hence

p ° ir j ("v)a dSx *} *< °°

for some e0 > 0 sufficiently small. It follows that the inequality

f f  (uy)2dSxdt >-
Jo Jre e

cannot hold for all e > 0 sufficiently small. Hence

f f    («v)2 dSx dt = -
Jo Jrim em

where {em} is a sequence which decreases to zero.

It follows that for any smooth oi in 0,,, if oS=0 on T(0) x (0, a), then

(9-3)

f f  uv<f>dSxdt   á Ce \    f   |Mv| ¿S^í/í
Jo Jr, Jo Jrt

^ Ce f f  (uv)2dSxdt g C'e1/2^0
Jo Jre

if e=em -> 0; here C, C are constants.

From (9.2) we then infer that

(9.4) f f    u<f>
Jo Jr..

dSx da -> 0   as ra ->■ oo.
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(9.4) was established only for smooth <f> satisfying <p=0 on r(0)x(0, o-) and with

compact support in Cl„. If <f>(x, t) does not vanish in a neighborhood of f=0 or

t=a, then we can multiply it by a function £(f) vanishing in such a neighborhood.

By applying (9.4) to l<f> and choosing appropriately a sequence of such functions

£(f), we find that (9.4) holds for <f>.

By truncating <f> outside a neighborhood of T(0) x (0, a) we also find that (9.4)

holds for any <f> smooth in £la which vanishes on T(0) x (0, o).

Finally, if <f> is defined only in Vx (0, a] where Fis a neighborhood of T(0) and if

it vanishes on T(0) x (0, o-), then we can extend it smoothly into Í2„ and conclude

that even for such <j> the relations (9.3), (9.4) are valid.

Now let K be Green's function of ut=Au in the cylinder Gx(0) x (0, T) (see [1]).

We represent u(£, a) in terms of the fundamental solution K in the cylinder

Ge x (0, a), where Ge is the domain bounded by 8XG and Ts. Applying (9.3), (9.4)

to <p=K, we find that

(9.5) u(è, a) =  f      K(£, a ; x, 0)«(x, 0) dx.
Jgi(0)

This shows that m is a continuously differentiable function in Cl (Gi(0)) x (0, a].

Since m^0 in Q*, the maximum principle shows that «>0 in Q*. Since, by

(9.4) (or (9.5)), u=0 on T(0) x (0, a), we also have (see [1]) «v<0 on I\0) x (0, o).

But, by (9.2), hv = 0 on I\0) x (0, o), a contradiction.

The proof of Theorem 13 applies also locally. In fact one easily establishes the

following result.

Theorem 13'. Let V be an open domain on f=0 with V n Gi(0)# 0, such that

V n T(0) = T'(0) is in C2 + v (r¡>0). Then for every t,0<t<T,

meas.{[Kx{f}]nG1(f)-[FnG1(0)]x{f}}>0.

In Theorems 13, 13' we assume that A(x)>0 in Gi(0). The proofs, however,

remain true if we only assume that h(x)^0, h(x)&0 in Theorem 13, and h(x) = 0 in

Gx(0) and A(x)^0 in V n Gx(0) in Theorem 13'.

10. Nonoccurrence of a "cloud " for the one-phase problem. Using Theorem 12,

we shall prove in this section the following result:

Theorem 14. Forany0<a<T, the complement on t=a of Ci (Gx(o)) is contained

in G2(c) almost everywhere.

Introducing the sets

W = {(x, f) g Í2r; -a < a(u(x, t)) < 0},       W(a) - Wn {f = a),

we conclude that

(10.1) W(a)cz Ci (Gx(<x))-Gx(<r).
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We may consider W as the weak free boundary. W is determined only up to a

set of measure zero. (10.1) yields:

Corollary 1.  W(d) has no interior points on t = c

Corollary 2. The weak free boundary W has no interior points in £2r.

Proof of Theorem 14. If the assertion is false, then there exists in 7?n a bounded

set S of positive measure such that [Sx {u}] n Cl (Gx(o-))= 0 and such that

(10.2) -a < a(u(x, f)) < 0   for x e S.

S x {a} is contained in a bounded open set § x {a} lying outside Gx(a). By Theorem

12, (^ x {f}) n Gj(f ) =0 for all 0 < f < a. Hence u=0 in S x (0, o-). Taking <j> smooth

and with compact support in § x (0, a), we get

f a(u)<pt dx dt = 0.

Thus, the weak derivative of the function f -> a(u(x, t)) from (0, o-) into L2(S) is

zero. It follows that, for almost all f, a(u(x, t)) is a constant element of L2(§).

Since the function f -*■ a(u(x, t)) is also weakly continuous, we conclude that

a(u(x, t )) is independent of f for all f, 0 < f < a. Hence

(10.3) a(u(x, a- 1/m)) = a(w(x, 1/w))       (m = 1, 2,...)

for almost all x e S. Recalling the weak continuity of the map t -*- a(u(x, t )), and

taking in (10.3) m -► oo through an appropriate subsequence, we obtain

(10.4) a(u(x, a)) = a(u(x, 0))   for almost all x e S.

From (10.2), (10.4) it follows that - a < a(u(x, 0)) < 0 almost everywhere on the

set S of positive measure, which is impossible.

11. Miscellaneous results. Set Vc={(x, a) e £2r; u(x, o)>0}, Wt = \J0$:BSt V„.

We shall make below the assumption that u(x, t) is continuous in £2r. Note (by the

proof of Corollary 2 to Theorem 3) that if u(x, t) is known to be continuous in x,

uniformly with respect to f, then it already follows that m(x, f) is continuous in

(x, t).

The continuity of u implies that each V„ consists of open domains. The number

of these domains may increase with a.

Theorem 15. T^ef u be continuous in £2r. For any 0<a^T,the set W„ is connected.

Proof. We only have to prove that W„ is connected. It suffices to take an arbi-

trary open component R of Va and show that it can be connected in W„ to Gj(0)

(the set on f=0 where n(x)>0).

A continuously differentiable curve x=x(s), t=t(s) along which f'(j)^0 will be

called a monotone curve. Let Q be the maximal subdomain of Wa with the property
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that each of its points can be joined to some point of R by a monotone curve lying

in Q (except for one endpoint). Let Af=sup0 u. We shall prove

Lemma 5. If(x°, t°) is a boundary point of Q and 0 < t ° < o-, then u(x°, t°)<M.

Proof. If the assertion is false, then u(x°, t°) = M. Clearly M is the supremum of

m(x, f°) taken over all the boundary points (x, f°) of Q. We introduce the set Z of

all the boundary points (x, t°) of Q where u(x, f°) = M. Z is obviously a closed set.

If we prove that Z is also an open set in Gx{f0}, then Z=Gx{t0}, which is

impossible.

Let then (x*, f°) gZ. Since u(x*, t°) = M>0, there exists an (« + l)-dimensional

ball K about (x*, f °) such that u > 0 in K. We take K such that it lies in f < a, and

we denote by K+, K~ the intersections of K with t = t° and t<t° respectively.

Employing the definition of Q one finds that K+ n Q= 0 and K~ <=-Q. By the

maximum principle in AT",

(11.1) M = u(x*, t°) g max /sup u, max u) g M
\  L La       I

where L is the portion of the boundary of K " lying in f < f ° and L0 is the intersection

of the boundary of AT with f=f°.

From (11.1) it follows that the inequalities are in fact equalities and, by the strong

maximum principle, u=M in K~. Thus, in particular, Kn {f=f0} belongs to Z,

and Z is an open set.

Lemma 5'. Lemma 5 remains true also ift° = a.

The proof is obtained by minor modifications in the proof of Lemma 5. Thus we

introduce K~ (but not K+) and note that ä: ~ = Q and Cl (K~) n {f = f0} lies on the

boundary 8Q of Q.

If we show that 8Q intersects f=0 at some points of G^O), then R can be con-

nected in W„ to Gi(0) and the proof of Theorem 15 is complete. Suppose then that

8Q has no points in common with G^O). From Lemmas 5, 5' it then follows that

the maximum of u in Q is obtained in the set Q u R. The strong maximum principle

then shows that, for some 0<a¿o, u(x, t) = M in (a nonempty set) Q n {tgv}.

But then the closed set Q n {t=ö} (which we may assume to be nonempty) must be

an open subset of G x {d} (the maximality of Q is hereby used). Hence Q n {t=5}

= Gx{a], which is impossible.

Remark 1. It is clear that Theorem 15 extends to the case of 2-phase Stefan

problems. The set where «<0 is then also a connected set.

Remark 2. We do not know whether the weak solution u(x, t) is a continuous

function when n> 1. However, the integral

û(x, t) = f u(x, t) dt

which, by Fubini's Theorem, exists for almost all x (and all f < T) is equal almost



86 AVNER FRIEDMAN [August

everywhere to a function v(x, f) which is continuous in £2r. Furthermore, Vxv(x, t)

is a continuous function of x, uniformly with respect to f.

The above statement is valid also for the 2-phase Stefan problem.

To prove it, we employ the sequence {vm} which approximates u. We integrate

the differential equation of vm once with respect to f. Introducing

Vm(x, 0=1    Vm(x, t) dt,

we get |t3m(x, f)| ^ C in £2r, where C is a constant independent of m. A subsequence

of {i5m} converges weakly in L2(£2r) and almost everywhere in £2r to a function v.

Employing the Sobolev inequalities for each vm, we find that v has the continuity

properties listed above. Thus it remains to show that v = û almost everywhere.

Now, since vn -*> u in 7_,2(£2T), for fixed f < T,

(11.2) J  vm(x, typ(x) dx-+     û(x, t)<p(x) dx   asw->oo,
Jg Jg

for any bounded measurable <f>. By the lemma of Ascoli-Arzelà, vm(x, t) -> v(x, t)

uniformly in x (for a subsequence of the w's). Hence (11.2) holds with û replaced

by v (and with a subsequence of the m's). It follows that, for each t, û(x; í) = í5(x, f)

for almost all x. Thus û=v almost everywhere in £2T.

12. Other free boundary problems. The methods of the present paper extend

without difficulty to other free boundary problems. As an example, consider the

problem of condensation of one drop in a supersaturated vapor of its own substance.

This one-phase problem was treated in [0} in the case that the initial data are

symmetric with respect to the center of the drop and the drop is spherical. If these

restrictions of symmetry are removed, then the existence and uniqueness of a weak

solution can be established as follows.

First consider the system for a solution uR(x, t) in |x| g7?, O^t^T; here uR is

the "normalized" density of the vapor outside the drop and uR= 1 inside the drop.

Existence and uniqueness of a weak solution are proved by the methods of the

present section. We next take lim^«, uR to be the weak solution for O^f ¿T.

By a comparison argument one can also show that (under suitable assumptions)

the set N(t) where u(x, f)= 1 contains a ball of radius ß(t + l)1/a and is contained in

another ball of radius 8(f+1)1'2. For comparison functions one can use solutions

of the symmetric case whose asymptotic behavior has been studied in [0].
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