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1. Introduction. A connected graph G is a block if there is no point v in G such

that G-v is disconnected. A block G will be called block-line-critical (b.l.c.) if, for

every line x in G, G-x is not a block. Such graphs occur repeatedly in the study of

blocks—for example, when a proof by induction on the number of lines of a block

is being attempted.

Clearly, a cycle of any length is a b.l.c. graph. There are, however, b.l.c. graphs

with a much more complex structure. In this paper several structural character-

izations of b.l.c. graphs are obtained as well as a number of additional properties

of such graphs.

2. Additional terminology. For the sake of completeness, we introduce the

following additional definitions. A graph G is a finite nonempty set V(G) of points

together with a collection E(G) of lines each of which is an unordered pair of

points. If x is the line containing the points u and v, we write x = uv and say that

u and v are adjacent, x joins u and v, and that x is incident with points u and v. Two

lines x and y which have a common point are also said to be adjacent. The complete

graph on p points, Kp, is that graph with p points in which every two points are

adjacent. A subgraph of G is a graph all of whose points and lines are also in G.

The subgraph of a graph G generated by a set of lines X is that graph H whose set of

lines is X and whose points are those points of G incident with a line of X.

A path P is an alternating sequence of distinct points and lines, beginning and

ending with points (said to be joined by P) such that each line is incident with the

points before and after it. The first and last points in this sequence are called the

endpoints of P, and all other points are termed intermediate. We shall have occasion

to refer to a path P by its sequence of points; e.g., P=[ux, u2,..., «„]. If P=

[ux, u2,..., um] and Q = [vx, v2,..., v„] are two paths where the intermediate points

of F are all distinct from the intermediate points of Q, um = vx, and either vn = ux or vn

is distinct from every point ofP, we define a new path P+Q, the sum ofP and Q, to

be that path with point sequence [ux, u2,..., um=vx, v2,..., vn]- A path of length

ä 2 together with a line joining the first and last points is called a cycle. A path or a
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cycle is odd (even) if the number of lines in it is odd (even). As for paths, we shall

have need to designate a cycle by the sequence of its points; e.g., C=[ux, u2,...

un, ux]. If C is a cycle in a graph G and at is a line of G which is not in C, but which

joins two points of C, then x is called a diagonal of C. More generally, a line x is a

diagonal of a graph G if it is a chord of some cycle in G.

The graph G is connected if ewexy two points are joined by a path. If x is a line of

G, G-x will denote the graph obtained from G by deleting x. Similarly, G-v will

denote the graph obtained from G by deleting the point v and all lines incident with

v. More generally, if A'is any set of points or lines in G, G-A' will denote the graph

obtained by deleting each element of the set N. A point v is a cutpoint of the con-

nected graph G if G-v is not connected, and the set A' is called a separating (or

disconnecting) set for the connected graph G if G-N is disconnected. A line x is

called a bridge in a connected graph G if G-x is disconnected. The cardinality of any

minimum separating set of lines in G is called the line-connectivity of G and is

denoted A(G). If v is any point of a graph G, a branch of G at u is a maximal con-

nected subgraph of G not having rasa cutpoint. A connected graph is a block if it

has no cutpoints. A line x in a block B is said to be critical with respect to B if

B-x is not a block. A connected graph containing no cycles is a tree.

The degree of a point u, rf(i>), is the number of lines incident with it. A set of

points is said to be independent if no two of its members are adjacent. Let \M\

denote the number of elements in a set M. If M is a maximum independent set of

points in G, \M\ is called the point independence number of G and is denoted by

ßo(G). A set of points M is said to cover a graph G if every line of G has at least one

point in M. If M is a point cover for G with a minimum number of elements, then

| M | is called the point covering number of G and is denoted by aQ(G). Finally, a

graph G is bipartite if V(G) can be partitioned into two nonempty subsets Vx and

V2 so that every line of G joins a point of Vx and a point of V2. Let m and n be the

number of points in Vx and F2, respectively. The complete bipartite graph K(m, n)

is the bipartite graph in which every point of Vx is adjacent to every point of V2.

3. Characterization of block-line-critical graphs. The following theorem

immediately yields a first characterization of b.l.c. graphs.

Theorem 1. Let G be a block and x a line ofG. Then G-x is a block if and only if

x is a diagonal in G.

Proof. Clearly, if x is a diagonal of G, then G-x is still a block. On the other hand,

let x=uv be a line in G and assume that G-x is a block. Then in G-x there must be a

cycle containing u and v and x is a diagonal of this cycle.

Corollary la. The following three conditions are equivalent for any graph G:

(1) G is block-line-critical,

(2) G is a block containing no diagonals, and

(3) G is a block in which no point is adjacent to three points of the same cycle.
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Corollary lb. If G is a b.l.c. graph and G¥=K3, then G contains no triangles.

Proof. Suppose G has a triangle with points u, v, and w. At least one of these,

say u, is incident with a line x not in the triangle. But then there must be a cycle

containing lines x and vw, and clearly either uv or vw is a diagonal of this cycle.

A cycle is, of course, a b.l.c. graph in which every point has degree two. We next

proceed to show that any b.l.c. graph must contain points of degree two and that

such points have an important bearing upon the structure of the b.l.c. graph.

Theorem 2. Let x = uv be any line of a b.l.c. graph G and let w be any cutpoint of

G-x. Then

(1) w is on every cycle containing x, and

(2) every path containing x and w has an intermediate point of degree two in G.

Proof. For (1), it is sufficient to show that u and v are in different blocks of G-x.

But if m and v were in the same block of G-x, they would lie on a cycle in this block

and such a cycle would have x as a diagonal in G, thus contradicting Corollary la.

We proceed to prove (2). Let B be the block of G-x containing v. Let w be the

cutpoint of G-x contained in B. Let P=[u, v,vx,v2,..., vn, w] be a path in G

(cf. Figure 1).

We assume that the degree of each point v=v0, vx, v2,..., vn, vn+x = w is at least

three in G. Form a new graph A from B by deleting the lines of the path P. In A,

each Vi must be joined to another v¡ (i¥=j) by a path Q which has no intermediate

points in P. Moreover, Q cannot join vt and pt+1 since the line vm + x would be a

diagonal of the cycle determined by Q, P-vtvt+i, and any path of G-x joining w

and m and not containing v. In particular, v0 is joined by a path in A to vk, k > 1. Let

Figure 1
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a denote the greatest subscript /' such that /' is joined by a path Q in A to some vm,

m>i. Clearly, Oáa^n. But then va + x must be joined by a path 7? in A to some ve,

ß<a. Furthermore, ß and 7? are disjoint since otherwise there would be a path

from va to va + x in A. Thus one can form a cycle from ß, R, and P-vava + x (cf.

Figure 2) which has vava + x as a diagonal, contradicting Corollary la and com-

pleting the proof of the theorem.

—.m._
Figure 2

The following corollary is immediate.

Corollary 2a. If G is a b.l.c. graph # AT3, and C is any cycle in G, then C contains

at least one pair of independent points whose degree in G is two.

According to Theorem 2, every cycle in a b.l.c. graph is separated by points of

degree two. We next proceed to show that the graph as a whole is separated by

these points.

Let G' be the subgraph of G generated by all points of degree greater than two

and let Tx, T2,..., Ts denote the components of G'. By Theorem 2, G' contains no

cycles. Hence each Tt is a tree. Denote by 5 the set of points in G of degree two.

A path P will be called a S-path if each of its intermediate points is of degree two

in G.

Theorem 3. If G isa b.l.c. graph and if S and F¡ are as defined above, then there is

no S-path joining two points of the same tree T¡.

Proof. Suppose the conclusion to be false; i.e., suppose that [v0, vx,..., vn] is

an S-path with t;0 and vn in the same tree T of G-S. Clearly vn is a cutpoint of

G-v0vx. But the path of Fjoining v0 and vn has no points of degree 2, contradicting

Theorem 2.

We then have the following result.

Corollary 3a. A b.l.c. graph G is separated by its points of degree 2.

Proof. Suppose G-S is connected. Then by Theorem 2, it contains no cycles and

thus must be a tree. But then any S-path must join two points of G-S, contradicting

Theorem 3.

To summarize then, a b.l.c. graph consists of at least two mutually point-disjoint

trees Tx, T2,..., Ts and a collection of paths joining pairs of F¿'s, where the degree

of all intermediate points of such a path is two.
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Next it is shown that the array of S-paths in a b.l.c. graph is not completely

arbitrary, but rather their location must be such so as to avoid the formation of

cycles of a certain type. More specifically, we have the next theorem.

Theorem 4. Let G be a b.l.c. graph and let Tx, T2,..., Ts (s=2) be the component

trees ofG-S. Let C be any cycle in G. Then for eachj, either C nT,= 0,or C OF,- is

connected.

Proof. Suppose there is a cycle C in G and a component tree Tk of G-S such that

C n Tk is disconnected. Let Dx,..., Dr be the components of C n Tk (r > 1). Now

given / and y, there is a path Px, in Tk joining a point of £>¡ and a point of D,.

Suppose P0 is a path of minimum length joining two components of C n Tk, where

the minimum is taken over all cycles C and all trees Tk, k = 1,..., s, such that

C n Tk is disconnected. For the sake of argument, suppose F0 joins two com-

ponents of the intersection of the cycle C0 and the tree Tx.

Observe first that since G contains no diagonal, F0 consists of at least two lines.

Let P0 = [u=u0, ux,..., ut = v], where u and v are in V(C0). Now since d(ux)> 2,

there is a line y = uxwx where «0#w1#a2. If Wi e V(C0) — {v}, then one may obtain

a cycle with x - m0«i as a diagonal contrary to Theorem 1. Hence wx $ V(C0) - {v}.

Also, if wx e V(P0), then the length of F0 would not be minimal, hence wx £ V(P0).

Since G is a block, there is a cycle Cx containing x and y. Let Bx be the branch of

Cx-x-y traversed by starting at wx and terminating upon the first encounter with a

point p0 of ^(Co) u V(Po)- Once again a diagonal may be obtained if p0 e V(C0)

— {v}. Hence we may assume that/>0 e V(P0)-{u} (cf. Figure 3).

Now not all lines of Bx+y are in Tx, for if they were, Bx+y+[ux, u2,.. -,p0]

would be a cycle in Tx, contrary to the assumption that Tx is a tree. Let CL be one

of the two paths in C0 determined by the points u and v. Then E(CL) d: E(TX).

Figure 3
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Hence, if P'0 is the subpath of F0 with endpoints/?0 and v, then C' = CL + x+y + Bx

+P'o is a cycle and C n Tx is disconnected. But then P"0 = [ux,u2,..., p0] is a path

in Tx joining two components of C r\ Tx and the length of P"Q is less than that of

P0. This contradicts the minimality of the length of P0 and completes the proof of

the theorem.

The following construction will prove useful to us later. If G is a b.l.c. graph, we

define its tree-condensation graph G* as follows : the points of G* are the component

trees of G-S, Tx, T2,..., Ts. Two points F¡ and Tt are adjacent in G* if and only if

there is some S-path joining them in G. We may apply Theorem 4 to obtain the

following result.

Corollary 4a. If G is a b.l.c. graph, then G* is a block.

Proof. Suppose F¡ is a cutpoint in G*. Let F; and Tk be two points of G* adjacent

to Tt, but which lie in different components of G*-T¡. Let Fi; and Pik be S-paths

joining F¡ and T¡ and F¡ and Tk respectively. Let x be a line of F¡; and y, a line of

Pik. Now x and y lie on a cycle C in G. But then C n Tf^ 0 and is disconnected,

contrary to Theorem 4. Hence G* has no cutpoints and the corollary is proved.

We may now use the properties of b.l.c. graphs derived in Theorems 2, 3, and 4

to characterize this family of graphs.

Theorem 5. Let G be a block. Then G is a b.l.c. graph if and only if:

(1) G is a cycle, or

(2) if S denotes the set of points of degree two in G, then there are at least two

components T¡ in G-S, each component of G-S is a tree, and if C is any cycle in G,

for each j either C n F, = 0 or C n T¡ is connected.

Proof. If G is a b.l.c. graph, then (1) or (2) holds by Theorems 2, 3, and 4.

On the other hand, if G is a cycle, it is clearly b.l.c. So suppose G-S has com-

ponents Tx,...,T„s£2, where each T¡ is a tree and each has the cycle intersection

property stated in the hypotheses. Let x=uv be any line of G. If either d(u) = 2 or

d(v) = 2, clearly G-x is not a block. Otherwise, x is a line in F,, for some/ Now let

the components of T,~x be T'f and F" where u e V(T',) and v e V(T"¡). Suppose

G-x is a block. Then u and v lie on a cycle C in G-x. Hence C= C C\T'j^ 0 and

C" = CnT"f¿ 0. But T'f n T"= 0, hence C n C"= 0 and C n F, is discon-

nected, contrary to assumption. This completes the proof of the theorem.

4. Further properties of block-line-critical graphs. We next turn our attention

to some additional properties of b.l.c. graphs. The chromatic number of a graph G,

x(G), is the minimum number of colors needed to color the points of G so that no

two adjacent points have the same color. Clearly, any bipartite graph has chromatic

number two. This observation, together with the next theorem, completely de-

termines x(G) for any b.l.c. graph G.

Theorem 6. If G is a b.l.c. graph, and G contains an odd cycle, then x(G) = 3.
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Proof. This is clear from our previously gained knowledge of the structure of

any b.l.c. graph G. For if G is a cycle, the theorem is immediate. Otherwise, let the

component trees of G-S be Tx, T2,..., Fs, s ä 2. Since these trees are bipartite, each

can be colored with two colors. Moreover, if P is any S-path joining two trees F¡

and T„ then it requires at most three colors to color the points of P, if the endpoints

are already colored. On the other hand, since G contains an odd cycle, at least

three colors are required to color the points of G. Hence x(G) = 3 and the Theorem

is proved.

We may combine the result of Theorem 6 with a well-known inequality involving

the point independence number of a b.l.c. graph G, ß0(G).

Corollary 6a. If G is a b.l.c. graph, then ß0(G)^ | V(G)\/3.

Proof. It is well known (cf. Ore [2]) that ßo(G)x(G)^\V(G)\, for any graph.

This, combined with the result of Theorem 6, yields the desired inequality.

One may use a well-known result of Gallai [1], which says that a0(G)+ß0(G)

= I V(G)\, to state the conclusion of Corollary 6a as: a0(G)^2| V(G)\I3.

Since any b.l.c. graph G must contain a point of degree two, the line-connectivity

of G, X(G), must be equal to two. Let G0 denote the subgraph of G generated by all

lines having at least one endpoint of degree two in G. We now proceed to investi-

gate the possible locations of minimum disconnecting sets of two lines. There are,

a priori, four possible types :

(A) both lines in G0,

(B) one line in G0, the other in F( for some i,

(C) one line in F¡, the other in T¡, for /#y, or

(D) both lines in F¡, for some i.

If x and y are lines on the same S-path in G0, then {x, y} is a set of type (A) and

every b.l.c. graph possesses minimum disconnecting sets of this kind. There may

also be sets {x, y} of type (A), where x is on an S-path joining F¡ and T,, y is on an

S-path joining Tk and Tm, and where F¡, F,, Tk, and Fm are all distinct. The next

theorem shows that these are the only two possibilities for sets of type (A).

Theorem 7. If {x, y} is a minimum disconnecting set of type (A) for a b.l.c.

graph G which is not a cycle, ifx lies on an S-path joining T¡ and T¡ and if y lies on an

S-path Q joining Tk andTm, then either i,j, k, and m are all distinct, or i=k andj=m

(or i=m andj=k) and then P and Q are identical.

Proof. By Theorem 4, ijíj and k^m. Suppose i=k. Then if j^m, F( is a cut-

point of G*, contradicting Corollary 4a. Thus j=m. Then, if P and Q are not

identical, the line of G* containing F and Q is a bridge in G*. But then G* = K2, or

else Corollary 4a is again contradicted. But if G* = A^2, since {x,y} is a disconnecting

set, there are no other S-paths joining F¡ and T, and hence no other S-paths in G.

But then since G is a block, it follows that F¡ and T, each have but one point which
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therefore must be of degree two, contradicting the definitions of F¡ and T,. The

proof is complete.

We have the following restrictions on sets of type (B).

Theorem 8. If G is a b.l.c. graph, {x, y} is a set of type (B), x is a line in F¿, and y

lies on an S-path P joining F, and Tk, then i^j and i^k.

Proof. Suppose {x, y}, F¿, F,, Tk, and P are as given in the hypothesis. Assume

/'=/ Now let T[ and F" be the components of Frx. Let x = uv, where u e K(F¡) and

v e K(F"). Let z be a line of G0 with exactly one endpoint in T[, z#x, and suppose z

is not on the path P. (Such a line must exist by definition of T[.) Now y and z must

lie on a cycle C, which must necessarily contain x. But then C is a cycle in G,

C r\Ti^ 0, and C n F¿ is disconnected, contradicting Theorem 4. Hence /#/ and

similarly /#&, completing the proof.

Finally, we show that type (D) sets do not exist.

Theorem 9. 7/G is a b.l.c. graph, {x, y} is a minimum disconnecting set, x is in Th

and y is in F„ then i^j.

Proof. Suppose x and y, as given in the hypothesis, both lie in F¡, for some /.

Now Trx-y must consist of exactly three components Tx, T2, and F3, where, say,

x joins Tx and F2 and y joins T2 and F3. For k= 1, 2, and 3, let Gk denote the

maximal connected subgraph of G-x-y containing Tk, respectively. By definition,

the Gfc's are either identical or point-disjoint.

Suppose G2^G3. Then G2 and G3 must be point-disjoint and thus y is a bridge

of G, contradicting the assumption that G is a block. Thus G2 = G3. Similarly,

Gx = G2. Thus GX = G2 = G3 and G-x-y is connected, contrary to the definition of the

set {x, y}. This completes the proof.

We next establish upper and lower bounds for the number of lines in any b.l.c.

graph in terms of the number of points.

Theorem 10. If G is a b.l.c. graph with | K(G)| >3, and if L denotes the number

of lines in G, then | K(G)| ^Lg2| K(G)| -4, and these bounds are best possible.

Proof. The lower bound is clear, since G is in particular a block. If G is a cycle,

then the lower bound for L is assumed.

If G is not a cycle, G must contain at least two points of degree greater than two.

Let S, as before, denote the set of points of degree two, and let k be the number of

components F of G-S. Then 2S |S|S | K(G)|-2 and 2$k£\S\. Thus we have

L g 2|S| +2 (17.1-1) = 2|S| + (2 \n)-k
i=l \i=l /

= 2|S| + |I/(G)|-|S|-A:

= |S| + |K(G)|-Ä:^ \s\ + \V(G)\-2
^ |F(G)|-2 + |F(G)|-2
= 2|K(G)|-4.
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To show that this upper bound is best possible, we note that if G =

K(2, | V(G)\ —2), the complete bipartite graph with two points of one color and

| V(G)\ -2 points of another color, then G is a b.l.c. graph with exactly 2| V(G)\ -4

lines.

Our final task is to determine which b.l.c. graphs are planar. To treat this prob-

lem we introduce some terminology. Let G be any graph. Denote by G0 the graph

obtained from G by replacing every path in which each intermediate point has

degree two by a single line. G0 is then said to be the contraction of G. The reader

will recall that Kuratowski's Theorem states that a graph G is planar if and only if

it contains no subgraph which can be contracted to Ks or to K(3, 3).

Theorem 11. ^4 b.l.c. graph G is planar if and only if its tree-condensation graph

G* is planar.

Proof. Clearly if G is planar, then so is G*. To prove the converse, assume G to

be nonplanar. Hence G contains a subgraph H which can be contracted to Kb or to

ÀX3, 3). Suppose first that #5 is the contraction of H. We shall call those points of

//which remain points in A's principal. Since the degree in G of each principal point

of H is three, each principal point must lie in a component tree of G~S.

We proceed to show that no component tree of G-S may contain more than one

principal point. Let F0 be such a component tree and let the principal points of H

be ux, u2, u3, m4, and u5. Further, let Fi; denote the path in //joining u¡ and u¡ and

having all intermediate points of degree two. Suppose F0 contains more than one of

the m¡. To be precise, there are four possible cases :

(1) Suppose F0 contains exactly two principal points, say ux and u2. Then

C=F13+F32+F24-l-F45-(-F51 is a cycle in G and C r\T0 is nonempty and dis-

connected, contradicting Theorem 4.

(2) Suppose F0 contains exactly three principal points, say ux, u2, and u3. Then

the cycle C=F14+F42-t-F23+F35+F51 and F0 contradict Theorem 4.

(3) Suppose T0 contains exactly four principal points, say, ux, u2, u3, and w4.

Further suppose that F12, F23, and P3i all lie in F0. Then F24 does not lie entirely in

T0, for if it did, F0 would contain the cycle F23+F34-t-F24. Thus the cycle C=PX2

+F24+F45-)-F5i and F0 violate Theorem 4. Hence one of F12, F23, and F34 fails to

be entirely within F0. Then the cycle C=Px2+P23+P3i+Pi5+P5x and F0 contra-

dict Theorem 4.

(4) Suppose all principal points of H lie in F0. Then one of F12, P23, P3i, Pi5, and

F51 must not lie in F0, say F12. But now if any other of these five paths also fails to

lie in T0, C=PX2+P23+P3i+Pi5 +P5X and T0 violate Theorem 4. Thus assume that

each of the five paths, other than F12, lies in F0. Then in particular, F24 cannot lie

in T0, so that the cycle C=F12+F24-l-F45-l-F51 and F0 contradict Theorem 4.

Since all four cases lead to contradictions, the proof that each principal point of

H lies in a different component tree of G-S is complete.

Next assume that there is a component tree F0 of G-S such that Fi; n F0 ̂  0 and
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Pkm n F0 t¿ 0, where Fi3 and Fkm are different. Then clearly Fi; and Pkm must have a

common endpoint, for if not, then C=Py-l-PJm+Pmfc+Pfcf is a cycle such that

C n F0 is nonempty and disconnected, again contradicting Theorem 4. Suppose

that m¡ is this common endpoint; i.e., suppose that ut = uk. Then m¡ e V(T0), for if

not, then the cycle C=Fi;+F;m-l-Fmi and F0 contradict Theorem 4.

The above results suffice to show that if G contains a subgraph which may be

contracted to Ks, then so does G*. A similar result holds for subgraphs contractible

to K(3, 3). The details are left to the reader. We have thus shown that if there is a

subgraph of G contractible to A's or to A"(3, 3), then there is a subgraph of G* with

this same property. The proof of the theorem is thus complete.

The preceding theorem is in a sense the best result possible concerning the

planarity of b.l.c. graphs. To realize this, one need only note that the next obvious

question is: "What graphs can occur as tree-condensation graphs of b.l.c. graphs?"

The answer is that any block B0 can be thought of as the tree-condensation graph

of some b.l.c. graph B. To find one such B, just insert one new point on each line of

B0. The resulting graph B then has the property that every line is incident with a

point of degree two. Such a graph is clearly block-line-critical.

Added in proof. The author wishes to acknowledge the appearance of a paper

on this subject by G. A. Dirac (Minimally 2-connected graphs, J. Reine Angew.

Math. 228 (1967), 204-216) while our paper was in press. In particular, he obtains

a structural result similar to our Theorem 2.
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