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I. Introduction. This paper is concerned with two problems on the structure of

measurable functions which have been completely solved for functions of one

variable but only partly solved for several variables. Theorems 1 and 2 below

illustrate the usefulness of spherical summability of Fourier series of almost

periodic functions and show that much of what was obtained for one variable by

complicated and difficult constructions is given in greater generality by using an

important result on spherical summability. For the history of the problems con-

sidered and some surprising applications of the results, cf. [3], [4], and [1].

II. Statement of the results. The results of Theorems 1 and 2 can be proved for

functions with values in an arbitrary Banach space. To avoid confusion the results

will be stated for real-valued functions ; and the proof of Theorem 1 will be given

only for two variables, i.e., for the square J2, (J2 = [—tr, tt]x [—n, it], Jk is the

product of k copies of the interval [—w, n]).

Theorem 1. Letf(xx,..., xk) be any function onJk which is measurable and finite

valued almost everywhere. There exists a continuous additive interval function F(I)

such that almost everywhere F'(xx,..., xk) =f(xx,..., xk) and a trigonometric series

2 ani¡n¡c exp [(nxxx+-hn^)] which is summable with sum f(xx,..., xk) almost

everywhere by means of any summation function of type (k, k).

Remarks. For the notation F'(xx, ...,xk) and all elementary concepts about

interval functions, cf. Saks [5]. The first half of this theorem was stated by Saks.

What is original in the present paper is the preliminary results (Lemmas 2 and 3) ;

the emphasis is on the second half of the theorem,which seems to require a localiza-

tion principle for its proof both in one variable and here. For definitions and facts

about summation functions, cf. [2].

Theorem 2. Letf(x) be any function on the reals which is measurable and finite

valued almost everywhere. There exists a continuous almost periodic function F(x)

such that F'(x)=f(x) almost everywhere and a trigonometric series 2 cKeiXx summable

with sumf(x) almost everywhere by means of any summation function of type (1, 1).
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III. Proof of the theorems. The notation follows Saks [5], except for the strong

derivative ¿s' which we denote by ¿*.

Lemma 1. Let c>0. For every e>0 there exists 8>0 such that d(I)<e for any

interval I such that m(I) < 8 and r(I) ^ 2c.

Proof. Let K be a square containing the interval 7 such that m(I)^m(K)c(2).

If e is the length of an edge of K, then m(K) = e2 and d(K)=e\/2. The lemma now

follows from the relations

0 é d(I) g d(K) = V2[m(K)]112 g V2(l/c)ll2[m(I)Y12.

Next we need an approximation theorem for additive interval functions which

requires a somewhat artificial correspondence between interval functions and point

functions on the square /2. The correspondence is as follows : an interval function

¿(7) defines a function F(x, y) by

(1) ¿(^ = ¿(7^,)

where 7(Xi!/) is the rectangle whose vertices are (—it, —tt), (—it, y), (x, —it), (x, y).

It is easy to show that the correspondence (1) is one-to-one between continuous

additive interval functions ¿(7) and continuous functions F(x, y) such that F(s, t) — 0

if either s= — -n or /= — tt. In fact if one defines an additive interval function ¿(7)

corresponding to the point function F(x, y) by

(2) F([a, b] x [c, d]) = ¿(A d) - F(a, d) - F(b, c)+F(a, c)

it is clear that (1) and (2) are inverses of each other for the classes mentioned, and

if one defines |¿(7)|co=sup/ |¿(7)|, equations (1) and (2) imply

\\F(x,y)\\mú \F(I)U^4\\F(x,y)\\tc.

In particular, the continuous additive interval functions form a Banach space

3~(J2) under this norm, and this space is isomorphicto the Banach algebra C0(X)

of continuous functions vanishing at infinity on a locally compact Hausdorff space

X (namely J2 minus its lower edges).

From this point on a continuous additive interval function will be called a caif

Lemma 2. Continuous additive interval functions F(I) such that F*(x, y)=0 almost

everywhere are dense in the space iT(J2).

Proof. Continuous functions of the form 2"= i fi(x)gi(y) with/'(x)=g!(*)=0 a.e.

on (—tt, n] form a subalgebra of C0(X). This subalgebra separates points and for

each point (x, y) contains a function which does not vanish there. By the Stone-

Weierstrass theorem these functions are dense in C0(X); the interval functions they

generate are dense in 3~(J2). It remains to be shown that these functions have

strong derivative equal to zero almost everywhere.

(2) Although r(I) is defined in [5] as inf/ = K m{I)¡m(K), it is obvious that sup/=K m(I)¡m(K)

is what was intended.
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Since derivation is a linear operation, it is sufficient to show that H*(x, y)=0 a.e.

if H(I)~f(x)g(y) and f'(x)=g'(x)=0 almost everywhere. Let E={x :/'(*)=0},

F={y '• g'(y)—^}- The complement of Ex F has measure zero.

Let (x, y)e ExF. There exists M such that

f(x2)~f(xx)

and

x2   xx

g(y2)-g(yi)

S M   if X £ [xx, x2]

û M   ifye[yx,y2].
y2-yi

Furthermore, for every o0 there exists S>0 such that

\f(X2)-f(Xi)
x2—xx

g(y2)-g(yù

y<2.-yi

^ JÇ7   if x e [xx, x2] and |x2-*i| < 8,

- m l{ye ^'y^ and l^2-^! < s-

Then if 1= [ax, bx] x [a2, b2] and m(I)<82 we have either  \bx—ax\<8 or

\b2—a2\ < 8. In either case, if (x, y) e I we must have

H(I)

\m(I)

Therefore H*(x,y)=0.

f(bi)-f(aù
bx-ax

g(h)~g(a2)

b2—a2
< e.

Corollary. Let Fx, F2 be continuous additive interval functions and suppose that

F2 has a strong [resp. ordinary] derivative almost everywhere. For any e > 0 there

exists a continuous additive interval function F such that \F—Fx\a <e and F*—F2*

[resp. F' = F2] almost everywhere.

Proof. By the lemma there exists a caif G such that G*(x, J>)=0 almost every-

where and \G-(FX-F2)\œ<e. Let F=G+F2.

Lemma 3. Let g(x, y) be a bounded measurable function, P a closed subset of J2

and e > 0. There exists a caif G such that

(1) G'(x,y) = 0if(x,y)eP;

(2) G*(x, y) =g(x, y) a.e. onJ2-P;

(3) \G(I)\ íem(I) ifr(I)^e andInP¿0;

(4) \G(I)\^eforallI<=J2;

(5) the function

G^-y\s, t) =
G(s, t) - G(x, t) -G(s, y) + G(x, y)

(s-x)2 + (t-y)2

is in ¿" for almost every (x, y) and, in particular, \\ Gix-y) | « á e »/ (x, y) e P.
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Proof. By Vitali's covering theorem, there exists a disjoint sequence {Fn}"=1

of closed intervals Fn <= J2 - P such that m(J2-P-\J%=1 Vn)=0. In each Vn

there exists a caif Gn such that G%(x, y)=g(x, y) a.e. and |Gn|co can be as small as

desired (cf. [5, Theorem 10.7], and apply the corollary to Lemma 2).

Since Vn and P are disjoint compact sets, they lie at a positive distance pn from

each other and there exists r¡n, 0<r¡n< 1 such that In Vn=0 if only r(I)à2~n• e,

m(I)^Tjn, and 7n ¿#0 (cf. Lemma 1). Defining Gn(0)=O and requiring

(3) |Gn|oo = 2   np'n-nn-e

where p'n is the smaller of 1 and p2 we have

(4) |Gn(7n Fn)|/m(7) ^ 2~n-e   if r(I) Z 2~n-e and In P ^ 0.

For if m(I)^Tjn, InVn=0. Otherwise (4) follows from (3).

Having fixed a choice of Gn we set G(7) = 2"= 1 Gn(I n Fn). It is clear from (3)

that the series converges uniformly. Thus G is a caif. To verify assertion (1), let

7p -> (x, y)eP and r(Ip)^c>0. Choose n0 so large that 2~no• e<c. Then

G(7P) _    v Gn(7p n Fn) ,    v Gn(7, n VJ
m(IP)

-   2
B<no

nil,) nän0 m(IP)

If «^«o, then |Gn(7p n Fn)|//«(7p)^2-n-fi for all/? by (4). Since Gn(IP n Vn)/m(Ip)

-*■ 0 as /> ->■ 00 for all «, the dominated convergence theorem for series implies that

G'(x,y)=0.

To verify (2) we observe that since F„ is an interval it has the same measure as

its interior (int Fn). If (x, y) e int (Fn) n Ip and d(Ip) is small enough, 7„<=iiit Vn,

so that G(Ip)/m(Ip) = Gn(Ip)/m(Ip). Hence G*(x, y) = G*(x, y)=g(x, y) a.e. on int Vn,

and thus a.e. on Vn. Since the Vn are disjoint G*(x, y)=g(x, y) a.e. on Un-i ^

and finally a.e. on J2—P.

Assertion (3) is obvious, since if r(7)^e, then r(7)^£-2_n, «=1, 2,_Hence if

InP^0, then

|G(7)| ̂ 2 lGn(7n Vn)\ =£ 2 2-.«<0-»-«C0.
n = l n=l

Assertion (4) is also obvious since |G(7)| ^2n°=i \Gn(I n Vn)\ g2"=i 2-nE=£.

To verify assertion (5), let (x0, y0) be a point of J2—P where G*(x0, y0)=g(x0, y0).

\Gix°-»°Xs, t)\ =
(s-x0)(t-y0)

(5)

(i-Xo^ + i/-^

G(i, /) - G(x0, t) - G(s, y0) + G(x0, y0)

(s-x0)(t-y0)

<i= 2
G(s, t) - G(x0, t) - G(s, y0)+G(x0, y0)

(s-x0)(t-y0)

The function Gl*°,!/o> is continuous, and hence bounded, on the set of (s, t) such

that either Is-Xol^á or |/-j0| = S for any 3>0. But for 8 sufficiently small, the
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right-hand side of (5) is bounded when 0<|s—x0\<8 and 0<|r—v0|<8, since

G*(s0, y0) exists.

If (x0, v0) £ P, then for s>x0, t>y0

(6) \G^»\s, 01 = 'ttf^S'-1        p((s, t), (x0, Vo))2

Now

(7) |G([x0, s] x [y0, t])\ Ú  2 lGn(^n n [x* s] x [y0, t])\
n = l

and Vn n [x0, s] x [y0, t] = 0 unless p((s, t), (x0, jo))2=p'n- Thus the summation in

the right-hand side of (7) is extended only over those n for which this condition is

satisfied.

But from (3) these terms satisfy

(os \Gn(Vnn[xo,s]x[y0, t])\

{)' p((s,t),(x0,y0))2        <¿    "'

From (7) and (8) we have ¡G^o-V^, t)\^e. The cases s^x0 or fèy0 are handled

similarly. This completes the proof.

Lemma 4. Letf(x, y) be any function on J2 which is measurable and finite valued

almost everywhere. There exists a caif F(I) such that F'(x, y)=f(x, y) a.e. on J2 and

«*.vYç ,ï _ F(s> t)-F(x, t)-F(s, y)+F(x, y)

K'*} (s-x)2+(t-y)2

is in ¿°° for almost every (x, y) e J2.

Proof. We shall define a sequence of closed sets Pn and a sequence of caif's G„

such that if Qn = {Jk=o Pk, and 7n=2fc=o Gfc, the following conditions will be

satisfied :

(1) G'n(x,y)=0 on Qn-X;

(2) G'n(x, y)=f(x, y)-F'n.x(x, y) a.e. on Pn; i.e., F'n(x,y)=f(x, y) a.e. on gn;

(3) |Gn(/)| ú2-«m(I) if r(/)^2-n and In Qn.x^0 ;

(4) ¡Gn(/)|^2-nforall/c72;

(5) m(J2-Qn)<l/n;

(6) the function

rlx.y),ç ,v _ Gn(s, t) - Gn(x, t)- Gn(s, y)+Gn(x, y)

n    KS' ' (s-x)2 + (t-y)2

is in Z,00 for almost every (x, y) ej2 and ¡G^-^W =„ = 2-" if (x, y) e Qn^x.

To do this set Go(/)=0, Po = 0. Assertions (l)-(6) are trivial in this case. Now

suppose we have chosen Gk, Pk so as to have (l)-(6) for k-gr. Let Er<=J2—Qr be

such that / and 7> are bounded on Er and m(J2—QT-Er)<l/(r+1). Applying
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Lemma 3 with e=2~(T+1\ g=Xsr •(/-#)> ¿= ßr we find a caif Gr+1 such that

(a) G'r+x(x,y)=0on QT;

(b) G*+x(x,y) = (f-FÇ)(x,y) a.e. on ET;

(c) Gr+1(7)g2-('+1)m(7) if r(7)^2-(r+1) and 7 O QT¿0 ;

(d) Gr+1(7)g2-(r+1)forall7c/2;

(e) GftlXs, t) is in¿ for almost every (x, y) and ||G^Ï)||0O^2-(r+1)if (x,y) e Qr.

If ¿r+i is a closed subset of ¿r such that «j(/2 — QT—Pr+x) < 1 /(r +1 ), we clearly

have assertions (l)-(6) for fc=r+l. Now let ß=limn Qn = {Jk=0Pk, ¿=limn¿n

=2"=o Gk, and let Sn be the subset of/2 for which one of assertions (2) and (6)

fails. We have m(|J"=o Sk)=0, so that m(J2-(Q-\Jkx=0 Sk)) = 0.

By assertion (4) we see that ¿(7) is a caif. We claim that if (x, y)e Q — [Jk=0 Sk,

then F'(x, y)=f(x, y) and /**•»> e¿°°.

In fact, if Ip^-(x,y) and /•(7p)=c>0, choose «0 such that w=«0 implies

(x,y) e ßn-U"=o S* and 2"n<c. Then for n>«0

so that

lim sup
P-.00

F(h)
m(Q

F(IP)

m(Ir)

-f(x,y)

Fn(Q + 2 Gk(Iv)

™(4)        fc>n mVv)

Fn(Ip)^ lim
p-»oo

-M>)

g 0+ 2 2~k=2-n.

+ 2 |g*(/,)i

Since « is arbitrary, F'(x, y) =f(x, y).

FinaUy ¿<*-">(¿, 0 = (2*s»0+2*>n0)(GSr-I')(í, 0) so that

¡F<*»lm*  2  |GM«+2~"e+1-
fcgno

Proof of Theorem 1. The existence of the primitive F is explicitly stated and

proved in the last lemma. Let (x, y) be a point in the interior of J2 for which

F'(x, y)=f(x, y) and for which F<*M is in ¿°°. Then

Hix-»\s, t) = ¿<*-i%y, /)-/(*, j>)
sin (s—x) sin (t—y)

(s-x)2+(t-y)2

(9)

is also in ¿œ. Let

£<*'«($, f) = H<*'*\s, t)[(s-x)2 + (t-y)2]

= F(s, t)-F(x, t)-F(s, y)+F(x,y)-f(x,y) sin (s-x) sin (t-y).

We claim that KlXtVXs, t) has a two-fold zero at (x, y). This means, of course, that

K^\s, t)
(10) dsdt = 0

\(s-x)2+(t-yf

where Cr is the disk of radius r about (x, y). Define a set Uc for c>0 by

C/c = {(,, /) : c\s-x\ è \t-y\ á e~*\s-x\}.
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Uc is shaded

The integrand in (10) is just Hlx-y\s, t), which, as we remarked, is in ¿°°. For

any fixed c>0 and e>0 there exists S>0 such that 0<r<8 and (s, t) e CT O Uc

imply \Hix'y\s, t)\<e. This is because F(I) has an ordinary derivative at (x,y)

equal tof(x, y) so that

(ii)

(j-x)2+(r-v>

F(s, t) - F(x, Q - F(s, y) + 7(x, y)

(s-xXt-y)

F(s, t)-F(x,t)-F(s, y)+F(x, y)

(s-x)(t-y)

sin(s—x) sin(r—v)

-f(x,y)

-f(x,y)

sin (s—x) sin (t—y)

s—x t-y

+ \f(x,y)\ ■ -1
(s-x)(t-y)

and the right-hand side of (11) can be made less than e for all (s, t) e C, n Uc by

taking r sufficiently small.

Now m(Cr - Uc)/m(Cr) is a function of c only ; that is, Uc occupies a fixed fraction

of each disk with center at (x, y). Furthermore this fraction tends to 1 as c tends

toO.

Hence we can choose c>0 such that m(CT-Ue)/m(Cr)^el2Tr\H(>x-*\a, for all

r>0. For this c and e choose 8 such that 0<r< 8 and (s, t)eCrn Uc implies

\H<*-*>(s, t)\<e/2ir.

Then if 0 < r < 8, we have

0 è r'2 \[\Hix-y\s,t)\dsdt

- r"¿   JJ    +r~
CT-VC Crr\Uc

í r-2m(Cr-Uc)||H<x-*>\\. + r 2m(Cr n Uc)-e/2n

^ r-2m(CT)-e/2TT + r-2m(Cr)-e/2ir=e/2 + e/2 = e.

Since e is arbitrary, this establishes the assertion.
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Now by an established theorem [2, Theorem I] if 7 is the Fourier series of

Klx-y\ and D(x,y)= -xy, then Dfs¡i)T$(s, t) -> 0 at (x,y) for any summation

function </> of type (2, 2).

If S is the Fourier series of 7, this means D2sA)Si(s, t) —f(x, y) -*■ 0 at (s, t) = (x, y).

Q.E.D.
The proof of Theorem 2 proceeds by means of another lemma. The first part of

Theorem 1 assures the existence of a primitive, say G(x), for any function g(x),

measurable and finite valued a.e. on any closed interval [a, b]. Lemma 2 implies

that the sup-norm of G can be arbitrarily small. Finally, by adding to C a singular

function of small norm we can also assume that G(a) = G(¿»)=0.

Thus we have the following result.

Lemma 5. Let g(x) be any function on the real line, measurable and finite valued

a.e. For every e>0 and every nonnegative integer n there exists a continuous function

G(x) ofperiod 2(n+1) satisfying the following conditions:

(1) G(x)=0if\x\<n,
(2) G'(x)=g(x) a.e. on n^ \x\ gn+1,

(3) ¡GUúe-

Now we can define the function F(x) whose existence is asserted in the theorem.

We first let FT(x), for each nonnegative integer r be a continuous function of period

2Í/+1) such that

(a) Fr(x)=0if \x\<r,

(b) F;(x)=f(x)-[F0(x)+ ■ ■ ■ +f;.x(x)] a.e. on r* |*| Zr+l,

(c) |F,|.£2-'.
We then set 7(x) = 2T°°=0 7>(x). It is clear that F(x) is a limit periodic function,

hence certainly almost periodic.

Now, almost everywhere on the set n^\x\^n+l, we have F'(x)=F¡¡(x)+ ■ ■ ■

+ Fñ(x)=f(x) by (b). That is, 7is a primitive.

Now set Glx\s)=F(s)-F(x)-f(x) sin (s-x). Clearly Glx\s) is an almost periodic

function of s for each x where F'(x) =f(x) exists ; that is, a.e. For such an x, Glx)(s)

has a zero of order 1 at x, because

lim i rh W-*fr)--/fr)sinfr-*) ds = o.
"-on Jx_h | s—x

Thus if 7is the Fourier series of G(x\ D'sT$[s] -> 0 at s=x for </> of type (1, 1),

this means ¿»^[i] -+f(x) cos (s-x) at s=x where S is the Fourier series of F.
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