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BY
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1. Introduction. Stallings [6] generalized a result of Lyndon [3] by showing that

if elements xlt x2,..., xm of a free group F satisfy a relation xlx2- ■ -x$,= 1 where

n = 2, then they generate a free subgroup F0 of rank ^ m/2. This bound is best

possible: if m = 2k taking x2i = x^î.1 for \-i-k gives a solution in the free

group generated by xlt x3,..., x2fc_i.

Stallings' Theorem implies a corresponding result for free semigroups. If

Xi, x2,..., xm are elements of a free semigroup F that satisfy a relation xlx2- ■ -x„

=x£+1 where n-2 then xx, x2,..., xm are contained in a free subsemigroup F0 of

rank /-^(m-)-1)/2. However, one may ask whether, in free semigroups, this bound

remains the best possible. The principal result in this paper shows that this is so

only for n = 2. We make the following conjecture :

Conjecture. If a1( a2,...,ak and b are elements of a free semigroup F such

that a\a\- ■ -ak=bn, where n = 1, then they are contained in a free subsemigroup F0

of rank r g (k+n — l)/n.

This is trivial for n= 1 and follows from Stallings' result for n=2. We establish

it for k - n and also for n ̂  6 and k — 2n — 2. We note that the conjectured bound

cannot be lowered for general n and k. If m and q are given, let k=nq +1, and hence

[(k+n — l)/n]=q+l. In the free semigroup F of rank q+l on generators

x, yi, y2> • • •, ya, the elements alt a2,..., ak, and b appearing in the relation

xn(y1xn-1)n0,2Xn-1)n- • •(y,xn-1)n(xy1xn-2)n- • ■(xy„xn~2)n- • •(jcn"1yi)"- • •(^n_1y,)n

= (xt^x""1)"- • ■(y,_1xn-1)"ya)"

are not contained in any proper free subsemigroup.

In the two sections which follow we prove the following two theorems.

Theorem 1. 7/a" ■ ■ -ak=bn in a free semigroup F and k^n, then a1,...,ak and b

lie in a free semigroup of rank 1.

Theorem 2. 7/aï • • • ak = bn in a free semigroup F with k^norn^6 and k = 2n—2

then au...,ak and b are contained in a free semigroup of rank [(k + n— 1)/»].
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The arguments are organized as follows. In §2, after stating a lemma of Lyndon

and Schiitzenberger, we define a canonical solution of z\z2- ■ -z\=yn and note that

we may proceed in terms of canonical solutions. Next, we define an inductive

condition in terms of which most of our later results are phrased. Roughly, the

proofs of Theorems 1 and 2 consist in showing that under the hypotheses of these

theorems the inductive condition is satisfied. The section concludes with two

lemmas giving hypotheses under which the inductive condition is satisfied and a

proof of Theorem 1. §3 consists of four further lemmas giving hypotheses under

which the inductive condition is satisfied. Theorem 2 is an immediate consequence

of Theorem 1 plus the last two of these lemmas.

2. Our arguments use a lemma of Lyndon and Schiitzenberger [4].

Lemma 1. Let F be a free semigroup.

(a) If ab = bc e F, a# 1, then a = uv, b = (uv)ku, c = vufor some u,veF.

(b) If ab=baeF then a and b are powers of a common element.

(c) If a and b have powers a" and b" with common segment of length \a\ + \b\

(where \a\ denotes the length of a as a word on the generators ofF), then a andb both

admit periods of length the greatest common divisor of \a\ and \b\. If the segment is

initial to both a" and b" then a and b are powers of common element.

We now proceed with a sequence of definitions. Let n be fixed. The rank of a

solution S=<a1; a2,.. .,ak;b} of z\z\- ■ -zk=yn is the minimum rank of a free

subsemigroup F0 containing au a2,..., a„ and b. The element bn of F is given by a

word w=x1x2- ■ xt in the x¡ £ X, the basis of F, where t=Jtn\at\. The fact that

bn = w admits a period of length n imposes certain identifications on the x¡. Let 7 be

the set of indices 1, 2,..., t. Let /'£/' be the smallest equivalence relation on the

index set such that

(i) iñtj if / =j modulo | b \,

(ii) /ä/if |a"- • ■af-1\<i,j^\a"- ■ -af\ for some /and i=jmodulo \a¡\.

We say that the type of S is the &-tuple <|ai|, |a2|,..., |afc|>. For any solution

with the same type as S, whenever ixj we must have x¡ = xy. A canonical solution S

is obtained by choosing x¡ = xy if and only if ixj. Then the general solution S is

obtained from canonical S by an endomorphism of Fidentifying certain generators,

whence it follows (since a subsemigroup of free F generated by r elements is always

contained in a free subsemigroup of rank gr) that r(S)^r(S). Hence it will

suffice to establish our bound on the ranks of canonical solutions.

Let 5 be a canonical solution. Let L be the set of left letters, that is, those be-

ginning with some a¡ and R the set of right letters, ending some a;. Define 77 to be

the set of subwords of w beginning with a letter from L and ending with a letter

from F, and containing no other letters from either L or R.

Lemma 2. If S is canonical then 77 is a basis for a free subsemigroup F0 of F

containing au a2,..., ak and b and these elements are contained in no free subsemi-

group of smaller rank.
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If we construct the relation imj by first imposing condition (ii) and then (i),

we note that it is the case that if x, is followed by xi + 1 in some hk and xt=xf where

Xj appears in some hk then xi+1=xy+1. This may be seen by a routine induction.

Similarly if xi+1=xi+1 and x¡ is followed by xi+i in some hk, x{=Xj. By iteration,

it follows that if h, and hk have any letter in common then h¡=hk. Thus the set H of

segments h¡ is a basis for a free subsemigroup F0 of F containing al5..., ak, and b,

and has equal cardinal with each of L and R.

To prove that F0 has minimal rank, suppose au...,ak and b contained in some

F'o free on basis Z. Since each x¡ in 7 begins some ay, each x( in L must begin some

zeZ. Therefore Z must have at least as many elements as L. But this is precisely

the number of elements of 77.

In the lemmas which follow, we will show that under certain hypotheses on S

if all solutions S' with smaller k' and all those with equal k' and smaller \b'\

satisfy the conclusion of our conjecture then so does S. We will abbreviate this by

writing " S satisfies the inductive condition."

Henceforth, we suppose « fixed, « ̂  3. We first argue by induction on k, and,

second, for fixed k we argue by induction on \b\. An element c of Fis primitive if it

is not a proper power c—dm, m>\. Every element a/1 of Fis uniquely a power of

a primitive element a=cm, m ̂  1. We adopt the notation a¡ = c(m< and b=dm, ct and d

primitive. Then we havec?in- ■ c%Kn=dmn. Suppose 1^1 +1¿| S |a"|. Thenai=cfin

and bn=dmn have a common initial segment of length at least l^l + li/l, so by

Lemma 1, cx and d are powers of a common element, and since both are

primitive ca=d. Therefore, we may cancel a" from both sides of the equation and

obtain

aî-'-al = (</m-mi)n.

It is easy to see that the rank of the solution of the original equation is no greater

than that for this equation, whence S satisfies the inductive condition.

If some |Ci| + |fi?| ̂  |öj|n for jVI we pass to the equation a?- ■ -aka\- ■ -a?_i

= (b')n where b' is a conjugate of b (we will write V ~ b) ; that is, for some u,v,b=uv,

V = vu. This equation has the same 77 as the original, hence the same rank, and the

argument for the case i= 1 applies.

Henceforth, we may assume, inductively, that the result has been shown for all

solutions S' with k'<k and those with k'=k and \b'\ < \b\. Furthermore, we may

assume, by the above primitivity argument, that for all i, «i¡«|cí| = |a"| < |c¡| + \d\,

whence (»vij— l)|c4| < \d\, (n-l)\at\ < |è|,and by a simple counting argument k ^ «.

Similar considerations permit us to assume that c¡ =£ c, +1 (subscripts modulo k).

The word w=bn is invariant under a shift by b places x¡ -*- xi+w. If under some

iteration of this shift the translate of a" can be brought to overlap a" by as much as

IAI + \cj\, then it follows from Lemma 1 that Ci~Cj. This must happen if |a*| and

| a" | are large enough, and under these circumstances we find that mi=mJ whence

a4 ~ a¡.
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Lemma 3. (i) If \b\ S \aî\ then m = l and nmt is the least integer greater than or

equal to |Z>|/|c,|.

(ii) If \b\ = |a?| and \b\ ̂  |a?| then a(~aj.

Proof, (i) If |è|^|a?|, («m(-l)|c4| <d and b=m\d\ ^n/Kj|c¡| then m(nm¡ — l)

<nmt and m= 1. Now

(ii) Let \b\ < |a"|, \b\ < |a"|. We may suppose that i'#y and |cj| = \c,\.

Let (0, 1,...,/— 1) be the integers modulo t, in their natural cyclical order. For

h and k from this set, we denote by [h, k] the interval (h,h+l,...,k), and we

write [h, k] +/= [h +/ k +/]. Each interval 7= [h, k] determines a word W(I)

=xhxh + 1- ■ -xk. From the fact that w=bn it follows that w has period \b\, that is,

for every interval 7 we have W(I+\b\)= W(I). We define 7/ = [«|a/_1|-l-l, n\a¡\],

[h, l]+f=[h+fl+f] (modi) and W [h, l] = xh- ■ x,. From w=bn we have

W([h, l]+f\b\) = W[h, I], whence W(Ik)=ank.

If any translate F=7f+/|è| meets I¡ in an interval P n I¡ of length at least

led + \cj\, by Lemma 1 we have ct~Cj and since mt = mj by (i) ai~a¡. In particular,

if any translate P=Ii+f\b\ is contained entirely in I¡, then the conclusion follows,

since |P| = |a"| > |è| >(m¡n— l)\ct\ ^2|cy| ^ |ct| + |cy|. Otherwise, choose a translate

F0 to contain a maximal initial segment ßo=F0n7i of Ij. Since |¿»|^|P|, Fj

=P0+ \b\ begins at the latest with the first number following P0, and, since P-&I¡,

it ends after the end of I¡. Thus Qi = Pi n 7, is a terminal segment of If and Ij

= ßoUöi- Let ßi=ß0+ki|. Then \Q'0 n ß^ ^ |c,| ä; |c,| and 0-^)= W(ß0)

since they are both contained in W(I¡) and are translated by \c¡\ ; and If (ßx) and

W(Q0) as parts of translates of a? admit period \ct\ it follows that Q'0 u ßj admits

period |c¡| and, as a subinterval of Ij admits period |cy|. But | ß0 u ßx| ^ |7y| — |cy|

^2|cy| - \Ci\ + \Cj\. By Lemma 1, c(~Cj and a(~ay as above.

Lemma 4. 7/|6| ^ |a"|/or 1 ̂ /^«— 1 i/zen S satisfies the inductive condition.

Proof. By Lemma 3, \ax\ = \a2\ = • • • |an_i|. If |6| = |a"|, then ax = a2, a case

already considered. Assume that |6| < \a\\, hence that a\ = bu with u¥= 1. On each

of the segments F1 = 71,F2 = 72-|é|,..., Pn_1 = 7n_1-(n-2)|¿>[, Í-Khas period ¡c-x|.

For l = i<n-l, Pf and Pi + 1 overlap by the same amount as 7¡ and 7i + 1 — \b\, that

is by |è|>2|cj|, so by Lemma 1, H/(P¡u7Ji + 1) has period ¡c^. It follows that

y= W(PX UF2 u- • Fn_!) has period |cj|. But |y| = |aî| + («-2)|u|, and unless

\y\ < \ci\ + \b\ we can apply Lemma 1 to obtain our conclusion ;hence|y| < (0^ [ H- j¿»|

á|ai| + |¿>| and so n|a1|+(«-2)|M| <(«+ l)|aj| - \u\, and (n- l)\u\ < |ai|.

Since W begins with b2 and a" with bu, b begins with u. Since W begins with b and

with a! and (n— l)\u\ < \a-y\, a1 begins with u. Suppose inductively that a1 begins

with uh,h<n—l. Since y=a\e, where \e\=(n — 2)\u\, and y has period \c^\ and

since aj begins with ir\ e begins with w". Thus W begins with aluh = buh + 1, with

|m" + 1| < |Z>|, whence b begins with m" + 1 and hence a± begins with uh + 1. By in-

duction we conclude that a1 = un~1v and y=a"wn" 2. Moreover, we have dfu = ua"+ u
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hence atu=ua{+1 for 1 ¿i<«-l, whence a1 = un~1v, a2 = un~2vu,..., ai = un~ivu'~1,

..., an-i = uvun~2. Now, also since aî=bu, ai ends in u, and a1 = z/n_2z« with

zu=uv. From bu=al=(un~1v)n = (un-1vy-2un-2zu we have b = (un-1v)n-lun-2z.

But

af = wn-it;(Kn-1t;)n-V,-1t>Hi-1 = un-iv(un-1v)n-2un-2zui,

and hence

a"- • -a^-i = ((Mn-1r)n-1Mn-2zM)(Mn-2[)("n~1^)n"2"n"2z«2)- ■ •

• • ■(uv(un-ívy-2un-2zun-1)

= ((un~1v)n~1ün~2zy-1un~1 = bn~1un~1.

Cancelling this factor from the equation ala2- ■ ■ak = bn=bn~1(un~1v)n~1un~2z

gives a"- • ■ak = v(un~1v)n~2un~2z. Thus

aj- • -ankun = t)(Mn-1t;)n-V-2ZMn = (ran-1)n-2t!Hn-1t;Hn-1 = ((vu)n~1)n.

But this equation has k' = k+2—n<k and since F'0 containing an,..., ak, u and

vun~l must also contain aua2,...,an-i and b, the lemma is proved.

Proof of Theorem 1. As previously noted, if k<n the conclusion follows, hence

we may assume k=n. Since 2 |a,| = |o| if all |a¡n|^|e| then all |a?| = |¿>|, whence

ax = a2 and the conclusion follows. Therefore we may suppose some \af\ > \b\, say

|a"|>|e| where \ai\ = ma\ |a¡|. Suppose |a"|<|è| implies that (n-l)\a¡\^ai, and

hence, since (n — 1 )|ax| < \b\, that |a¡| < \b\j(n — l)2. Let p be the number of í such

that |a"| ^ |6| ; by Lemma 4 we can suppose that pun—2. For these a¡ we have the

bound |at| < \b\j(n — 1). Summing gives

< i»-2 ,      2    \ lAi      *2~3«+4
^ (¡PÏ + («3r?) 1*1 = «*-2«+l |è|

whence «2 —3«+4>«2—2«+l, 3>«, a contradiction. We conclude that there

exists some i such that |a¡n[ < |¿>| and yet (« — l)|a,| > \ai\. Now consider the posi-

tions P=2|a1|, P+ \b\,..., P+f\b\. If two of these are contained in the same 7,

then |af | > |6| and for some/ \(I¡-j\b\) n ZjI =:2|a1| = |a1| + |a,| and

\{h-j\b\)^>h\ > |*| + M,

so the conclusion holds by Lemma 1. If each P+f\b\ is in a distinct 7, then we

claim that |Ci|Hcil- F°r if « = 3 we may assume that /=3 (if necessary by writing W

in reverse order), and, since we assumed that (« — l)|a¡| > \a-¡\, we have by Lemma 1

that 1^1 = 10(1. If « = 4, since I¡ contains some p+f\b\, we have |7¡ n (7"x -(-y*|£»j)|

^min (2|aj|, a?)^ |ax| + |a¡| and again |c4| = |ci| jby Lemma 1. Now since |cf| = |ci|

and |a¡| < \ai\ we have mx> 1, and («h«- l)|ci| < |ô|. If each \a,\ satisfied («- l)|a;|
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^ax then all \c¡\ and \d\ would be equal and the conclusion would hold. If not,

then

>    a¡ - \b\ <p—i±-í? + in-p-l)—+7-ttt-1-rr-- \b\
{Zi »vi—1 n     (n— l)(mxn — 1)    '  '

^ (^-7-+-+7T-7TT-rr-l) \b\ < 0,   a contradiction.
\2n — 1     n    (2n— l)(n — 1)      /

3. We next prove a sequence of lemmas culminating in the proof of Theorem 2.

Before proceeding with the proof, it seems worthwhile to sketch the ideas involved

in the remaining rather technical lemmas and give some idea why the techniques

we are about to present do not yield a stronger theorem. An analysis of the proof

of Theorem 1 shows that the principal techniques involved showing coperiodicity

of long and short words and invoking special properties of those a( satisfying

w|a¡| > \b\. For k>n, such a¡'s need not exist but for k<2n — 2 and n-6 one of the

following happens :

(i) We can find a¡ satisfying n\Oi\ > \b\ and obtain counting arguments basically

similar to those used in the proof of Theorem 1 (Lemmas 5 and 7);

(ii) An initial segment of each [j\b\ +1, (/+ 1)|¿>|] intersects .a distinct a¡ of period

|Ci|, and we can inductively decrease |¿| (Lemma 6).

It is apparent that these arguments are not applicable to large k, although it

might be hoped that analogous arguments could be obtained.

We first describe a rather special method of replacing S with a solution S' whose

rank is at least that of S. Although we do not claim that the subsemigroup deter-

mined by 5" contains all the factors in 5, certainly if the conclusion is true for S'

it is true for S. Suppose that j and / are such that for some q,p, h, g, Iq = [h,j],

I<h-p — [s> I] and W[j, I] has period |as+p|. Then if S' is obtained from 5 by re-

placing aj+1---aj+p by anaï+r • •a^+p.1 where â=W[j+l,j+l + \aqp\], the

periodicity of W[h,j] insures that the number of right letters has not been decreased

since the rank of S' is at least the number of its right letters. Now, since S is canon-

ical, its rank is the number of its right letters and our claim is proved. In such a

situation we will say that S" is obtained from S by an ap+Q left shift.

Lemma 5. If\af\ > \b\ for n — \ values of i then S satisfies the inductive condition.

Proof. We may assume that «|a!|>|è| and if «|a¡|>¿> then, by Lemma 3,

|a¡| = \a-¡\. Letj be the smallest number such that n\a¡\ < \b\. lfj<n—l, then the

conclusion holds by Lemma 4. We note that each interval [1, |ai|]+/|ô|, 0^/

-n—2 contains exactly one initial point of an 7, such that \af\ > \b\. Hence, if i is

the smallest integer greater than j such that |a¡n| > \b\, we have Um»1, Fic [1> Wi\]

+ (j—l)\b\. Therefore, we may use an a¡ left shift to obtain a solution S' with

ai,..., a] all satisfying n\a[\ > \b\, and the lemma follows by induction.

Lemma 6. Let ax be the largest power of any primitive of length \cj\ which appears

among the af and let |a"| < \b\. If for eachj, 0^j<n there exists a distinct integer h(j)
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such that |cÄÜ)| = |ca| and IhU)—j\b\ intersects Ir in an interval of length at least \ci\,

then S satisfies the inductive condition.

Proof. If i=h(j) for some j we call a¡ a special word. We may assume that the

longest word v of period \cx\ containing ax has length less than \b\ + |cxj by Lemma

1. Let v=W[r+l,p] (where, of course, (n-l)\b\ <r£t) and |aj|áp<|£| + lcil-

Now delete the initial |c"| letters from b. The effect of this operation is just to delete

a segment of length |c"| from each special word. Hence, S is replaced by a solution

S' = <ia'i,..., a'k, b") where a'q = aq if a, is not special and a'q=cq*~1 if a, is special

(note that if mQ= 1 then a^ is empty). Since 5' is obtained from S by deletion and S

is canonical, the set R' of right letters of S' is contained in the set R of right letters

of S. We claim that R = R' u xr + |Cl| (where we interpret the subscript modulo t).

For suppose y is an element of R not contained in R'. Then y is the terminal letter

of some ahU). Let z be the smallest such «(/). Then the final letter z of at-i is not y

and the segment za" of W does not have period |cj|. But a? has period \cx\ so

z = xr andy=*r + kl|.

If R' = .R then we have not deleted any «¡ from 77. Hence the free subsemigroup

generated by 77' contains au...,ak,b. If exactly n of the a¡ are deleted, that is, if for

every special af we had m{= 1, then the generators of the subsemigroup generated

by 77' along with Ci would generate a free subsemigroup containing au ..., ak, b.

We shall show that these are the only two possibilities and hence the inductive

condition is satisfied and the lemma is proved. Assume R'^R and some m¿ > 1 for

a special word. By the hypothesis of the lemma this implies that mi > 1 and t+p—r

^2n\ci\, for \v\ ̂  |c2n|. But now apply the same argument to L, the set of left letters

and note that L#7' and R^R' imply mi = l.

Lemma 7. Suppose that «^6 and k^2n—2. 7/|a¡n| > \b\ for some i < k, then S sat-

isfies the inductive condition.

Proof. We may assume that 5 does not satisfy the inductive condition, that

«|aä|>|6|, that |ci[ = led and if jc^.| = |cy| then for some unique/ Py = 7,—/|A|

£[1, |a| + |ci|]- Let P=[l,a] be the union of these P, (such that 1^1 = 1^1). By

Lemma 1, P has period |d| and q— \b\ < \ci\. For any integer/ let/ be the least

positive residue of/ modulo |é|.

We first observe that if |c„| < \cx\ and if for some/ 7U—/|6| £ [1, a] we must have

|au| < ki|/(«— 1) by Lemma 1. If |cu| < \ci\ and the above condition holds for no/,

(i.e., in the case of an interval containing some h\b\ and h\b\ +q+1), then Lemma 1

may have to be applied to initial and terminal segments. In such a case, if Iu

= [j> z\ (7-l)|a| <y<l\b\, then \ci\ + \au\>l\b\+q-y (condition on period at end

of [l,a]) and |c!|-l-|au|>z—l\b\ (condition on period at beginning of [l,a]).

Hence 2|c1|+2|au|>z-y-|-#=n|au|+#, or -equivalently (n-2)|au| <2|cx| -q.

Since «S6 this implies that |au| < |Ci|/2 and |a2| <3\cx\ -q.

Let r be such that (« -1)|¿>| e I,=\e, g\ We consider two cases.
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Case 1. |cr| = jci|- Then (n—l)\b\^g^(n-l)\b\+q and min\c1\>\b\—g

>\b\ — \c1\^(min — l)\c1\—q>(min — 2)\c1\. Also since Cj is primitive, a?- ■ -aj has

length \b\—g and period \cy\ and has no smaller period. Hence for r+l^j=k

either |aj| =m:7|c1| with my<w¡ or («-l)|ay| < |cx| by Lemma 1; and WjmIcjI

>n 2?=r + i \ßj\ >('«i«-2)|c1|. Thus the total length of those Ij, r+1 ¿j=k such

that 1^1 = 1^1 is greater than (n-2)\cx\ and fc—/■>(/!—2)|c1|/(w|c1|/(/! — l)) =

(n—2)(n — l)jn>n-3, hence k-r = n-2.

Now we will show that r = n+l and hence k^n+l + (n — 2) = 2n— 1. Let

F={; | |ay| = |ai|}, and let / be the cardinal of F. By Lemma 5, l-n-2. If m, = l,

since | ay | = |a¡¡ => 7;s [1, q] +f\b\ for some/ we must have n — l—l numbers h, less

than «—1 such that ßh = [3|c1|/2, \b\+q-3^1.1/2+h\b\] intersects no 7, of period

|cj|. For each such h, since \Qh\ = \b\+q—3|cí| ^6|Ci| — 3|ci| = 3|c1|, and if F,

intersects Q„, |73| <6|cj.|/5 and 7y£[A|6|, (h+ l)\b\], by Lemma 1, we know that Qh

intersects more than 15/6 distinct I¡. Hence Qh intersects at least 3 distinct 7, and

r = l+3(n — l-l) with h^ 1 and hence r>n+1.

If, however, mt> 1, and |ca| = \c2\ = ■ ■ ■ = \cr\ since \a?\ > \b\ the argument in the

proof of Lemma 4 shows that 5 satisfies the inductive condition. Hence, for some u,

\cu\ < Jcx¡ and |a¡J| <3|c1|— q.

If j £ F and 7y = [/, j2] then / < q and j2 á q. Since / ̂  n—2, for some «—1-/^1

values of h we must have Qh = [q, \b\] + h\b\ such that Qh intersects no 7, with

jeL. Now, |i|—9^(min—2)|cy|>((;Mi—l)«-l-3)1^1, so such an interval must

intersect 7; for at least two values of y with \c¡\ = |cil and m¡ < mx and at least three

distinct 7,- if one of these satisfies \c¡\ < |ca j. By calculation as above r>n +1.

Case 2. \cr\ < \ci\. Let v be such that (n—2)\b\ e Iv = [y, z\. Now if |c„| = |cx| then

z<q< \cx\ and if |e„| < \cx\, then ¿<3|Ci|/2 by our observation. Hence z<3|c1|/2.

Also, since \cr\ < \c±\ and both [l,ê]and [g, ¿>]arelessthanmi/i|c1|,if/={y'| v<j<k;

jïr, (n-l)|ay|< |d|} then« 2ie,\a,\+n\ar\ >2[n\c1\-q]-3\c1\/2. But «|ar|<3|c1|

-q and hence n ZieJ |ay| >(4«-9)|c1|/2-9>(4«-ll)|c1|/2. But n = 6 so nZie} \a,\

>n\c1\, hence |7|^|n|. Butw^n-2 and k = u+\J\ + l >2n-l.

Thus, we have shown that if the inductive condition is not satisfied then k - 2« — 1

and the lemma is proved.

Lemma 8. Ifn^6, |a"| < |b\ for l=i = k andk^2n-2then the inductive condition

is satisfied.

Proof. Let |cx| be the largest of the |c4| and ax be a longest word of period \ci\.

Let Q=[r+l,p]^I1 be the longest segment of period |cj| containing 7^ We may

assume | Q\ < \b\ + |cx| by Lemma 1. First suppose | Q\ < \b\. Let e be the greatest

integer in 3/2|cx|, and consider the set of numbers r+f\b\ and e+f\b\, Oúfún — 1.

We claim that no two members of this set appear in the same 7¡. First, if for any g,

g and g+\b\ appear in 74 then 7¡ has period |cx | and properly contains ß, a contra-

diction. But if r+f\b\ and e+f\b\ appear in 7¡, again 7¡ must have period ¡ex| by

Lemma 1 and ß is extended to the left. Similarly, if e+f\b\ and r+(f+ l)\b\ are in
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7j, Q is extended to the right. Hence if | Q\ < \b\ we have k 2: 2«, and we may assume

\b\Z\Q\<\b\ + \ci\.
Let P=[|ci| + 1, «j^IcjI] and A = [l, («Zi«— l)|ci|]. We will call/special if for

every a¡ such thatL=[d, e] and(a*-/|¿>|) ePor (e-f\b\) e R we have |c¡| < Jcx|. By

Lemma 6, if S does not satisfy the inductive condition, there is at least one special/.

Suppose/is special. Let£ and h be such that/|è| e Ig = [gi, g2](f\b\ +m1n|c1|)67ft+1

= [«!, «a]. Ifg2>/|a| + ki| then since/is special |c,| < |cx j and hence g2 < ¡cx| + |c,|.

However, since [gx, g2] is contained in the union of two segments of period |crx|,

by Lemma 1, | cg | < 21 Cj | /(« — 2), and ¿2 < « \ci | /(« — 2). Similarly, %i ä mxn \ Ci | /(« — 2),

and n 2?=s + i |at|=^i—^a>(n,iM —3)|ci|. But, since /is special for g<i<h,

(n— l)|a¡| < |cí|, we have h—g^min — 3. If Fis the number of special numbers/

then since« | a¡ | < |¿| for all i by hypothesis, k^(n-F+l)+F(min — 3)=n(l+miF)

-4F+1. If «Zi>l then k^n(l+2F)-4F+l >2n since «^6. If F> 1 then k

^n( 1+2)-4(2)+1 = 3« — 7^2«— 1. Therefore we may assume w1=F=l.

Let the function S be defined by 7¡ = [8(i— 1)+1, 8(i)], and we write S(z') for the

operation " applied to 8(i). First we claim that if for any j, \a¡\ > \ax\ then k^2n.

Since by hypothesis |c,-| < |cx|, we must have è(J—\)>(n—l)\c1\ — k,| and either S(j)

> §(/— 1) or S(j) < |ci| + \Cj\. Hence, by the primitivity of cx and c¡, each of the 2«

integers 3|cx| +«|6|, S(y — 1 ) +1c21 +«|è|, lg/zá« must belong to distinct 7,-.

Next, if |cj| = |cj| then for some u, 8(i— 1) < («—1)1^1 or jcx[ < 8(i). Suppose not.

Then |¿>| >(2« — 2)|cx[ and for each/, |a;| ^ |cx|. Hence /c^2«-l. Now, let/be the

unique special number, and if f^n— 1, let z be the smallest integer such that

7i = [zi + l,z2], S(z'-l)^/|è| + |c1| and [c^| = jo¿j. ReplaceSby

<a¡, at + 1, ak, au ..., a^, b'}.

We will now prove the lemma for this new S which clearly has the same 77 as the

old one; and in addition, either the conclusion holds by Lemma 6 or the unique

special number is now « — 1. Let y satisfy («—l)|è| el,. Suppose |cy| = |ci|. Then

we have [1, |¿>|] of period Jcx[ and for j<i^k, (« — l)|a¡| < |cx|. But n\b\—8(j)

>(«— 1)jox¡, hence k—j^n—l. But j^n so /< = 2«—1. Suppose ¡Cy[ -< |cx|. By

previous arguments, (k—1)—j¡5n—3, hence k—(J— l)fcit— 1. Hence if k<2n— 1

since only («—1) is special we must have |c¡| = |ci| if 1 ̂ z'<n —1.

If |b| ^(« + 1)1^1, counting arguments of the above type show that /c^2«-l.

Hence we have \b\ <8(l)+|c1|, and S(l)>S(2)-|i| >S(3)-2|Z>| > • ■ • >S(«-1)

-(n-2)|*|. Now we may assume that S(i) —(/—1)|¿»| > S(l) — |cx| for l^z'^zz-2.

For if 8(i)-(i-1)|*| g 8(1)+|ci| and 8(z+l)-z|¿>| ^8(1) + |cx| we have MH^al

by periodicity considerations and the inductive condition is satisfied.

Now b=a\z. Also, since 8(n—2) — (n — 3)\b\ > 8(1)-|cj| we must have 8(n — 3)

-(«-4)|6|>|è|-|c1|. Hence (n-3)|e|-|cil<(»-3)kil so (n-3)(n\ci\ + \z\)

<«(«-3)|c1| + |c1| and(«-3)|z|<|cj|. We claim that for l^z'^n-2, W[8(i)+l,

8(z —l)+[¿|]=z. First, a2=zx for some x. But at=xy since x is initial to b and

|y| = |z|. But since «^2, using the periodicity of a2 we have z=y. Inductively, if
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q<n — 3 and the claim is valid for l^z'^a we have a9+1 = z,+1x' (since we have

shown that (n — 3)|z| < ¡c^). But then a1=x'z, + 1.

Now we have a1=xzn_3, è=(xzn_3)nz and aM+r • •a£=zn_2(xzTl-3)'lz. Either

ak is coperiodic with z or («— l)|ate| < |z| or \ak\ + \z\ >(n — 2)\z\ since the terminal

segment of b is zn~2. We will show that each of these possibilities implies that

(»-2)|ak|<|ci|.

If z=yT, ak=y, y primitive, we know that x cannot be a power of y or ax and b

would be coperiodic. Let v be the longest terminal segment of b of period |y|.

We know \v\ < |yxzn-2|. Thus n\ak\=nq\y\ < \y\ + \x\ + r(n — 2)\y\, and (n-l)|afc|

<|x| + r(n —2)|y| = |c1| + |z|^c1+|afc| and so (n—2)\ak\ <\c-¡\.

If (n— l)\ak\ <\z\ then (n—2)\ak\ <\z\ < |ca|.

If |afc| + |z|>(«—2)|z| then \ak\ >(n — 3)|z[ and in order that ax and ak not be

periodic we must have \ak\ + |cj| >(«-1 -\¡(n-3))\ak\>(n — 2)\ak\.

By symmetry, the same argument applies to |an|. Now either (n— \)\üí\ < jcx| for

n < i< k or n\ak\ < \z\ and n\an\ < \z\. The nontrivial case is the former and here, if

k—n^n—2 we have

n 2 |<z.| < 2b|ci|/(»-2)+iK»-3)|c1|/(ii-1) = |Cl|«(/2-3)/(«-2) < 1^1
i = n

contradiction, and Lemma 8 is proved.
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