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Introduction. The line-graph L(G) of a nonempty graph G is the graph whose

point set can be put in one-to-one correspondence with the line set of G in such a

way that two points of L(G) are adjacent if and only if the corresponding lines of G

are adjacent. In this paper graphs whose line-graphs are eulerian or hamiltonian are

investigated and characterizations of these graphs are given. Furthermore, neces-

sary and sufficient conditions are presented for iterated line-graphs to be eulerian

or hamiltonian. It is shown that for any connected graph G which is not a path,

there exists an iterated line-graph of G which is hamiltonian.

Some elementary results on line-graphs. In the course of the article, it will be

necessary to refer to several basic facts concerning line-graphs. In this section these

results are presented. All the proofs are straightforward and are therefore omitted.

In addition a few definitions are given.

If x is a Une of a graph G joining the points u and v, written x=uv, then we define

the degree of x by deg zz+deg v—2. We note that if w ' the point of L(G) which

corresponds to the line x, then the degree of w in L(G) equals the degree of x in G.

A point or line is called odd or even depending on whether it has odd or even

degree.

If G is a connected graph having at least one line, then L(G) is also a connected

graph. For the most part then, we restrict ourselves to connected graphs for other-

wise each connected component can be treated individually.

By L\G) we shall mean L(L(G)) and, in general, Ln(G)=L(Ln-\G)) for «^ 1,

where L\G) and L°(G) stand for L(G) and G, respectively.

Two classes of graphs which have easily determined line-graphs are the cycles

and simple paths. In particular, the line-graph of a cycle is a cycle of the same length,

and the line-graph of a simple path of length «, « ̂  1, is a simple path of length n — 1.

It therefore follows that if G is a path of length n, n J 1, then Ln(G) is the trivial path

consisting of a single point while Lm(G) does not exist for m > n. It is not difficult

to see that if G is a connected graph which is not a path, then Ln(G) exists for all

positive integers «. Hence, if for some graph G, we wish to consider the infinite

sequence {Ln(G)} of graphs, then G must not be a path.

A bridge of a connected graph G is a line whose removal disconnects G, while a

cutpoint of G is a point w of G such that the removal of w and all its incident lines
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results in a disconnected graph. In relation to this, we state the following three

results.

Proposition 1. A necessary and sufficient condition that a point w of the line-

graph L(G) of a connected graph G be a cutpoint is that it corresponds to a bridge

x=uv of G in which neither of the points u and v has degree one.

Proposition 2. A necessary and sufficient condition that a line x=uxu2 be a

bridge of the line-graph L(G) of a connected graph G is that the lines ya and y2 in G

which correspond to Ux and u2 be bridges which meet in a point of degree two.

Proposition 3. A necessary and sufficient condition that the iterated line-graph

Ln(G) of a connected graph G contain a bridge x is that G contain a path ofn+l

bridges, each consecutive two of which have a point of degree two in common.

Eulerian line-graphs. A graph G is called eulerian if it has a closed path which

contains every line of G exactly once and contains every point of G. Such a path is

referred to as an eulerian path.

Eulerian graphs have been characterized by Euler [2] as those graphs which are

connected and in which every point is even. It follows trivially that if G is an

eulerian graph, then L(G) too is eulerian ; furthermore, if G is eulerian, then the

sequence {Ln(G)} contains only eulerian graphs. We now state necessary and suffi-

cient conditions for a graph G in order that there exists a nonnegative integer « such

that Ln(G) is eulerian. Again the proof is routine and is omitted.

Proposition 4. Let G be a connected graph which is not a simple path. Then

exactly one of the following must occur:

(1) G is eulerian,

(2) L(G) is eulerian but G is not,

(3) L2(G) is eulerian but L(G) is not,

(4) there exists no « = 0 such that Ln(G) is eulerian,

where

(1) occurs if and only if every point of G is even,

(2) occurs if and only if every point of G is odd,

(3) occurs if and only if every line of G is odd, and

(4) occurs otherwise.

Corollary 4a. Let G be a connected graph which is other than a simple path.

If the sequence {Ln(G)} of iterated line-graphs of G contains an eulerian graph, then

the degrees of the lines of G are of the same parity andLn(G) is eulerian for n = 2.

Hamiltonian line-graphs. A graph G is called hamiltonian if G has a cycle

containing all the points of G; such a cycle is also called hamiltonian. If C is a

hamiltonian cycle of hamiltonian graph G, then any line of G which does not lie

on C is referred to as a diagonal of C. Clearly, every hamiltonian graph is connected

and has at least three points.
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The following concept will be of considerable use to us. A graph G with a lines,

where a 2:3, is called sequential if the lines of G can be ordered as .y0, x1; ..., xq- lt

x„=x0 so that Xi and xi + 1, z'=0, 1,..., a— 1, are adjacent. Two types of graphs in

which we are interested are sequential, as we now see.

Proposition 5. £z;erv eulerian graph is sequential.

Proof. If G is an eulerian graph, then G contains a closed path P containing

each line of G exactly once, say P: x0, xu ..., x5_1; xq=x0, where x¡ and xi+1 are

adjacent for z'=0, 1,..., a— 1. This ordering of the lines of G serves to show that G

is sequential.

Proposition 6. £z;ery hamiltonian graph is sequential.

Proof. Let C be a hamiltonian cycle of a hamiltonian graph G whose points are

arranged cyclically as, say, v0, vi3..., vp-i, vp=v0. To show that G is sequential, we

exhibit an appropriate ordering of the lines of G. We begin the sequence of lines by

selecting all those diagonals incident with v0 (there may be none). These lines may

be taken in any order, and, clearly, each two are adjacent with each other. We

follow these with the line v0Vi. The next lines in the sequence are those diagonals

incident with v± (again, there may be none). As before, these lines may be taken in

any order. The next line in the sequence is v{v2, followed by all those diagonals

incident with v2 which are not in the part of the sequence already formed. We

continue this until we finally arrive at the line vp-1vp=vp-1Vo> which is adjacent

with the first line in the sequence. From the way the sequence was produced, it is

now clear that every line of G appears exactly once and that any two consecutive

lines in the sequence are adjacent as are the first and last lines. Thus G is sequential.

The primary purpose for introducing sequential graphs lies in the following

theorem.

Theorem 1. A necessary and sufficient condition that the line-graph L(G) of a

graph G be hamiltonian is that G is sequential.

Proof. The result follows by simply observing that the points of L(G) can be

ordered vQ, vu ..., vp _ u vp = z;0, where v¡ and vi + x are adjacent for z'=0, 1 ,...,/> — 1,

if and only if 7(G) is hamiltonian, and such an ordering is possible if and only if the

lines of G can be ordered x0, xu ..., xp_l5 xP=x0, where xt and xi + i are adjacent

for z'=0, 1,.. .,p— 1. This latter condition states that G is sequential.

Propositions 5 and 6 and Theorem 1 yield the following corollaries.

Corollary I A. If G is an eulerian graph, then L(G) is both eulerian and hamil-

tonian. Furthermore, Ln(G) is both eulerian and hamiltonian for all n£l.

Corollary IB. If G is a hamiltonian graph; then L(G) is hamiltonian. Further-

more, Ln(G) is hamiltonian for all «^ 1.
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As with eulerian graphs, we now determine for what connected graphs G which

are not simple paths does the sequence {Ln(G)} contain a hamiltonian graph. Unlike

the situation for eulerian graphs, however, we find that for all connected graphs G

which are not simple paths, the sequence {Ln(G)} contains a (in fact, infinitely many)

hamiltonian graph. A proof of this was outlined in [1]. Before proving it in detail,

we present two lemmas.

Lemma I. If a graph G has a cycle C with the property that every line of G is

incident with at least one point of C, then L(G) is hamiltonian.

Proof. The graph G stated in the lemma is sequential so that, by Theorem 1,

L(G) is hamiltonian. To see that G is sequential, one need only observe that an

appropriate ordering of the lines of G can be accomplished by using the same pro-

cedure as that in Proposition 6 except that after considering all the diagonals at a

given point, we next insert in the sequence all the lines of G which are incident with

that point but with no other point of C. After this, we proceed as before. The

graph G is therefore easily seen to be sequential.

Lemma 2. Let G be a graph consisting of a cycle C, its diagonals, and m paths

Px,P2,...,Pm where (i) each path has precisely one endpoint in common with C and

(ii) for i^j, P¡ andPj are disjoint except possibly having an endpoint in common if this

point is also common to C. Then, if the maximum of the lengths of the Pt is M, Ln(G)

is hamiltonian for all n = M.

Proof. The line-graph L(G) has the same properties as G except that the length

of each of the m paths is one less than in G so that the maximum length of the paths

is M — 1. Thus, we can apply Lemma 1 to LM~\G) thereby showing that Ln(G) is

hamiltonian for all n = M.

Theorem 2. Let G be a connected graph which is not a simple path. If G has p

points, then Ln(G) is hamiltonian for all n^p — 3.

Proof. The proof is by induction on p. Later developments in the proof make it

convenient to investigate individually all the graphs under consideration for which

p = 3, 4, or 5. The only connected graph with three points which is not a path is a

triangle, but this graph is already hamiltonian so that the result follows.

For p=4, there are two connected graphs which are not simple paths and which

are not already hamiltonian. We denote these graphs by GiA and Gi¡2; they are

shown in Figure 1. One readily sees that the line-graph of each of these two graphs

is hamiltonian, and the result is established for p=4.

There are twelve connected graphs with five points which are not paths and which

do not contain hamiltonian cycles. These are also shown in Figure 1. It is a routine

matter to verify that F2(G5ti) and F2(G5>2) are hamiltonian and that L(GSti) is

hamiltonian for i=3, 4,..., 12. This proves the theorem for p = 5.

Let us assume then for all connected graphs G' which are not simple paths and

which have s points, where s<p and p = 6, that Ln(G') is hamiltonian for all
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Figure 1

n-s—3. Let G be a connected graph with/» points which is not a simple path. We

show that LP~3(G) is hamiltonian which, with the aid of Corollary IB, establishes

the result.

The theorem is clearly evident if G itself is a cycle, so, without loss of generality,

we assume G is not a cycle implying the existence of a point v having degree three or

more. By H we shall mean the connected star subgraph whose lines are all those

incident with v, and we let Q denote the subgraph whose point set consists of all

the points of G different from v and whose lines are all those in G which are not in H.

The subgraphs H and Q have deg v points in common but are line-disjoint. We
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adopt the notation G=77 © Q to mean that the line set of G is partitioned by 77

and Q. Also, we denote the connected components of Q by G1; G2,..., Gk, where

Gj has/zj points for z'=l, 2,..., k. Clearly, ~Zpi=p— 1.

If Gt is a path, then Lp<(Gj) does not exist whereas if G¡ is not a path, then 7n(G¡)

is hamiltonian for «a//¡ —3, by the inductive hypothesis.

The line-graph Hi=L(H) is a complete subgraph of 7(G), which, therefore, has a

cycle containing all the points of 77^ Let7j denote the connected subgraph of L(G)

consisting of Hi and all those lines incident with a point of 77j. Thus, 7(G) can be

expressed as 7X © L(d) © L(G2) © • • • © L(Gk), where L(GX) and 7(G,) are

disjoint for ijtj.

Now let H2=L(Ji) and let/2 denote the connected subgraph of 72(G) consisting

of 772 and all lines incident with a point of 772. By Lemma 1, H2 has a cycle con-

taining all the points of 772. Thus, L2(G)=J2® L2(d) ©L2(G2) ©• • -®L2(Gk).

In general, we let Jm denote the connected subgraph of Lm(G) consisting of 77m

and all those lines incident with a point of 77m and let 77m+1=7(7m), where 77m + 1

has a cycle containing all the points of 77m+1 by Lemma 1. The graph 7m(G) can

therefore be expressed as Jm © Lm(Gi) © Ln(G2) ©■ ■ ■ © 7m(Gfc).

We now consider two cases.

Case 1. Suppose each of the components Gl5 G2,.. .,Gk of Q isa. path. (This

includes the possibility that some of these components may be the trivial path

consisting of a single point.)

If k^3, thenPièp-3 for all i. Hence, L"-3(G) = HP.3, which contains a hamil-

tonian cycle. \fk=2 and neitherpx norp2 exceeds/» —3, then, as before, LP'\G)

= 77j,_3. If, on the other hand, k=2 and one component, say G1; has/? —2 points

while G2 is a single point, then 77 and Gx have at least two points in common. Thus

G contains a cycle plus possibly diagonals and j pairwise disjoint paths, 1 Sy^3,

each path having precisely one endpoint in common with the cycle. Since none of

these paths has length exceeding// —4, it follows, by Lemma 2, that7p_4(G) (and so

also 7_P_3(G)) contains a hamiltonian cycle.

If k = 1, then Q is a path having at least three points in common with 77 so that

G consists of a cycle (with some diagonals) and j pairwise disjoint paths, 0^j¿2,

each path having exactly one endpoint in common with the cycle. If 7=0, G

is hamiltonian while ify>0, no path extending from the aforementioned cycle

can have length exceeding p-4, and by Lemma 2, Lp~i(G) is hamiltonian as is

U"\G).
Case 2. Assume the first t subgraphs, 1 £t£k, of Glt G2,. •., Gk are not paths.

Clearly, then, each of G1; G2,...,Gt has at least three points.

If t<k, then Gi + 1, Gt+2)..., Gk are paths, each having at most/»-4 points so

that Lp-4(G)=7p_4©Lp-4(G1)©Lp-4(G2)©---©Lp-4(Gi). Since each Gi;

lèiét, has at most/z-1 points, each subgraph Lp-\Gt) of LP_4(G) has a cycle

containing all points of Lp"4(Gi) by the inductive hypothesis.

For each z'= 1, 2,..., t, there is clearly at least one line joining a point of 77p_5
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to a point of L"~5(Gi). We now show that for each i such a line exists with the added

property that it is adjacent with at least two lines of Lp~5(Gi).

Suppose t = 1 so that Gx is the only component of Q which is not a path. If k > 1,

then Gx has at most p — 2 points so that L" ~ s(Gx) contains a hamiltonian cycle and

clearly such a line exists. If k = 1, then Q = GX and all lines of H are incident with

points of Gx- Since each line which joins Hm to Lm(Gx) results in one or more lines

joining Hm + j with Lm + 1(G1), there are at least three lines joining Hp _ 5 and V ' h(Gx).

If no such line is adjacent with at least two lines of V * 5(Gj), then each of the three

or more lines joining Ffp_5 and Lp'5(Gx) is adjacent with precisely one line of

Lp~5(Gx). Hence, Lp~5(Gx) contains at least three lines which are incident with

points of degree one, i.e., Lp~s(Gx) contains at least three bridges. By Proposition 3,

Gx must contain a path of p-4 bridges for each bridge of Z,p"5(Gi). Since the

bridges of Lp~5(Gx) are incident with points of degree one and since LP_5(G1) is not

itself a path, the three or more paths of Gx are line-disjoint. This implies that Gx

contains at least 3(p-4)+l points but since /> = 6, 3(p-4)+l >p— 1, which

contradicts the number of points in Gx-

Suppose next that f> 1, i.e., suppose Q contains two or more components which

are not paths. Therefore, Gx and G2 are not paths, and each contains at most p-4

points. If there is a line joining a point of Hp.h to a point of F"-5(G1), say, which is

adjacent with only one line of Lp_s(Gi), then Lp'5(Gx) contains a bridge implying

that Gx contains a path ofp—4 bridges, but this contradicts the number of points

ofGx-

We therefore conclude that for each /= 1, 2,..., t, there exists a line joining

Hp_& and Lp~5(Gi) which is adjacent to two lines of LP~5(G¡). This implies that for

each /=1, 2,..., f, there is a point ut in #p_4 adjacent to both endpoints of a line

in Lp~i(Gi). It is not difficult to see that w¡#m; for i^tj. Let xtl and xi2 be lines of

£p-*(G) which join «¿ to the distinct endpoints of a line y¡ of Lp~i(Gl).

We now claim that Lp~i(G) is a sequential graph so that LP~3(G) is hamiltonian.

Recall first that L"-\Gi) for 1 =/= t has a cycle containing all the points of Lp~i(Gi)

and so is sequential by Proposition 6. Thus for 1 £i¿ t, the lines of Lp'i(Gi) can be

arranged in a sequence s¡ such that each pair of successive lines in j¡ are adjacent

and the first and last lines in j¡ are adjacent. Let z¡ be the term following y¡ in s¡

(or the first term of s¡ if y¡ is the last term). Now y is adjacent to both xn and xi2,

and zf, being adjacent to y(, is adjacent to one of xn and xi2. Therefore, by cyclically

permuting the terms of s¡ if necessary and reversing their order if necessary, we

can convert s¡ into a sequence s[ whose first and last terms are adjacent to xtl and

xi2, respectively. Now Fj,_4 has a cycle C containing all the points of//p_4 and

every line of /p_4 is incident with at least one point of C. Therefore, the procedure

of the proof of Lemma 1 enables us to order the lines of Jp_4 in a sequence (s, say)

such that each pair of successive lines in s are adjacent as are the first and last

lines. Moreover, since xn and xi2 are lines incident with the point w¡ of C and

with no other point of C, it is evident that, in applying the procedure of the proof



566 GARY CHARTRAND

of Lemma 1, we can arrange the lines incident with u¡ so that xi2 will immediately

follow Xu in s for z'=l, 2,..., t. If we now insert the sequence s[ between the

terms xa and xi2 of s for z'= 1, 2,..., t, the resulting sequence has the properties

required for V ~ 4(G) to be a sequential graph. This completes the proof.

The preceding theorem now permits us to make the following definition. Let G

be a connected graph which is not a simple path. The hamiltonian index of G,

denoted «(G), is the smallest nonnegative integer « such that Ln(G) is hamiltonian.

According to Theorem 2 then, if G is a connected graph with// points which is not a

simple path, then h(G) exists and h(G)¿¡p — 3. This bound cannot, in general, be

improved since for each p è 3 the graph whose point set is {z;f [ 1 ̂  i^p} and whose

line set is {viv3} u {vm+i \ Hi^p — l} has a hamiltonian index of// — 3.
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