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Introduction.   If f(x) e Lp(En), 1 gp g oo, n = 2, and a > 0, define Jaf by

(Jafy(x) = (l + \x\2)-°'2f(x)

where * denotes the Fourier transformation in the sense of tempered distributions,

the Fourier transform of an integrable function/being defined

f(x) = (2n)-* f  f(z) exp [-i(x-z)] dz.
Je"

J"f is called the Bessel potential of order a of/, and it is well known that J"f=f* Ga

where Gœ = 0 and J£n Ga(x) dx = \.We denote by L\ all Lp functions/=7°#=<f>*Ga

where j>eLp, and write <f>=J~af ¡|/||„,a= ||<¿[|p. For a discussion of the properties

of the Lp spaces, we refer the reader to [1] and [2].

The purpose of this paper is to generalize the following theorem of E. M. Stein

stated in [7].

Theorem. Let 0 < a < 2, 1 <p < oo and

J\z\>s \z\

Thenfe Lp if and only iffe Lp andfe converges in V norm as e -> 0. Moreover, iff

is the limit offe then

4..J/L« S ||/||p+||/||pá2*p.„||/|1>...

Although it was not stated in [7], Stein was well aware that the theorem remains

valid for p=l, and that for /? = co the necessary and sufficient condition that

feLa is that/eL00 and ||/c||„ be uniformly bounded.

Stein's theorem may be generalized as follows. Let 0<a<2 and

ux) = i»- r  [f(X-Z)-f(X)] widz
J\Z\>E \Z\

where z'=z/\z\ for \z\ #0 and Q is a real-valued function which is homogeneous of

degree zero and infinitely differentiable(2) on 2={z: \z\ = 1}. In addition, Q satisfies
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Jj,z'jQ(z') dz'=0 for each j=l,..., n, z = (zly..., zn), when 1 ̂ a<2. Then

Theorem 1. IffeLp, 0<a<2, 1 <p<co, thenf converges in L" to a function f

with ||/||páCp.<r.nll/|p,(r- 7/£2= 1, then the result is true for p= 1 and its analogue for

P = od is that ¡/II „o is uniformly bounded.

Conversely, if fe Lp, l<p<co, and each

(»-f       [f(x-z)-f(x)]£ßadz

converges in Lp to limit / where {£2¡} is a normalized basis for the spherical har-

monics of some fixed degree m, mi=l when l^o<2, then feLva and ||/||P-a^

cP.a.mŒi II/IIp+ II/Ip)- lfm = 0 the result is valid'for p= 1 and its analogue for p = co

is that fe L" iffeL" and ||/^||« is uniformly bounded.

Before proceeding, we note that when a=l and l<p<cc, the first part of

Theorem 1 is a rather simple corollary of the fact that singular integrals preserve

L" spaces. In fact, approximating L\ by the class C™ of infinitely differentiable

functions with compact support and integrating by parts (see [11, Lemma 1 of §2]),

it is not hard to see that/(x) converges in Lp to

-2 P-v. (2-)-« £n f(x-z) SjdjÛ dz

where Qtf) = z'jCl(z'), f(x) = (8f¡8x¡)(x).

Although we will restrict a to the range 0 < a < 2, Theorem 1 has analogues for

larger a. If k^ 1 is a fixed integer, let/eLg-j, 1 <p<ao. If ß=(ßx,..., ßn) where

theßj ave nonnegative integers and \ß\=ßx + ■ ■ ■ +ßn, ß\=ßx\- ■ • /}„!, zß=zfi- ■ -zfr

then for \ß\£k—l, letfe(x) denote the L" function which is the derivative of/of

orderß. For k — 1 <<x<k+ 1, consider the truncated hypersingular integral

Ux) -W-f       [/(x+z)-    2    *«]|S*
J|2|>£  L l/S|Sfc-l    P- J     lzl

where O is a real-valued function which is homogeneous of degree zero and in-

finitely differentiable on J_. In addition, Q. satisfies j"2 z'"Q(z') dz'=0 for all |j8| =k

when k S <* < k + 1. Then

Theorem 2. IffeLp, l<p<co, k-\<a<k + l, then fe converges in Lp to a

function j" with ||/||p g Cp.a.nll/llp.*-
Conversely, iffeLvk_x, 1 </?<oo, a«i/eac/7

J\z\>£ L Itflsfcí-l    P!        J   \Z\

converges in L" to ft where {L1¡} is a normalized basis for the spherical harmonics of

some fixed degree m, m # k, k — 2,... when k^a<k+l, thenfe L\ and
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Theorem 2 also has versions for/>= 1 and/>=oo, but they depend on k and a and

we shall not give them explicitly.

In proving Theorem 1, we will take for granted the basic facts from the theory of

singular integrals (see [4]). In addition, we use several formulas for spherical

harmonics. In particular, if Q(z') is sufficiently smooth and has mean-value zero on

2, and its expansion in spherical harmonics is 2" Ym(z'), then the principal-valued

Fourier transform Ê(z) of K(z) — \z\~nO.(z') is given by

A» = pmYm(z'),    ym = (-,)*r(2)/2^^),

where

Ñ.(z) -    lim    i»-n f K(y) exp [-i(y ■ z)] dy.
s-»0;o>-.eo Je<\y\<a

Moreover, if {ü¡} is a normalized basis for the spherical harmonics of a fixed

degree m ̂  1 then 2¡ Q?(x) is a constant depending on m [6, p. 243(2)]. An im-

mediate corollary is that if feV, \<p<co, and Rif=p.v. (2n)-nf* (Q.i(x)/\x\n)

then/=cm 2 R?f almost everywhere and, in particular, \\f\\p¿cmyP 2 1-tVIIp-

Finally, the following formula will be used repeatedly (see [6, p. 247 and p. 178]):

(0.1) f Ym(z') exp [-is(x'-z')} dz' = »W%^ Ym(-x')
Js s

where x' is a unit vector, Ym is a spherical harmonic of degree m SO, y=(n —2)/2,

and 7V is the Bessel function of order v.

The following lemma, stated in [7], will also be essential.

Lemma (0.1). If a>0 then

\x\" = (l + \x\2)al2dß,   (l + |x|T2 = \x\"d&+dr

where dß, dô, dr denote the Fourier transforms of finite measures dp,, do, dr.

We will prove the sufficiency of Theorem 1 in §1 and the necessity in §2. We also

list several remarks of some independent interest at the ends of both sections.

1. In this section, we prove the sufficiency of Theorem 1. Thus let

fe(x) - f»"» f       U(x-z)-f(x)} r§S& dz
J|2|>£ \Z\

for 0<<x<2, where Q is homogeneous of degree zero, infinitely differentiable

on |*| « 1, and orthogonal on \z\ = 1 to each z¡, j= 1,..., «, when 1 ̂  a < 2. Hence

^(z')=2? Ym(z') and F1=0when 1^«<2.

We will suppose for the time being that/e C? and show that for 1 <p<oo

(a) fE converges in Lp as e -* 0, and

(b) ||/.Lác,...o||/L..
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To prove this, we will essentially compare/£ with the sum of the Poisson integral of

7 ""/and the Poisson integral of a singular integral of J~"f It is the presence of the

singular integral which generally prevents (a) and (b) from holding when/>= 1 and

p = oo, and we will handle these cases later. The singular integral will be generated

by a kernel

|*|-»T <4«rw(*'),
i

and we begin with a discussion leading to the determination of the d£\

For/6 Co, write fs = Äe + Be where

Äe(x) = i»"» f      [f(x-z)-f(x)] Äg dz
J|2|>e \z\

and

CO

/• Z  ym\z ) »    /* y /-'^

i?tw = or*     /(*-*) ̂ r^ & = orn 2     /(*-*) tsS ^-
Jlal >e |Z| i   J|j|>t lzl

We will compute fc=Ä7 + B7 and lim^of?-

Ä7(x) = f»-»/(jc) f      Y0(z) [exp[-i(jcz)]-l] JL~
J\z\>e \z\

Using polar coordinates z=(s¡\x\)z', e\x\^s<ao, |z'| = l, and applying (0.1) we

obtain

Ä?(x) = (2Tt)-«>2f(x)\x\«Yo(-x')wo(e\x\),

where for r>0, y=(«-2)/2,

Now

¿TO) = (2»)-»/(x) f f       Ym(z') exp [-/(*•*)] rJW
1   J\z\>c \z\

and in the same way

B?(x) = (27r)-"2/W¡x|a2/mym(-x')wm(£|^|),
1

where for r>0, y-(n-2)¡2,

wjr) = <>(/) = J" s-«-"-V»+^) &■

If 0<«<1  and w=l, it follows from  [10, p. 391 (1)], that limr_0 wm(r) =

j«. J-<r-y-iym + y(J) ¿j exists and equais 2-°-*-T((m-a)/2)/r((/w-|-M-|-a)/2). If on
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the other hand 1 ̂  a < 2 then Yx=0 and limr_0 wn(r) again exists and has the same

value provided m 2:2.

Writing s~a~1= —a-1(dlds)(s'a) and integrating by parts,

„„(,) = -.-. {.-(^.-j^-) |; +[ s->-°jr+1(s) ds]

by [10, p. 45]. The integrated term is 0(s~a) and so tends to zero as s -^ co. On the

other hand, by [10, p. 40 (8)], the integrated term equals

r-'V |';7±n = 0(s-°-v+2) = Of/-")
Yw!r(y+»J+1)

for small s. Since 2-a>0, it follows from [10, p. 391 (1)](3), that limr^0 wo(r)

= — a-1 J" s~f~"Jr+1(s) ds exists and equals

--'*-'fiî)/r(ïTî) - 2-'-'r(-i)/r(^)-

Let

MÍ« = lim H#>(r) = 2—"-1r(^)y/r(î^±i) and cjf = (27r)-«<2(-/)**•<«>

and recall that when lga<2, m^"' and c^ are not defined and Yx = 0. If S(z')

= 2o" cífym(z') (<:<?> = 0(1»-"«-*) by [5, p. 47 (5)]), we set

f(x,e)= f /(x+z)[|z|aS(z')exp[-e|z|]r¿z.
Je"

Lemma (1.1). If fe C" and 1 </»<oo then

(a') /£(x) —f(x, e) converges in Lp as e -> 0 and

(b') !/.(•)-/(-, «)I,ácPf<t.al/l,.«.

This lemma will establish (a) and (b), for writing S(z') = c+2î> Cm^mCz')

= c + F(z'), c = cPY0(z'),

f(x,e) = c\   /(z)|z|aexp[-/(x-z)-£|z|]¿z
Je"

+ f  /(z)|z|aF(z') exp [-i'(x-z)-e|z|] dz.
Je*

By Lemma (0.1), f(z)\z\a = (J~"f* dp.)" and since R(z') is the principal-valued

Fourier transform of

\z\-"2d^Ym(z'), 4a) - CSV;1,

(3) When n=2 (y=0), it is necessary to integrate w0(r) by parts twice before applying this

formula.
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it follows that/(x, e) is the sum of the Poisson integral of c(J~af* dp.) and the

Poisson integral of a singular integral of J~af* dp.. Since J~afeLp and 1 <p < oo,

f(x, e) converges in Lp as e^O and ||/(x, £)||p^cp,<r,£i||7-a/||p = cp,a,n||/||p>a.

We begin proving Lemma (1.1) by computing [|z|aS(z') exp [ —e|z|]]^.

[|z|"Ym(z')exp [-«|*|]r = O)"" f   |v|*W)exp [-*\y\-i(z-y)] dy
(1.1) Je"

= |*| —\2n)-'H^\el\z\)Ym(-z'),

where v^\r)=¡Q exp[-rs]sr+a+1Jm+y(s) as, r>0. We obtain this  by  changing

to polar coordinates v=(s/|z|)v' and applying (0.1). In particular,

f(X, e) = (2rr)-»  f   f(x + z)Ke(z) dz,

where

Kc(z) = Zw%V°Xel\z\)Ym(-z')l\z\«+°.
o

Lemma (1.2). K\r)\^cn,ar—a.

For |7m+y(í)| É1 and \Jm + y(s)\ áa"+T imply |7m+y(s)| gi" so that

|i#>(r)| ^  f^expt-rslj2^^1* = r'%~m P exp [-t]t27+a+1 dt.
Jo Jo

For each fixed e>0, [\z\a exp [-«|z|]]~ is bounded as the Fourier transform of an

integrable function ; moreover by [10, p. 385 (2)], and [5, p. 76 (9)], v0(r) is bounded

as r -*■ 0. Hence for fixed e and large \z\, it follows from (1.1) that [\z\a exp [- e|z|]]~

-0(|*| -n~a) and so [\z\a exp [-e\z\]r eL(En). Thus J> [\z\a exp [-e|z|]r </z=0,

or what is the same thing, J"£n v0a)(e/|z|)|z|-n-<r dz=0. Since J2 Ym(z') dz'=0 for

m ̂ 0, we obtain J|z|. j ^T£(z) dz=0 (that we may integrate Ke termwise is clear from

Lemma (1.2)), and

(1.2) f(x,e) = (2n)-¡   [f(x+z)-f(x)]K,(z)dz.
Je"

Lemma (1.3). |<V<f(r)-1| úA{[(m+ \)r]ll2 + [(m + l)rf'2} for all m i/0<«< 1,

and for all m^\ if 1 ¿a < 2. In any case, A is independent of r and m.

Lemma 3 was proved for a= 1 in [11], and the proof for other a is similar. For

r^\, \w%V£~>(r)-1| úAn¡a by Lemma (1.2), and Lemma (1.3) is established in this

case. By [10, p. 385 (2)], and [5, p. 59 (10)], if m>a+1,

W) = 2-"->r(w+«+a)/r(w+"+a+1)r(^pl)

I     ¡(.m + n + a-UI2(-l _*Mm-or-3)/2

Jo rr2_^¿ym + n + cí>l2
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Hence for m>a+ 1, vm(r)¿vm(0)= l/<> by [5, p. 9 (5) and p. 5 (15)]. For m> a + 1

and 0<r<-2-, it follows exactly as in [11, Lemma 6, §2], that

Ka)"<f(/)-l| = KV^m-^Xr)]

= 0{[(w+l)r]1/2+[(m+l)r]3'2}.

It remains only to prove the same estimate for m¿<x+ 1. Hence for 0<a< 1 we

must consider the cases m=0, 1, and for 1 áo¡<2 the cases m=0,2.

Suppose 0 < a < 1 and write

/»oc

*r(r) = jo exp[-rs]s°-ijs(s*+2Jy+2(s))ds

by [10, p. 45]. Performing an integration by parts,

wfVfXO-l = rw[aV2a\r)+i(l -«)w?> f" exp [-rs]sa+rJy+2(s) ds- l\.

By (1.3), \rW-fv2a'(r)\^Aainr^Aa,nr112. By [10, p. 385 (2)], and [5, p. 59], and an

argument practically identical to that given for m>a+l, the expression in curly

brackets is 0(r1/2-l-r3'2), 0<r<^, and the lemma is proved for0<a< 1 and m=\.

For 0<oc< 1 and m=0, we can use a similar argument after integrating v(£\r) by

parts twice.

The case l=a<2, m = 0 and m = 2 are analogous, and Lemma (1.3) is proved.

To prove Lemma (1.1) we need one more fact.

Lemma (1.4). lffeC% then

(0 ||/(x + z)-/(x)||p = c||/||,s|z|*

if0<ß=l and 1 <p<co,

(ii) ||/(* + z)_/W- J Zj iÇ (x)|   ^ c||/|p.Ä|z|«
II j = l      v*i        ||p

if l eßa2 and 1 <p<ao, and

(¡Ü) \\f(x + z)+f(x-z)-2f(x)\\p = c\\f\\p,Mß

if 0<ß<2 and 1 ̂ /?goo, h7//z c independent off.

When (8 is an integer and 1 <p<œ, Lemma (1.4) follows from the identification

of L\ with the classical Sobolev space of functions with partial derivatives up to

order ß in L". For all other values of ß and p, Lemma (1.4) follows easily from

writing/^"(y-"/) = (./-"/) * Ge. See [2] for similar statements.

Returning to the proof of Lemma (1.1), let us first suppose that 0<a< 1. By

Lemma (1.2) the L" norm of the part of (1.2) extended over |z| <e is majorized by a

constant times

(1.4) f       \\f(x + z)-f(x)\\p(el\z\)-«-"\z\—"dz,
J\z\<z
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which by Lemma (1.4) (i) is in turn majorized by

:||/«,.ie-»-« f       |z|'<fe = c'|]
>|z|<«

for any 0<j8^ 1. Choosing first ß=a and then ß= 1, we see (1.4) is majorized by

c||/|PiB and tends to zero with e, respectively.

On the other hand, if 1 =a<2 then Yx==0 and the part of (1.2) extended over

|z| < e is unchanged if we replace f(x + z) —f(x) in the integrand by f(x+z)—f(x)

— 1?=i z/d//3x,)(x). Applying Lemma (1.4) (ii) and arguing as above with ß=a

and ß = 2 respectively, we see the Lp norm of this part is bounded by c||/||p,a and

tends to zero with e.

Hence since

fe(x) = (27T)-" f       lf(x+z)-f(x)] 2 Tm(-z)|z| —« dz,
Jia\>e 0

Lemma (1.1) will follow once we show that the Lp norm of

(1-5) J      U(x+z)-f(x)] J YJi-z')\w%V«(^ -1] |z| —« dz

is bounded by c||/||Pja and tends to zero with e. If 0<a<l, Lemmas (1.3) and

(1.4) (i) imply the Lp norm of (1.5) is majorized by

C||/||p,«f \z\°(el\z\y>2\z\— « dz = C'lf\\,.*-
J|2|>£

On the other hand, for fixed S > e it is majorized by a constant times

f ||/(x + z)-/(x)||p(e/|z|)1'2|z|-'«-^Z+||/||!,   f {*l\z\y*\z\-*-dz
Je<tz\<ô J\z\>ô

= cJ/IIp.!*1'2 [-^m+cAfy2,

and so tends to zero with e. If 1 ̂ a<2, we replacef(x+z)-f(x) by f(x+z)—f(x)

— I7=i zi(8flSxj)(x) in the integrand of (1.5) and argue in the same way.

Having established (a) and (b) for fe Q?, we now claim they hold for any

feLp. For if feLp, pick/ e Q" such that/ ^/in Lp. Then for each fixed e>0

(fk)7 ->fs in Lp by Young's inequality. Since ¡(/¡¿rllpácl/Jp,,, we see by making

k^oo that (b) is true for any feLp. Gi\enfeLp, pick geCS with ||/—g[|P((r

arbitrarily small. With h=f-g,

||/£l-/2|p = |l«x-l*a||p+||Ä,1L+||/ifil|1,

^ lll£l-|£2llp + 2||«|p>ir.

It follows that/ converges inF" to a limit/and ||/||p^cp>íí>n||/||Pt(r for any feLp.
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Our result also has versions for the cases p = 1 and/?=oo provided Q = 1. Consider

first/»-1, 0 = 1 and/e Cf. Then

/(*,«) = c0a> f /(*+*)[|*|«exp[-e|*|]r<fe

(1.6) JE"
= %j   [/(*+*)+/(*-*)-2/(x)H|*|««rp[-«|*|r<fe

'lfimiis the Poisson integral of J~"f* dpeL\En). Since

/.(*) = ̂ P  f [f(x + z)+f(x-z)-2f(x)] T-èy

the remainder of the proof that/£ converges in L1 and ||/e||i^c|/|i,a for feL\

follows the lines of the argument for 1 <p<ao, using Lemma (1.4) (iii) with ß=a

and a < (8 < 2 respectively.

In case /?=oo and Q = 1, the approximation argument used above fails. However,

iff'eLa we can still form (1.6) since/eL" and [\z\a exp [ —e|z|]]~ el1. Moreover

since f=(J~"f) * Ga, Lemma (1.4) (iii) is valid for/> = oo even though/£ C™, and

it follows as usual that \\fe(-)-/(-, e)\\x¿c\\f\\a¡a. To show ||/£||ooác||/|U,a it is

therefore enough to show that f(x, e) is a constant times the Poisson integral of

J-"f* dpeL". If «(z)=«(e, z)= \z\a exp [-e\z\] then since f=(J~"f) * Ga,

¿/(*, e) = j[j(J-"f)(x+z-y)Ga(y) ¿v]¿(z) dz

= J[JGa(y+z)h(z) dzyj-*f)(x-y) dy

= j [JGa(z)h(z) exp [/(vz)] áz](7-°/)(*-v) dy.

However,

Jzl"
Ga(z)«(z) = (i + |z|2)g/2e*P [~«l*|] = IK«.*)]"

where p(e, z) denotes the Poisson integral of dp.. Since Gah e L1, we obtain by

Fourier inversion

f(x, e)lc0a) = p-(e, X) * (J-af)(x),

and changing the order of integration we see f(x, e)/c0a) is the Poisson integral of

J-"f*dp..
We conclude §1 with several remarks.

(1) Theorem 3. If feLa, l<p<co, 0<c¡<2, and Q. satisfies the hypothesis of

Theorem 1 then

limfs(x) = lim Í»- f      [f(x-z)-f(x)) £&dz
«-0 *-»0 J|2|>£ \Z\n
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exists and is finite almost everywhere. The result is also valid for p = 1 provided

iisl.

The proof is similar to that given above and we shall be as brief as possible.

Lemma (1.5). If feLpa then for almost every x

(i) f        |/(x + 2)-/(*)| dz = o(e« + ")
J\z\<e

i/0<a< 1 and l<p<ao,

dz = o(en+a)(ii) f      \f(x+z)-f(x)-^Zj^(x)
J\z¡<e | y = i       °Xj

if 1 - a < 2 and l<p<co, and

(¡U) f \f(x + z)+f(x-z)-2f(x)\dz = 0(e^")
Jlz\<£

if0<a<2 andp=l.

For a= 1, (ii) is a consequence of Theorem 12 of [3] and the identification of Lp

with the classical Sobolev space. If a is not an integer, 0<a<2 and feLpa for

1 <p<oo, then J~afeLp and therefore satisfies

(•" f       \(J-af)(x + z)-(J-af)(x)\pdz\'P = 0(1)

almost everywhere. By Theorem 4 of [3], f=Ja(J~"f) satisfies (i) or (ii) almost

everywhere. The proof of (iii) follows from the method of the proof of Theorem 4

of [3] and we omit it.

Lemma (1.6). IffeLp, 1 Sp<°o, 0<a<2, and £1=1 when p=l, then

L(x)-f(x,e)^0

as e -* 0 at each point where the conclusion of Lemma (1.5) is valid.

Proof. Suppose 0<a< 1 and 1 <p<oo. Then from Lemmas (1.2) and (1.3)

\fc(x)-f(x,e)\ S Cljg    c \f(x + z)-f(x)\ (^y

-4-,>J/(*+z)-/wi(r)

\z\-n-adz

1/2

+ c2 I        |/(x+Z)-/W||nl    \z\-»-'dz.

The first integral on the right tends to zero with e by (1.7), and the second is major-

ized by a constant times

!íí +f       \f(x + z)-f(x)\ {z]nt+J-
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For fixed 8>0,

£i/2 f     |/(*+z)_/(x)|     ¿L_ = 0(ei/2)
J\z\>i \z\

while if G(<)-Jw«, l/(*+z)-/(*)! & then

.*« f \f(x+z)-f(x)\       *+m = «*<« f-^
Je<|z|<(5 |z| Je  *

Cl fn + « + l/2    / J    uv/r» + « + 3/2

Since G(í ) = o(rn+a) as í -*■ 0, the lemma follows in this case. The proof for 1 ̂  a < 2

and 1 <p < oo is similar using Lemma (1.5) (ii) and the orthogonality of Q. to poly-

nomials of degree 1. When p= 1 and Q = 1, we use Lemma (1.5) (iii) and argue as

above.

To prove Theorem 3, we recall that for/e Cô,f(x, e) is the Poisson integral of

the sum of a constant times J~"f* dp. and a singular integral of J~af* dp. By

Lemmas (1.2) and (1.3) AT£(z) belongs to allL", 1 ̂ .q^co, for each e, and since Co is

dense in Lp, 1 ̂ /? < oo, it follows/(x, e) is the Poisson integral of an Lp function for

any feLp (£2 = 1 ifp = 1). Hence/(x, e) converges almost everywhere and Theorem

3 follows.

(2) The assumption that Q. is infinitely differentiable can be considerably relaxed

in both Theorem 1 and the preceding remark. This will be the subject of a con-

tinuation of this paper to appear in the future.

(3) Finally it was shown in [11] that when a = \,f(x, e)= — 2"=i/a*> e) when

fix, e) is the Poisson integral of p.v. (2v)-n(8fl8xi * K¡), Kj(x) = \x\-nx'¡Q(x'),

fe LI, l<p<co.

2. In this section we will prove the necessity of Theorem 1. Let us again suppose

for the time being that/e C" and consider (see §1)

f7(x) = (2TT)-«>2f(x)\x\"Z(-irwne\x\)Ym(x'),
o

which converges pointwise tof(x)\x\" 2ó° c^Ym(x'). If/is the limit in L2 of/£ then

by the Parseval-Plancherel formula,

t(x)=f(x)\x\"2c^Ym(x')
o

= c0"> Y0(x')f(x)\x\°+f(x)£(x)\x\\

where £(x) is the principal-valued Fourier transform of K(x) = \x\ ""2? <4a) Ym(x').

Suppose Q(x')= Ym(x') for some m = 1. Then

(2.1) t(x) = dL*\x\°f(x)[Q(x')l\x\T
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and by Lemma (0.1), if/'-p.v. (f* Cl(x)l\x\n),

(2.2) J'f = (lRa))(/* do) + (2TT)-»(f' * dr).

Taking Lp norms, 1 <p<co, and observing that J~af' = (J~af)',

\\(J-°f)'\\PÉd(\\f\\p+\\f\\P),   c = cp,a.m.

Taking successively for D each element Q¡, z'= 1,..., Mm, of a normalized basis for

the spherical harmonics of degree m and letting/(jc) denote the limit in V of

(2*)- f      [f(x-z)-f(x)]£0-adz,
J\zl>s \z\

we obtain (see the introduction)

|/||p,a=||y-</||pgc/2ll^||p+||/||p),

c=cp>a>m. Moreover, since ||/||p^cPtJ/||p,a for feLp and C" is dense in

Lp, l<p<co, there is a constant c=cPtC,t„ such that for any feLp

(2-3) c-i\\f\\p.afíZ\\fi\\p+\\f\\píc\\f\\p.a.
i

Here we have assumed of course that m = 1 when 0 < a < 1 and m ̂  2 when 1 g a < 2.

Suppose now that feLp, l<p<co, and each

(2*)- f       [/(*-*)-/(*)] i^S <fe = f»"» f      /(x-z) ^ <7z
J|2|>£ lZl JUI>C lZl

converges in Lp to a limit/, where {D.¡} is a normalized basis for the spherical

harmonics of a fixed degree m ^ 1. Pick 4> e ¿f (the Schwartz space of rapidly

decreasing functions) with 4> = Q and j<f>(x)dx=l and set <f>i(x) = B~n4>(xlo), S>0,

/(*, §) = (/* M*)- Then

JL./<*-*8) P * - L. If,*--»** ♦] P*
■¿¡IL-A,-'-*lft *]**»*

converges in Lp as e -> 0 to J"£n/(x- y)<^( v) ¿v, whose L" norm is bounded by

ll/¡U¿li = IL/ÏL f»1" all §>0. Since/(x, S) eL£ for each fixed 8>0, it follows from
(2.3) that

\\J-af(x,8)\\pZc(Z\\fi\\P+\\f\\P).

Pick 8k->0 so that J-"f(x, 8fc) converges weakly to h(x)eLp. Then J~"f(x, Bk)

converges to h(x) in the sense of distributions. If g=J'"f ge&" (the space of

tempered distributions), then

[j-af(x, hk)r =f(x)(i+\x\2r2i<i>6k(x)r = «aw.
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Since 4>(8kx)—$(0) = 4>(8kx)-l and all its derivatives are bounded and converge

uniformly to zero on compact sets, [J~"f(x, 8k)]~ ->| in the sense of distributions.

Hence J'af(x, 8k) -* g as distributions, and therefore the action of g on a function

t¡> e Sf is given by J"£n h(x)fax) dx. Since heLp,feLp and the theorem is proved in

this case.

The case O = 1 and 0 < a < 2 is practically the same. For if fe C" and f(x) is the

limit of

fe(x) = i»"»  f [/(*-z)-/(*)] r^,
J|z|>e lzl

then/"(x) = c0a)/(x)|x|a and the analogue of (2.2) is

(2.4) J-°f=a(f*do) + b(f*dT),

where a and b depend only on a and «. Hence for/e7£, 1 <p<ao,

c-ItIp.«* II/IIp+I/Ip*c|I/IU

The remainder is similar to the proof above and we obtain that/e Lp if/e LP and/£

converges in Lp, l<p<oo.

Again the results have analogues for p= 1 and/? = oo provided we take 0=1. In

fact for p= 1 and 0=1 the argument just given is still valid, if we use (2.4) for

f(x, 8) to show J~af(x, 8) converges in L1. For p = oo and 0=1, however, it must

be modified.

Let/e7aœsothat ||/£||„^C,

f(x) = (2»)-» f      [/(*-*)-/(*)] |-^

Choose efc -»■ 0 so that/£jc converges in the weak-star topology of 7°° to a function /,

11/11 „ ^ C. We claim there are constants ß and è depending only on a and n such

that J~af=a(f* do) + b(f* dr) almost everywhere. If / e ST and i/> e Sf, let </, 0>

denote the action of / on fa, and for any g, let gi(x)=g(-x). Then

f (y-«/)0 dx = </-«/, ^> = </, (i+|x|2r'2^>
Je"

-</,[(i+WTVir>
= </> a(<Ài * ¿k)i+¿#i * ̂ )i>

= a      fOPi * d<r)i dx + b      /(</>! * dr)i dx.
Je" Je"

Since ¡Enf(fa_ * dr)i dx=\E* (f* d-r)^> dx, our claim will follow if we show

f(4>i * da)i dx —       (/* do)4> dx.
Je" Je"



434 R. L. WHEEDEN [December

Taking Fourier transforms it is easy to see that & = ($)x and 4>(x+y) = [<fi(x+y)]~.

Moreover, jEnfetcijidx=$Enf$Ckdx, jEn fektfi dx ^>- jE„ fy dx by the definition of /

and ¡E*fi¡iClcdx^-¡Enf>¡idx since &„ converges to $ in L1 (cf. Theorem 1 with

p=l, Í2=l) and/eF". Hence jEnßpdx = §Enfijidx and

f f(h*do)1dx= f   do(y) f  f(x)U-x-y)dx
Je" Je* Je"

= f   do(y) í  f(x)}(x+y)dx
Je" Je"

= f  My) í AxMx+yW dx
Je" Je"

= í My)¡ f(x)Kx+y)dx
Je" Je"

=  f   0(x)¿x f   /(x-v)¿<7(y),
Je" Je"

which establishes the claim. Taking L°° norms, it follows ||/||»,aác'(C-l-||/||co)

for/6L% with l/.l.£C
Suppose now that/ei,00 and ||/^||w gC. Let/(x, 8) = (/* ^d)(x) where ^¿ is the

approximation to the identity introduced earlier. Then ||/(x, S)||œg ||/|U,

\(f(x, S))£~ || =0 = IIC/, * &)|» ̂  l/.ll. ¿C, and/(x, 8) €Z". By the above,

!!/-"/(*,8)IL sc(c+\\f\u

and we can pick Sk such that J~"f(x, Sk) converges in the weak-star topology

to h(x) eLx.lt now follows as usual that/eF".

Remark. We add one final remark concerning the A(a, p, q) spaces. For the

definition and properties of these spaces, we refer the reader to [8] and [9].

If fe L% n A(a, p, q) where 1 ¿p < oo, 1 ̂ q = co, and 0< a < 2 then fe A(0, p, q)

and ||/||A(o.p,«ác||/||A((rtPf,) with c independent of/ Here of course Q=l if p = \.

Moreover, if fe A(0, p, q) n L£ and each

/(x)= lim  f       [/(x-z)-/W]|5ÍA^
«-»0  J\z\>e \z\

belongs to A(0, p, q) where {Q¡} is a normalized basis for the spherical harmonics

of degree m (m=£l if 1 g a < 2 and m=0 if p=l) then/e A(a,p,q).

In view of the inclusion relations between Lp and A(<x, p, q) (see [8, p. 452]),

this remark is trivial in many cases.

If/e C", the formula in section 2 for/" and Lemma (0.1) imply that the Poisson

integral of/is the Poisson integral of the sum of a constant times J~af* dp. and a

singular integral of J~"f* dp.. Hence the same is true for any/eF* and

1/I|a(0,P,«>  =   CH ""/IIaCO.P.iJ)  =   c||/llA«r.p.«

(see [9, p. 827-829]).
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Conversely, if feLp it is easy to see that (2.2) (or (2.4)) holds. Hence if, for

example, 1 </?<oo, we obtain by taking the A(0,p, q) norm

ll/IUte.p.,) ¿ c(\\f\\Mo.P.0 + '2l il/ILo.p.,))

for/e A(a,p, q). For any fe A(0,p,q) nLa we apply the last inequality to the

Poisson integral off and invoke [8, Lemma 5, p. 426].
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