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1. Introduction. Let C be a convex subset of a linear topological space and E

another linear topological space. Suppose that T is a map from C to 2E, the family

of all nonempty subsets of E. An affine continuous function from C to E is called

an affine continuous selection for T if/(c) e T(c) for every ceC. The first aim of

this paper is to find sufficient conditions for the existence of an affine continuous

selection for T when C is a compact convex subset of a locally convex linear

topological space. Two restrictions imposed on T are quite natural in this con-

nection. We confine ourselves only to affine maps T, that is, maps for which 7(c) is

a nonvoid convex subset of Efor every ce C and

XT(ci)+(1 - \)T(c2) c T(Xci+(1 - A)c2)

whenever 0 < A < 1 and c1; c2 6 C. Besides, we require from T to be a lower semi-

continuous map i.e., for any open set [/<=£, {ceC : T(c) n <7# 0} is a relatively

open subset of C. The existence of continuous selections for lower semicontinuous

maps defined on topological spaces was intensively studied by Michael in a series

of papers from which [17] and [18] are the closest to our subject. Michael showed

that if a set-valued map has in a certain sense enough continuous selections it must

be lower semicontinuous. We use here some of the methods and the patterns

developed by Michael.

We prove that the problem of finding an affine continuous selection has always a

solution when F is a Fréchet space if and only if the domain of T is a simplex

(Theorem 3.1, Corollary 3.3). A compact convex subset K of a locally convex

linear topological space F is called a simplex if the cone W with the origin as vertex

and having K as its base induces a lattice ordering in the subspace C—C. Of course,

we tacitly assumed that K is situated in a hyperplane of F not passing through the

origin but it is easily seen that this is not an essential restriction. This definition

expresses an intrinsic property of K and it is equivalent with the uniqueness of

integral representations of the points of K by maximal probability measures on K.

The fundamental properties of Simplexes may be found in [5] of [20].
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The selection theorem we prove helps us to investigate those Banach spaces which

admit a representation as spaces of affine continuous functions on simplexes.

Semadeni [21] proved that a compact convex set is a simplex if and only if the

space of affine continuous functions on it with the supremum norm has the finite

binary intersection property (F.2.I.P.) that is, if every finite collection of mutually

intersecting closed balls has a nonvoid intersection (cf. [15]). By this and by

[15, Theorem 4.7] any Banach space with the F.2.I.P. and at least one extreme

point on its unit ball can be represented by the space of affine continuous functions

on a suitable simplex. In §3 we prove a theorem concerning simultaneous extension

for such spaces which is a generalization of the Borsuk-Dugundji-Arens extension

theorem (cf. [4], [7], [3]).

The F.2.I.P. plays an important role in the theory of extension of compact

operators. Lindenstrauss proved that a Banach space X has the F.2.I.P. if and only

if X* is an L-space or, if and only if any compact operator with the range in X has

an "almost" norm preserving extension (see [15, Theorem 6.1] for a precise

formulation of this result). In [15] some criteria for the existence of norm preserving

extensions of compact operators are proved as well as examples which show that in

general a norm preserving extension may fail to exist. In §4 we bring two other

criteria when the range space has at least one extreme point on its closed unit ball

(i.e., the range is the space of affine continuous functions on a simplex with the

supremum norm). Examples given in §5 show that in a certain sense these criteria

are the best possible.

In the appendix of this paper we prove a theorem concerning the existence of

continuous nearest point maps from /x onto its one-dimensional subspaces. This

lemma is needed in the construction of one of the examples given in §5.

All the linear spaces considered are over the reals. We follow the standard

terminology and notations of [6] and [8].

If X is a Banach space, xe X and r > 0 then we denote by Sx(x, r) the closed ball

of X with the center in x and the radius r. The closed unit ball of X is denoted also

by Sx. When we refer to the topology of X we mean its norm topology if no other

topology is specified.

If M is a set, 1M denotes the function identically 1 on M. If M^>N and /is a

function defined on M,f\N denotes the restriction off to N. By 2M we denote the

family of all nonvoid subsets of M.

In the sequel we assume, unless stated otherwise, that F is a simplex. A subset F

of F is called a face of F if it is convex and if the relations 0< A< 1, kuk2eK,

Xk1 + (l — X)k2 e F imply ku k2 e F By SFwe denote the set of extreme points of F.

A(K) (and if no confusion is possible just A) is the space of affine continuous

functions on F with the supremum norm.

If we define T:K^A* by Tk(f)=f(k) for every k e K and/e A then F is an

affine homeomorphism and it is often convenient to consider F embedded in this

way in A*.
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K is called an r-simplex (cf. [1]) if 8K is closed. For an /--simplex A(K) = C(8K)

and conversely, any space of continuous functions on a compact Hausdorff space

can be represented as the space of affine continuous functions on an /--simplex.

2. A collection of nonnegative functions {>!>$* i <= A is called a partition of unity

on K if 2¿mí 0y= I*-- In [13] we proved the existence of certain paritions of unity on

Simplexes. The corollary of the subsequent lemma provides us with another type

of partitions of unity which is more adequate to our purposes here.

Lemma 2.1. Let {/,}?_ x, {gi}?=i be two subsets of A and let {ki}pl=i^oK(kh^kl2

ifli^ln). Assume that there are functions {<j>,)f=i defined on dKsuch that

m

(1) file* = 2 «iJi = 8i\»*>       l = ' = "»
j = i

for some scalars aw and let

(2) 4>m = Ai.        iâjèm,lulâp.

Then there exist functions {ifi,)f=i<^A such that

(3) ft á   > «Mrï * ft'        * = ' = "'
1 = 1

(everywhere on K) and

(4) Hki) = ßn,        lújam,líl¿p.

Proof. We shall proceed by induction on m. Suppose that m = 1 and we are

given

fiW  â   «il<f>l  é  gi\dK, 1   ̂    Z  g   «,

<f>i(kt) = ßu,       le lap.

Without loss of generality we may suppose an S 0, 1 ̂  z'^ «. Consider

By (5), on dK any function of &l is not greater than any function of J*|" and accord-

ing to a known principle of maximum [5, Lemma 17] this is true for all K.

If we define

h'i(k) = max {f(k) : fe 3^},   h{ . min {/(*) : fe *?},       k e K,

then h'i, —h{ are convex continuous fonctions on K and h[^hl. Moreover, h'i(k¡)

^ßu^h"i(kt), \^l-¿p. Since co (klt..., kt) is a closed face of K, a theorem of
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Edwards [9, p. 12] yields a function i/iieA such that >l>i(ku=ßu, l = l^p, and

h'^^i^K- Then clearly i/t1 satisfies /gaj^^g, whenever aa#0 and by (5),

(6) fi\dK = «ii^ilsx = gi\sK

whenever o£U = 0. The above quoted principle of maximum implies that (6) holds

everywhere on F and this completes the first step of the proof.

Suppose now that the lemma is true for m— 1 functions and we are given (1) and

(2). As before we assume aim^0, l = i=n. From (1) we get

1 m-l i m-l

(7) rfi-Z?*'**-*^*-?.?1*» 0QdK'
aim jT\ aim aim y=\ aim

whenever a(m#0. For any r and s such that arm#0#asm we have

The functions <f>x,...,<f>m-i satisfy also

(9) fW = J8^^ Siles
i=i

if«im = 0.

Applying the induction hypothesis to (8) or (9), we can find {ipj}f=i ̂ A such that

Ukd = Ai,       HtjUm-hUl^p,
1 m-l 1 m-l

"rm j = i "rm asm y = l "sm

whenever o^^O^a^ and

m-l

/ â 2 "id* = &i=i
if a,m=0. Using Edwards' theorem in the same way as above we obtain the function

<fim which satisfies (3) and (4).

Corollary 2.2. Let {/}m=ic-4 and e>0. Suppose that {<^,}7=i are nonnegative

functions defined on dK, {kj}f= ̂ dK and ai;, 1 ̂ i= n, 1 ̂ j-m, are real numbers

such that:

CO 27-16-1;
(ií) <P,{k,) = *i,l=J=m,l = l¿m;

(iii) l/iW-Sr-iMX*)^«
for anykedK, l^i^n.

Then there exists a partition of unity {'pj}f=icA such that:

(iv) Mkd-%, IZjim, lá/ám;
(v) l/^-S'^fl^X^lá./oreiwy A:eAi ISia*.
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Proof. The functions </>i,...,<f>m-i satisfy the relations:

(1) /«-«-o^If-i (av-a^hifi+e-a^, Win, on ÔK,

(3) 0á#/ái, iá;áw-i,
(4) */*,) = 8}, 1=7"=»î-1, lá/ám.

By the preceding lemma there exists ^ ..., </tm-1 in A such that (l)-(4) are valid

when ipj stand instead of <f>,-. Defining tfim= 1 — Jf^i1 & we obtain a partition of unity

on K which obviously satisfies (iv) and (v).

Lemma 2.3. Let E be a linear topological space and T an affine lower semi-

continuous map from K to 2E. Let f be a continuous linear functional on E.

(a) 7//*(/c) = supxer(k)/(x),/*(/<) = infxsm)/(*) thenf*, -/* are concave lower

semicontinuous (single-valued) functions on K (/* : K^> (—oo, oo],/* : K -> [—oo, oo)).

(b) Letf'eA with f^f'Zf* and e>0. The map T: K -> 2E defined by

T'(k) = T(k) nf-i[(f'(k)-e,f'(k) + e)]

is affine and lower semicontinuous.

Proof, (a) It is enough to prove the assertion for/*. Pick k1} k2 e K, A e [0, 1].

Then

f*(\ki + (l-X)k2) = sap {f(x) : xeT(Xkx + (l-X)k2)}

Z sup {f(x) : x e XT(kx) + 0 - *)T(k2)}

= A  sup /(x) + (l-A)  sup f(x)
xeT(ki) xeT(.k2)

= A/*(/V1) + (l-A)/*(/c2)

which means that/* is concave.

Let a be any real number. Obviously,

{k e K;f*(k) > a} = {k e K : 3x e T(k),f(x) > a}

= {keK:T(k)nf-i((a,<x>))* 0}.

7being lower semicontinuous the last set is open in K and this implies that/* is

lower semicontinuous.

(b) Clearly T'(k) is a convex nonvoid subset of E for every k e K. Let us show

that

(1) \T'(ki)+(\-X)T'(k2)<zT(kki + (\-\)k2) for any kuk2 e K,0<X<1.

Pick xt e T'(kt), z= 1, 2. Then xt e T(kt) andf'(ki)-e<f(xi)<f'(ki) + e.

Since //' and T are affine we have

f'(Xki + (1 - X)k2) - e < f(Xxi + (1 - A)x2) < f'(Xki + (1 - X)k2) + e

and
Xxi + (1 - A)x2 6 T(Xki + (1 - A)/c2).

A*! + (1 - X)x2 e T'(Xki + (1 - X)k2)

and this proves (1).
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To prove that T' is lower semicontinuous we use a device of Michael [18]. Let U

be an open subset of E. We have to show that V={k e K : T'(k) n £/# 0} is open

in K. Let k0 e V and x0 e T'(k0) n U. Then x0 e T(k0) n U andf'ik0)-e<f(x0)

<f'(k0) + e.

Choose e such that 0<e'<e and f'(k0)-e <f(x0)<f'(k0) + e. The sets

Wx = {keK:T(k) n Unf^[(f'(k0)-E',f'(k0) + e')] + 0},

W2 = {keK:f'(k0)-e + e' <f'(k) <f'(k0) + e-e'}

are open in K and k0 e Wx n ff2. The proof will be achieved if we show that

WiCt W2<=V.

Pick k e Wx c\ W2. By the definition of Wu W2 there exists x e T(k) n U such

that

f'(k) - e < f'(k0) -s'< fix) < f'iko) + e   < f'(k) + e.

Hence x e T'(k) n U. We showed that for any keW1r\W2 the set T'(k) n £/# 0

i.e., ^i n ^2 <= K. This concludes the proof of the lemma.

If F is a metrizable locally convex linear topological space then it is well known

that there is a nondecreasing sequence of seminorms on E,pi^p2%. ■ ■ ■ ¿pn= • ■ -,

which defines the topology of the space. A metric on F compatible with its topology

and invariant with respect to translations is:

P(*,y)=ïl-//Xry\>       x,yeE.^2n l+pn(x-y)

In the next lemma we shall use this metric as well as the following notation:

if x e E and r > 0 then

R(r, x) = {y e F : P(x, y) < r},

R"(r,x) = {yeE:pn(x-y)<r}.

Lemma 2.4. Let E be a metrizable locally convex linear topological space,

T: K—> 2E an affine lower semicontinuous map and e>0. There exist an affine lower

semicontinuous transformation T': F->2£, a partition of unity on K, {ifij}f=1<=A, a

subset {kj}?= ! c dK and a subset {yf}fm x c F such that 4t,{kj) = 1,1 <iy^ m, and

(1) T'(k)^T(k) n Rie, 2?=! Uk)y,)
for any ke K.

Proof. Choose an integer N such that

(2) 2?-»+il/2"<«/8.
For any x e E put Ux={keK: T(k) n FN(e/8, x)¥= 0}. The family {Ux}xeB is an

open covering of F. Let UXi,..., UXp be a finite subcovering extracted from it.

Denote

C = RN(e/Z,0) + co(x1,...,xp).

C is an open convex subset of F and for any k e K, C n T(k) ^ 0. It is easy to see
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that the map Ta: F->-2£ defined by T0(k) = C n T(k) is affine and lower semi-

continuous.

Let

D = C-co (*x, ...,xp) = RN(e/S, 0) + co (xlt..., x„)-co (Xx, ■ ..,xP).

Since co (xu ..., xp)-co (xu ..., xp) is a compact subset of F, by a well-known

consequence of the Hahn-Banach theorem we can find {/},"= icF* such that

(3) pN(x)-e/2SmaxlSián \Mx)\^pN(x)

for any xe D.

Define, for k e K,

(fx)*(k) =   sup /(*),     ifMk) -   inf A(x).
xeTo(k) xeT0(k)

By Lemma 2.3 (/)* and (—/)* are concave lower semicontinuous functions.

From a theorem of Edwards [9, Theorem 3] it follows that there exists/' € A such

that (/i)*á/i'á(/)*- By Lemma 2.3 the transformation

(4) T,(k) = T0(k) n /f1 [(fi(k) - e/S, fHk) + eß)]
is affine and lower semicontinuous. Clearly, if xeTx(k) then \f(x)-f[(k)\ <e/8.

Let i be a natural number, l^/<n. Suppose that we have found Tt: K->2E

affine and lower semicontinuous and {/'}|=ic A such that for any k e K, Tt(k)

<=T0(k) and if xeTtfc) then \f(x)-f'(k)\<eß, l = l=i. Using the functions

(fi + i)*(k) =  sup / + 1(x), (fi + i)*(k) =   inf /i + 1(x)

in the same manner as we did for (/)* and (/)* we get/'+ 3. e A such that the map

Ti+1(k) = F(Â:)n/;î[(/'+1(Â:)-£/8,/'+1(Â:) + £/8)]

is affine and lower semicontinuous. Clearly, if x e Ti + 1(k) then \fi(x)—ft'(k)\ <e/8,

l^l=i+l.

Finally, we get an affine and lower semicontinuous transformation (Tn=)T':

K->2E and functions {/'}?,!<=A such that T'(k)^T0(k)^T(k) for any k e K and

if x e T'(k) then

(5) \f(x)-f'(k)\<e/S,lúién.
Define for any yeco(x1,...,xp) the set

Vy = {ke cl (dK) : T'(k) n RN(e/8, y) # 0}.

Ky is relatively open in cl (dK) and from F(A:) <= T0(k) c C it follows that the

family {Vy}y€C0^Xi.Xp) is a covering of cl (dK). Choose a finite subcovering:

Vyi, •■■,VVm ({y,}J= j<=co (*i.xp)).  The  sets   F¿ = Fw n aF, 1 ̂ /S ™, cover

dK and we can assume without loss of generality that for any/ 1 SjSm, there is

kj e Vyj such that k, i V'yi if /»*/.

Define on 3F the following functions :

&(*)- 1    if j = min{l:keVy¡},

= 0   if j=£min{l:ke Vyi},       1 = 7 = w.
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Clearly </>jt0,<f>j(kl) = 8lj and 2?=i^; = L Moreover, for any kedK there is one

index jk and only one such that <f>jk(k)^0. For this index k e V'jk. Hence there exists

xkeT'(k) such that pN(xk—yjk)<eß. This inequality can also be written in the

following form :

Pwíxfc-2 Hk)yñ
e

<  S'

By (3)

fM-ZMyJtm
e

<8' 1 á i ú n

(since xk-2T=i Hk)yi e 7>).

From this and (5) it follows that for any k e K and 1 ¿ z'^ n we have

f(k)-2fiymk)
i = l

= I/.W-7MI + ftixJ-ZMyJUk)
j = i

< _.~ 4

The Corollary 2.2 yields us a partition of unity {ipj}f=icA such that 0X/c,) = 8j,

1 £j, l^ m, and

fi\k)-2fiymk)
; = l

1 ^ z ̂  «, À; e TsT.

We are going to show that 7" and {^JyL ! fulfill the conclusion of the lemma. We

have only to prove that for any k e K

(6) T'(k)<=R(e,Z?=iMlc)y,)-

Pick x e T'(k). Then, by (5)

m-2uy>)Mk)
3 = i

= \Mx)-fi'(k)\

fm-^MyJMk)+ = 4+8      8 1 < i < n.

Using (3) again we get

^-2^H-i+2£ = T
This together with (2) and pi^p2f¿ ■ ■ ■ ¿pN yields

Hence (6) is proved and this concludes the proof of the lemma.

3. Now we are going to prove a theorem which is the adaptation for Simplexes

of a well-known selection theorem of Michael [17], [18].

<   E.
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Theorem 3.1. Let E be a Fréchet space and T: K->2E an affine lower semi-

continuous map such that T(k) is closed for every k e K. Then there exists an affine

continuous selection for Ti.e. an affine continuous function f: K^- E withf(k) e T(k)

for each k e K.

Proof. We assume that F is equipped with the metric used in Lemma 2.4 and

that R(r, x) stands for {yeE: p(x, y) < r) if x e E and r > 0. We define inductively

a sequence of affine lower semicontinuous maps Tn : K -> 2E and a sequence of

affine continuous functions fn: K^- E such that for every k e K, Tn + i(k)cTn(k)

<=J(*) and Tn(k)<=R(l/2\fn(k)), n=l,2,....
Tx and/ are those given by Lemma 2.4. Suppose that suitable Tu...,Tn and

/,...,/ have already been chosen. From Lemma 2.4 we deduce the existence of an

affine lower semicontinuous map Fn+1: F—> 2E and of an affine continuous func-

tion /„ + ! : F -*■ F such that for any k e K,

Tn + 1(k) c Tn(k) n F(l/2" + 1,/n + 1(¿)).

Thus the existence of the desired sequences is proved.

Now, {Tn(k)}n= i is a nonincreasing sequence of nonvoid sets with diameters

tending to 0. Hence Hn=i cl (Tn(k)) contains a point of F and only one. Define for

every ke K
■

f(k)= ñciiuk)).
n=l

Clearly f(k) e T(k) since T(k) is closed and Tn(k)<=T(k). We have also that

P(f(k),fn(k)) Ú 1/2»

for any ke K which means that the sequence {/}"= i converges uniformly to /

Hence/is affine and continuous and this concludes the proof of the theorem.

One naturally asks the question if it is possible to use Michael's selection

theorem mentioned above in order to obtain a shorter proof of Theorem 3.1. For

instance, if dK is Borel measurable one may pick a continuous selection g for

T\iK and extend it by defining f(k) to be the integral of g with respect to the

representing measure of k. Indeed, if dK is closed then this procedure leads to an

affine continuous selection for T (see [2]). On the other hand, as shown by the

following example, in the general case this extension of g may be discontinuous.

Example 3.2. Let A be the space of convergent sequences of real numbers

x={x(ri)}n=i which satisfy limn^M x(ri)=^(x(l) + x(2)) with the usual supremum

norm. It is known that there is a simplex K such that A = A(K) (cf. [15, p. 78] and

the remark made in §1 about the representation of spaces with the F.2.I.P. having

an extreme point on the closed unit ball). For instance, K may be the positive part

of the unit sphere of A* (=/i) when A is ordered by x=0 o x(ri)^0,n=l, 2,...

and A* is equipped with the dual order. The extreme points of Fare the functionals

kn(x) = x(ri) and in its topology (the w*-topology of A*) K-^^Jc^+k^. Consider
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the map : T(k) = [0, 1 ], k e K. Clearly T is an affine lower semicontinuous map from

K to 2(~ ço-œ\ Choose the following continuous selection for T\SK : g(kr) — \jn. The

extension of g described above is

F(k)=2^>       k = (aua2,...)eK.
n = l   "

Obviously/is discontinuous at %(ki+k2).

Corollary 3.3. Let K be a compact convex subset of a locally convex linear

topological space. The following statements are equivalent:

(i) K is a simplex.

(ii) If E is a Fréchet space and T: 7C-*- 2E is an affine lower semicontinuous map

with T(k) closed for every k e K then T admits an affine continuous selection.

(iii) If T: K-> 2(~ °°,co) is an affine lower semicontinuous map and T(k) is closed

for every k e K then T admits an affine continuous selection.

Proof, (i) => (ii) has already been proved and (ii) => (iii) is trivial. Suppose (iii) is

true. According to [5, Théorème 11] it is enough to show that for any convex and

continuous function /given on K the function/: 7v-> (—oo, oo) defined by

f(k) = inf{g(k):g^f,geA(K)}(2)

is affine. This will become clear if we observe that the set {g : g^f, g e A(K)} is

directed by ^. Indeed, let gu g2lèf, g¡ e A(K) and put « = min (gu g2). Then « is

continuous and concave. Hence T(k) = [f(k), h(k)] is an affine lower semicontinuous

map from K to 2<-e°-0O). If g e A(K) is a selection for T then fâgSh and this

completes the proof.

Corollary 3.4. Let E and T be as in Theorem 3.1. If F is a closed face of the

simplex K andf: F—>- E is an affine continuous selection for T\F then there exists an

affine continuous selection for T, say <f>, such that <j>\F=f.

Proof. The map T' : K -»- 2E given by

T'(k) = {f(k)}   if keF,
= T(k)     if keK~F,

satisfies the conditions of Theorem 3.1 and T'(k)<=-T(k) for each keK. Any

affine continuous selection of 7" is suitable.

The subsequent theorem reduces for metrizable r-simplexes to a particular case

of Dugundji's extension theorem [7].

Theorem 3.5. Lei E be a Fréchet space and F a closed face of the simplex K.

If /:F->£ is affine and continuous there exists <Î>:K->E with <b\F=f end

<t>(K)=f(F).

(2) Here we denote by A(K) the space of all affine continuous functions on the compact

convex set K.
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Proof. Define T:K^2E by T(k)=f(F) for every keKand apply Corollary 3.4.

To see how this is related to Dugundji's theorem one can use two results of

Alfsen : ( 1 ) if K is an /--simplex and M=M<=dK then co M is a closed face of K [ 1 ] ;

(2) if O is a continuous function from 8K (K is an /--simplex) into a compact

convex subset of a locally convex linear topological space then 0 has an affine

continuous extension to K [2](3) .

Theorem 3.6. Let F be a metrizable closed face of the simplex K. Then there

exists an affine and continuous map <S>: K-+F with <b(k) = kfor every ke F.

Proof. The face F is a simplex and the Banach space A(F) is separable. Let

7J={/n}"=i be a dense subset of it. B induces in A*(F) a metrizable locally convex

topology t. This topology coincides with the w*-topology on the canonical copy

of F in A*(F) (which will be identified with F in the remainder of the proof).

Hence F is compact in its r-topology and remains compact (hence closed) in the

completion of (A*(F), t). But the completion of (A*(F), r) is a Fréchet space and

if we define
T(k) = {k}   ifkeF,

= F     ifkeK~F,

we have an affine and lower semicontinuous map from K into the family of closed

convex sets of a Fréchet space. The selection of Jgiven by Theorem 3.1 satisfies the

requirements.

The corollary stated below generalizes for Simplexes the Borsuk-Dugundji-

Arens extension theorem (cf. [4], [7], [3]).

Corollary 3.7. 7/F is a metrizable closed face of the simplex K then there exists

a linear map T from A(F) into A(K) with the following properties:

(i) ifkeF then Tf(k)=f(k);
(ii) iffZQthenTf^O;

(iii) TlF=\K;

(iv) IT/11 = ||/||.
There exists a projection of norm 1 ofA(K) onto the range ofT along the subspace of

A(K) consisting of all the functions which vanish everywhere on F.

Proof. If $ : K -+ F is the map given by the preceding theorem then the map 7

defined by

Tf(k)=f(<l>(k)),      feA(F),keK,

has all the properties (i)-(iv) and is linear. If U: A(K)^-A(F) is the restriction

map
Cty = ¿|„       <f>eA(K),

then 7 ° U is the desired projection.

(3) This is a corollary of the main theorem of [2]. Here is the place to remark that this

theorem is valid for simplexes without the hypothesis of metrizability.



514 A. J. LAZAR [December

4. The selection theorem of Michael mentioned above [17, Theorem 3.2] and its

consequences have been very useful in problems of extension of compact operators

(e.g. [15], [16]). We shall give here some applications of Theorem 3.1 in this direc-

tion. First we need a representation for operators having the range in A and this is

done by the next lemma whose proof is identical with that of the representation

theorem for operators with the range in a space of continuous functions [8, p. 490].

Lemma 4.1. Let Xbea Banach space and T a linear bounded operator from Xto A.

Then there exists an affine and w*-continuous function x'- K-> X* for which

(1) Tx(k)=x(k)(x), xeX,keK,

(2) |7l=supkeA.||x(A:)||.

Conversely, to any affine and w*-continuous function from K into X* there corre-

sponds a linear bounded operator T: X'-> A given by (1) of which norm satisfies (2).

T is compact (w-compact) if and only if x is continuous in the norm topology (w-

topology) of X*.

Our first result is a particular case of a known extension theorem [15, Theorem

6.1]. The proof given here is short and the pattern we chose will be useful later.

Corollary 4.2. Let Jfc y be Banach spaces and T a compact operator from

X to A. For any e>0 there exists a compact extension f of T from Y to A with

\\TU(\+e)\\T\\.

Proof. Let <f> be the restriction map from Y* to X* : 4>(y*)=y*\X. Define

4>:SX.(0, ||F||)^2y*by

<*(**) = {y* e.Y* : <f>(y*) = **, ||y*| = (l+e)|F||}.

Obviously <I> is affine and <P(x*) is norm-closed for every x* e Sx.(0, ||F||). We are

going to show that <S> is lower semicontinuous. Let U be an open subset of Y* and

pick x$ e{x* e Sx.(0, \\T\\) : <¡>(x*) n [/# 0} (of course, we assume that this set

is not void; if it is void, nothing is to be proved). Since H** II = ||F| and U is open,

there exists y* e <£(**) n U with || y* || < (1 + e) || F ||. Let V be an open neighborhood

of y* contained in Un{y*e Y* : ||y*|| <(l+s)||F||}. Since <f> is an open map,

if>(V) is open in X*. Clearly

x$e<f>(V) n Sx.(0, ||71) «= {x* e Sx.(0, \\T\\) : ®(x*) ̂ 17*0},

hence {x* e Sx.(0, \\T\\) : <ï>(x*) n i/# 0} is relatively open in Sx.(0, \\T\\) and our

assertion about 0 is proved.

Let x: F-?- Sx.(0, \\T\\) be the function given by Lemma 4.1 for T. From what we

have proved above we infer that $ ° x fulfils the conditions of Theorem 3.1. Let

x: F-* SY.(0, (1 + e)||F||) be an affine continuous selection of 0 ° x- It is easily seen

that the corresponding operator f: Y ->• A has the required properties.

In studying norm preserving extensions of compact operators the following

concept has been found useful [15, p. 86]: if X<= Y are Banach spaces, a map ip
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from X* to Y* is called a continuous norm preserving extension (C.N.P.E.) map

if it is continuous in the norm topologies of X* and Y* and satisfies

4>(x*)\x = x*,        U(x*)\\ = \\x*\\,       x*eX*.

Lindenstrauss proved [15, Lemma 7.2(a)] that if there is a C.N.P.E. map from X*

to Y* then every compact operator from X to a C(S) space has a compact norm

preserving extension from Y to C(S). An example given in §5 shows that this

assertion cannot be generalized for spaces of affine functions without some ad-

ditional hypothesis.

If le yare Banach spaces and each functional on Xhas a unique norm preserv-

ing extension to Y, X is called a U subspace of Y (cf. [19]).

Theorem 4.3. Let X be a U subspace of Y and suppose that the norm preserving

extension of functionals on X to Y is norm continuous. Then every compact operator

from X to A has a compact norm preserving extension from Y to A.

Proof. The proof of the preceding result makes clear that it is enough to show

that the map <D: 5X.(0, |7||) -* 2Y' defined by

<D(jc*) = {y* e Y* : y*\x = ** ||y*|| á ||7||}

is lower semicontinuous (it is obviously affine).

Denote by ^ the norm preserving extension map from X* to Y* i.e., <Kx*)\x=x*,

W**)ll= 11**1- By our assumption >f> is continuous. Let Vbe an open subset of Y*

and pick jc* e{x* e Sx.(0, \\T\\) : ®(x*) n V* 0} = M. If ||;t*|| < ||7|| then the

same argument as in the proof of Corollary 4.2 will convince us that x* is an

interior point of M. Suppose now that ||jc*| = ||7||. Then <p(x*)={¡¿V(jc*)} and

x0* e 4>-\V) n S^O, ||7||) cm.

0" x( V) is open in X* ; therefore x* is an interior point of M in the relative topology

of Sx.(0, || T ||) and this concludes the proof.

Remark. By [19] and [15, p. 87-88] a typical case in which this theorem applies

is when Y* is locally uniformly convex.

Now we are going to prove that the hypothesis that X is a U subspace of Y can

be discarded if dim T(X) = 2. However, as Example 5.3 shows, if dim T(X)=3 a

norm preserving extension may not exist if X is not a U subspace of Y.

Lemma 4.4. Let Je y be Banach spaces and suppose that there is a C.N.P.E.

map if/from X* to Y*. Let Z be a two-dimensional subspace of X*. There exists an

affine lower semicontinuous map 0 : Sz -*■ 2r* such that for every x* e Sz, <t>(x*) is

norm closed and

(1) ®(x*)<={y* e Y* : y*\x=x*, ||y*||ál}.

Proof. Let us define <P as follows: if x* e Sz is not an extreme point of Sz then

<t>(x*) is equal to the second member of (1) and if x* is an extreme point of Sz then

4>(**)=M**)}.
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It is easily seen that $ is affine, satisfies (1) and <&(x*) is closed for every x* e Sz.

It remains to show that O is lower semicontinuous.

Let U be an open subset of Y* and pick x* e {x* e Sz : <î>(x*) n U¿ 0} = M.

If \\x$\\ < 1 then the argument used in the proof of Corollary 4.2 shows that x* is an

interior point of M. If ||x* || = 1 and x% is an extreme point of Sz then

x^ e Sz n ^-\U) c M

and again, x* is an interior point of M.

Assume now that 1 = \\x*\ and x% is not an extreme point of Sz. Then there exist

x'*,x"*eZ with Hx'* I = Ijc'* || = 1,K*'*+ *"*) = **, x'*¥=x^x"*. It is enough

to prove that for any sequence {x%}ñ= ic Sz with \\x* — xj || -¡-0 almost all the terms

belong to M since from this results that x0 is an interior point of M.

Starting from a certain N all the terms of such a sequence belong to the triangle

whose vertices are 0, x'*, x"* and no x* is an extreme point of Sz. Hence

x* = anx'*+ßnx"*,       nZN

with «n^0, j3„è0, an+ft,g 1. Clearly

lim an = lim ßn = \.
n-»co n-»oo

By the definition of M, <b(x%) n £/# 0. Pick y? e <b(xf) n U and let y'*, y"* be

norm preserving extensions to 7 of x'* respectively x"*. Define for n^N

y* - («„ -ßn)y'* + 2ßny*      if an ä j8n,

= (iSn-an)y"*+2<xny0*     ifan<iSn.

Then ||yjf||^ 1 andy%\x=x% which means that y* e i>(xj). Moreover || y?-y* II -»-0

therefore C>(xî) n Í7# 0 if « is sufficiently large. This concludes the proof of the

lemma.

Theorem 4.5. Let X be a Banach space whose closed unit ball has at least one

extreme point. The following statements are equivalent:

(i) There is a simplex K such that X is isometrically isomorphic with A(K).

(ii) For any two Banach spaces Y^Z such that there exists a C.N.P.E. map from

Y* toZ*, any operator T: Y' -> X with dim F( Y)¿ 2 has a compact norm preserving

extension from Z to X.

Proof, (i) => (ii). We identify X with A(K). If dim T(Y)= 1 there is nothing to

prove, so assume dim T( Y) = 2. Without loss of generality we can also assume that

m-i.
Let x be the function from F to SY. given by Lemma 4.1 and denote by W the

subspace of Y* spanned by x(K). Clearly dim W=2. Let O: Sw -> 2Z* be the map

given by Lemma 4.4. Then <J> ° x satisfies the conditions of Theorem 3.1, and ad-

mits an affine continuous selection x;F->5,2.. The operator T:Z-> A(K)

corresponding to x is the desired one.
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(ii) => (i). It is enough to suppose that (ii) is satisfied for Y and Z with dim 7=2,

dimZ=3.

We shall show that if 7<=Z are Banach spaces with dim 7=2, dim Z=3, without

any other restrictions on them, then any operator from 7 to X has an almost norm

preserving extension fromZto X. By [15, Theorem 6.1 (16)] and [21] this implies (i).

Let e > 0 and let P£ be a centrally symmetric polyhedron in Z such that Pe c Sz

<=(l+e)Pe. Denote by ||| ||| the norm induced by Pt in Z (and in 7). Then for

any zeZ

1*1 * Ml á(i+.)M.
If 7: Y-> X we have

¡nus imiá(i+«)iiiriií.
Psr\ 7 is a (two-dimensional) polyhedron and by [15, Theorem 7.3] there exists

a C.N.P.E. map from 7* to Z* when 7 and Z are equipped with the norm ||| |||.

By (ii) 7 has an extension T:Z-+ X with |||7||| = |||7|||. If we come back to the

initial norm of Z then

||7||g(l+£)|||f|||=(l+£)|||7|||S(l+£)||7|[

which means that we found an almost norm preserving extension of T and this

concludes the proof of the theorem.

5. In this section we give two examples related to the results of §4. The first one

shows that the implication (i) => (ii) of Theorem 4.5 cannot be strengthened

adding the requirement dim 7(Z) < oo even if X is the space of continuous functions

over a compact Hausdorff space.

Example 5.1. Let p> 1 and not an even integer. In [14] it was proved that lp

contains a two-dimensional subspace 7 such that the unique (by [19]) norm pre-

serving extensions to lv of the functionals belonging to the boundary of 5y. span

an infinite-dimensional subspace of /, = /* (l//> + l/a=l). On the other hand, by

[15, pp. 87-88], the norm preserving map from 7* to /, is norm continuous since /,

is uniformly convex.

Denote by 7 the natural embedding of 7 into C(SY.). Clearly ||7|| = 1 and

dim T( 7) = 2. We claim that for any compact norm preserving extension 7 of 7

from /,, to C(Sy.) we have dim7(/p) = oo. Indeed, if T is such an extension, it

corresponds by [8, p. 490] to a' continuous function x'- SY. -> /, such that for every

y* 6 Sy., x(y*) is an extension of y* to lp and |¡x(y*)ll = i- From the mentioned

property of 7 we infer that the image by x of the boundary of SY. is not contained

in any finite-dimensional subspace of lq. Consequently

dim f (/,) = dim 7*(C*(Sy.)) = oo.

Now we are going to exhibit two Banach spaces X^ 7 with dim X= 3, dim 7=4,

a simplex K and an operator 7: X^-A(K) without norm preserving extension
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from F to A(K) although there is a C.N.P.E. map from X* to Y*. For this we need

a lemma whose proof is given in the Appendix.

If 0#|=(£(1), $(2),...) e llt then RÇ denotes the subspace of ^ generated by £,

S(={i : £(/)#0} and for every x e lu P((x) is the set of the nearest points to x from

R$. Since RÇ is locally compact, P((x)^= 0 for each x e ¡t.

Lemma 5.2. FAere exists a continuous function A: /x -> (-co, oo) vvi'fA A(x)feF{(x)

for every xel^ if and only if there do not exist two disjoint sets Nx, N2 of natural

numbers such that:

(i) #i u Ai-S«;
(ii) JVx, iV2 are èofA infinite and

(iii) ZwrJ«0|-2wJ«O|.

Example 5.3. Let ^ be the sequence space used for Example 3.2 and F the

corresponding simplex. Put

£     /    1      1  1   1 1       \    .

It is easy to check that the conditions of Lemma 5.2 are fulfilled so there exists a

continuous function A:/x->(—co, co) with X(x)£ePt(x) for every xelx. Let

{en}n= i be the unit vectors of lx and denote by Z the subspace of lx spanned by

elt e2 and the vectors :

m = [0,0,-,-,...,-,...},

'ja-(o,o,?3.?-.^.(i)   ,•••)•

i eZ since

(1) í-n-iet+ejp.
Let y=Z* and denote by X the annihilator of F£ in Y. From the existence of a

continuous approximation by nearest points and from [15, Lemma 7.4] we infer

that there is a C.N.P.E. map from X* to Y* (=Z). Clearly dim X=3, dim Y=4.

Let

"• = ¿(-2p     *-V     * - ©"W-M.
Then

cn > 0,   n — 1,2,...,       lim an = 1,       lim ¿>„ = 0.
n-.oo n-*oo

Consider the following sequence of Z:

Zi = eu       z2 = e2,       zn = flBiji+¿»i72»       n = 3,4,-

An easy calculation shows that ||z„|| = 1, n= 1, 2,....

Define F: Z-^^by
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Since ||z„—nj -*■ 0 and (1) implies that

i       ei + e2
«hi*- —

it is clear that T(x) eA.We have

||7(x)| = sup \zn(x)\ è \\x\\.
n

Thus ||7|| è 1. We shall prove that |7|| = 1. Let X- K-* X* (=Z/72f) be the affine

continuous function corresponding to 7 by Lemma 4.1. Obviously x(fc„)=<J>(z,¡)

where <f> is the canonic map <f>:Z^>Z/Rl;. It is enough to show that ||x(/Vi)ll

= W*i)l = l. We have

Mfe)|-iaf|si+«t|
a

and

n *ii        12 — <x\     loci     1,^1        3|ct|     12 — ct|
¡zx+«ñ = LTJ+f+H 2? = ̂ +4^-

Thus \\zi+a£\\*=l ^«=0 and \\<f>(zi)\\ = l.

For a subsequent argument we need also to compute ||^(zn)||,«=2, 3,....

If « = 2 then the same calculation as above shows that ||z2+af| = l o<x=0 and

Assume now «^3. Then

(2)

Let

Then

-^H+u¿[2-(r'--(r>i

*-¿[©M-en-

and a£=0, a1n<ain+1, limj-co <xf=oo.

Let a < aj. From (2) we have

¡Zn + añ = ..J-W-'-l „ _2tt;_2"-2(3/4)--l = im^l > ,.

Let<x?^a<cein+1^0(l^z"^«-l). Then

«      2»-'(3/4)-Hl-l/2'-1) + 2(3/4y-l
ll*n+«ff|| = -öt=i+-:;-

«f+1 , 2"-2(3/4)"-1(l-l/2'-1)+2(3/4)'-l

2<"1 + cn

_ (3/4)'+j(3/2)"-1-l      L
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Let 0=a? < a=af+ : (i=ri). Then

2n - 2(3/4)n -1( l _ i /2' -1) + 2(3/4)' - 1

C.

| 2"-2(3/4)-1(l • -l/2'-1)+2(3/4y-

(3/2)i-1 + (3/4)i-:-j-(3/2)'-1-l

Since (3/2)'+(3/4)' is an increasing function for f^O, we have

(¡py-i+iWy-1 = (3/2y-i+(3i4y-1

and consequently |zn+ct£|| > 1.

Summarizing the results, we found that

(3) ||zn + «£|| = l ~a = 0and ||¿(z„)|| = 1, n=l, 2,....

Suppose now that F has an extension f: Y-> A with ||f|| = 1. Then there is an

affine continuous function x : F-* 5y. = Sz such that ||x(fc„)|| = 1 and x(kn) 6 z„ + Ff,

n= 1, 2,_From (3) we infer x(A:„)=zn, «=1,2.Hence

x(kx + k2)l2 = iZi+zJ/l.

On the other hand,

x(ki+k2)/2 = lim x(kn) = lim zn = Vl
n-. oo n-»oo

and ■q1y£(z1 + z2)l2. This contradiction shows that such an extension of F cannot

exist.

Remark. We can choose Y=c0 and X to be the annihilator of RÇ in c0.

Defining T: X -*• ,4 as above by F(x) = {zn(x)} we get a compact operator without

norm preserving extension from Y to A. For these Zand F there exists a C.N.P.E.

map from X* to Y* and X(as well as Y) is a polyhedral space [11]. Lindenstrauss

proved [15, Theorem 7.9(a)] that an operator from a finite-dimensional polyhedral

space into a space with the F.2.I.P. has always a compact norm preserving exten-

sion. The above modified example shows that this theorem cannot be generalized

for infinite-dimensional polyhedral spaces even in the presence of a C.N.P.E.

map between the adjoint spaces.

Appendix. We are going now to prove Lemma 5.2. We shall use the following

particular case of a theorem of Kripke and Rivlin [12, Theorem 2]:

Lemma. Let xe l^ Then A0f e P((x) if and only if

a) I  2   i«oi-  2   i«oi|á   I   \m\
*«)/{<i)>A0 *«)««>< *0 *<»/{(«=A0

(everywhere i e Sf). If (I) holds with < then Pi(x)={\0£}.
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Proof of Lemma 5.2. Suppose that there exist two infinite sets of natural

numbers Nx-ik, h, ■ ■ -, k, ■ ■ •}, N2={juj2, ...,jk,...} (ik<ik + i,jk<jk+i) such

that Ni n N2= 0, Ni u N2 = S( and

2 i«oi = 2 i«oi.
We shall show that there is no real continuous function A defined on lx such that

X(x)£ e P((x) for every x e lv

Let x'n, x"n e lu n= 1, 2,... be the following sequences:

X'n(i) =  {(Ík), i = Zfc,

=  £(jn), i = jn,

= - £(jk),       i = jn» k # ",

= 0, i $ Ni u A^2,

«MO = f(4), ' = »i« ^ # «,

=   - 10'n), ' = 'n,

=   - î(jk), i = Á,

= 0, itNiUN2.

Using the above lemma it is easy to see that P((x'n)={f}, P4(X)={ -¿}, « = 1, 2,_

Obviously {*;,}"= i, {xn}n=i converge in the norm of lx to x0 where

= -|(z),        ieN2,

= 0, i$NiU N2.

Hence, no function A: lx -s- (-oo, oo) with A(jc)f €P((x) for every xe/j can be

continuous at x0. This concludes the "only if" part of the lemma.

Assume now that there are no such sets Nu N2. We distinguish two cases:

(1) S( is infinite; (2) S( is finite.

(1) The first step is to define the function A: lx -> (-oo, oo) such that X(x)£eP((x)

for each x e lx ; afterwards we shall show that it is continuous.

If for a certain xe ¡i there is a real A0 such that (1) holds with < then, of course,

A(x)=A0. Clearly X(x)£ePf(x).

Fix now xeli and suppose that there is a real Ac such that (1) holds with equality

sign. Denote S=Sf and

W -{ieS : xdWi) = A0},       C ={ieS: x(i)/$(i) è X0}.

One of the following equalities is valid:

(2) 2 i«oi = 2 i«öi.
isB' ieS~B'

(3) 2 i«oi = 2 ikoi.
ieC ieS~C
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If (2) is valid, by our hypothesis, one and only one of the sets B', S~B' is finite.

If B' is finite define

(4) A(x) = min^
ieB'   ?(l)

and if S~F' is finite let

(5) \(x) = max jfâ

Similarly, if (3) is true, one and only one of the sets C, S~ C is finite. We define

(6) A(*) = max^

if C is finite and

(7) w-AmieS~C ç\l)

if S~C is finite. If both (2) and (3) are valid (then {ieS: x(i)/Ç(i) = \Q}= 0)

there is no contradiction in the definition of X(x).

Let

Ax = {ieS: x(i)/t(i) = A(*)},       Bx = {ieS: x(i)/|(i) > A(x)},

Cx = {ieS:x(i)/t(i)< \(x)}.

Then always Ax # 0 and if \(x) is defined by one of the relations (4)-(7) we have

2 kWi-2 woi = 2 i«»i.
ieB» ieC» ¡e^x

This implies that A(x)£ e Pt(x). Moreover, in this case, if

(8) 2 ieroi-I i«oi- 2 i«oi.
ieBx ieCx ieAx

then Ax u Cx is finite and conversely; if

(9) 2 \m-2 i«oi- 2 i«oi

then Ax u F* is finite and conversely.

Now we can show that A is continuous. Fix x e lx and assume first that P((x)

={A(x)£}. Let {t/n}"=ic/i be a sequence convergent to x. Then

||*-A(x)£|| = \\x-\(un)t\\ ú \\x-un\\ + \\un-\(un)Ç\\

(10) = ||x-«n|| +inf K-af || ^ 2||x-«n|| +inf |x-a£||
or a

= 2||x-Ifn|| + ||x-A(^||.

From this we infer that {A(wn)}„°= x is a bounded sequence and if A(wnjc) -> a then

\\x—X(x)¿\\ = ||x—a£|| which, by our assumption about P((x), implies that a = X(x).

This proves the continuity of A at x.
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Assume now that P((x) contains more than one point. Then X(x) is defined by one

of the relations (4)-(7). Hence (8) or (9) holds. We shall carry out the proof for the

case that (8) holds, the proof for the remaining case being similar.

Let e > 0 and put

V = {u e k : \u(i)-x(i)\ < |#i)|«, ie Ax U Cx).

Ax u Cx is finite therefore V is an-open neighborhood of x. We claim that ueV

s> X(u)<X(x)+e. Suppose this were false. Then there is u' e Kwith A(w') ä A(x) + e.

If ie Axu Cx we have

u'(i)/Ç(i) < x(i)/Ç(i) + e ï X(x)+e ï X(u')

which yields

(ID

From

Ax u Cx c Cu., Bx Au. u 7JU

2 !«oi-2 i«oi = 2 I«oi
ieB„. feCu- isl-

and from (8) and (11) we infer that

2 i«oi = 2 i«oi = 2 i«oi =  2 i«oi.
ieAu.uBu.

This together with (11) implies that BX=AU. u 7?u. and

2 i«oi-I IÄ04 — 2 i«oi-
ieCU' iefîU' ie-i4u-

Hence X(u') is defined by one of the relations (4)-(7) and for u', (9) holds. But this

means that Au. u BU=BX is finite which contradicts the assumption that Ax u Cx

is finite. Our assertion about V is proved.

On the other hand, there is a neighborhood U of x such that u s U => A(zz)

> A(x)-e. If this were false there would exist a sequence («,}i=1c/i with ||h„ — x\\

-> 0 and X(un) ̂ A(x) — e. By ( 10), {A(h„)}£L x is a bounded sequence and if X(unk) -► a

then a| ePf(x). Since a^ Ai*) —e we have

Hence

2   licoi < 2 i«oi = 2 i«oi <   2
xmiUDSa ieAxwCx ieBx x(i)lt(i)>a

2   \m- 2   i«oi >   2   i«oi
x(i)/i(i) > or xWI(U)<a *«)/«» = «

l«0l-

from which we infer that af £ P{(x). This is a contradiction ; thus there is a neigh-

borhood of x with the desired property.

Now, ueU r\ V => \ X(x) — X(u)\ < e and this means that A is continuous at x.

(2) Sç is finite. Denote as usual by {ejfi i the unit vectors of l± and let E be the

subspace of /j spanned by {e¡ : i e S(}. Clearly RÇ<=E. The unit ball of F is a poly-

hedron hence the polar body is also a polyhedron. The annihilator of 72£ in E* is a
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finite-dimensional space having a polyhedron as unit ball. By [15, Theorem 7.3,

Lemma 7.4] there is a continuous function A: F-> (—oo, oo) such that Á(x)£ e P$(x)

for every xe E.

Let T be the canonical projection of lx onto F. For any x e lx we have

\\x-\(T(x))t\\ = ||F(x)-A(F(x))f||+2|x(/)|
itS(

= ||F(x)-^||+2W0l = ||*-«£||.

Hence \(T(x))t¡ e P((x) for every x e /x and obviously A ° Fis a continuous function.

This concludes the proof of the lemma.

Remarks. One could give a direct proof in the second case too. For instance,

one could show that the functions

Aj(jc) = inf {A : Af e P^x)},      \2(x) = sup {A : Af e P((x)}

are continuous (P((x) is closed so A¡(x)f e Pt(x)).

The difference between the patterns we used in proving the two cases can be

explained, perhaps, by the following observations. If S( is infinite the subset of lx

consisting of the points for which there exists a real A0 such that (1) holds with < is

dense in lx therefore A is uniquely determined by its properties. If S* finite and Ff is

not a Haar subspace of lu the subset of /j of all the points for which (1) holds with

equality sign is nonvoid and open. Obviously, in this case any convex combination

of Aj and A2 fulfils the requirements.

If f satisfies the conditions of Lemma 5.2, Zis a Banach space such that X* = l1

and Fis the annihilator of Ff in Zthen, by [15, Lemma 7.4] there exists a C.N.P.E.

map from F* to X*. Moreover, if Z is any Banach space with Z=> F there is a

C.N.P.E. map from F* to Z*. This can be proved by the same argument used in

the proof of Theorem 7.3(a) of [15]. This theorem states that if the adjoint of a

Banach space Wis an L space then there is a C.N.P.E. map from W* to the adjoint

of every Banach space in which W is contained. The space F enjoys this property

but one can choose f such that F* is not an L space.
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