
ON THE LITTLEWOOD-PALEY g-FUNCTION AND
THE LU SIN ^-FUNCTION

BY

GEORGE GASPER, JR.(J)

1. Introduction. Let F(z) be a function regular in the unit disc \z\ < 1. In their

work on Fourier series and power series, Littlewood and Paley [6] introduced the

function

g(F)(0) = {j\\-r)\F'(re^\2drJ2

and proved (although they stated it in a form valid for p> 1 only) that if Fe Hv,

p>0, then

0-1) \\g(F)L è AP\\F\\P.

The letter A denotes a positive constant which is not necessarily the same at each

occurrence and which, except when otherwise stated, depends only on the param-

eters indicated by subscripts.

In his work on boundary values of regular "unctions, Lusin [7] introduced the

function

s(F)(8) = (jjajF'(x + iy)\2dxdyy2,

where Q(0) = O is a standard "kite-shaped" region inside the unit disc with vertex

at z= 1 and 0.(8) is the region Q. rotated through an angle 8 around z=0.

Marcinkiewicz and Zygmund [8] proved that ifFe Hp,p>0, then

(1-2) \\s(F)\\p Z Ap,a\\F\\p.

They also demonstrated that s is essentially a majorant of g, i.e.,g(F)(8) ^ Ans(F)(8).

These results were extended to the class 77" in the half-plane by Waterman [15].

The proofs given in the above-mentioned papers for (1.1) and (1.2) depend on the

Blaschke product decomposition of regular functions and on the regularity of a

branch of Fh, A > 0, where F is a regular function which never assumes the value
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zero. This complex variable method does not extend to higher dimensions. How-

ever, E. M. Stein [12] has extended these results to functions harmonic in the

half-space with boundary values in a class V,p>\, by utilizing an interpolation

theorem of Marcinkiewicz. In 1965, Calderón [3] gave a new proof of (1.2) for the

class H" in the half-plane by applying Green's formula. Also in 1965, Muckenhoupt

and Stein [9] extended (1.1), for p> 1, to ultraspherical expansions by using both

(1.1) and estimates for the differentiated ultraspherical Poisson kernel.

An i/Mheory for the unit sphere in En can be constructed analogous to that given

by E. M. Stein and G. Weiss [13] for the half-space. In this paper we shall present a

method which enables us to extend (1.1) and (1.2) to both the class H" in the unit

sphere and the class H" in the half-space for values ofp in a range reaching below 1 ;

namely, p>(n-2)j(n — \), where n is the dimension of the space. In addition, we

shall show how our method can be modified in order to extend (1.1) and (1.2) to

functions which are harmonic inside the unit sphere (or in the half-space) with

boundary values in a class V, p> 1, without using the interpolation theorem of

Marcinkiewicz. For the two-dimensional case, our method uses an easily proved

inequality instead of the previously mentioned tools. In contrast to Calderón's

technique, throughout our calculations no singularities are created by the zeros of

.F(see [4], where we illustrate the method by presenting a proof of (1.1) for 0 <p S 2).

We shall present our results for the unit sphere in Part I (§§2-5) and for the half-

space in Part II (§§6 and 7).

Part I. Results for the unit sphere

2. Background material and main results. We shall employ the following

notation. The vector x=(xu x2,..., xn) will denote a point in Euclidean «-space,

£„; |x| denotes the length of the vector x, i.e., |x|=(x?+x|-l-1-*?)1'2; dx

denotes the element of Euclidean «-dimensional volume ; V and A denote the grad-

ient and Laplace operators in En; S is the open unit sphere, |x| < 1, with boundary

dE, |x| = l; 6 denotes a point on dH; and do denotes the («—l)-dimensional

Euclidean element of volume on 3£. Thus x=r8, where r= |jc| and 6=xjr. We

shall also let v=(vi, y2,..., vn) denote a point in En and a denote a point on 82,.

In order to simplify notation, the dependence of general constants on the dimension

will not be displayed.

We recall that in cartesian and spherical coordinates :

(2.1) x = r6 = (xi,x2,...,xn),

where
x1 = r sin ?! • - sin rn_2 sin tn.u

x2 = r sin ti ■ ■ sin i„_2cos tn_i,

xn-i = rsin ti cos t2,

xn = r cos tlt
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and (tu ta,...,tn.%) belongs to the set

ß = {(/i,r2,..-,f»-i):0 ^ tj £v,j- l,2,...,n-2;0 í tn_, < 2*},

(2.2) dx = rn~1drd8,

where

dd = sinn_2 ij sin"-312- ■ -sin tn.2 dt^ dt2- ■ -dtn.u

. ■£> d2w     1 8 I   cw\     *■& 1 8  I v 8w\

= AM = v8?\v^)+á vwMw

v = rn~1 sin"-2 ij sin"-3 i2- • -sin in_2,

z;! = r, t>2 = r sin tlt..., vn.1 = r sin rx sin /2- ■ -sin fn_2.

By ¿"(öS), /? > 0, we mean the class of functions/(0) whose pth power is integrable

over 81.. The norm in L"(8I,) is defined by

ll/I,« ll/(ö)L = (£|/(e)|"^)l'P.

If'/'eL"(81,),p^ 1, then its Poisson integral u(x), x e Z, is given by

u(x) = u(f)(x) = ^¿J(8))^d8,

where |d£| denotes the (n — l)-dimensional Euclidean volume of 81,.

Then u(x) is harmonic in E, w(x) converges to f(8) for almost every 8 e 8~L as x

tends nontangentially to 0, u(r8) converges to/(0) in the LP(8H) norm as r -*■ 1, and

||/||p = linw ||M(re)L = sup0<r<1 ||«(r0)||p.

As an extension of the notion of a function of one complex variable regular in a

region, we use a system of conjugate harmonic functions, i.e., an «-tuple F(x)

= (ux(x), u2(x),..., un(x)) of real-valued harmonic functions which, in a region,

satisfy the generalized Cauchy-Riemann equations

(2.4) ÏP = 0,       P--&faBxi 8xk     8x,

In the two-dimensional case, it is very well known that \F\" is subharmonic

whenever p>0 and, more generally, log \F\ is subharmonic. For n^2, |F(x)|p is

subharmonic wheneverp^(n — 2)l(n — l), as was shown by Stein and Weiss [13].

By employing harmonic majorants of subharmonic functions, they developed the

77 "-theory for the half-space. We shall need analogous results concerning the class

Hp in S.

(2.3)

and

where
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If F(x) is a system of conjugate harmonic functions in Z, then F(x) is said to

belong to the class HP(I>),p>0, whenever its norm defined by

11/11,=   sup   (f   \F(r6)\> de)1*
Ogr<l   \Jez l

is finite.

By proceeding as in [13], it can be shown that if Fe /7P(S), p>(n-2)/(n-1),

then the nontangential limit F(6) = (u^d), u2(8),..., un(6)) exists for almost every

8 e ai, F(rd) converges to F(6) in the V(SL) norm as r -> 1, and

\\F\\V = lim \\F(rd)l = \\F(8)\\P.
r-«l

It can be shown that the nontangential limit also exists when/> = (« — 2)/(« — 1). All

of the lemmas needed in the proofs are either already known for the sphere or they

can be obtained by modifying known results slightly (see Aronszajn and Smith [1],

Calderón [2], Privaloff [10], K. T. Smith [11], and de la Vallée Poussin [14]). We

shall omit the proofs of these results (the details are contained in the authors

dissertation, Wayne State University).

We now define the Littlewood-Paley g-function for the unit sphere by

HfM = *(«)(*) = [j\l-r)\Vu(re)\2dry2,

For the Lusin i-function, the kite-shaped two-dimensional region is replaced by

an open cone Q0(8), 0< S< 1, consisting of all points in S which are on line seg-

ments joining 8 to \x\ < 8.

The Lusin s-function for the unit sphere is then defined by

<*»-*»»(JL.?£SM"
(in \ 1/2

-n2/(»M))   ■

When « = 2, the above definitions are the classical ones. As in the unit disc, s is

essentially a majorant of g, i.e.,

(2.5) g(f)(S) ï A6s(f)(8),   g(F)(8) S A^FW).

These inequalities can easily be obtained by using the fact that | Vw|2 is subharmonic

and following the argument given by Marcinkiewicz and Zygmund [8] for the case

« = 2. See also Stein [12, p. 447].

Our extensions of (1.1) and (1.2) to the classes HP(L) and L?(dlL) are contained

in the following two theorems.
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Theorem 1. If FeH'ÇL), (n-2)¡(n-l)<p<oo, then \\g(F)\\púAp\\F\\p and

\\s(F)\\píApJF\\p.

Theorem 2. If feL*(8T), Kp<oo, then \\g(f)\\PèAp\\f\\p and \\s(f)\\pS
A,M,.

The proofs of these theorems will be split into two parts ; in §4 we consider the

case when p assumes values = 2 and in §5 we consider the case when p > 2. In §3 we

present our main tools and some basic lemmas.

3. Preliminary lemmas.   The first two lemmas are the main tools of our method.

Lemma 1. Let c>0 and (n-2)l(n—1)</? = 2. Then, for any system of conjugate

harmonic functions F(x),

2 j* iv«k|» = a(|fi2) ^ p(pn_2pn_n+2)m2+cy2-pyi2H(\F\2+cr2).

Lemma 2. Let c>0 and 1 <p = 2. Then, for any real-valued harmonic function

u(x),

2|VM|2 = A(«2) S      2_    (u2 + c)(2-*)f2 A((u2 + c)"2).

The Laplacians are nonnegative and, since c>0, they exist at each point in the

domain of definition of the function (For u), even those where the function is zero.

Hence, there are no singularities to be concerned with at the zeros of the function.

Proof of Lemma 1. In the following calculations, if G = («1; ...,«„) is another

vector function, we let

FG = Uihi +■■■+ unhn   and   GXk = (8hJ8xk,..., dhjdxk).

We shall also let w(x)=\F(x)\2 + c. It is easy to verify that

8 82
—— \F\2 = 2(FF 1    —— If I2 = 2\F   l2 + 2CF-.F     1gx    \r I *\r  rxkh     fix2 \r I ^\rxic\   T*\r  rxkxk)>

—— fwP'2-V  = P(P~2) y^p-tm /_ I J7|S|      ,P W(P-2)I2 _£_ I E-12
8x2kKW   ) 4      W \dxklr¡ ) +2W 8xVt{ •

Since the components of F are harmonic, a summation over k yields

(3.1) A(w»'2) = p(p-2)w*-«'2 f (F-FXk)2+pw»-2»2 2 |*J".
k=l fc=l

Stein and Weiss [13, p. 34] have shown that

(3-2) 2 (F-FXk)2 ï 5^1 \F\2 2 \FXk\2.
k=l " fc=l
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From (3.1) and (3.2), we have (p(2-p)^0)

pw(p-av2 2 \FXk\2 í A(w*l2)+p(2~p)("~l) w^~2W 2 \Fnk\2,
k=l n k=l

which reduces to

p(pn-p-n + 2)w{p-2)>2 2 \FXk\a â nA(wp'2).
k=\

Lemma 1 now follows from the above inequality and the observation that

A(|F|3) = 2 2 I^J2 = 22 lv"*l
fc=i

Proof of Lemma 2. In the proof of Lemma 1, replace 7*"(;c) by (u(x), 0,..., 0)

and use the identity

l2

2 Lp-)2 - u2 2 l^X
AX   8xJ k^\oxk]

in place of (3.2).

The next three lemmas are generalizations of some very well-known results of

Hardy and Littlewood [5].

Lemma 3. ForfeL"(82Z),p'^l, define

M(f)(8) = sup 7?Î~-Tf f       \f(o)\ do,
l»-\.t', r)\  JC(e.r)

where the supremum is taken over all spherical caps C(8, r) = {o: \<r—8\ <r} and

\C(8, r)\ denotes the (n—l)-dimensional volume of C(8, r). Ifp> 1, then

\\M(f)\\P â Ap\\f\\p.

Lemma 4. Let w(x), xe"L,be a nonnegative subharmonic function, and let

N(w)(8) = Nó(w)(8) = sup {w(x): x e Qô(8)}.

Ifp> 1, then
(w)\\P â APti sup \\w(r8)\\p.

0£r<l

Lemma 5. Suppose that Fe 77"(2), p>(n-2)/(n-1), and let

N(F)(8) = NÔ(F)(8) = sup {\F(x)\ : x e Cïd(8)}.

Then

\\N(F)\\P g APJF\\P.

Lemma 3 is a special case of a theorem proved for more general domains by

K. T. Smith [11, Theorem 1]. Lemma 4 can be obtained by a simple modification

of the proof which K. T. Smith [11] gave for his Theorem 6. Since [i7^)|p is sub-

harmonic whenever p S (n — 2)¡(n — l), Lemma 5 is an immediate consequence of

Lemma 4.
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The proofs of Theorems 1 and 2 also require

Lemma 6. Suppose that F(x) = (ux(x),..., un(x)), xeï, is an n-tuple of real-

valued harmonic functions (not necessarily satisfying (2.4)). Let

c = c(8) = sup {\F(x)\2:\x\ á (S + l)/2},

where 8 is fixed so that 0 < 8 < 1. If p > 0 and \x\ ¿ 8, then

(3.3) mSr)Uj(x)\ g |V«X*)| = Aacllz,      j=\,2,...,n

(3.4) \(8l8r)(\F(x)\2 + c)p'2\ ¿ Ap,6cp'2,

(3.5) \A((\F(x)\2 + c)»'2)\ Z Ap,ôcpl2.

Proof. Integrating 8u¡¡8xk over the interior of the sphere with center x and radius

7?=(1 —S)/2, applying Green's theorem, and using the mean value property of

harmonic functions, we get (3.3). Then (3.4) follows directly from (3.3), and (3.5)

follows directly from (3.1) and (3.3).

4. The cases 77"(2), (n -2)/(«-1) <p g 2, andLp(d¿Z), 1 <p£2. We first present

the following:

Proof of Theorem 1; case when (n—2)¡(n— l)<p^2. Due to (2.5), it suffices to

show that \\s(F)\\pZAP,i\\F\\v.

Let FR(x)=F(Rx), 0<R< 1. If we had the inequality \\s(FR)\\p^Ap¡6\\FR\\p, then,

by Fatou's lemma, since s(F)(8) g lim inf,^ s(FR)(8), we would have

\\s(F)\\p á liminf \\s(FR)\\p Ú UmApjFR\\p = APJF\\P,
B->1 B-.1

the general result. Hence we may assume that F(x) is a system of conjugate har-

monic functions for \x\ g 1.

We write

Ci(8) = aó(8),   s = s(F),   d = (3+l)/2,    r =   |x|,

=   sup   \F(x)\,   c

Application of Lemma 1 gives

N(8) =   sup   \F(x)\,   c = sup \F(x)\2,   w(x) = (\F(x)\2 + c)p'2.
xeCliW \x\Sd

2m = a, f (lFl2 + c)'2-p);2Aw
(1-r)—20(9)

^^A/2-"(0)f     TT^dx.
Jaw \L — ~)

Hence, by Holder's inequality,

(4,, N,s^lf«l|m¡r^,af.
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An elementary argument shows that if xe(x) is the characteristic function of 0.(8)

and

/, =  f   Xeiro) d8,
Jas

then

(4.2) JrZA6(l-ry-\

Applying (4.2), we have

(4.3)

where

f    f     ^LT.2dxd8=¡    ¡m^-2dxd8=¡ -à^-2dx
JdzJamV-r) Jas Jz(l-r)n  2 Js(l~r)n 2

úaA    f (l-r)Aw(r8)drd8 = A0\\G2p\\i,
Jas Jo

G2(8) =  f  (l-r)Aw(r8)dr.

We prove now that

(4-4) \\G2\\i = AP,0\\N\\

Letting

g%(8) = f + f1 = n+!
JO       Jó

reduces the proof of (4.4) to showing that

(4.5) |if|t jg A,JNÎ>„      k -1,2.

By Lemma 6 and the observation that c = N2(8) for all 8, we get

\\n\\iuAPM(\-r)c"2dr\   ÚAP,6\\N\\
II Jo Ii

which gives (4.5) for Ix.

For I2, we use (2.3) to write

/i=rvi(^)*+"ifvi;oí)*
(4-6)

= P+ 2 pi-
j = i

Let us first consider P. Integrating by parts (F being a system of conjugate har-

monic functions for [jc| S1) and applying Lemma 6, we obtain

<47)      4->E+[H+^H>-'>/>
S APiiN>.
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For Pj, an integration with respect to r, shows that (Q as defined in (2.1))

because

Sinn',"1^], = o = °'       j<n~h

and, due to periodicity,
[8w   Vn-lt.—-a*

= 0.
0

Combining (4.6), (4.7), and (4.8), we get

I22(8)d8^ApJ\N\\p,
JfcJäs

which gives (4.5) for 72. This concludes the proof of (4.4).

From (4.1), (4.3), (4.4), and Lemma 5, we get

IUII    < A     ll/Vll'2-!»'2!!^2!!1'2 < A     II AT II    < A     II FII||í||p = Av,ô\\ly lip II"p111     = AP,¿II-'V Up = Av.à\r ||p,

the desired result.

Proof of Theorem 2; case when 1 <p^2. The proof here runs along essentially

the same lines as the above. We replace Lemma 1 by Lemma 2 and Lemma 5 by

Lemma 4 with w(x) = \u(f)(x)\.

5. Theorems 1 and 2; case when p>2. The following lemma enables us to

derive the inequalities in Theorems 1 and 2 involving the i-function from those for

the ¿■-function when p ^ 2.

Lemma 7. If p ^2 and u(x) is a function harmonic in Z, then

(5.1) W)\\p = Ap.ö\\g(u)\\p.

Proof. Let s=s(u) and g=g(u). We may write

(5.2) ||« ||2 = ( Í   (s2(8))p'2 do)** = sup f  s2(8)h(8) d8,
\Jez i i   Jes

the supremum being taken over all nonnegative functions h(8) which satisfy

I*||flj»l, where l/tp/2)+1/9-1.
Then, using (4.2), Lemma 3, and the notation associated with them, we have

Jes Jes Js       U~rJ

7r|VM(x)|27l7(/j)(g)
*i

j.       (1-r)»-2       **

£At\    f (1 -r)| V«(r0)|2M(Ä)(0) dr d8
Jes Jo

Z Aô\\g\\2p\\M(h)\\q S APAg\\2p\\h\\q ¿ APJg\\2,

which, with (5.2), yields (5.1).
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We also need the next lemma, which contains generalizations of some well-known

inequalities that were employed by Littlewood and Paley [6, II]. Since the proof is

a relatively direct and tedious modification of that sketched for Lemma 6, it is

omitted.

Lemma 8. Suppose that F(x) is a system of conjugate harmonic functions in 2.

Let

c =   sup  \F(x)\2   and   N(8) = N(F)(8) =    sup   \F(x)\.
lsclël/2 xeni/2(9)

If(n-2)l(n-l)<p^2 and x = r8, then (j, k=\,2,...,n)

<   IV7    t  M   *  AN(6)

APN*(6)

(5-3) 11 «A«)

(5.4) \V((\F(x)\2 + Cy<2)\ Ú

(5-5) Hé "'<*>) |*

— r

AN(8)

(\-r)2

(5.6) \V((\F(x)\2 + c)"2)\ i ApNpl2(9)[A((\F(x)\2 + cy12)]112,

(5.7) \V[A((\F(x)\2 + cyl2)]\ g ^piV'^fAftlFW^ + c^l^^l-r)2.

We now complete the proofs of Theorems 1 and 2.

Proof of Theorem 1 ; case when p > 2. In view of Lemma 7 and the inequalities

s(F)sZs(uk),       g(uk) Ú n"2 g(f),
k-1

it is enough to prove that

(5-8) \\g(F)\\P è AP\\F\\P.

Moreover, due to an observation made in §4, we may assume that F(x) is a system

of conjugate harmonic functions for |x| ¿ 1.

Letting

g2(n(8) -    + r - n+n
JO Jl/4Jlli

reduces the problem to showing that

(5.9) 117,11p â AP\\F\\P,      j- 1,2.

Let c and N(8) be defined as in Lemma 8. Then, by (5.3) and Lemma 5,

||/i||p Ú AP\\N\\P <[ AP\\F\\P,

which gives (5.9) for It.



1968] ON THE LITTLEWOOD-PALEY ^-FUNCTION 395

In proving (5.9) for I2, we shall follow a procedure which is closely akin to that

employed by Littlewood and Paley [6, II, pp. 60-63] for their ^-function when p

is an even integer.

Let us first consider the special case 2 <p^4 (actually the following argument is

valid for the wider range (2«—4)/(«— l)<p¿4). Application of Lemma 1 with/?

replaced by p/2 and w(r8) = ()F(r8)\2 + c)pli gives

P/2        \ IIP

(5.10)

!|/2||p ;g Ap( f   TV^-^/r1  (l-r)AwdrY2 dd\

< ^p||Af||P4-p)/*| f    (l-r)Awdr
II Jl/4

1/2

J

2

dr á ApNm

d8

since (4-p)¡4+p¡4 = 1. Writing wm = w(rm, 8), m= 1, 2, we see that

I f  (l-r)Awdr     = 2 f    f     f  (1 -rx)(l -r2) Awx Aw2 drx dr2 d8.
II Jl/4 2 Jas Jl/4 Jr2

Substituting for Awx its form in spherical coordinates (using the notation in (2.3)

with r replaced by r¡) and observing that, due to Lemma 8,

whenever 1/4Sr2^ 1, we obtain

I f  (l-r)Awdrl   S Ap (    Ç  (I - r2)N "l2 Aw2 dr2
II Ji/4 II2 Jas Jl/4

+2*2 f f fo-^a-^A^
, = 1 Jas Jl/4 Jr2

\  8   Iv 8wi\   ,     ,     ,„
x_äT  -2^T   dridr2d8

v 8tj \Vj 8tj J

n-l

= 7^+2 pi-
/ = 1

Then, using Holder's inequality,

(5.12) P é AP\\N\\>A f (l-r)Awdrl ■
II Jl/4 II2

Also, an integration by parts with respect to ti yields

'■ - -2L£Jj1-"xl-r4(lA"!)t'fr"*!*

(5.11)
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Therefore, using (5.6, and (5.7, with/» replaced by/>/2,

*' - A' L im /.' (î^î) w"S(a»'i)"2(Ah'')"! *' *» de

s ̂  L N"Li h+63)' H *'*""
-"'JL """{£. MW*

ÚAP¡  Npl2{[   (l-r)Awdr\d8

ú AP\\N\\PI2\ f    (l-r)Awdr
II -Im

[December

(5.13)

Jl/4

From (5.11), (5.12), and (5.13), we get

Jl/4
Aw dr z AP\\N\\r

and so, due to (5.10) and Lemma 5,

I/all, Í Ap\\N\\r^\\N\\r á AP\\F\\„,   2<pï4.

For the case when 2(k — l)<p^2k,k = 2,3,..., application of Lemma 1 withp

replaced by p\k, c defined as above, and w(/0) = (|7r(/0)|2 + c)I'/2'c gives

(5.14) \I2\P Z Ap\\N\\p2k-p)l2kl (   (l-r)Awdr
I Jl/4

1/2

9

k

since (2k -p)\2k +p\2k = 1.

Writing wm = w(rm8), m= 1, 2,..., k, we see that

I f  (l-r)AWr k = Ak f    f ■ ■ ■ ¡fl(l-rm)AwmYldrmd8.
II Jl/4 fc Jax Jl/*SrfcS--SriSl        J     i i

Now we substitute for Ah'j its form in spherical coordinates and notice that, just

as in (5.12), the integral containing the partíais with respect to r1 is not greater than

^pll^llHI f    (l-r)AwdrT   .
II Jl/4 \\k

Next, as in the case k = 2, the integral (j considered fixed)

LL....,.,-ín<'-->n^íé(^)n^*
is integrated by parts with respect to t¡ in order to show that it equals
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Then we substitute

"h  \  2 / i = 2   Vli     \2,m#i /

into the above integral and consider the term (i and j considered fixed)

"f    f ■■^v72t[(l-rm)d-^d-^flAwmfldrnd8.

Applying Lemma 8 with/» replaced by p\k and proceeding as in (5.13), we find

that this term is less in absolute value than

AP \ N*»* f ••• f (|^i) (Awiy2(AWiy12 n (1 -rm) Awm f[ drm d8
Jas Jl/4ë-SriSl        J\l-^/ 2.mí¡ 1

- ^ L NP'k (ííoír      ft (î^TÎ) (Am,i)1,2(Avv<)1/2 *i ^)

(f ••■Í n a-^A^ n drm)de
\JoS.Sr, + 1Sr,_1S-ár2Sl        J2,m#i 2,m*i        I

^Ap\   Np,k([    (l-r)Awdr)"  * dO
Jas        \Ji/4 /

S^IMlH f  (l-r)Awdrir1
II Jl/4 llfc

Combining these estimates, we obtain

I f  (l-r)AWrl   Ï Ap\\N\\r,
II Jl/4 Ilk

and so, from (5.14),

||/2||p Z Ap\\N\\f-p^\\NVpl2k ^ AP\\F\\P,

which gives (5.9) for I2. This completely proves Theorem 1.

Proof of Theorem 2; case when/?>2. In the above proof, replace the lemmas

regarding systems of conjugate harmonic functions by the analogous results for a

single harmonic function.

Part II. Results for the half-space

6. Background material and main results. For points in En we shall continue

to use the notation introduced in §2, unless otherwise stated. A point in the half-

space, £„x (0, oo), will be denoted by (x; t)=(xu ..., xn; t), where i>0; |(jc; t)\

= (*! H-1- xl+12)112 ; and V and A denote the gradient and Laplace operators in

En + l-
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By Lp(En), p>0, we mean the class of functions f(x) whose pih power is in-

tegrable over £„. The norm in Lp(En) is defined by

II/IIpHI/(*)IIp = (/j/«Ip¿*)1'1'-

lífeLp(En),p^ I, then its Poisson integral u(x; t), t>0, is given by

f(x-y)dy
u(x; t) = u(f)(x; t) = w-<»+»«r(2±I)r £

>/2
£n(|v|2-K2)<" + 1

Then u(x; t) is harmonic in £nx(0, oo),/(x) = limt_0 u(x; t) both in the Lp(En)

norm and almost everywhere, and ||/||,, = limt_o ||m(jc; r)||p = supt>0 ||w(jc; Oil»-

A system of conjugate harmonic functions in the half-space is an (n+ l)-tuple

F(x; t) = (u1(x; t),..., un+1(x; t)) of real-valued harmonic functions satisfying, in

t > 0, the generalized Cauchy-Riemann equations

£"n + l       y 8ui = Q       dun+l   =   g"j gtty  _  8uk

8t      f^ 8xj       '      8Xj 8t '     8xk      dx,'

where / k=l, 2,...,«. Since F(x; t) has (n+ l)-components, \F(x; t)\p is sub-

harmonic whenever

> üz! = ("+V-2
P =    n    ~ (n+l)-l

If F(x; t) is a system of conjugate harmonic functions in the half-space, then

F(x; t) is said to belong to the class Hp(Enx(0,co)),p>0, whenever its norm

defined by

,i/p
II^Ip=   sup ■((   \F(x;t)\pdxY

0<(<eo   \Jsn /

is finite.

Stein and Weiss [13] have shown that if Fe Hp(En x (0, oo)), p > (n-l)jn, then

the nontangential limit F(x; 0) = (u1(x; 0),..., un+1(x; 0)) exists for almost every

x e En, F(x; t) converges to F(x; 0) in the Lp(En) norm as t -> 0, and

¡FU, = lim ¡F(x; t)\\p = \\F(x; 0)\\p.
t-»o

They also showed that ifp=(n- l)/n, then the nontangential limit exists for almost

every x e En.

The Littlewood-Paley ^-function for the half-space is defined by

a c° \ 1/2
i  t\Vu(x;t)\2dt)   ,

(i      n + l \l/2
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For the Lusin i-function, the cone inside the unit sphere is replaced by an open

cone Wô(x), 0 < 8 < oo, consisting of all points (y; t) such that \x—y\ < 8t.

The Lusin i-function for the half-space is then defined by

^-«^.(TjMa&ie **)".
(i      n+l \l/2

-L-2/MW)   •
It is known [12, pp. 447, 462] that, for any u(x; t) harmonic in r>0, g(u)(x)

^ A„s(u)(x), and so

(6.1) gif)ix) Ú Aàs(f)(x),   g(F)(x) í A6s(F)(x).

We now state the half-space analogues of Lemma 5 and of Theorems 1 and 2.

Lemma 9. Suppose that F e Hp(En x (0, oo)), p>(n-1)1 n, and let

N(F)(x) = N6(F)(x) = sup {\F(y; t)\ : (v; i) s W6(x)}.

Then

\\N(F)\\p á APJF\\P.

Theorem 3. IfFeHp(Enx(0,oo)),(n-l)ln<p<oo,then \\g(F)\\p^Ap\\F\\pand

\\s(F)\\p^ApJF\\p.

Theorem 4. IffeLp(En),\<p<co, then \\g(f)\\PâAp\\f\\ and \\s(f)\\ZApJf\\.

Lemma 9 is an immediate consequence of two lemmas which appear in [13,

Lemmas (3.8) and (3.14)]. As was mentioned in the introduction, Theorem 4 has

been proved by Stein [12]. In §7, we shall show how Lemma 1 may be employed in

order to obtain Theorem 3 for (n—l)/n<p¿2. Since the extension to p>2 then

proceeds in essentially the same way as that used in §5 for the unit sphere, we shall

not present it. The case p>\ of Theorem 3 may also be obtained by applying

Theorem 4 to each component of F.

It should be noted that we may obtain a new proof of Theorem 4 for 1 <p g 2 by

proceeding along the same lines as in the proof of Theorem 3, replacing F by /and

the various lemmas concerning systems of conjugate harmonic functions by the

analogous lemmas for single harmonic functions.

7. Proof of Theorem 3; case when (w—1)/«</?^2. In view of (6.1), it suffices

to prove that

(7.1) \\s(F)\\P Ú A,JF\\,   (n-\)ln < p á 2.

Setting Fe(x; t) = F(x; t+e), e>0, and proceeding as in the proof of Theorem 1

given in §4 for (n-2)l(n-l)<p^2, we find that it is enough to prove (7.1) with
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F(x; t) replaced by Fe(x; t). In the proof F(x; t) will denote Fe(x; t).

For any two positive numbers a and b, let d=a+ob and

i /    .i     b      9wr .   irt
h(x;t) = -cos2^smj,

where r»=|jr|. We note that

,.    w    ^      b  .   vt ,.    b  .   irt
hm h(x; t) = - sm -¡-, hm - sin -¡- = t,
a-»x IT O b-»ooir O

and h(x; t)^0 whenever 0 ̂  t S b. Put

JV(x) =     sup     |F( v; Ol,    W(x) = W6(x),    W(x; b) = W(x) n {( v; r): t S b},
W:l)6Fj(«

c-c{<0*    sup   |F(x;r)|2,   w(x;t) = w(F(x;t),p,a,b) = (\F(x;t)\2 + c)p'2.
ixlëôt-i

ThenO<c(d)^N2(x) and w(x; t)^2pl2Np(x) whenever \x\gd.

Letting

rr       h(y;t)n2\Vuk(y;t)\2^»WJL-8*W-**
and applying Lemma l with « replaced by n+1, it is easy to see that

S2(;c;a,*) ̂  APN2-(x) if        ^O^O^^

whenever |jc| ̂ a. Hence, using Holder's inequality,

f       Sp(;c; a, b) dx

<7'2>   "        *'4jirr—(f    if    *r-*>yr><>*+*ir.
\J|x|Sa J JWU;W ' /

Now let Xx(v; t) be the characteristic function of W(x). Then

JuiSo J Jw(x:i» »

(7.3) «f    f    ^^énm^ûÈ^iûitày^
J\x\Sa JlvlSd Jo «

£yldf        f h(y;t)Aw(y;t)dtdy,
J\y\%.d Jo

since

f       Xx(y; t)dxZ f   xx(y, t)dx= [        dx = ¿4r\
Juiëa Je„ J\x\%ôt
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Assuming temporarily that « ̂  2 and employing cylindrical coordinates, we have

f        \   h(x; t)Aw(x;t)dtdx
J\x\£d Jo

- Lu r Kx-> ° S * dx+L r £Kx-' *> I (•- £)dt dr de

j=i
where w=w(x; r), r= \x\, x=r8, and g, d8, v,Vi,..., »„.j are as defined in§2.

Consider P( first. Integration by parts with respect to t yields

r» . 7Tt82w .    r 77       wty  aa2 r»    . nt .  . ap Ar„.,
J0 mJW* = [-bwcosjl-\b) i wsin J* = fN(x)

i2    fb

o sinx^*= | -z WC0S-ttI -(ï

whenever |x| ¿d, and so

Considering Pr next, we find that

PtúA,[       N*(x) cos2 ̂ dx g Ap\\N\\p.
Jlx\Sd ¿a

f "      o^r 8 / n ,dw\  ,  ^,  ir2   r<i
l^^8-r\rn-1^)dr = 2d2)0rn'lwdr

and so (dx=rn~1 dr d8)

Now consider P,. An integration with respect to t} yields

l|-Ö|)^---*- = 0'   7-1,2,...,*-!,
because

[8wVi=lt

^-'-'■'wl.,-0- J<-¡
and, due to periodicity,

I" 3w 1'n-i=2*

Therefore, Pj=0,j=l, 2,..., «-1.

Combining these estimates, we find that

(7.4) f        f h(x; t) Aw(x; t) dt dx Ú APJN\\P.
J\x\&d Jo
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If we now let a and b approach oo and apply Fatou's lemma, then it follows from

(7.2), (7.3), (7.4), and Lemma 9 that

\\s(F)\\p ̂  Ap,6\\N\\f-p^\\N\\p'2 ï APJF\\P,

which is the desired result. For n= 1, we use the cartesian form of A and proceed

as above.

Remarks. A simpler proof yields Theorems 2 and 4 for 1 <p ^ 2. A decomposition

of/ into its positive and negative parts reduces the problem to nonnegative func-

tions. Then u, the Poisson integral of/^0, is strictly positive and so in place of

Lemma 2 we may use the identity

(7.5) A(m2) =   . 2 ,. u2~p A(up)
p(p-l)

in which, since u > 0, no singularities appear.

We note also that Theorems 1-4 may be obtained for p^4 by using a standard

conjugacy argument to pass from the case 1 <p^2 top^4 (see Stein [12, p. 455]

and Zygmund [17, Vol. II, p. 212]).

Added. E. M. Stein [Intégrales singulières et fonctions différentiables deplusiers

variables (Notes), Faculté des Sciences d'Orsay, 1967] has independently utilized

the identity (7.5) to obtain Theorem 4 and the analogous result for the function

g*(f) of Littlewood-Paley and Zygmund. Also, in Classes Hp et multiplicateurs:

Cas n-dimensionnel [C. R. Acad. Sei. Paris 264 (1967); Série A, 107-108, Proposition

2] he announced (without proof) the corresponding Hp(Enx(0, oo)),p>(n—l)¡n,

result for the function g*(F) (Stein denotes it by S*(F)). It is not difficult to see that

Stein's Proposition 2 and the corresponding results for the class 77 "(£) and the 77p

class constructed by Muckenhoupt and Stein [9, p. 45] can be obtained by the

method introduced in this paper.
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