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1. Introduction. Let (X, p) be a metric space, and let 2X denote the collection

of nonempty closed subsets of X. If (F, d) is a compact metric space, and if p,

is a positive Radon measure on T, then one may define measurable mappings

Cl: F-*2X as in [5], [7], [20] and [15]. There are several ways of defining conver-

gence in 2X [17], [2, p. 118 ff.], and consequently there are several ways of defining

continuity for mappings Cl: T-*- 2X. The main purpose of this paper is to investi-

gate the relationships between measurable multivalued mappings and continuous

multivalued mappings. More specifically the central problem is to ascertain

conditions under which the measurability of Cl: T ->2X will be equivalent to the

property that for every e>0 there is an open set Ee<=Tsuch that p(Es) < e and such

that the restriction of Cl to T\Ee is continuous (in some sense). Thus far the only

results on this problem have been obtained by Plis [20] when X is compact, and by

Castaing [7, Theorem 4.2] when X is separable and Cl(t) is compact for every t e T.

Our results are not restricted to the compact situation.

This study is motivated by the considerable interest recently manifested in the

study of measurable multivalued mappings, e.g., see [5], [7], [15], [18], and [20]

and their applications to optimal control problems, e.g., see [1], [6], [8], [13], [16],

and [19].

2. Measurable multivalued mappings. Throughout this paper p. denotes a

positive Radon measure [4] defined on a compact metric space, (T, d), and (X, p)

denotes a metric space. If ( Y, 8) is any metric space, then we use t(S) to denote the

topology on Y (collection of open sets) determined by 8. The symbol cl (A) is used

to denote the closure of A, where A is a subset of Y. We shall use s£(X) to denote

the collection of nonempty subsets of X, 2X to denote the collection of nonempty

closed subsets of X, and ^(X) to denote the collection of nonempty compact

subsets of X. If 77: T -> ¿&(X) is a mapping, and if S is a subset of X, then we define

77_5 to be the set {t e T | 77(r) n S# 0}. We say that the multivalued mapping 77

is measurable if 77" F is measurable for every closed F<= X.

In discussing topologies on 2X we shall try to remain consistent with Michael's

terminology [17]. The uniformity on A^see [10, p. 201]) determined by the metric p
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is denoted by /«, i.e., /*={//| e>0} where J?={(x,y) e XxX\ P(x,y)<e}.

If V is a subset of Xx X, and A is a subset of X, then

V[A] = {yeX\3xeA:(x,y)e V}.

The uniformity f on X determines a uniformity 2[iI on 2X [17, p. 153]. Let W(J°)

denote the set

{(A, B)e2xx2x\ J¡[A] => B &7£"[5] => ¿}.

Then the uniformity 2[i] is simply {W(J°) \ e>0}. The topology on 2X determined

by 2[o1 is called the uniform topology on 2X determined by p. The uniform space

(2x,2lBÏ) is actually metrizable [17, Proposition 4.1] with the Hausdorff metric

determined by p* = p/(l 4- o), but it will be more convenient to simply view the

space (2X, 2lpy) as a uniform space.

If Ax,..., An are subsets of X, then (Au ..., An} is defined to be the collection

JFe2x|Fc \jAt&A,nF* 0,i= 1,2,...,«|-

The finite topology on 2X has as an open base the open collections (Gu ..., Gn>

where Gi,...,Gn are open subsets of X [17, Proposition 2.1]. This topology is

sometimes called the Vietoris or exponential topology on 2X (cf. [14]).

If t0 is an element of T, then we use £f(t0) to denote the neighborhoodfilterbase at

to consisting of all Se(t0), £>0, where Se(t0)={t e T\ d(t, t0)<s} (cf. [10, p. 211]).

The grill of Sf(t0) [2, p. 11] is denoted by y(t0) and consists of all sets S"(t0)

contained in T such that S"(t0) n Se(t0)^ 0 for every e>0. If Q. is a mapping,

Q.:T-+2X, then the pseudo-limit superior of Q. as z->z,0 (abbreviated:

p-lim supt_io ß(r)) is defined to be

D    ci r u "(01,

and the pseudo-limit inferior of Q as t-*-t0 (abbreviated: p-lim inf(_to Q(0) is

defined to be

H    ci r u 0(01

(cf. [2, Example 3, p. 120]).

We now state three different definitions of semicontinuity for mappings

Q: F-> 2X. Q. is pseudo-upper semicontinuous at t0 e T (abbreviated : p-usc at t0 e T)

if p-lim supt_¡0 Q(/)c:Q(ro). Dually Q is pseudo-lower semicontinuous at t0eT

(abbreviated: p-lsc at t0 e T) if Q(/0)c:p-lim inf(^ío Q(í). Ü is pseudo-continuous

(abbreviated: p-continuous at t0eT) if Q is p-usc and p-lsc at t0eT. For the

justification of using the adjective "pseudo" see [2, p. 124 and p. 128]. £2 is upper

semicontinuous at t0eT (abbreviated: use at t0 e T) if for each open G containing

Q(r0) there is an Se(t0) e S?(t0) such that

t e Se(t0)      implies       Q(t) <= G.
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Cl is lower semicontinuous at t0eT (abbreviated : Isc at t0 e T) if for every open G

meeting Cl(t0) there is an SE(t0) e F(t0) such that t e Se(t0) implies Cl(t) n G¥= 0.

Let 2X have the finite topology. Then Cl is continuous at t0 e T if and only if Cl is

use at t0 e T and lsc at t0 e T. Cl is upper semicontinuous with respect to inclusion at

t0eT (abbreviated : usci at t0 e T) if for every e > 0 there is an Sà(t0) e ¡f(ta) such

that t e S¿(t0) implies J?[Cl(t0)]=>Cl(t). Cl is lower semicontinuous with respect to

inclusion at t0eT (abbreviated : lsci at r0 e T) if for every e > 0 there is an S¿(t0)

e£r°(t0) such that teS6(t0) implies J?[Cl(t)]=>Cl(t0). Let 2X have the uniform

topology determined by p. Then Cl is continuous if and only if Cl is usci at r0 e T

and lsci at t0 e T.

We enumerate three properties which will be used later.

(1) Lusin Cp property. For every e>0 there is an open set EC<^T such that

p.(Ee)<e and such that C1\T\ES is p-continuous.

(2) Lusin C„ property. Let 2X have the uniform topology determined by p.

For every e>0 there is an open set Ee^T such that /x(F£)<e and such that Cl\T\Ee

is continuous.

(3) Lusin Cf property. The same as (2) only 2X has the finite topology.

We shall say that a family of mappings {/ | a e A,fa: F-> X) is almost equi-

continuous if for every e >0 there is an open set ES<^T such that p(Ee) < e and such

that {fa\T\Ec, a e A} is an equicontinuous family on T\Ee.

Finally, if x is an element of X and A is a subset of X we define

p(x,A) = inf{p(x,y) \yeA}.

We state without proof the following lemma.

Lemma 2.1. Let Cl be a mapping, Cl: F->2X. Then a necessary and sufficient

condition that Cl be p-usc at each point ofTis that if{xn} and {tn} are sequences in X

and T respectively such that xn e Cl(tn) for every n and such that xn->x and tn -» t

as n —>■ oo, then x e Cl(t).

Lemma 2.2. If A is a nonempty subset of X, then the mappingfA: X-> R defined'by

Ía(x) = p(x, A) is Lipschitzian, i.e., \fA(x)-fA(y)\ è p(x, y), x,yeX.

Proof. [10, p. 185].

In [12] we pointed out the validity and application of the following result.

Theorem 2.1. Let 2X have the uniform topology determined by p. Then a necessary

and sufficient condition that Cl: F->- 2X be continuous is that the family of mappings

{t -> p(x, Cl(t)) | x £ X} be equicontinuous.

Proof. Sufficiency. Given «>0 there is a 8>0 such that d(t,t')<8 implies

\p(x,Cl(t))-p(x,Cl(t'))\<e,xeX. Consequently xeCl(t),d(t,t')<8 imply

0¿p(x, Ci(t '))<«, and therefore there is a yeCl(t') such that p(x,y)<e, i.e.,

xeJeB[Cl(t')]. Whence d(t,t')<8 implies Jp[Cl(t')]=>Cl(t), and by a symmetric

argument J?[Ci(t)] => Cl(t ').
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Necessity. Given £>0 there is a 8>0 such that d(t, t')<8 implies 7£°;2[Q(i')]

=>fí(r) and J°,2[Cl(t)]=>Q(t'). Given x e X and d(t, t')<8 there is a y e Q(t) such

that p(x, Q.(t))+el2>p(x,y), and there is a y' eù(t') such that p(x, Cl(t')) + e¡2

>p(x,y'). Moreover, there is a ¿'eD(r') such that p(b',y)<e¡2, and there is a

b e Q(i) such that p(b, /) < e/2. Thus

,(*, Q(0) á P(x,b) Ú P(x,y') + p(y',b) < P(x, ü(t')) + e

and

p(x, Q(t')) ï P(x,b') ú P(x,y) + P(y,b') < P(x, Q(r))+*,

thereby proving that the family {t -> p(x, Q(i)) | x e X} is equicontinuous.

Remark (i). Let X be separable, and let 77: T^>-s#(X) be measurable, then

77" G is measurable for every open G<^X. This is evident since each G is an F„

(cf. [15, p. 400] or [7]). Consequently if 77 is measurable, then each of the functions

t -j- p(x, H(t)), x e X is measurable (cf. [7, Theorem 3.2]). This follows from the

fact that if r>0 and xe Xare given, then the set {t e T \ p(x, H(t)) <r}is the same

as the set 77-7r"M, where 7,?[x] = {y | p(x, y)<r}.

Lemma 2.3. If H is a measurable mapping, H: 7-> s$(X), and if X is separable,

then for every e>0 there is an open EC<^T such that p.(Ec)<e and such that the

restriction of the mapping (t, x) -* p(x, 77(f)) to (T\Ee) x X is continuous.

Proof. The conclusion is immediate from Lemma 2.2, Remark (i), and Theorem

2.1 of [13].

In the case where X is also locally compact this lemma can be obtained from

[7, Theorem 3.1]. The theorem in [13] which we cited above is more general.

Theorem 2.2. Let X be separable. A necessary and sufficient condition that a

mapping Q.:T-+2X have the Lusin Cu property is that the family of mappings

{t -*• p(x, Í2(í)) | x e X} be almost equicontinuous.

Proof. If Q. has the Lusin Cu property, then given e>0 there is an open set

£,cr such that p.(EE)<e and such that Cl\(T\Ee) is continuous when 2X has the

uniform topology determined by p. By Theorem 2.1 the family of mappings

{t -» p(x, Q(t))(t e T\Ee) \ x e X} is equicontinuous. Therefore, the family of

mappings {i -> p(x, Cl(t)) (t e T) \ x e X} is almost equicontinuous.

Conversely if the family of mappings {t -► p(x, Q(i)) (t e T) | x e X} is an almost

equicontinuous family, then Q has the Lusin Cu property by Theorem 2.1.

The next theorem gives various criteria for the measurability of multivalued

functions. The equivalence (ii) o (v) shows the intimate relationship between

measurable functions and p-continuous functions. The equivalences (ii) o (iii)

o (iv) were obtained by Castaing [7, Theorem 3.2] in the special case where X is

locally compact and H(t) e 2X for every t e T (cf. also [15, §1 Theorem and Cor-

ollary 1]).
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Theorem 2.3. Let X be a Polish space [3, Part 2, p. 195]. Let a mapping

H:T-+ ¿&(X) be given. Then statements (ii) through (v) are equivalent. Moreover,

(i) implies any of the remaining four statements.

(i) 77 is measurable;

(ii) t -> cl (H(t)) is measurable;

(iii) Each of the mappings t ->- p(x, 77(f)), xe X is measurable;

(iv) 77" G is measurable for every open set G^X;

(v) t -> cl (77(/)) has the Lusin Cp property.

Proof. The validity of [(i) => (iv) => (iii)] was discerned in Remark (i). We ob-

serve that p(x, H(t)) = p(x,cl(H(t))) for every (t, x)eTxX. Thus (iii) implies

that for each x £ X the mapping f -» p(x, cl (H(t))) (t e T) is measurable. Thus

given e>0 Lemma 2.3 guarantees that there is an open set Ee<=Tsuch that p(Ee) <e

and such that the mapping (t, x) -► p(x, cl (H(t))) ((t, x) e (T\EC) x X) is continuous.

Let S^(t) denote the neighborhood filter base relative to T\Ee at t e T\Ee, and as

usual Sfe"(t) denotes the grill of ¿r°e(t). Let {x„} and {fn} be sequences in X and T\EE

respectively such that xn e cl (H(tn)) for every n and such that xn -> x and tn -> t.

Then we have that p(xn, cl (H(tn)))=0 -* p(x, cl (77(f))) (by continuity), and this

implies that x £ cl (77(f)) [10, p. 185]. Consequently f -*■ cl (77(f)) is p-usc at each

f £ T\Ee by Lemma 2.1. Now let f0 £ T\EC be given, and select x0 £ cl (77(f0)). If

S"(t0) is an element of ^e"(t0), then

fix, cl (77(f))) = p¡x, cl [s6Uo) cl (#(!))])

for every (f, x) £ S"(t0) x X. If we select S1/n(f0) £ Fe(t0) for n = 1, 2, 3,..., then

there exist elements f„ £ S"(t0) n Sm(t0) for n= I, 2, 3, — Such a sequence {fn}

converges to f0. If {xn} is any sequence in X which converges to x0, then

we have

0 = P(x0, cl (77(f0))) = lim p(xn, cl (77(fn)))

= lim plx„ cl [ U   cl (H(s))]\

= p(xo, cl r  U   cl (77(j))l) ̂  0

which shows that x0 £ cl [Us6s-<t0> cl (77($))], thereby proving the relation

cl (77(f0))c:p-lim inf(^(o (cl 77(f)). Thus we have shown f -*■ cl (77(f)) restricted to

T\Ee is p-continuous at every f £ F\££, and we conclude that [(iii) => (v)]. Statement

(v) implies that there is a sequence {Fn} of compact subsets of F and a set N of

measure zero contained in T such that cl (77)|F„ is p-continuous for every n and

Uñ=iTn=T\N (cl(77)|Fn denotes the restriction of the mapping f-*cl (77(f))

to Tn). By Lemma 2.1 each mapping, cl (77)|Fn, has a closed graph, i.e., Uter„ W

x cl (77(f)) is a closed subset of Fn x X. Therefore cl (77)|Fn is measurable for every
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« [7, Lemma 3.2]. Define a sequence of mappings 77*: F-*-2x u {0} by the

relation

77*(f) = cl (77(f)),   ifteTn

= 0, iff*r».

Then each 7f* has the property that H* "Fis measurable for every closed F<= A'. The

measurabihty of cl (H) then follows from the relation cl (H(t)) = IJ"= 1 77*(f), if

t$N. This shows that [(v) => (ii)]. Since [(i) => (iv)] has already been demonstrated

it follows that (ii) => (iv). Whence statements (ii) through (v) are all equivalent.

Remark (ii). If the mapping, f -> cl (H(t)) (t e T), in Theorem 2.3 is denoted

by 0, then we observe that H~G = <b~G for every open G^X.

Lemma 2.4. Let Xbea Polish space. IfCl:T->2xhasthe Lusin Cu property, then

Q is measurable.

Proof. There is a set N of measure zero contained in T and a sequence of com-

pact sets, {Tn}, contained in T such that U"=i Tn=T\N and such that the mappings

Cl\Tn: Tn-> 2X are continuous when 2X has the uniform topology determined by p.

Thus the mappings £2|7„ are p-usc. The measurabihty of Í2 follows as in the above

proof of (v) => (ii) in Theorem 2.3.

It is interesting to note in passing that Plis' theorem [20] is an immediate con-

sequence of Lemmas 2.3, 2.4 and Theorem 2.2.

Corollary 2.1 (Plis). Let X be compact. Then a necessary and sufficient

condition that £2 : T -*■ 2X be measurable is that Q. have the Lusin Cu property.

Theorem 2.4. Let X be separable and locally compact. Let a mapping Q:T->2X

be given. Then there is a metric px on X such that the two topologies r(p) and -r(px)

coincide, and such that the following two statements are equivalent.

(i) Q is measurable;

(ii) Q. has the Lusin Cu property when 2X has the uniform topology determined by

Poo-

Proof. Zis a Polish space [3, Part 2, Corollary, p. 196]. Whence (ii) implies (i) by

Lemma 2.4. In the special case where X is compact the theorem follows from

Corollary 2.1. We may therefore assume that X is not compact. Let Xm = X u {00}

denote the one-point compactification of X. Then XK is metrizable [10, p. 247].

Since Xx is compact, it follows that Xa is complete with respect to any metric

defining its topology. Let pm be a metric on Xœ defining the topology of X«, and

therefore also defining the topology of X. Hereafter both X and Xm will be assumed

to be metrized with px, and no further use will be made of the metric p. Let D. be

measurable, and let Í2«, denote the mapping, £lx : T-+ j^(Xx), where ûœ(i) is the

image of Q(f) under the inclusion mapping ix : X<= X'„. Let G a be an open subset

of Xx. Then we have ü"Gco = Q"(G0O\{co}). Since Goo\{co} is open in X, and

Í2:r->2X is measurable, it follows that Q.zGa is measurable. Therefore by
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Theorem 2.3 [(iii) o (v)], the mappings t -> p„(x, ÜM(í)) = p„(x, cl (Clx(t)))(teT),

xeX, are measurable. By Lemma 2.2, the compactness of TxXm, and [13,

Theorem 2.1], the aforementioned mappings form an almost equicontinuous

family. Whence given e>0 there is an open set E^Tsuch that p.(Es)<e and such

that the mappings, f -*■ pK(x, Deo(f)) = p00(x, cl (Clœ(t))), xe X, when restricted to

T\Ee are equicontinuous. Let(2)

/- - {J? | 8>0},       (J? = {(x,y)eX„xXœ\ P„(x,y) < 8})

denote the uniformity which determines the topology of Xx. Then fx r\(XxX)

={7|° n (Ix X) | 8 > 0} determines the topology of X. Given 8 > 0 there is a ß > 0

such that t,t'e T\ES, d(t, t')<ß imply

|/>co(x, Cl<o(t))-pK(x, Clœ(t'))\ < S,       xeX„.

Hence f, f' £ 7^, a"(f, f')<j8 imply

(J? n (Ix Z))[Ü(í')] => Cl(t) & (/„• n Xx X))[Cl(t)] = D(f')

(cf. the sufficiency part of the proof of Theorem 2.1). This proves (ii).

The following corollary is evident.

Corollary 2.2. Let X be separable and locally compact. A necessary and

sufficient condition that a mapping, Cl: T-> 2X, be measurable is that for every e>0

there exists an open set E^Tsuch that p(Ee) < e and such that C1\T\EC is lsc.

Now 2iBl and 2[c»] define equivalent topologies on ^(X) [17, Theorem 3.3], but

since p and px are not uniformly equivalent we cannot expect that 2lD] and 2["«] will

define equivalent topologies on 2X. For example, let F denote the set of real num-

bers with the usual topology determined by the metric p where p(t, t')=\t—t'\, and

let px denote a metric defining the topology of the one-point compactification of R.

Metrics p and px define equivalent topologies on R. Let {Kn} denote the sequence of

compact intervals {[—n, «]}. Then {Fn} does not converge in the uniform topology

determined by p, but the sequence converges to R in the uniform topology de-

termined by poo-

It is noted that in the special case where X is locally compact, Michael's Theorem

3.3 [17], and Theorem 2.4 may be applied to obtain a result of Castaing's [7,

Theorem 2.4].

Corollary 2.3. Let  X be separable and locally compact. Let a mapping

Cl: T-^-<(S(X) be given. Then the following are equivalent:

(i) Cl is measurable;

(ii) Cl has the Lusin C¡ property;

(iii) Q has the Lusin Cu property.

The following corollary is embodied in the proof of Theorem 2.4.

(2) According to our agreement in §2 we should write </»»={y»» | S>0}, but in order to

avoid too many typographical levels we are suppressing p and simply writing /"={/" | 8 > 0}.
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Corollary 2.4. Let X be separable and locally compact. Let Xx denote the one-

point compactification of X. Let Q:T->2X be a given mapping, and let £2œ: T

-> s/(Xx) be the mapping defined by the condition that Qx(t) is the image of Q(f)

under the inclusion mapping zœ: X<^XX. Then Q. is measurable if and only if the

function cl (Q„)from T into 2X», defined by t -*■ cl (Î2œ(f)), is measurable.

A mapping 5: T^>-jtf(X) is simple if there is a finite partition of T, say

{Tu..., Tn}, such that 5 has a constant value on each of the Tt. If the sets T¡ are

measurable, then S is a measurable simple function, i.e. S~F is measurable for

every closed F<= X.

Corollary 2.5. Let X be separable and locally compact. Let 2X have the uniform

topology determined by px. A necessary and sufficient condition that a mapping

Í2: F-> 2X be measurable is that there exists a sequence {Sn} of measurable simple

functions Sn:T-> 2X such that Sn(t) -> Q(f) a.e. on T.

Proof. By Theorem 2.4 the mapping Q. is measurable if and only if Q. is measur-

able in the Bourbaki sense [4, p. 169], when considered as a mapping from 7 into

the metrizable space 2X with the uniform topology determined by px. Thus Corol-

lary 2.5 follows immediately as in Bourbaki [4, Theorem 3, p. 178].

The next two theorems are improved statements of Castaing's Corollaries 5.2

and 5.2' [7].

Theorem 2.5. Let X be a Polish space. Let a measurable mapping Q.:T^-2X be

given. Let f be a continuous mapping from Tx X into a Hausdorff space Y, and let y

be a measurable mapping, y: T-> Y such that y(t) ef(t, Q(t))for every teT. Then

there is a measurable mapping x: T-> X such that x(t) e Q.(t) and y(t)=f(t, x(t))

for every teT.

Proof. The function Y;T->2X defined by T(t)={u e Q(f) |/(f, u)=y(t)} is

measurable (the T(f) are closed by the continuity off). For if e>0 is given, then

there exists an open set Fs<=r such that p.(Es)<e and such that (1) Ü\(T\EC) is

p-continuous (by Theorem 2.3) and (2) y\T\Es is continuous [4, Proposition 1]. It

follows from Lemma 2.1 that T is p-usc on T\ES. Therefore r\(T\Es) is measurable

[7, Lemma 3.2] and p-(Ee) < e. Since e > 0 is arbitrary, T is measurable. The conclu-

sion of the theorem follows from either of the three results [15, §1, Theorem],

[5, Theorem 3], or [7, Theorem 5.2].

Let ( Y, 8) be a metric space. We shall say that a mapping h: X—> Y is locally

uniformly continuous if for each x e Anthère is a neighborhood of x (i.e., a set which

contains an open set containing x) on which « is uniformly continuous (X is

assumed to carry the metric p).

Theorem 2.5' Let (X, p) be a Polish space, and let (Y, 8) be a metric space. Let

Q: 3"-> 2X be a measurable mapping, and letf:TxX-* Y be a mapping such that

the mappings t-*-f(t, x), xe X are measurable, and such  that the mappings
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x ->/(î, x), f e F are locally uniformly continuous. Let y be a measurable mapping,

y.T-^- Y, such that y(t) ef(t, Cl(t)) for every t e T. Then there is a measurable

mapping x: F-> X such that x(t) e Cl(t) and y(t)=f(t, x(t)) for every teT.

Proof. Using a result we obtained in [13, Corollary 2.1] the proof follows the

same line of reasoning as the proof of Theorem 2.5. We omit the details.

The euclidean space R9 is ordered lexicographically [10, p. 57] by a relation, ^,

defined by xx = (xi,..., xf) = x2 = (x2,..., x£) if in the first coordinate k where x-¡,

and x2 differ we have xjf > x2. Let F be a mapping, F:T^- ^(R1). Then there is a

unique lexicographic minimum of F(f) (denoted by lex. min F(f)) for each f £ T.

Lemma 2.5 (Filippov [11]). Lef F: T-^-^R?) be a measurable mapping. Then

the function xL: F-> Rq definedby x¿(í) = lex. min F(f) is measurable and xL(t) e F(t)

for every teT.

Proof. The conclusion is immediate from Filippov's proof [11, pp. 78-79] and

Corollary 2.3.

Our main purpose in mentioning Lemma 2.5 is that we wish to use it in discussing

the following example.

Example. The constructions of the function x in Theorem 2.5 and 2.5' given by

Kuratowski [15] or Castaing [7], [5] are somewhat complicated. In the finite

dimensional situation, however, there is another interesting construction (cf. [8,

p. 384]). Let Cl: F-* 2s* be a measurable mapping, let y: F-> Rp be a measurable

mapping, and let/: Tx R* -> Rp be a mapping such that the mappings f -+f(t, x),

x £ R" are measurable and such that the mappings x ->/(f, x), f £ Tare continuous.

We suppose y(f) £/(f, Cl(t)) for every f e F. Then the mapping f -+ F(t) e 2R"

defined by F(t)={u e Cl(t) \f(t, u)=y(t)} is measurable [see the proof of Theorem

2.5']. We are content to construct a measurable function x:T-+R* such that

x(f ) £ T(f) for every teT. Let R"m denote the one-point compactification of R". Let

rœ : F-> ¿¿(RV) denote the mapping defined by requiring rœ(f ) to be the image of

T(f) under the inclusion mapping, i«, : Rt^R?. By Corollary 2.4 t -*■ cl (I^f ))£2fi»

is a measurable mapping. There is a homeomorphism h of R%, onto the unit sphere

S«cjp">5«-{(¿1.---.í>.t,+1)IZtt¿(*y-l}. such that A(oo) = (l,0,...,0)
[10, p. 246]. Now since

{f | cl (r.(0) n h~\F) * 0} = {f | A(cl (r.(0)) nF* 0}

for every closed F<=5«, it follows that f -+ h(cl (Tw(t))) e #(Sa) is measurable. We

define xx : F->- 5« by the relation x„o(f)=lex. min A(cl (r^f))), teT. We observe

that xœ(f)#(l, 0,..., 0)=/z(cc) for every f e T, since if xœ(i)=(l, 0,..., 0), then

(í1,...,í*,í,+1)eA(d(r«)(0)) would imply that PU, and thus £*«l,£-0,

/> 1, i.e., A(cl (rœ(î)))={/i(oo)} a contradiction. The mapping xœ is measurable by

Filippov's lemma and thus so also is the mapping i;1 o h'1 ° x«, : F->- R" which is

the required mapping, i.e. i;1 »A"1 o xa is measurable and (ig1 oh'1 oxoo)(f)er(f),

for every teT.
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Remark (iii). The idea of using the one-point compactification of X, which we

described in Theorem 2.4, is particularly well suited for applications in euclidean

space R". Using the euclidean distance p(x, y)= ||jc—y||, x, y e R" as the metric p,

then the metric pK on R" determined by p and stereographic projection on the

Riemann sphere is

/>«(*. y) = [î+i^f^ii+i^f]1'8'    x,ye Rq~

Evidently the two metrics satisfy the relation px(x, y)^p(x, y), x, y e R". Thus the

topology on 2R" determined by 2[í>»] is weaker than the topology on 2s' determined

by 2le\ i.e., 2le<°1<^2ip\ If Ei and £2 are two topological spaces, then C(EUE2)

denotes the collection of continuous mappings of Ex into £2. Thus we have

C(Ei, (2B',2[pl))c:C(F1, (2Rq, 2[i>-])) for any topological space Fx. In general the

inclusion is strict, as is shown by an example given by Cesari [8, pp. 374-375], viz.,

pick q=2,Ei = [0, 1], and define f -* 0(f ) e 2RS by the relation

Q(f) = {(x, y) e R2 | x ^ 0 & 0 ^ y ¿ tx}.

As Cesari points out, the mapping Q. is not in the class C([0, 1], (2R2, 2[p])). Also it

is not difficult to show from Cesari's remarks that the mapping Q does not enjoy

the Lusin Cu property when 2R2 has the uniform topology determined by p. Geo-

metrically, however, it is fairly clear that Q. belongs to the class C([0, 1 ], (2s2, 21"»1)).
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