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1. Introduction.   We consider a system of nonlinear difference equations of the

form

(1.1) y(*+l) = F(*,y(x))

where x is a complex variable, y is an «-dimensional vector, and F is an «-dimen-

sional vector. In general, the components of F(x, y) will be holomorphic in the

region \x\ >R, \\y\\ <8. In the expansion

F(x,y) = F0(x)+Ê(x)y+F(x,y),
where

F(x,y)= 2 WW.
IW62

the vectors FQ(x), Fp(x), and the matrix Ê(x) will be holomorphic for \x\ >R. B0

will be the constant matrix in the power series expansion of Ê(x) and Xj,j=l,.. .,n,

will denote the eigenvalues of B0.

Throughout this paper we will use the following notation :

(i) If v is an «i-dimensional vector with components Vj,j= I,..., m, then

m

HI - 21^1   and  M" = t>M2- • -vSi",
1=1

where pu...,pm are nonnegative integers and |p| =Z7=i Pi-

(ii) If A is an mxm matrix, then M| = supwl=i \\Av\\.

Let y(x) be a solution of the difference equation (1.1) which approaches a limit,

y0, as x tends to infinity in some direction in the complex plane. Then

(1.2) yo = F(co,y0).

On the other hand, if y0 is a solution of equation (1.2), it is natural to ask if a solu-

tion of equation (1.1) in a neighborhood of y0 will approach y0 as x tends to infinity.

L. J. Grimm and W. A. Harris, Jr. [1] have answered this question in the affirmative

under the assumption

(1.3) 0<|A,|<1,      y=l,...,«,

by constructing the general solution of (1.1) in a sector of the form

-\ < /i < arg (x-d) < l2 <~
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However if not all of the eigenvalues of 7?0 have modulus less than one it is expected

that some, but not all, of the solutions of equation (1.1) in a neighborhood of y0

will approach y0 as x tends to infinity. We expect that if B0 has v, \^v^n, eigen-

values satisfying (1.3) there will be a v-dimensional manifold, containing y0, such

that any solution of (1.1) in a neighborhood of y0 on the manifold will approach y0

as x approaches infinity through an appropriate sector.

The purpose of this paper is to construct an analytic change of variables which

will transform the difference equation (1.1) into a canonical form for which the

stable manifold is clearly exhibited and such that on this stable manifold the equar

tion has elementary form. Then the equation of the stable manifold in y-space can

be displayed.

Let 5 be any sector of the form

S: |arg(xe-i8-a)| < nß+p

where a-1 and p are sufficiently small positive constants. Assume that 7J0 and B0 — I

are nonsingular and that 6 satisfies

6 # arg (-log A,), j = 1,...,«,

6 jí arg (-log A^/Afc),       A, # Afc.

Then from the results of W. A. Harris, Jr. and Y. Sibuya [4], [6], and L. J. Grimm

and W. A. Harris, Jr. [1] there exists a linear transformation, holomorphic in S,

of the form z(x)=T(x)(y(x)-<f>(x)) which reduces the difference equation (1.1)

into the form

(1.4) z(x +1) = B(x)z(x) +f(x, z(x))

where

f(x,z)=    2   MX)W
IPIÊ2

is holomorphic for x e S, \\z\\ < 8. The vector coefficients fv(x) and the matrix B(x)

will be holomorphic in S and will have asymptotic expansions

fP(x) S 2 hkx~\     *(*) = 2 B«x~k
k=0 k=0

which are valid as x tends to infinity in S. Moreover B(x) will have the form

B(x) = diag[Bi(x),..., Bs(x)]

where the blocks correspond to the distinct eigenvalues of B0. The matrix B0 will

be in Jordan canonical form with O's or l's on the subdiagonal and eigenvalues

satisfying

(1.5) o < |AV| <; \K-i\ â     è N < i ú |AV+1| g     ú \K\.
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Corresponding to the division of eigenvalues of B0, for any «-dimensional

vector v, we will use the notation

Consequently, we can write f(x, z) =f(x, z1, z2). B^x) and B2(x) will denote the

vxv and («—v)x(n-v) matrices for which B(x) = diag (B^x), B2(x)). Finally, we

will let A represent the v-dimensional vector

-0
We now state our first theorem.

Theorem 1. Consider the system (1.4) where B(x) andf(x, z) have the properties

described above. Assume 8 satisfies

(i)   \d\<rrl2,

(ii) tVarg (-log A,/[AP),/= 1,..., «, \p\ £2.
Let S0 and U0 be the domains

S0: |arg(xe_ie-a0)| < n/2 + po,       U0: ¡z1! < S0.

Then for aôl, p0, and S0 sufficiently small, there exists an n-dimensional vector,

P(x, z1), holomorphic in S0 x U0, with power series expansion

P(x,zi) =  2^>(*)[z1Ip
IWÏ2

such that the transformation

(1.6) u(x) = z(x)-P(x, z\x))

reduces the difference equation (1.4) to the canonical form

(1.7) u(x+ 1) = B(x)u(x)+g(x, u(x))

where

g(x, u) =   2  £*(*)["?•
IWS2

If we write g(x, u)=g(x, u1, u2) and set g(x, u1, 0) = h(x, u1), then the components of

h(x, u1) will be polynomials in the components ofu1 of the form

(1.8) /zXx,«1)=   2  M*)!«1]"
Xf = [A)P

for all 7=1,..., «, |p| â2. Finally the coefficients Pv(x),gv(x), and hv(x) will be

holomorphic and have asymptotic expansions as x approaches infinity through SQ.
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From the ordering of the eigenvalues, (1.5), it is seen that hj(x,u1)=0 for

j=v +1 and hj(x, u1) is a polynomial in uu ..., u¡ _ x foxj = v. Hence on the manifold,

m2=0, the difference equation (1.7) becomes

K*(*+l) = B\xyuLix)+h1ix,uLix))

which can be solved recursively as linear difference equations to yield solutions

which tend exponentially to zero as x approaches infinity through a subsector of

50. Hence m2=0 is the stable manifold of the system (1.7). Setting u2 = 0 in the

transformation (1.6), we obtain z2=P2(x, z1) which is the explicit representation

of the stable manifold in z-space.

Condition (i) in Theorem 1 is a natural restriction since we are concerned with

the stable manifold associated with those eigenvalues having modulus less than

one.

In the power series expansion of P(x, z1), the coefficients Pp(x) have asymptotic

expansions in powers of x~l. This does not imply that P(x, z1) has a uniform

asymptotic expansion in terms of x'1; see, for example, Y. Sibuya [7], or W.

Wasow [8]. However we may obtain such a representation by strengthening the

hypotheses of Theorem 1.

Theorem 2. In addition to the hypotheses of Theorem 1, assume thatf(x, z) has a

uniform asymptotic expansion

f(x,z)^ 2A00*-fc
fc = 0

for || z || < 8 as x tends to infinity in S. Then the functions P(x, z1), g(x, u), andh(x, u1)

will have uniform asymptotic expansions

P(x, z1) s 2 pk(^)x-k,       g(x, u)^2 Sk(u)x-k,        h(x, u1) S J W"1)*'*.
fc = 0 )c=0 fc = 0

as x tends to infinity in S0. Moreover, the holomorphic coefficients P^z1), gk(u)> and

h^u1) will have power series expansions beginning with quadratic terms and, in

particular, the components of the h^u1) will be polynomials in the components of u1

of the form

(1.9) hik(Ui)=    2   *yw["l]p»      j=l,..-,n,
A, = CA]P

for all k.

When v=n, results of the same general nature as Theorems 1 and 2 have been

obtained by Harris and Sibuya [5] in half-planes of the form |Im x\ > á under the

assumptions

(i) 0<|A,|<1,   j=l,...,n,

00 n"=iW'#N,    i = l,...,», 1*1 = 2.
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W. A. Harris, Jr. [2] has given a proof of Theorem 1 when the matrix B\x) is

diagonal and [A]<VXj,j= 1,...,«, \p\ ̂ 2. In this case h(x, u*)=0. L. J. Grimm

and W. A. Harris, Jr., [1], have treated the problem considered in Theorem 1 using

a transformation of the form z(x) = u(x) + Q(x, u(x)) under assumption (i) above.

This transformation reduces (1.4) to canonical form and is the inverse of (1.6) when

v=n.

2. Lemmas on nonhomogeneous difference equations. The following lemmas will

be instrumental in the proof of Theorems 1 and 2. Lemma 1 is a specialization of

the results of Harris and Sibuya [6]. For a proof of Lemma 2, see Harris and

Sibuya [5] or Grimm and Harris [1].

Consider the system of linear nonhomogeneous difference equations

(2.1) E(x)y(x+\) = D(x)y(x)+b(x)

where y(x) and b(x) are /«-dimensional vectors and E(x) and D(x) are mxm

matrices. Assume E(x), D(x), and b(x) are holomorphic in the sector R,

72: |arg(xe-í9-c)| < nß + y,

and that

E(x) ? 2 E*x~k>     D(x) = 2 D^~k'     *(*) = 2 ***"*'
k-0 fc=0 k=0

as x tends to infinity in 72. Then we have

Lemma 1. Assume E~\x) exists in 72 and let the eigenvalues of Eô1D0,uj,

satisfy

(i) «y#0, 1,   y'=l,...,«,

(ii) 0# arg (-loga,),   7=1,...,«.

Then there exists a unique formal solution of (2.1) in powers of x'1, and in the

sector Ri,

Ri: \aTg(xe-ie-Ci)\ < nß+yi

for Cx1, Vxf sufficiently small, there exists a solution, y(x), of (2.1) which is holo-

morphic in Ri and asymptotic to the formal solution as x tends to infinity in Ri.

Lemma 2. Assume that D_1(x) exists and that

\\D-1(x)E(x)\\ á r < 1

for x e 72. Further assume that x e R implies x+1 e 72, i.e.

0 < y < tt/2, -tt/2 < 6-y < 6+y < tt/2.

Then there exists a unique bounded solution, y(x), of the system (2.1) which is holo-

morphic in 72 and admits an asymptotic expansion in powers of x'1 as x tends to

infinity through 72. Moreover, for any sector RdQR,

Rd: largOt^-a")! < irß+y,      d Z c,
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there is a constant C, independent of d, such that

\\y(x)\\ = C sup ||A(*)||
xeRi

for all x e Rá.

3. Formal transformation.   If a transformation of the form (1.6) exists and

satisfies the conditions of Theorem 1, then P(x, z1) must satisfy

(3.1)   P(x+1, z\x+1)) = B(x)P(x, z\x))+f(x, z\x), z2(x))-g(x, u\x), u2(x)).

Upon setting u2(x) = 0 in the transformation (1.6), we obtain

u\x) = z1(x)-F1(x,z1(*))

and

0 = z2(x)-F2(;c,z1(;c)).

Further,

z\x+l) = B\x)z\x)+f\x,z\x),P2(x,z\x))).

Hence, when u2(x)=0, equation (3.1) can be written in the form

P(x + 1, F1 (x)z1 +P(x, z\ P2(x, z1))) = B(x)P(x, z1) +f(x, z\ P\x, z1))

-Aix^-F^.z1))

where the argument of z1 has been suppressed. It is sufficient to construct P(x, z1)

to satisfy the functional equation (3.2) provided h(x, u1) is chosen properly.

Our first step is to construct formal series of the form

P(x,z>)=   2  PpixW-       h(x,z>)=   2  hP(x)[z^,
IW£2 HJ|£2

which formally satisfy equation (3.2). Assuming that P(x, z1) and h(x, z1) have the

above form, we may construct formal series

2 fp(x)[z^=f(x,z\P2(x,z')),
IPIS2

2   H*(x)tfy = h(x, z^-P\x, z"))-h(x, z1),
IPIS2

2  IvixWf = P(x+1, B\x)z^+f(x, z\ P2(x, z')))-P(x+ 1, B\x)zl),
IPIS3

where fp(x), Hv(x), and qp(x) are «-dimensional vectors whose components are

polynomials in the components of the coefficients Fq(x) and Aq(x) for |q| < |p|.

As previously indicated, p represents a v-tuple of positive integers, (plt..., pv),

with   |p|=Pi + • ■ • +pv  For each positive  integer m  there  are

vn = (v+m-\)\¡m\(v-l)\

distinct v-tuples, p, with |p|=«t. In order to distinguish between them we order

them in the following way. Let p = (pu ..., pv) and q = (qu ..., qv) with |p| = |q|.
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Then we say p = q if all of the components of p - q = (px - qls..., pv - qv) are zero

and p > q if the first nonzero component of p — q is positive. We denote those p

with \p\ =m in increasing order by pj,j=\,..., vm.

We can now formally write equation (3.2) in the form:

(3.3)       n=2,=1 m=2i=1
2 2 PAx+wKx)zir - b(x)% 2 M*)[*i]p'

m = 2 j = 1

2 2 M^t*1]'" + 22 xvtow',
m = 2 i-l m = 2i = l

where Rpi(x)=fpi(x) — Hpi(x)—qpi(x).

It follows from the properties of B1(x) that

mxyr -Siaiï+ciïxD&r

where \p'\ = \p'\=m, cJX*) = 0(1*1_1) for ^e5, ag=0 for /</', fl§«[Af, and

a^+c¡5(x)=0 for [A]"'^[A]P'. Substituting this form into equation (3.3) and

identifying terms gives the system of linear nonhomogeneous difference equations

Vn

(3.4) 2 (fl™ + cTi(x))Ppi(x +1) = B(x)Pvi(x) -«pi(x) + 72,,<(jc)
y=i

for each /= 1,..., vm and each m ^ 2.

We define the following (n ■ vm)-dimensional vectors

«»(jc) - I   :

\72pvm(x)y

where |p'| =m, /= 1,..., pB. We also define 93m(:c) to be the (nvm) x (n-vm) block

diagonal matrix with diagonal blocks B(x) and 2Im(x) to be the (« ■ vm) x (n ■ vm) matrix

composed of « x« component blocks A™(x), 1 ̂ l,j^vm, where

A%x) = (a^+cTAxWn-

With this notation the equations (3.4) with |p!|=«z can be combined into the

(n • vm)-dimensional system

(3.5) «»(*)$«(*+1) = »»(*)*«(*)-*»W + Jtm(jf)

for each «zä2. We will solve the systems (3.5) recursively to determine functions

%m(x) and &m(x) holomorphic in a sector independent of m.

We begin by supposing that for all í < m, $¡(x) and &t(x) have been determined

as holomorphic solutions to (3.5) for x e Sm<^S,. where

§n:\axg,(xe-ie-âm)\ < nß + ßm
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with âm = a and ßm - p. The constant âm is assumed to be sufficiently large to insure

that 2imX(;c) exists for xe $m. Now we apply Lemma 1 to the system (3.5). The

eigenvalues are Ay/[A]pl, where |p'| =m,j= 1,..., n, /= 1,..., vm. The solution is

separated into two cases.

Casel. A,/[A]*' for j=l,...,«, 1=1,..., vm. Since A,/[A]*>Vl, we can set

$m(x)=0 and apply Lemma 1 directly to obtain a solution, %m(x).

Case II. A; = [Ap' for some y = 1,..., «, /= 1,..., vm. In this case at least one of

the eigenvalues of the system is equal to one and Lemma 1 cannot be applied

directly. We must make a nontrivial choice of the components of §m(x) and reduce

the system to one of the form solved by Case I. Each component of equation (3.5)

has the form

vm n

(3.6) 2 iaTk + c?k(x))Pp"l(x+1) = 2 bÁ*)Pptíx)-hp>Áx)+fyAx),
fc=l i=l

where the bjt(x) are the elements of B(x) and 1 ̂ j-n. We choose the components

of &m(x) in the following manner

h^x) = Rp¡l(x)       if A, - [Ap',

= 0 if A, * [A]«",

and partially determine the %m(x) by

Pp>,(x) = 0,      ifAy=[A]"'.

From the properties of B(x) and afk+c¡J(x) it is seen that when Ay= [A]P! both sides

of equation (3.6) vanish identically. Hence we may remove these equations from the

system (3.5) to yield a smaller system

«■.(*)*«(*+!) = êm(x)$m(x) + âm(x)

which can be solved by direct application of Lemma 1 as in Case I.

In either Case I or Case II, we obtain a solution, $m(x), which is holomorphic

and has an asymptotic expansion in a sector Sm<=$ where

Sm: |arg(xe-i9-am)| ^ */2 + pm

with am = âm and pmèpm. Moreover, since $sm(x) and ®m(x) are bounded in Sm,

there exists a positive constant Cm such that

||«pm(x)|| = Cm sup ||flm(;c)-$m(;c)||
xeSm

for all x e Sm.

From the structure of 93m(x) we have that ¡SS,;1^)!! = ll^-1WII for all m and \x\

sufficiently large. Also for \x\ large,

(3.7) \\B(x)\\ S a < 1.

Let Si'. |arg (xe~ie—aj)| ¿-n-ß+px be the sector where F-1(x) exists and inequality
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(3.7) holds. Grimm and Harris [1] have shown for all x e Su ||2tm(jc)|| ̂n(m + 1)V.

Let 7v = supx€Sl ¡|7?_1(*)|| and M0 be a positive integer such that Kn(m+ 1)V< 1

for all m^M0. Then

(3.8) |SbV(x)2lm(x))|| á r < 1

for all m^Mo and all xe Si. Now let 50 be the sector

S0: |arg(xe_ie-a0)| < "ß + Po

where a¿~ * and p0 are chosen so small that S0cSi, S0czSMo, and condition (2.2)

in Lemma 2 is satisfied. Inequality (3.8) allows us to solve equations (3.5) recursively

for all m â M0 by means of Lemma 2. For m ̂  M0, we choose &m(x)=0. The solu-

tions will be holomorphic and have asymptotic expansions in S0 and also will

satisfy the inequalities

||¥»(*)|| á Co sup \\®m(x)-Ç>m(x)\\
xeSo

for xe S0, m^M0- The constant C0 is independent of m.

We have constructed a formal series

(3.9) 2 WI*1]"
WS 2

and a polynomial
Mo

(3.10) 2  hÁxW
WS 2

which formally satisfy equation (3.2). The coefficients Pp(x) and hp(x) ate holo-

morphic in the sector S0 and have asymptotic expansions

PP(x) S Jp»*x~k     h¿*> = 2 *«**'*
fc=Ö ft=0

as a: tends to infinity through S0. By our construction the components of hp(x)

have the form (1.8). Finally we have the fundamental inequality

(3.11) |*.(*)! = C sup ||«„(*)-$„(*)||
xeSo

for all xe S0 and each m with C independent of m. This inequality will be used to

prove that the formal series 2¡pi22 Pp(x)[z1]p actually converges for Hz1! sufficiently

small and hence represents a holomorphic function in x and z1.

4. Construction of a majorant series.   We denote the components of the series

(3.9) and (3.10) by

P1{x,z>)=   2  P*AXW?,       M*.*1)«   2  ¿«toi*1]"
WS2 IPIË2

for 7= 1,..., «. We construct the formal scalar series

«/*, z1 -p^, z1)) = 2 hm?\*,   7=1,...,«.
IWS2
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Letting fpj(x) and qpj(x) be the components of fp(x) and qp(x) respectively for

j= 1,..., «, the inequality (3.11) can be written in the form

(4.1)   2 Í 2 i^x*)i) = csuP 2 ( 2 (i/w(*)i+toi+i^wdV
!fl = «   U = l J xsSo  lpl = m Vi = l J

Because the coefficients of f(x, z1, z2) and h(x, z1) and the elements of B\x)

are holomorphic and bounded for x e S0, we can construct holomorphic functions

f*(zx, z2) and h*(zl) and constants b%, i,j= 1,..., «, such that for all x e S0

fj(x,z\z2)«f*(z\z2),      j=l,...,n,

hj(x, z1) « h*(z*), 7=1,...,«,

and \bij(x)\^bfj for each element, bij(x), of B\x). We let B* be the matrix with

elements ij$ and P*(x, z1) be the formal scalar series

p*(x,z*)= 2 (îi^toiW-

Clearly, for each j, we have

(4.2) Pj(x, z1) « P*(x, z1).

Let ß=(p.,..., p.)beihe «-dimensional vector with all components identical and

ß1 and ß2 the corresponding v- and (n — v)-dimensional vectors. The following

formal scalar series can now be defined :

2fp*(x)[z^=f*(z\P*2(x,z')),
Iplä2

2 AJWIz1]" = A*(z1+F*1(^^1)),
IPI22

C  2 ?P*Wizl]P - p*(x+1' B*z1 + Cf*1(z\ P*2(x, z1)))-P*(x+ 1, ¿»z1).
IPI43

Assuming that C= 1 it can be shown by induction that for all x e S0

2 \Mx)\ = nfp*(x),     f l"«ttl = rih*(x),     2 \9PÁPC)\ = ??(*)
; = l ;' = l ; = 1

for each/». Since the constant C in inequality (3.11) can be chosen larger than one,

we have, on setting C=C,

(4.3)       2 ( 2 ip«(*)i) - c sup 2 (»#(*)+««?(*)+#(*))
|p|»m   \y = l / jceSo   lpl = m

for every m.
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Next we assume that all of the components of z1 are identical, i.e. zx=z2= ■ ■ ■

=zv=s, and we consider the following scalar series:

p(x,i) = p^ = /'*(^n
fc = 2

F*(x, s) = J F?(x)sk = f*(s\ P*2(x, i1)),
k=2

H*(x,s) = ^¿H%(x)sk = /z*(i1+P*1(*,i1)),
k = 2

CO

Q(x, s) = C 2 ôfcW-î'1 = A*+ !> <«+ CF*(*, s))-P(x+ 1, «),
fc = 3

where <7 = max1SiSv (2}=i &t*)- Formally, we have

aw = 2 Í2 \ppÂx)\ï nix) = 2 /**(*)> #**(*) = 2 to
w=fc w»i 7 w=* w=*

Further, it follows that 2ipi=fc a£(;c)^ Qk(x) for all /c. Hence, using inequality (4.3),

we have

(4.4) Pk(x) S C sup [«Ffc*(x) + «77fc*(x)+ßfc(*)]
xeSo

for every k and all x e S0-

We consider the scalar functional equation

(4.5) T(s) = T(as + C/*(5\ 72(i))) + Gi/*(il, f2(s)) + C««*^1 + f *(j))

where s is a complex variable. This equation has a formal power series solution

(4.6) T(s) = 2Tksk
fc=2

satisfying

(4.7) 2 v = 2 r*o*)*+c 2 ^s*
)c = 2 fc = 2 k = 2

where 720 ̂  «Ffc*(x)+nH$(x) + gfc(x) for x e S0 if 7V ̂  7V(*) for all /c' < k. Because

of the structure of B\x) we may assume without loss of generality that a< 1. Using

this assumption and inequality (4.4), it is easily shown that

(4.8) Tk = C72? Z Pk(x) =2Í2 I^Wl)

for all x e S0.
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If it can be shown that the formal series (4.6) is convergent for \s \ < 80, then from

inequalities (4.8) and (4.2) it follows that the series 2iPig2 Ppi(x)[zlY will converge

absolutely and uniformly for xe S0 and ¡z1! < S0.

5. Convergence of the majorant series. The coefficients of the formal series (4.6)

are uniquely determined positive constants, so it is sufficient to prove that equation

(4.5) has an analytic solution such that F(0)=0. To prove that this is the case we

will apply the Schauder Fixed Point Theorem.

In the following we write f*(u, v)=f*(ui, v2) and h#(u)=h*(ü1). By definition

f*(u,v) and h*(u) are analytic for |«|<8', |tf|<8" for 6", 8" sufficiently small.

Moreover, there exist constants F and F such that

(5.1) \U(u,v)\ = K(\u\ + \v\f,

(5.2) |A*(a)| = L\u\2

for \u\ <8', |i>|<S".

Let g be the family of functions {<b(s)} which are analytic and satisfy |0(i)|

= M \s | for |j| < S0. Here M is an arbitrary but fixed constant and S0 is chosen to

satisfy the inequalities

80 < 8'; S0 < 8'¡M;       a+CK(l+M)2 80 < 1;

<j+C(l + Mf(K+MK+ML)80 = 1.

5 is convex and compact with respect to the topology of uniform convergence on

each compact subset of the region \s | < S0- We define the continuous mapping ®

on 5 by

®m(s) = «D(ai+C/*(5, <t>(s))) + Cnf*(s, <D(j)) + OiA#(j+«(*))•

The inequalities (5.1), (5.2), and (5.3) show that ©[$](.?) is analytic for |í | < 80 and

satisfies |®[0](j)|^A/|j|. Hence & maps 5 into itself. An application of the

Schauder Fixed Point Theorem then guarantees the existence of a fixed point of

the mapping © which is the desired analytic solution of equation (4.5).

6. Formal solution, Theorem 2. Our first step in proving Theorem 2 is to con-

struct formal series

(6.1) P(x, z1) = 2 Pk^x-*,       h(x, z1) = 2 hk(z^)x-"
k=0 k=0

such that if these series, along with the asymptotic representations of B(x) and

f(x, z1, z2), are substituted into equation (3.2), then the equations obtained by

equating coefficients of like powers of x'1 will be satisfied. In addition, we shall

show that there exists a constant 80>0, independent of k, such that for ¡z1!! < 80,

the coefficients Pk(zx) and A^z1) will be analytic and Odz1!!2). Moreover, the com-

ponents of hk(zx) will be shown to be polynomials of the form (1.9).
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The coefficients P^z1) and hk(zx) will be determined recursively. Letting x tend

to infinity formally in equation (3.2) gives the nonlinear functional equation

(6.2) Po(Blz> +f0\z\ P2o(z*))) = B0P0(z>) +/0(z\ Pfc1)) - «„(z1 -Pè(z1)).

Equation (6.2) is of the same general form as equation (3.2), but it is an algebraic

equation rather than a difference equation. Techniques similar to those used to

solve equation (3.2) can be used to determine an analytic function P0(zi) and a

polynomial «oiz1) which satisfy equation (6.1) in a region \\z1\\ < o0. Further, P0(zl)

and «oiz1) will be ¿/(¡z1!2) and «oiz1) will have the desired form. The details are

omitted.

In determining the remaining coefficients we first assume that S0 is so small that

for \\z1\\ < 80 the coefficients fk(zx, Poiz1)) are analytic and

(6.3) \B\z^+fo\z\P2o(z^))\ < elzl

where *<1. Putting the formal expansions in equation (3.2), yields

2 Pk(B\x)z^+f\x, z\ P2(x, z>)))(x+ l)~k
k = 0

(6.4) =(jtBkx-k)(2Pk(z1)x-k)
\k = 0 I \k = 0 I

+ %fk(z\P\x,J-))x~k -fhk(zi-P\x,z1))x-k.
ft = 0 k = 0

Assuming that the P^z1) and /zfc(z:) are analytic for ||z1||<80, expanding and

identifying coefficients in equation (6.4) gives equations of the form

(6.5) Pfc(7J¿z1+/01(z1,P02(z1))) = C(z1)Pfc(z1) + 72k(z1)-/zfc(z1)

for k^2. The matrix C(z1) = 50 + O(||z1||) is analytic for ||z1||<80 and is inde-

pendent of k. The components of 72;c(z1) are polynomials in the components of the

coefficients Ps(zl) and h^z1) and their wzth order derivatives for m ̂  í < k. More-

over, if Plz1) and hfc1) are OOlz1!2) then 72^) will be O^W2).

If the formal series (6.1) are to be formal solutions of equation (3.2) with co-

efficients having the desired properties, then the coefficients must satisfy the linear

functional equations (6.5). On the other hand if analytic functions Pk(zx) and

hk(zx) are found to satisfy equation (6.5) for each k, the corresponding formal series

will be a formal solution to equation (3.2).

We proceed in a recursive manner to prove the existence of solutions to equation

(6.5) which have the required properties for ¡z1! <S0. Assume that for all k' <k,

solutions to equation (6.5) have been constructed which are holomorphic and

Odz1!2) for \\z1\\ < S0 and such that the «^(z1) are polynomials of the form (1.9).

In the usual manner, formal series solutions

2 -p*^1]p; 2 Mz1]»
IPIS2 |p|ï2
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to equation (6.5) can be constructed, where h^z1) is actually a polynomial in the

components of z1. We set

pz(zi)= 2p>*w
Iplg2

and

(6.6) 0?(z1) = F,(z1)-F¿'(zl).

Then Qî&z1) satisfies the equation

(6.7) C(z') ß^z1) = QUB& +fè(z\ FoV)))+/^(z1),

where

Ifc1) = F¿'(Bez1+/01(z1,Fo2(z1)))-C(z1)F¿í(z1)-Fk(z1) + Afc(z1)

is analytic for ¡z1! < 80 and satisfies

(6.8) UW)! «¿»NT

for some positive constant LN. Since B0 is nonsingular and C(zl) is independent of

k, we may assume that C~1(z1) exists for ¡z1! < 80. We choose JV sufficiently large

so that

(6.9) ^IC-1^1)! < \

for ¡z1!! < S0) where e is defined by inequality (6.3). Let F be any constant satisfying

(6.10) F^2||C-1(z1)||Fw.

Let 3 be the family of functions, {Q(z1)}, which are analytic and satisfy || Q(z1)\\

^Fllz1!" for \\z1\\ < 80 and define the continuous mapping, ©, on g by

©[ßXz1) = C-1(z1)0(F¿z1+/o1(z1,F02(z1)))+C-1(z1)/¿,(z1).

From the inequalities (6.3), (6.8), (6.9), and (6.10) it follows that & maps g into

itself. Hence equation (6.7) has an analytic solution of order C?(||z1||ir). Defining

P^z1) by equation (6.6) yields the desired solution to equation (6.5).

7. Application of the Ritt theorem. We have constructed formal series solutions

to equation (3.2) of the form (6.1) in a region SxU0 where

S: |arg(xe-ie-a)| < nß + p,        U0: flz1! < 80.

In general these series will not converge. However we will show that these formal

series are uniform asymptotic representations of holomorphic solutions of equa-

tions (3.2) in a subregion of Sx U0.

Let Fj be the region ||z1||á81<80. By the Ritt theorem [8], we can construct

functions P(x, z1) and h(x, z1) which are holomorphic in SxUu Odz1!2), and

such that

Fix, z1) s 2Pk(^)x-k,      h(x, z1) s f h^x)x~k
fc = 0 Jc = 0
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uniformly for z1 e U1 as x tends to infinity through S. Because of the form of the

hk(zl), h(x, z1) can be assumed to be a polynomial in the components of z1 of the

form (1.8).

We set

(7.1) P(x, z1) = P(x, z1)-P(x, z1),        H(x, z1) = h(x, z1) - h(x, z1).

Then equation (3.2) becomes

P(x+\, B1(x)z1+f1(x, z\ P2 + P2)) = B(x)P(x, z1)

(7.2) +f(x, z\ P + P2)-H(x, z1-P1-P1) + B(x)P(x, z1)

-P(x + 1, B\x)z^+P(x, z\P2+P2))-h(x, z'-P'-P1).

We will show that there are functions P(x, z1) and H(x, z1) satisfying equation

(7.2) in a region S% x U* where

S*: |arg(xe-,0-aJ| < W2+P«,        Í/*: \\zx\\ < S*

with a^>a, p> p*, and 81>8%. Moreover, in S% x (/„., P(x, z1) and H(x, z1) will

have the following properties:

I. P(x, z1) and 7/(jc, z1) will be holomorphic and 0(\\zl\\2).

11. P(x, z1) and 7?(x, z1) will be uniformly asymptotic to zero for z1 e (/* as x

tends to infinity in S*.

111. The components of H(x, z1) will be polynomials in the components of z1 of

the form (1.8).

Then P(x, z1) and h(x, z1) as defined by equations (7.1) are the desired solutions

of equation (3.2).

8. Solutions to equation (8.2).    The construction is similar to that of Theorem 1.

We let

Q(x, z\ P) = f(x, z\ P2 + P2) + B(x)P(x, zx)-h(x, z1 -P1-/51)

-P(x + I, Br\x)zx+f\x, z\ P2 + P2)).

From the properties of P(x, z1), h(x, z1), and f(x, z\ z2) it is seen that Q(\; z1, P)

will be holomorphic in a region Sx U2x V where

¿y2:||z]|| g Sa,        V:\\P\\Sv

for 32 and r¡ sufficiently small. Hence, we may write

Q(x, z\ P) = Qo(x, z^+QAx, zl)P+  2 QÁX, zl)[P)p
wsa

where the coefficients will be holomorphic in Sx il.¿. Because P(x, zl) is uniformly

asymptotic to a formal solution of equation (3.2), we have

Qo(x, z1) = Q(x, z\ 0) s 0

uniformly for z' c U2 as .v tends to infinity in S. Moreover, it follows that

Q0(x,z1) = 0(¡zin       Ô1(a-,z1) = 0(||z1||)

in 5x U2.
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Assuming that P(x, z1) and H(x, z1) have the form

(8.1) P(x,z>) = 2 HxWf,       Ñ(x,zi) = 2 Hp(x)[z^,
IPIê2 |p|Ä2

we can write equation (7.2) as follows :

2 Pp(x+l)[B\x)z^ = B(x) 2 Ppix)[z'f
IPIS2 Ip|g2

(8.2) +  2 Qop(x)[z^+  2 ^tot*1]"
1PIÈ2 IPI&2

- 2 äpixw,
Itrisa

where 2iPiê2 Qovix)^1]9 is the power series expansion of Q0(x, z1) and the

components of Rp(x) ave polynomials in the components of Pq(x) and #<,(*) for

|q| < |p| with no constant terms.

Equation (8.2) can now be written in exactly the same form as equation (3.3)

and a formal solution, (8.1), can be constructed as before. The coefficients Pp(x)

and Hp(x) will be holomorphic in a sector Si<=S,

&: |arg(xe-i9-a!)| < nß+Pl

which is independent of p. The components of H(x, z1) will have the form (1.8)

since their form depends only upon the structure of B(x). Further for each k = 2

and all xe Suv/e have the inequality

2 ii^wii = c sup 2 iôop(*)+*p(*)-#p(*)ii
lpl = fc xeSi   lpl = fc

where the constant C is independent of k.

The difference equations which arise from identifying terms in equation (8.2) are

solved by means of Lemmas 1 and 2. In particular, the first M0 — 1 equations are

solved by application of Lemma 1 and the remainder by Lemma 2. M0 is a positive

integer defined as in §3. According to Lemma 1, the solutions to the nonhomo-

geneous linear systems are asymptotic to the formal solution determined in powers

of x'1. Thus if the nonhomogeneous term is asymptotically zero, then the particular

solution will be asymptotic to zero. Since Q0(x, zx)sO uniformly and Rp(x) is a

polynomial in PP'(x) and Hv(x) for |p'| < |p| with no constant terms, it follows

from the way in which the Ñp-(x) are chosen that

Pp(x) s 0,   Êp(x) s 0

for |p| <M0. Therefore, since Êp(x)=0 for \p\- M0, we have

Mo-l

(8.4) ñix, z1) s 0, 2 ^.tot*1]" = °
IPIS2

uniformly in U2 as x tends to infinity in Si.
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It remains to establish the convergence of the formal solution (8.1) and to show

thatP(x, z1)sO uniformly. We prove convergence of the formal solution by use of a

majorant equation as in the proof of Theorem 1. However, we must be more careful

in our choice of majorants in order to prove that P(x, z1)^.

Let majorants for the components of P(x, z1), Qi(x, z1), Qp(x, z1), |p| ^2, and

f(x, z1, z2) be given. Let | be a constant satisfying

(8.5) Ißoi*,*1)!^

in Si x U2. Then a majorant equation can be constructed as in §4. The major-

ant equation will have a formal solution 2™= 2 Tk(¿¡)sk satisfying

2 Tk(Ç)sk = 2 Tk(Ç)(as)k+ C$ 2 y**k+c 2 72***+C 2 ßfs*
k = 2 k = 2 k = 2 fc = 3 le = 2

where yk=n 2ipi=ft S2 "", 72* is defined in a manner similar to the way it was defined

in equation (4.7), and 77^ = 2|p|=k fi*, where

77p* = nfr2 for \p\ = 2,

= «frfc + 72*      for \p\ = k,2 < k < M0,

= 0 for |ö| è M0.

With this choice of 77,*, it follows from the definition of 72*, that 72* = 0(C) and

hence Tk($) = 0(£) for all k. By induction, it can be shown that

2 IIAWI = 7U&       A: = 2,3,...,

for all xe Si and each £ such that inequality (8.5) holds in Si x U2. The formal

series 7(f, s) = Z™=2 Tk($)sk can be shown to converge uniformly for |i| <83< 82

and £<£o- Furthermore, the inequality |7(f, i)|gL£ holds for |j|<8, £<fo- We

conclude that the formal solution (8.1) converges absolutely and uniformly for

xeSx and ||z1||<83 and satisfies \\P(x, z1)! ^Lf for some positive constant L

depending on 83 and f0.

We now show that P(x, z1)^0. Let a>ai and define the sector Sa by

50:|arg(xe-f9-a)| £ »/2+/>a.

Then from inequality (8.3) we have, by means of Lemma 2,

2 ||P„(*)| á C sup   2 (\\Qop(x)+Rp(x)-ñp(x)\\)
IW = k *eSa    IPI = k

for all xeSa and all k^.M0. Our choice of majorants will hold in the smaller

sector Sa, so we will have

1M0 -1 11
7W)- 2 Mx)[MâKg

lpl = 2 II

for all x e Sa.



544 J. W. TOLLE

Now fix m. Since Q0(x, za)^0 uniformly we have

lßo(*,2l)|| âLm\x\~m

for xe Sí. Choose

8»-(¿»fr1)1"" (COS Pi)"1

and let x e U«>a, Sa. Then there exists an ä>am such that

|arg(*fri8-â)| = irß+Pl.

Setting £=Lm(cos Pl)-m(ä)-m yields | Q0(x, z1)|| Ú f < f0 for all xeSä, ¡z1!^.

Hence
Mo-1

/*(*,z1)-  2 AC^F   = FFm (cos Pl)-m(â)-m
I lp! = 2 ||

for each xe\Ja>amSa.

Define the sector S* by

5*:|arg(xe"i9)| Ú -rrß + px-y

where y>0 is an arbitrarily small constant. For x e Sx n S%, we have

|jc| ^ äcos pi (sin y)_1.

Hence for x e {\Ja>am Sa} n S*,

Aio-l

F(x, z1)- 2 A^T   = ^Lm(sin y)-»|*| "m = Z¿|x| -
IP! = 2

when ||z1||<83. This inequality along with statement (6.4) implies P(x, z^sO

uniformly for |z1||<83 as x tends to infinity in the sector S2: \aTg(xe~ie — aj)|

<nß+p1—y. This completes the proof of Theorem 2.
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