ANALYTIC CANONICAL FORMS FOR
NONLINEAR DIFFERENCE EQUATIONS(?)

BY
JON W. TOLLE

1. Introduction. We consider a system of nonlinear difference equations of the
form

(1.1) y(x+1) = F(x, (x))

where x is a complex variable, y is an n-dimensional vector, and F is an n-dimen-
sional vector. In general, the components of F(x, y) will be holomorphic in the
region |x| > R, | y| <$. In the expansion

F(x, }’) = Fo(x)'l‘B(x)y'*'F(x, y)9

F(x,y) = D FxlyP,

ipiz2
the vectors Fy(x), Fy(x), and the matrix B(x) will be holomorphic for |x|> R. B,
will be the constant matrix in the power series expansion of B(x) and A,, j=1, ..., n,
will denote the eigenvalues of B,.
Throughout this paper we will use the following notation:
(i) If v is an m-dimensional vector with components v,, j=1, ..., m, then

where

m
lol = > |v,] and [0} = viiwke- - -via,
i=1

where p,, . . ., p, are nonnegative integers and |p|=>T-, p,.

(ii) If 4 is an m x m matrix, then || 4| =supy.; | 4v].

Let y(x) be a solution of the difference equation (1.1) which approaches a limit,
Yo, as x tends to infinity in some direction in the complex plane. Then

1.2) Yo = F(c0, y).
On the other hand, if y, is a solution of equation (1.2), it is natural to ask if a sola-
tion of equation (1.1) in a neighborhood of y, will approach y, as x tends to infinity.

L.J. Grimm and W. A. Harris, Jr. [1] have answered this question in the affirmative
under the assumption

(1.3) O<|My <1, j=1,...,n
by constructing the general solution of (1.1) in a sector of the form

m

2

k.

<l <arg(x—a) <l < 3
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However if not all of the eigenvalues of B, have modulus less than one it is expected
that some, but not all, of the solutions of equation (1.1) in a neighborhood of y,
will approach y, as x tends to infinity. We expect that if B, has v, 1 £v=<n, eigen-
values satisfying (1.3) there will be a v-dimensional manifold, containing y,, such
that any solution of (1.1) in a neighborhood of y, on the manifold will approach y,
as x approaches infinity through an appropriate sector.

The purpose of this paper is to construct an analytic change of variables which
will transform the difference equation (1.1) into a canonical form for which the
stable manifold is clearly exhibited and such that on this stable manifold the equa-
tion has elementary form. Then the equation of the stable manifold in y-space can
be displayed.

Let S be any sector of the form

S: |arg (xe~*—a)| < 7[2+p

where a~! and p are sufficiently small positive constants. Assume that B, and B,—1
are nonsingular and that 6 satisfies

0 # arg (—log Ay, j=1...,n,

6 # arg(—log A,/Al), A # A

Then from the results of W. A. Harris, Jr. and Y. Sibuya [4], [6], and L. J. Grimm
and W. A. Harris, Jr. [1] there exists a linear transformation, holomorphic in S,
of the form z(x)=T(x)(y(x)—¢(x)) which reduces the difference equation (1.1)
into the form

1.9 z(x+1) = B(x)z(x)+f(x, z(x))

where

fx, 2) = | 2 Szl

biz2

is holomorphic for x € S, | z|| < 8. The vector coefficients fy(x) and the matrix B(x)
will be holomorphic in S and will have asymptotic expansions

AOES foxt B xS Bk
K=0 k=0

which are valid as x tends to infinity in S. Moreover B(x) will have the form
B(x) = diag [B,(x), . . ., By(x)]

where the blocks correspond to the distinct eigenvalues of B,. The matrix B, will
be in Jordan canonical form with 0’s or 1’s on the subdiagonal and eigenvalues
satisfying

(1.5 0 <A Al S-S A <12 N S22 A
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Corresponding to the division of eigenvalues of B,, for any n-dimensional
vector v, we will use the notation

U Uys1
=1 =1
Uy Un
Consequently, we can write f(x, z)=f(x, 2%, z2). B*(x) and B*(x) will denote the
vxv and (n—v) x (n—v) matrices for which B(x)=diag (B(x), B%*(x)). Finally, we
will let A represent the v-dimensional vector
A
A=|:
A
We now state our first theorem.
THEOREM 1. Consider the system (1.4) where B(x) and f(x, z) have the properties
described above. Assume 0 satisfies
@ 18] <=2,
(i) 6#arg (—log A/[AP), j=1,...,n, [p|22.
Let Sy and U, be the domains
So: |arg (xe=*—a,)| < 7/2+ po, Uo: 2] < 8.

Then for ag?, po, and 8, sufficiently small, there exists an n-dimensional vector,
P(x, z*), holomorphic in S, x U,, with power series expansion

P(x,7) = > Py

ipIZ2
such that the transformation
(1.6) u(x) = z(x)—P(x, z2X(x))
reduces the difference equation (1.4) to the canonical form
1.7 u(x+1) = B(x)u(x)+g(x, u(x))

where

g u) = 2 g(ul.

IpIZ2
If we write g(x, u)=g(x, u*, u®) and set g(x, u*, 0)=h(x, u*), then the components of
h(x, u) will be polynomials in the components of u* of the form

(1.8) hix, ) = Dyl

A =1AW

for all j=1,...,n,|p|22. Finally the coefficients Py(x), gs(x), and hy(x) will be
holomorphic and have asymptotic expansions as x approaches infinity through S,.
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From the ordering of the eigenvalues, (1.5), it is seen that h(x, ¥*)=0 for
JjZv+1and hy(x, u*) isa polynomialinu,, . . ., u;_, for j<v. Hence on the manifold,
u?=0, the difference equation (1.7) becomes

u(x+1) = BY(x)u(x)+ h(x, u'(x))

which can be solved recursively as linear difference equations to yield solutions
which tend exponentially to zero as x approaches infinity through a subsector of
So. Hence #2=0 is the stable manifold of the system (1.7). Setting u2=0 in the
transformation (1.6), we obtain z2=P?(x, z') which is the explicit representation
of the stable manifold in z-space.

Condition (i) in Theorem 1 is a natural restriction since we are concerned with
the stable manifold associated with those eigenvalues having modulus less than
one.

In the power series expansion of P(x, z*), the coefficients Py(x) have asymptotic
expansions in powers of x~*. This does not imply that P(x, z*) has a uniform
asymptotic expansion in terms of x~!; see, for example, Y. Sibuya [7], or W.
Wasow [8]. However we may obtain such a representation by strengthening the
hypotheses of Theorem 1.

THEOREM 2. In addition to the hypotheses of Theorem 1, assume that f(x, z) has a
uniform asymptotic expansion
f(x,2) = Zo Sl2)x*
k=
Jor |z| < & as x tends to infinity in S. Then the functions P(x, z%), g(x, u), and h(x, u*)
will have uniform asymptotic expansions

P(x,z) = D P)x™%,  glnwx D &x™*,  h(xut)z D h)xk,
k=0 k=0 k=0

as x tends to infinity in So. Moreover, the holomorphic coefficients P(z"), g,(v), and
h(u*) will have power series expansions beginning with quadratic terms and, in
particular, the components of the h,(u*) will be polynomials in the components of u*
of the form

1.9 ha@) = 3 hulFs  =1,...,m
A=A

for all k.

When v=n, results of the same general nature as Theorems 1 and 2 have been
obtained by Harris and Sibuya [5] in half-planes of the form |Im x| > « under the
assumptions

() 0<|Al <1, j=1,...,nm,
(ii) TT7=1 (AP #|A), i=1,...,n,|p|22.
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W. A. Harris, Jr. [2] has given a proof of Theorem 1 when the matrix B(x) is
diagonal and [AP#A,,j=1,...,n, |p|22. In this case h(x, #})=0. L. J. Grimm
and W. A. Harris, Jr., [1], have treated the problem considered in Theorem 1 using
a transformation of the form z(x)=u(x)+ Q(x, u(x)) under assumption (i) above.
This transformation reduces (1.4) to canonical form and is the inverse of (1.6) when

V=Hh.

2. Lemmas on nonhomogeneous difference equations. The following lemmas will
be instrumental in the proof of Theorems 1 and 2. Lemma 1 is a specialization of
the results of Harris and Sibuya [6]. For a proof of Lemma 2, see Harris and
Sibuya [5] or Grimm and Harris [1].

Consider the system of linear nonhomogeneous difference equations

2.1 E(x)y(x+1) = D(x)y(x)+b(x)
where y(x) and b(x) are m-dimensional vectors and E(x) and D(x) are mxm
matrices. Assume E(x), D(x), and b(x) are holomorphic in the sector R,
R: |arg (xe~*®—c)| < 7[2+7,
and that

E® = > Ex D@z Dx" b baxk
k=0 k=0

k=0
as x tends to infinity in R. Then we have

LEMMA 1. Assume E~'(x) exists in R and let the eigenvalues of Ej'D,, u;,

satisfy
@ u;#0,1, j=1,...,n,
(i) 0#arg(—logw,), j=1,...,n
Then there exists a unique formal solution of (2.1) in powers of x~*, and in the
sector R,,
R,: |arg (xe~®—c))| < 7[2+y,

Sfor ci, y,, sufficiently small, there exists a solution, y(x), of (2.1) which is holo-
morphic in R, and asymptotic to the formal solution as x tends to infinity in R,.

LEMMA 2. Assume that D~ '(x) exists and that
ID*XEM)| = r <1
Jfor x € R. Further assume that x € R implies x+1 € R, i.e.
0<y<mf2 —m2 < 0—y < 0+y < 7/2.

Then there exists a unique bounded solution, y(x), of the system (2.1) which is holo-
morphic in R and admits an asymptotic expansion in powers of x~* as x tends to
infinity through R. Moreover, for any sector R;S R,

Ry: |arg (xe® —d)| < #[2+y, dz=2e¢,
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there is a constant C, independent of d, such that

1] 5 € sup [6Co)]

for all x € R,.
3. Formal transformation. If a transformation of the form (1.6) exists and
satisfies the conditions of Theorem 1, then P(x, z') must satisfy
(3.1) P(x+1,2(x+1)) = Bx)P(x, 2 (x)) +f(x, 2(x), 2%(x)) — g(x, u'(x), ¥*(x)).
Upon setting #*(x)=0 in the transformation (1.6), we obtain
ul(x) = zY(x)—P*(x, z'(x))

and

0 = 2%(x)—P3(x, zX(x)).
Further,

ZY(x+1) = B (x)z'(x) +f*(x, z'(x), P3(x, 2*(x))).

Hence, when #%(x)=0, equation (3.1) can be written in the form

P(x+1, B\(X)z* +f(x, 2%, P¥(x, 2Y))) = BX)P(x, 2)+f(x, 2, PX(x, 7%))

(32 —h(x, z* — PX(x, z%))

where the argument of z* has been suppressed. It is sufficient to construct P(x, z*)
to satisfy the functional equation (3.2) provided A(x, #*) is chosen properly.
Our first step is to construct formal series of the form
Px,7) = 3 PP,  hix,2) = X m)2P,
IpiZ2 IplZ2
which formally satisfy equation (3.2). Assuming that P(x, z') and A(x, z') have the
above form, we may construct formal series

> @Y = fx, 24, PA(x, 2Y),

Iplz2

Hy(x)[2'] = h(x, ' —P*(x, 2*)) — h(x, z%),

IIE2

> @M = P(x+1, B\x)z* +(x, 2, PX(x, ) —P(x+ 1, B (x)z?),

IPIZ3

where fi(x), Hy(x), and gy(x) are n-dimensional vectors whose components are

polynomials in the components of the coefficients Pqy(x) and h4(x) for |q| <|p].
As previously indicated, p represents a v-tuple of positive integers, (9, .. -, 9,),

with |p|=p,+---+p,. For each positive integer m there are

vy = +m—1)!m!(v—-1)!

distinct v-tuples, p, with |p|=m. In order to distinguish between them we order
them in the following way. Let p=(p,, ..., p,) and a=(qy, ..., q,) with |p|=|q].
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Then we say p=q if all of the components of p—q=(p;—qy, ..., »,—q,) are zero
and p> q if the first nonzero component of p— q is positive. We denote those p
with |p|=m in increasing order by ¥, j=1, ..., v,

We can now formally write equation (3.2) in the form:

z S Py(x+1)[BY(x)z'}” = B(x) Z i Py(x)[z*}¥
(3-3) m=2i=1 wm::!=1 .
= 2, 2, Wl + > > R,

where Rys(x) = () — Hys(x) —gps(x).
It follows from the properties of B*(x) that

[B'()2']” = Z @+ R

where |p’|=|p!|=m, cfi(x)=0(|x|"?) for x€ S, alt=0 for I<j, alt=[A}¥, and
alt+cP(x)=0 for [A]*'#[A]”. Substituting this form into equation (3.3) and
identifying terms gives the system of linear nonhomogeneous difference equations

(3.4) 2(ar;+c;z(x)w(x+ 1) = BE)Py(x) — hyi(x)+ Ryi(x)

for each /=1, ..., v, and each m=2.
We define the following (n-v,)-dimensional vectors

Py(x) hpr(x) Ry:(x)
%m(x) = s '@m(x) = s @m(x) =

Pyvm(x) hyn(x) Ryra(x)
where |p'|=m, I=1,..., v, We also define B,(x) to be the (n-v,)x (n-v,) block
diagonal matrix with diagonal blocks B(x) and %,,(x) to be the (n-v,,) X (n-v,,) matrix
composed of nxn component blocks A%(x), 1 £/, j<v,, where

A(x) = (afj+ GG
With this notation the equations (3.4) with |p!|=m can be combined into the

(n-v,)-dimensional system

(35) ?I,,,(x)iﬁ,,,(x +1) = %m(x)‘Bm(x) - %m(x) + g‘?m(x)

for each m=2. We will solve the systems (3.5) recursively to determine functions
PBn(x) and $,(x) holomorphic in a sector independent of m.

We begin by supposing that for all #<m, B,(x) and $,(x) have been determined
as holomorphic solutions to (3.5) for x € $,< S, where

Sn: |arg (xe=®—d,)| < 7/2+ P
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with d,,=a and g, < p. The constant d,, is assumed to be sufficiently large to insure
that A,;(x) exists for x € $,,. Now we apply Lemma 1 to the system (3.5). The
eigenvalues are A,/[A]¥, where |p!|=m,j=1,...,n,I=1,...,v,. The solution is
separated into two cases.

Case 1. L #[A) for j=1,...,n,1=1,..., v, Since A/[A]"#1, we can set
Hn(x)=0 and apply Lemma 1 directly to obtain a solution, ().

Case I1. A,=[AJ* for some j=1,...,n,I=1,..., v, In this case at least one of
the eigenvalues of the system is equal to one and Lemma 1 cannot be applied
directly. We must make a nontrivial choice of the components of $,,(x) and reduce
the system to one of the form solved by Case 1. Each component of equation (3.5)
has the form

(3.6) kzl(a{',‘c+cz‘,(x))Ppk,(x+ 1) = Zlbﬁ(x)Ppu(x)—hpt,(x)+Rpl,(x),
where the b;(x) are the elements of B(x) and 1 <j<n. We choose the components

of H(x) in the following manner

hy(x) = Rys(x)  if A, = [A]®,
= 0 lfAf # [A]p"

and partially determine the %,,(x) by
Pu(@) =0, ifA = [AJ.

From the properties of B(x) and af} + cj(x) it is seen that when A;=[A}® both sides
of equation (3.6) vanish identically. Hence we may remove these equations from the
system (3.5) to yield a smaller system

A () Bn(x+1) = Br(x)Bn(x) + Rin(x)

which can be solved by direct application of Lemma 1 as in Case I.
In either Case I or Case II, we obtain a solution, B,(x), which is holomorphic
and has an asymptotic expansion in a sector S,<S where

Sp: |arg (xe ¥ —ay)| £ 72+ pp
with @,2d, and pn,<p.. Moreover, since B,(x) and f,(x) are bounded in S,
there exists a positive constant C,, such that
“‘Bm(x)" = Cm 3gsp “Qm(x)_'ﬁm(x)"

for all x e S,,.
From the structure of 8B,,(x) we have that |8, (x)| =|B~(x)| for all m and |x|
sufficiently large. Also for |x| large,

(€X)) B £ 0 < 1.
Let S,: |arg (xe~*—a,)| £7/2+ p, be the sector where B~*(x) exists and inequality
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(3.7) holds. Grimm and Harris [1] have shown for all x € S;, | (x)| S n(m+1)"e™.
Let K=sup,es, |B~(x)| and M, be a positive integer such that Kn(m+ 1)"e™ <1
for all m= M,. Then

R 1B U] S 7 < 1
for all m= M, and all x € S;. Now let S, be the sector
So: |arg (xe=®—ay)| < 72+ po

where ag! and p, are chosen so small that S, S;, So<Sy,, and condition (2.2)
in Lemma 2 is satisfied. Inequality (3.8) allows us to solve equations (3.5) recursively
for all m2 M, by means of Lemma 2. For m= M,, we choose $,,(x)=0. The solu-
tions will be holomorphic and have asymptotic expansions in S, and also will
satisfy the inequalities

I%u(9] S Co sup [R(3)~0a(a)]

for x € Sy, m= M,. The constant C, is independent of m.
We have constructed a formal series

(3.9 %2 Py(x)[2*]

and a polynomial N

(3.10) D k([P
Iplz2

which formally satisfy equation (3.2). The coefficients Py(x) and hy(x) are holo-
morphic in the sector S, and have asymptotic expansions

Po) = D Pox™ ko) = D> hpox*
k=0 k=0

as x tends to infinity through S,. By our construction the components of Ay(x)
have the form (1.8). Finally we have the fundamental inequality

G1) IBa] < C sup [R40)- S|

for all x € S, and each m with C independent of m. This inequality will be used to
prove that the formal series 2 p 22 Pyp(x)[z*]® actually converges for |z!| sufficiently
small and hence represents a holomorphic function in x and z*.

4. Construction of a majorant series. We denote the components of the series
(3.9) and (3.10) by

Pix,z") = > PoIZ'F, hfx,2)= > hy(M2P

Ipl22 plz2

for j=1,..., n. We construct the formal scalar series

hx, 22 =P¥(x,2) = > hp [P, j=1,...,n.
Iplz2
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Letting fp,(x) and gp/(x) be the components of f(x) and gy(x) respectively for
j=1,..., n, the inequality (3.11) can be written in the form

@1 { S |ij(x)|} sCsp > {Z(lﬁo,(x)l+Ifzp,(x)l+lq»,(x)l)}-
Ipl=m

i=1 x€So Ipl=m

Because the coefficients of f(x, z%, z2) and h(x, z') and the elements of B(x)
are holomorphic and bounded for x € S,, we can construct holomorphic functions
f*(z%, z%) and h*(z') and constants b}, i, j=1,.. ., n, such that for all xe S,

fix, 2, 28) « f*(z4, 2%, j=1,...,nm,
hy(x, z¥) < h*(zY), j=1,...,n,

and |b;/(x)| £ b for each element, b,(x), of B*(x). We let B* be the matrix with
elements b} and P*(x, z*) be the formal scalar series

Pz = 3 (3 1Pl )i
P2 \j=1
Clearly, for each j, we have

“4.2) Pi(x, 2}) « P*(x, z%).

Letp= (,u, ..., ) be the n-dimensional vector with all components identical and
A* and @2? the corresponding v- and (n—v)-dimensional vectors. The following
formal scalar series can now be defined:

D fE®ZP = ¥, P*¥(x, 2Y)),

Ipl22

> B[P = k(2 +P*(x, 2Y),

Ipiz2

¢ z g¥()[2']P = P*(x+1, B*z* + Cf*}(22, P**(x, z%)))—P*(x + 1, B*zY).

Ipi23

Assuming that €21 it can be-shown by induction that for all x € S,

élfn,-(x)l < nf¥@), ; inf0)| S PR3O, §1|¢Iw(x)| < g3()

for each p. Since the constant C in inequality (3.11) can be chosen larger than one,
we have, on setting C= ¢

@3) S (SIPal) 5 Cswp > @ +nhsa)+a3e)

Ipl=m x€So Ipil=m

for every m.
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Next we assume that all of the components of z! are identical, i.e. z;=zp=" - -
=z,=s, and we consider the following scalar series:

P(x, 5) = D Py(x)s* = P*(x, %),
k=2

F*(x, ) = 5 FERS* = 4G B*3(x, ),

k=2

H*(x,5) = 2 HE(x)s" = i@ +P*¥(x, ),
k=2

o(x,s) =C i 0:(x)s* = P(x+1, os+ CF*(x, s)) —P(x+1, os),
k=3

where e=max; ¢;<, )~ b¥). Formally, we have
B = 3 (S IPI). B0 = 3 S0, B0 = 3 B
Ipl=k \j=1 Ipl=k Ipl=k

Further, it follows that 3y - g¥(x) < O.(x) for all k. Hence, using inequality (4.3),
we have

(4.4 Bx)scC sup [nF(x)+nHE()+ ()]

for every k and all x € S,.
We consider the scalar functional equation

4.5)  T(s) = T(os+Cf*@, T2(s))) + Cnf*(5*, T2(s))+ Cnh*(3* + T(s))

where s is a complex variable. This equation has a formal power series solution

@“.6) T(s) = D Tis*
k=2
satisfying
4.7) D Tis* = > Tilos)*+C > REs*
k=2 k=2 k=2

where R¥ 2 nF¥(x)+nH#¥(x)+ Qi(x) for x € S, if T} 2 P,.(x) for all k’ < k. Because
of the structure of B*(x) we may assume without loss of generality that o < 1. Using
this assumption and inequality (4.4), it is easily shown that

48 T2 CRE2 P =3 (Z IPw(x)I)

Ipl=k \j=1

for all x € S,.
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If it can be shown that the formal series (4.6) is convergent for |s| < 8,, then from
inequalities (4.8) and (4.2) it follows that the series > 22 Pp,(x)[2*]® will converge
absolutely and uniformly for x € S, and ||z} < 3,.

5. Convergence of the majorant series. The coefficients of the formal series (4.6)
are uniquely determined positive constants, so it is sufficient to prove that equation
(4.5) has an analytic solution such that 7(0)=0. To prove that this is the case we
will apply the Schauder Fixed Point Theorem.

In the following we write f,(u, v)=f*(@, 7*) and h,(u)=h*(#*). By definition
S+, v) and h,(w) are analytic for |u|<¥&’, |v|<8” for &, 8” sufficiently small.
Moreover, there exist constants K and L such that

6.1 e, )| = K(Ju|+0])%,
(5.2) lhe@)| < Llul?

for |u| < &', |v| <¥&".

Let ¥ be the family of functions {®(s)} which are analytic and satisfy |®(s)|
= M|s| for |s| < &,. Here M is an arbitrary but fixed constant and 8, is chosen to
satisfy the inequalities

8o < 88, < 8" IM; o+CK(1+M)? 8, < 1;

5.3
(53) o+ C(1+M)*(K+MK+ML) 8, < 1.

& is convex and compact with respect to the topology of uniform convergence on
each compact subset of the region |s| < 8,. We define the continuous mapping &
on by

B[D)(s) = P(os+ Cfy(s, P(s)))+ Cnfi(s, D(s))+ Cnh(s+ D(s)).

The inequalities (5.1), (5.2), and (5.3) show that G[P](s) is analytic for |s| < §, and
satisfies |®[P](s)|=M|s|. Hence & maps & into itself. An application of the
Schauder Fixed Point Theorem then guarantees the existence of a fixed point of
the mapping & which is the desired analytic solution of equation (4.5).

6. Formal solution, Theorem 2. Our first step in proving Theorem 2 is to con-
struct formal series

(6.1) P(x,2') = D Pz)x™%,  h(x,2%) = D h(z)x*
k=0 k=0

such that if these series, along with the asymptotic representations of B(x) and
f(x, 2%, z%), are substituted into equation (3.2), then the equations obtained by
equating coefficients of like powers of x~! will be satisfied. In addition, we shall
show that there exists a constant 8, >0, independent of k, such that for |z| < &,,
the coefficients P,(z*) and h,(z*) will be analytic and O(||z*|?). Moreover, the com-
ponents of h,(z') will be shown to be polynomials of the form (1.9).
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The coefficients P,(z*) and h,(z') will be determined recursively. Letting x tend
to infinity formally in equation (3.2) gives the nonlinear functional equation

(6.2)  Po(Biz'+f3(z", P§(z")) = BoPo(z') +fo(z!, P3(z")) —ho(z* — P5(z")).

Equation (6.2) is of the same general form as equation (3.2), but it is an algebraic
equation rather than a difference equation. Techniques similar to those used to
solve equation (3.2) can be used to determine an analytic function Py(z;) and a
polynomial A,(z*) which satisfy equation (6.1) in a region ||z*| < 8,. Further, Po(z*)
and hy(z') will be O(]|z}||?) and Ao(z?) will have the desired form. The details are
omitted.

In determining the remaining coefficients we first assume that &, is so small that
for ||z} < 8, the coefficients f(z', P§(z')) are analytic and

6.3) | Bsz* +£3 (2%, P3(zY)| < e|2*]

where ¢ < 1. Putting the formal expansions in equation (3.2), yields
> PBX)2 +f(x, 2, PH(x, 2))(x+1)*
k=0

= S YA 1)y -k
6.9 (;Zoka ) (;OP;‘(Z )x )
+ > fuldh, PAx, 2)x7F — 3 bzt —Pi(x, Z))x %,
h=0 k=0

Assuming that the P,(z*) and h,(z) are analytic for |z!| <&,, expanding and
identifying coefficients in equation (6.4) gives equations of the form

(6.5) P(Bsz* +£3(z, P§(z")) = C(2)Pi(z") + Ri(z") — hil(z")

for k22. The matrix C(z*)=B,+ O(||z*|) is analytic for ||z*| <8, and is inde-
pendent of k. The components of R,(z!) are polynomials in the components of the
coefficients Py(z') and A (z') and their mth order derivatives for m<s<k. More-
over, if Py(z") and hy(z*) are O(|z*||?) then R,(z*) will be O(||z*|?).

If the formal series (6.1) are to be formal solutions of equation (3.2) with co-
efficients having the desired properties, then the coefficients must satisfy the linear
functional equations (6.5). On the other hand if analytic functions P,(z') and
h,(z*) are found to satisfy equation (6.5) for each k, the corresponding formal series
will be a formal solution to equation (3.2).

We proceed in a recursive manner to prove the existence of solutions to equation
(6.5) which have the required properties for ||z*| < 8,. Assume that for all k' <k,
solutions to equation (6.5) have been constructed which are holomorphic and
0(||z*|?) for |z*|| < 8, and such that the A,.(z*) are polynomials of the form (1.9).
In the usual manner, formal series solutions

D Pulzl; D hulz'P
BIS2

Ip1z2
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to equation (6.5) can be constructed, where A,(z*) is actually a polynomial in the
components of z. We set

P = S PolP

and IpIZ2
(6.6) O¥(2") = Py(z")—Pi(zY).

Then Q%(z?) satisfies the equation

6.7 C(z)QN(z") = QR(Bz +f3(z", PN+ i (%),
where

I{(z") = PY(B3z* +£3 (2, P3(z"))— C(z)Pi(z") — Ri(z") + hulz")
is analytic for ||z*| < 8, and satisfies
6.8) IZ¥EHI = Lyll2*|™

for some positive constant Ly. Since B, is nonsingular and C(z*) is independent of
k, we may assume that C~*(z*) exists for |z!| < &,. We choose N sufficiently large
so that

(6.9) fCH )| < %
for ||z*|| < 8, where ¢ is defined by inequality (6.3). Let K be any constant satisfying
(6.10) K 2 2|C-*(zY)||Ly.

Let  be the family of functions, {Q(z!)}, which are analytic and satisfy | Q(z")|
<K|z*|¥ for |z*| < 8, and define the continuous mapping, &, on F by

®[Q)(z") = C~}z)Q(Biz* +£3(z, PE(N)+ C (@) ().
From the inequalities (6.3), (6.8), (6.9), and (6.10) it follows that & maps & into

itself. Hence equation (6.7) has an analytic solution of order O(|z!||¥). Defining
P,(z*) by equation (6.6) yields the desired solution to equation (6.5).

7. Application of the Ritt theorem. We have constructed formal series solutions
to equation (3.2) of the form (6.1) in a region S x U, where

S: |arg (xe~*?—a)| < 7[2+p, Uo: 2] < 8.

In general these series will not converge. However we will show that these formal
series are uniform asymptotic representations of holomorphic solutions of equa-
tions (3.2) in a subregion of S x U,.

Let U, be the region |z!| <8, <8,. By the Ritt theorem [8], we can construct
functions P(x, z*) and A(x, z*) which are holomorphic in Sx U,, O(|z*|?), and
such that . .

P(x,2Y) = D Pule)x~*,  Kx,2Y) = D h(@)x "
k=0

k=0
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uniformly for z! € U, as x tends to infinity through S. Because of the form of the
h(zY), A(x, z') can be assumed to be a polynomial in the components of z* of the
form (1.8).

We set

.1 P(x, zY) = P(x, z29)—P(x, z'),  H(x, z') = h(x, z) — h(x, z).
Then equation (3.2) becomes
P(x+1, B\(x)z* +fX(x, 2}, P2+ P?)) = B(x)P(x, z*)
(7.2) +f(x, 2, P+ P?)— H(x, z* — P'— P')+ B(x)P(x, z*)
—P(x+1, BA(x)2* +fY(x, 2%, P2+ P?))—h(x, 2 — P'— P).

We will show that there are functions P(x, z') and H(x, z!) satisfying equation

(7.2) in a region S, x U, where
Sy:larg (xe™—ay)| < m[2+py,  Uy: |2 < 34
with a, >a, p>py, and 8, > 8,. Moreover, in S, x Uy, P(x, z*) and A(x, z) will
have the following properties:
1. P(x, z!) and H(x, z*) will be holomorphic and O(||z!|?).
I1. P(x, z') and H(x, z') will be uniformly asymptotic to zero for z! € U, as x

tends to infinity in S,.

I11. The components of H(x, z') will be polynomials in the components of z* of
the form (1.8).

Then P(x, z) and h(x, z!) as defined by equations (7.1) are the desired solutions
of equation (3.2).

8. Solutions to equation (8.2). The construction is similar to that of Theorem 1.
We let

o(x, 2, P) = f(x, 2}, P2+ P?)+ B(x)P(x, z')— h(x, z! — P* = P*)
—P(x+1, B\(x)z2' +f(x, 2%, P2+ P?)).
From the properties of P(x, z'), A(x, z'), and f(x, z', z2) it is seen that Q(x, z!, P)
will be holomorphic in a region Sx U, x V where
Uz: 2] = 8, VPl <9
for &, and % sufficiently small. Hence, we may write
O(x, 2', P) = Qolx, 20+ Qu(x, )P+ 2 Oy, 2P
wz2

where the cocflicients will be holomorphic in S x U,. Because P(x, z!) is uniformly
asymptotic 1o a formal solution of equation (3.2), we have

Qo(x, ') = Q(x,2,0) = 0
uniformly for z! € U, as x tends to infinity in S. Moreover, it follows that

Qo(x, 2') = O(|2*[®),  Qi(x, 2%) = O(||2*])
in Sx U,.
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Assuming that P(x, z!) and A(x, z*) have the form

@)  Px,2) = > P[P, Az =.Z Hy)[2P,

Iplz2 plz2

we can write equation (7.2) as follows:

wgz Py(x+1)[B'(x)z') = B(x) .péz P0)[z'P
8.2) + D Qa2 P+ D R[]

IIEe 1piz2
- 2 B[P,

1pIZ2
where 2 pz2 Qop(x)[2z']° is the power series expansion of Q(x, z') and the
components of Ry(x) are polynomials in the components of Pq(x) and Hy(x) for
|a] <|p| with no constant terms.

Equation (8.2) can now be written in exactly the same form as equation (3.3)

and a formal solution, (8.1), can be constructed as before. The coefficients Ppy(x)
and Hy(x) will be holomorphic in a sector S,<S,

Sy: |arg (xe=®—a,)| < 7[2+p,

which is independent of p. The components of H(x, z') will have the form (1.8)
since their form depends only upon the structure of B(x). Further for each k=2
and all x € S;, we have the inequality

2 B = Csup > || Qop(x)+ Rox) — Hy(x)|
Ipl=k xeS1 Ipl=k
where the constant C is independent of k.

The difference equations which arise from identifying terms in equation (8.2) are
solved by means of Lemmas 1-and 2. In particular, the first M,—1 equations are
solved by application of Lemma 1 and the remainder by Lemma 2. M, is a positive
integer defined as in §3. According to Lemma 1, the solutions to the nonhomo-
geneous linear systems are asymptotic to the formal solution determined in powers
of x~1. Thus if the nonhomogeneous term is asymptotically zero, then the particular
solution will be asymptotic to zero. Since Q(x, z!)=~0 uniformly and Ry(x) is a
polynomial in P,(x) and Hy(x) for |p’| <|p| with no constant terms, it follows
from the way in which the Hy.(x) are chosen that

Py(x) 20, Hyx)=0
for |p| < M,. Therefore, since Hy(x)=0 for |p| = M,, we have

(54) A=, 3 B@ET 0

Iplz2

uniformly in U, as x tends to infinity in S;.
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It remains to establish the convergence of the formal solution (8.1) and to show
that P(x, z*)=~0 uniformly. We prove convergence of the formal solution by use of a
majorant equation as in the proof of Theorem 1. However, we must be more careful
in our choice of majorants in order to prove that P(x, z})~0.

Let majorants for the components of P(x, z!), Q(x, z%), Qp(x, z), |p| 22, and
f(x, 2%, z%) be given. Let ¢ be a constant satisfying

@8.5) 1 Qo(x, 2| =

in S; x U,. Then a majorant equation can be constructed as in §4. The major-
ant equation will have a formal solution ., T}(€)s* satisfying

2 T(é)s* = Z Tu(&)(os)*+ C¢ Z 7es*+C Z R¥s*+C z As*

where y=n 3 p = 87 "7, R¥ is defined in a manner similar to the way it was defined
in equation (4.7), and H¥=73y - H¥, where

HY = néy, for [p| = 2,
= néy,+RE for |p| =k,2 <k < M,,
= 0 fOl‘ |pl ; Mo.

With this choice of H}, it follows from the definition of R}, that R¥ = O(£) and
hence T,(£)=0(¢) for all k. By induction, it can be shown that

2 1Bo®)] < T(®, k=23,...,

for all x € S; and each ¢ such that inequality (8.5) holds in S, x U,. The formal
series T'(¢, s)=2"-2 Ti(€)s* can be shown to converge uniformly for |s|<8;< 8§,
and ¢ < £,. Furthermore, the inequality |T(¢, s)| SL¢ holds for |s| <8, £ < &,. We
conclude that the formal solution (8.1) converges absolutely and uniformly for
x€ S, and [z} <8; and satisfies |P(x, z!)| <L¢ for some positive constant L
depending on §; and ¢&,.

We now show that B(x, z)=0. Let a> a, and define the sector S, by

S,: |arg (xe~*—a)| < #[2+p,.

Then from inequality (8.3) we have, by means of Lemma 2,

Z I1Ps(x)| < C sup 2 (| Qos() + Rof(x) — Ap(x)|))

X€Sq =k

for all xe S, and all k> M,. Our choice of majorants will hold in the smaller
sector S, so we will have

P(x, )~ ; 15»()6)[2‘]‘D

2

forall xe S,.
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Now fix m. Since Qy(x, z})=~0 uniformly we have
1Qo(x, )| = Ln|x|™"

an = (Lnés 1)1/m (cos Pt

and let X € Uy>q, S.. Then there exists an @> a,, such that

for x € S;. Choose

larg (Xe~*®—a)| = =[2+4p;.

Setting ¢=Ln(cos p;)"™(@) " yields | Qo(x, 2})[| S é< &, for all xe S, 2] <85
Hence

for each % € Ug>q, S
Define the sector S, by

Sy: |arg (xe )| < w2+ p;—y

BE - > KOEP

Ipl=2

< KL, (cos p)~"™@)~"

where >0 is an arbitrarily small constant. For X € S; N S, we have
|X| < @cosp, (siny)~*.

Hence for ¥ € {Ua>q, Sa} N Sx»
' Mo-1

B(x, 29— > Py(x)[z']

1pI=2
when |z!| < 8;. This inequality along with statement (6.4) implies P(x, z')~0
uniformly for ||z*| <8; as x tends to infinity in the sector S,: |arg (xe~**—ay)|
<m[2+4 p, —y. This completes the proof of Theorem 2.

S KLn(siny)™"|%| ™" = Lp|%| ™"
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