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1. Introduction. Let g be a semisimple Lie algebra over C the complex num-

bers. Let f) be a Cartan subalgebra for g and let A be the root system of g with

respect to ft. We assume that A is linearly ordered. If n+ (resp. n~) is the sum of the

positive (resp. negative) root spaces of g with respect to ft then g = n~©ft©n~

(vector space direct sum) where [ft, n±]'^n± and n* is nilpotent on every finite-

dimensional g module. Many results in the representation theory of semisimple

Lie algebras depend essentially on this decomposition. In this paper we study Lie

algebras over arbitrary fields with similar decompositions (see Definition 2.1).

We show how every finite-dimensional simple module for such Lie algebras can

be "induced" from finite-dimensional simple modules for the analogue of t).

(See Theorem 3.1.) This induction procedure gives a new method of realizing the

simple finite-dimensional modules for semisimple Lie algebras.

In this paper we also study the Lie group analogue of this procedure. As an

application of the results of this paper we give a new proof of a theorem of Borel-

Weil as stated in Bott [I].

The author would like to thank Professor G. Hochschild for several stimulating

conversations on the material of this paper and for his criticisms of the first draft

of this paper.

2. Lie algebras with decompositions.   Let g be a Lie algebra over a field k.

Definition 2.1. g is said to decompose if there are subalgebras n1; n2 and i) of g

so that g = ni © ft © n2 (vector space direct sum) and [ft, n^n, for i=l, 2. If

furthermore n1; n2 are nilpotent on every finite-dimensional g module, then the

decomposition g = nx © ft © n2 is called triangular.

We suppose that g has a decomposition § = nx © ft © n2. We set f = n1 © ft.

If H7 is an ft module, we denote by IF the f module with space Wso that nx- W=0.

If u is a Lie algebra, Vau module, and n is a subalgebra of u, then we set

Vn = {v e V I n v = 0}. With these notational conventions in mind we proceed.

Let t/(g) (see [3] or [4] for definitions) be the universal enveloping algebra for

g; we assume that t/(f), U(t)), U(nt), /= 1, 2, are the universal enveloping algebras

of f, ft and nf, f=l, 2, imbedded (canonically) in U(q). The Poincare-Birkhoff-Witt

theorem implies that U(q)=U(t) © U(l)n2U(n2) a left U(t), right C/(ft) module

direct sum (abbreviated (U(t), t/(l))) module direct sum). Let y be the projection
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of C/(g) onto U(t) associated with this decomposition. Then y is a (t/(t), t/(I)))

module homomorphism.

We consider £/(g) as a (U(t), U(q)) module. Thus if W is a left I) module and if

W is the associated f module, then Hom^c^g), W) is naturally a left £/(g)

module. We define a map w from W to Hom[/(t)(C/(g), IF) by oj(v)(g)=y(g)-v

where u is looked upon as an element of W and ge U(q). One sees easily that

<y(f) e Horn [/(t/C/(g), IF). We also note that cu(A • v)(g) = y(g)h ■ v = y(gh) ■ v =

oj(v)(gh) = (hoj(v))(g) for h e 1/(1)), re W, ge C/(g) and thus a> is a £/(!)) module

homomorphism.

Lemma 2.1. w is an injection and w(W) is the 1/(1)) module direct summand

Hommt)(U(Q), W)°yofHommh(U(Q), W).

Proof. If fe Hom^l/fo), if) o Y, then/(a)=/(y(a)) = y(a)/(l) = w(/(l))(a) for

all ae t/(g). Thus cu(/(l))=/. Furthermore if e is the evaluation map e(/)=/(l)

for / e Horn [;([,(L/(g), fF), then e ° cu = lw which proves the lemma.

Let fF* be the t/(g) submodule of Hornet/(7(g), fF) generated by üj(IF), that

is IF* = f/(g) cü(JF). Let fF1; W2 be left I) modules and let <p : Wx ~> W2 be an h

module homomorphism. We regard 9 as a f module homomorphism of Wx to

W2. cp induces a t/(g) module homomorphism 95* : Hom^L^g), W^)-*

Hom[/(i)({/(g), 1F2) by <p*(f) = <p <>/ 99* commutes with the map /-*•/» y and thus

(^♦(fFfjc: ^2*. Thus fF^ fF*, <p -> 95* is a functor from the category of left h

modules to the category of left g modules.

We make the observation

Lemma 2.2. HornW) ° y = Homc/(t)(<7(g), fF)V

Proof. If yen2, then (y-(f° y))(a)=f(y(ay))=f(0) = 0 for all aet/(g). Con-

versely if y ■/= 0 for all j> e n2, then /((7 (f )n2(7(n2)) = 0; hence /=/° y.

We also note

Lemma 2.3. Le7 IFj and W2 be left t) modules. W1 and W2 are isomorphic I)

modules if and only if Wf and W* are isomorphic g modules.

Proof. If 99 : W-L^-W2 is an onto isomorphism, then clearly so is 93* : Wf -> W$.

Suppose that 99* : W? -> JF2* is an onto i/(g) isomorphism. Then 99* : IF* "2 -> W$nz

is an 1) module isomorphism. Hence 99* : w( W^) -> w( W2) is an h module iso-

morphism and hence 99* induces an h module isomorphism ifi of W1 onto W2 so

that t* = <p*.

3. Lie algebras with triangular decompositions. In this section we continue the

notation of §2. We show that if fl = n1 © fj © n2 is a decomposition for a Lie

algebra 0 then simple g modules satisfying certain conditions can be "induced"

as in §2. In particular we will show that if nx © h © n2 is a triangular decomposi-

tion then every finite-dimensional simple g module can be induced.
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Let V be a left g module. Let V be the (right) dual module. Let (as usual)

K"i={Ae V\ A n!=0}. Then Fni is an I) module and K^-n^O hence Fni is a

f module and clearly (Fni)" = P*i. Now (F"i)~ is a left t module. For each v e V

we define a mapping a{v) : t/(g) -> (Fni)~ by a(i>)(a)(A) = A(a ■ tj) for all ae U(q),

Xe Fni.

Proposition 3.1. If V is a simple left g module and if Fni^{0}, ///en a is an

injection of the g module V into the g module Horn     t/(g), (Fni)~).

Proof. Let a e U(l), beU(a), v e V, XeV'h, then (a(v)(a-b))(X) = X(ab-v)

= (X a)(b v) = (oc(v)(b))(X a) = (a (ec(v)(b)))(X). Thus a(t.)(a /j) = a-(a(0(*)) and thus

cc(t>) e Hom[/(t)(i/(g), (F"i)~). We next show that a is a t/(g) module homomor-

phism. Let a, b e U(q), v e V, and AeFni. Then (a(a■ v))(b)(X) = X(b■ a■ v)

= a(v)(b a)(X) = (a a(v))(b)(X). Hence a(a ■ v) = a ■ a(v) as asserted. Since a#0 and

V is simple we find that a is an injection of g modules.

Proposition 3.2. Let W be an I) module. Let V be a nonzero g submodule of

Homc/J)(t/(9)> HO such that Vn^{0}; then Fn W*^{0}. If furthermore W is

simple, then V=> W*.

Proof. F"2c Hornü(t,(c/(g), wy* = HornU(!,(t/(g), W) oy=a>(IF) by Lemmas

2.1 and 2.2. Thus 0^ [/(g)• Fn2 <= IF* and hence F n IF*/{0}. If IF is a simple I)

module, then £/(f))- Fn2 = oj( W) and thus F=> C/(g) • w( W) = W*.

We now assume that g = nx © l) © n2 is a triangular decomposition. We note

that if one wishes more "general" results than the following, one can hypothesize

just enough nilpotence on itj and n2 to make the following proofs "go through".

Lemma 3.1. Let V be a simple finite-dimensional g module. Then Ov F)n2={0}.

Proof. Suppose that (nx-F)n2^{0}. Then F= U(a)(n1 ■ F)n2 since V is simple.

f7(!)n2fy(n2) (n1F)i,2 = {0} implies that V= t/(f)-(nr F)«2. t/(f))(ni • F)n2

c^j -F)'^. Hence F= Uin^i^ ■ F)n2 c L/(nx) ■ nx • V. Since n: acts nilpotently on

Fthis implies F={0} which is a contradiction.

Proposition 3.3. Le/ g = n1 ©I) ©n2 Z>e a triangular decomposition for g. /f

F w a finite-dimensional simple g module, then V is g isomorphic to (Fn2)* and

F"2 fj a simple t) module.

Proof. We use the notation of Proposition 3.1. Let t : Fn2 —^(K"i)~ be given

by t(v)(X) = X(v) for each A 6 F"i, v e Fn2. Then if a e (7(fj) we have t(av)(X) = X(av)

= (A• a)(v) = (a■ i(v))(A) and thus t is a /7(b) module homomorphism. We look at

i as a t/(f) module homomorphism of (Fn2)~ to (F"i)~. Ker i = (r^ • F)"2 = {0}

by Lemma 3.1. Hence (V'^y is isomorphic with (F"i)~. Now if v e Vnz,ge U(q),

XeV'h then «(v)(g)(X) = X(g-v) = X(y(g)-v) = i(y(g)-v)(X) = (y(g)-l(v))(X) (where y

is as in the beginning of §2 and v is looked upon as an element of (Fna)~). Thus

«(F"2) = oJ(l(F«2)) in Homü(t)(l/(g), t((F»2r))cHomc/(t)(t/(g), (F"i)~). Thus a(V)
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z5(t(Kn2))*. Since <x(V) is simple this implies a(V) = (i(Vna))*. Since i is an iso-

morphism this implies that V is isomorphic to (V**)* (Lemma 2.3). Suppose Vn2

is not a simple I) module. Let W be a nonzero I) submodule of Vn2. Then

Hom^t/Cö), IF) c Horn ̂ ([/(g), (P^D and thus W*c:(V«2)*. Since (K»a)*

is simple this implies that W* = (Va*)*. Thus W*"* is isomorphic with V"*. This

implies that W is isomorphic with Vnz and thus W= Kn2.

We recapitulate the results of this section with

Theorem 3.1. Let a = nx © I) © n2 6e ö triangular decomposition for the Lie

algebra g.

(a) If W is a simple h module, then Hom[/([,(C/(g), W) contains at most one non-

zero finite-dimensional simple g module. Such a nonzero finite-dimensional simple g

module exists if and only if dim W* < co. If dim W* < oo, then W* is the finite-

dimensional nonzero simple g module in HomU([)(l/(g), W).

(b) If V is a finite-dimensional simple g module, then Vtt* is a simple l) module

and Vis g isomorphic with (Vnz)*.

Proof. We must only prove (a). Let V be a nonzero finite-dimensional simple

submodule of Hom[7(t)(t/(g), W); then by Proposition 3.2, V^W*. Hence by

simplicity V= W* if and only if dim W* < od and the existence of V is impossible

if dim JV* = co.

The technique of "double dualization" used in this section is due to Godement

(see Zelobenko [2]).

4. Lie groups with triangular decompositions. In this section we assume that

k = R (the real numbers) or C (the complex numbers). By ^-analytic we will mean

analytic for k = R, holomorphic for k = C.

Definition 4.1. Let G be a k-Lie group with Lie algebra g. If g = nx © I) © n2

is a triangular decomposition for g and if Nu H, N2 are respectively the connected

subgroups of G corresponding to nl5 1) and rt2, then G is said to have a triangular

decomposition if Nx ■ H is closed in G.

Let G be a &-Lie group with triangular decomposition Nu H, N2. Set K=H N1.

Let W be a finite-dimensional ^-analytic H module. As before we let W be the K

module IP with A/j acting as the identity. Let Y{W) be the k vector space of all

^-analytic functions f:G^W such that f(u g) = u f(g) for all ueK, geG.

G acts on T(IP) on the left by (g0 f)(g)=f(ggo)- Let T0(W) be the subspace of

those elements/e F( W) such that G /is contained in a finite-dimensional subspace

of Y(W).

If Pis a finite-dimensional k analytic left G module, then we can define an action

of 0 on V as follows: x v = detx v/dt |, = 0 for x e g, ve V. With this action of g

on V we have exp (jc)-p=2 x*/n\-v. If G is a simply connected k-Lie group and

if V is a finite-dimensional g module, then V is a G module with the action of G

given locally by exp (x) ■ v = 2 xnjn! • u for all x e q, v e V. Thus we denote V

as a G or g module by the same symbol if G is simply connected.
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If W is a Ac-analytic H module, then W may be looked upon as an t) module as

above. Furthermore T(IF) isa g module under the action (xf)(g) = df(getx)/dt\t = 0.

Thus we look upon r(W) as both a G and a g module. With these conventions in

mind we have

Theorem 4.1. Let G be a connected and simply connected k-Lie group with

triangular decomposition Nu H, N2. Let W be a finite-dimensional simple k-analytic

H module, //dim IF* = oo, then ro(IF) = {0}. //dim W*<co, then ro(W) contains

a G (hence g) module isomorphic with W*.

Proof. Let fe t(w). We define/: t/(g) w by f(x) = (x /)(e) where x e U(q)

and e is the unit of G./is clearly linear on £/(g). If u e f = n1 © f), x e t/(g), then

Ru-x) = {(ux)f)(e) = (u(xfm = d(x-fy*/dt\tmf,

- &*,-((x-/K«))/*|.-o = «•(*/(«)) = "•/«•

Thus / e Horn [,(!,(C/(g), fF). Let 4/=/ By analyticity .4 is one-to-one. If g0 e t/(g),

fsT(W), then A(g0f)(g) = (gg0 f)(e)=f(gg0) = (g0-Af)(g). Thus ^1 is a t/(g)

module isomorphism. If/e T0( W), then <7(g) • 4/ is a finite-dimensional submodule

of Hornmt)(U(Q), W). By Theorem 3.1 (a) U(Q) Af^W* if ^//0. Thus if

dim IF* = co we must have Af=0 and hence /= 0. If dim W* < co, then by Theorem

3.1 (a) W* is the only nonzero irreducible submodule of HomCJ,t)(C/(g), IF).

Thus if Af^O for some/e T0(W), U(q)-Af=> W* and hence A'1- W* is a sub-

module of r0(IF) isomorphic with W*. Now if re IF* we define a mapping

r : G -> IF which is Ac-analytic by r(g) = (g-r)(l). We note that

r(expxg) = (exp(x) g r)(l) = ^ xB/#i!-(g-r)(l) =

= 2^7"! (c? Kl)) - exp(x) r(g)

for x £ f, g £ G. Thus r e r0(IF), (f)~ =r and the theorem is proved.

In the case G is semisimple we can strengthen Theorem 4.1.

Corollary to Theorem 4.1. Let G be a connected, simply connected, semisimple

k-analytic Lie group with triangular decomposition Nlt H, N2. Let W be a simple

finite-dimensional k-analytic H module, //"dim IF*<oo, then ro(IF) is equivalent

to W* as a g {hence G) module.

Proof. Let A be as in the proof of Theorem 4.1. Then U(q)- Af=> W* for each

/e r0( W), // 0. dim /7(g) • Af< co implies that as a g module t/(g) • Af is a direct

sum of simple g modules. Theorem 3.1 (a) asserts that W* is the only finite-

dimensional nonzero g module in HomC7(!,(/7(g), W); thus U(a)-Af= W*. In

particular, A ■ T0( IF) <=■ W* and hence A ■ F0( W) = W*. A is a G module isomorphism;

thus the corollary is proved.

5. Examples and applications.

Example 1. Let Ac be of characteristic 0. If g is a Lie algebra over Ac and if

g = ^ + f) + n2 is a decomposition for g and if there are solvable subalgebras ^
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and 82 of g such that n^fo.Sj] for 1=1,2, then g = n1 + fi + n2 is a triangular

decomposition. This follows directly from Lie's and Engel's Theorems.

Example 2. The Borel-Weil Theorem. We first recall the classification of

compact, homogeneous, Kaehlerian, simply connected manifolds (see Wang [5])

which are called Kaehlerian C-spaces following Wang's terminology. Let G be a

complex connected, simply connected Lie group with Lie algebra g. Let fj be a

Cartan subalgebra for g and let A be the root system of g with respect to fj (see

[3] or [4] for definitions). Let it be a fixed fundamental system for A. Let be a

subset of 77. We set A^) = {a e A | a = 2yeni nvY, nr an integer}. Let > be a lexico-

graphic order on A determined by tt. Set qa = {x e g | [A, x] = a(h)x for all h e t)},

aeA. We set 2+ ={« e A~ A(wi) I «>0}, 2" -{-« I <* e 2+}- Then set n1 =

2a6E- 9«, n2 = 2ae£+ Qc, h = 5 + 2aeA(7I1> 9«- «i, n2, f) are subalgebras of g. Further-

more if a e 2+ (resp. a e 2") and ß e A^) and a+ß e A, then a + /S e 2+ (resp.

a+j8e2"); thus g = n1©f)©n2 is a decomposition for g. Furthermore if

3,=§ © n,, /=1, 2, then n;c g(] for /'= 1, 2. Thus g = uj © fi © n2 is a triangular

decomposition for g. Let Nu H, N2, K be respectively connected subgroups of G

corresponding to n1? f), n2 and I) © nx. Then K\G is the most general Kaehlerian

C-space. Thus every Kaehlerian C-space corresponds to a connected, simply

connected, complex semisimple Lie group G with a triangular decomposition

Nu H, N2. In the following we assume that G, Nu H, N2, Kare as above.

It is well known that if K\G is a compact complex manifold then if W is a

finite-dimensional holomorphic H module dim (r(IF))<oo. Thus Y0(W) = Y(W).

If IF is a simple //module, then by the Corollary to Theorem 4.1, Y(W) is a simple

finite-dimensional holomorphic G module isomorphic with W* or Y{W) = {0}

if dim W* =oo. Thus if Y(W)^{0} then Y{W) is the finite-dimensional simple g

module corresponding to a dominant integral form A on 5 with respect to it

(see [3] or [4]). Thus Y(W) = 2 VK, Aefj* and VA = {veY(W) | A»=A(A> for all

h e I)}. If FA/{0} then A^A. And dim FA=1. Furthermore if aeA, <*>0, and

xequ, then x- FA=0. Thus FAcr(IF)"2. Since r(IF)n2 is irreducible as an h

module r(IF)n2 = U(;,)• FA. Let {Alp._.., A,}cjj be defined by *£h,)=8ti where

«■={<*!,..., «,}. Set ^i = J,aie»-x1 CA,, I)2 = 2ai6)I1 CAf. Then

9i=^2 © 2oeA(m) fl« and g! is complex semisimple. Thus Y(W)n2 is the simple

finite-dimensional module for qx with highest weight A|j2 with respect to nlm

Let a be the action of h on Y(W)n2; then a=A|^ <g> ct, £ the action of gt on the

module W with highest weight A|ij2.

Let F be an arbitrary finite-dimensional simple holomorphic G module. Then

V corresponds to a dominant integral form A on % with respect to tt. Fna is a

nonzero simple holomorphic module for H (resp. h) and (V^)* is G isomorphic

with V. Thus by the Corollary to Theorem 4.1 Fis equivalent to r(Kn2). As before
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KAc Kn2 and thus = U(ty- VA. And thus I) acts on Vnz by the representation

<J = M'bi ®^ where 6 is the finite-dimensional representation of q1 with highest

weight A|j2 with respect to ttj. We have thus proved

Theorem 5.1 (Borel-Weil). Let G, q, |, A, tt, wu H, K, $x, fj2, 8i as aocwe.

Le? W be a finite-dimensional simple holomorphic module for H with action a. Then

T(W) = {0} if a = A (g) a and fViere is no dominant integral form on I) wdn respect to

tt such that A = A||x and (&, W) the qx module corresponding to the dominant integral

form A||,2 on f)2 with respect to ttj. Conversely if <r = A(g) 5 and there is a dominant

integral form A on i) vvdn respect to tt1 such that A = A^ and (5, h/) is the simple

gx module with highest weight A|^2 vv>7n respect to nu then F(W) is G isomorphic

with the simple G module with highest weight A with respect to it.

The G module T(rV) can be interpreted in the language of cohomology. That is,

retaining the notation of Theorem 5.1, let (£", tt) be the homogeneous vector

bundle over K\G (see [1]) induced from (a, W). (That is, let E' = Gx W and let

K act on E' from the left by h-(g, v) = (hg, hv) for n e K and let E° = K\E'. Let

^[g> v] = Kge K\G where [g, v] is the class of (g, v). Then (£", tt) is the induced

vector bundle.) A local holomorphic cross-section of E" is a holomorphic map /

of an open subset U of K\G into E" such that for x e 17, Trf(x)=x. Let 5^£" be

the sheaf of germs of local holomorphic cross-sections of E" and let H"(K\G, S^E")

be the pth cohomology group of K\G with coefficients in the sheaf ifE". Then

H°(K\G, SfEa) = Y(W).

Thus Theorem 5.1 completely describes H°{K\G, SfE") for arbitrary holo-

morphic finite-dimensional representations (<j, W) of H. The higher cohomology

groups have been studied in Bott [1]. We will study these groups in a later paper.

It is reasonable to ask about the structure of a Lie algebra with triangular

decomposition. We will study such algebras in a later paper.
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