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1. Introduction. The object of this paper is a further generalization of the

classical theorem of Fatou on the convergence of Poisson integrals on the upper

half-plane and unit disk. Fatou's result states that if / is an LP function on the

line (or circle), p~=\, and if F is its Poisson integral, i.e., the convolution with /

of the appropriate Poisson kernel, then for almost every x on the line (or circle),

F{z) -> f(x) as z -> x nontangentially.

Generalizations in several directions have been found recently. The result has

been established for arbitrary symmetric spaces in the case p = co by Helgason

and Koränyi [4], for generalized upper half-planes and p = co by Koränyi and

Stein [5], for symmetric spaces of rank 1 and p= 1 by Knapp [2], and for tube

domains over domains of positivity, when feV, p>\, by the author [8]. The

extension of the last named result to the case p= \ will appear as joint work of

E. M. Stein and the author (see [11], [12]).

The version of Fatou's theorem proved below is for generalized upper half-

planes (also known as Siegel domains of type II) which are holomorphically

equivalent to bounded symmetric domains and functions of type L", p>\, or

locally of type L log +L.

In §2, we sketch the setting and state our theorems explicitly. The proof, which

is contained in §§3 and 4, is case-by-case and includes the case of the exceptional

16-dimensional domain. The technique consists of showing the Poisson integral

to be bounded by a sum of maximal functions on a certain nilpotent group and

establishing properties of these maximal functions by a method of rotations

similar to the one used in [8].

2. The setting.   Let D be a generalized upper half-plane, i.e.,

D = {(z, w) : z 6 Vu we V2, Im z- <£(w, w) e D},

where Vx is a complex euclidean space of dimension rix with a given real form,

£i<= Re Kx is an open convex cone, V2 is a complex euclidean space of dimension
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«2, and O: V2 x V2 ->    is nondegenerate and hermitian symmetric bilinear with

respect to Re Vx such that <£>(w, w) e Q. When D. is a domain of positivity and $

satisfies certain symmetry and homogeneity properties, D is holomorphically

equivalent to a bounded symmetric domain [6].

The distinguished boundary of D is

B = {(z, w) : Im z-3>(h>, w) = 0}.

We identify B with Re x F2 by identifying (x + i<t>(w, w), w) with (x, w). (Despite

the similarity of notation, little confusion should arise.) The measure dß on B

induced by the product of the euclidean measures on Re F2 and V2 is invariant

with respect to the group 9?. 9c is a nilpotent group of automorphisms of D which

acts transitively on B, and is also identified as a set with Re Vx x V2, acting by

the rule

(a, c): (z, w) -> (z + a + 2i<i>(w, c) + i<&(c, c), w + c).

The group product on 9? is thus given by

(a, c)(a', c') = (a+a' + 2 Im <D(c, c'), c+c'),

and Haar measure on 9? is the product of the respective euclidean measures.

The Szegö and Poisson kernels are defined, respectively, on D x D and Bx D,

and are given in the case when Q is a domain of positivity by the formulas

S((z, w), (z', w')) = C[7V((z-z')/i-20(w, w'))]-1-^,

P(u, 0 = Pju) = \S(u, Ql'/SG, 0,

where N{z) is the Koecher norm function on Vx corresponding to Ü.

Finally, if f eLv{B, ß), />ä 1, we define the Poisson integral Fof/by

(2) F(0 = jBf(u)Pc(u) dß{u).

The Poisson integral reproduces the real parts of holomorphic functions from

their boundary values; also, Poisson integrals of arbitrary functions are harmonic

in the sense of being annihilated by all invariant differential operators. Moreover,

Fc(w) is an approximation of the identity on B, and so convergence of Fto/in the

norm is immediate. For details of the above, see [3].

We are now ready to state our main result. For t e SI, ue B, we write ut = u

+ (it, 0), F((w) = F(w(). Let I be the base point in Q.

Theorem 2.1. Let D be a generalized upper half-plane holomorphically equivalent

to a bounded symmetric domain. Suppose that f e L"(B, ß),p>\,or that feL log +F

locally and is bounded off a bounded set.

Then lim^o F;(") -*■ /(") for almost every ue B.
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Convergence occurs even if the approach of £ e D to u e B is allowed to be more

general. We say that t -> 0 restrictedly if t is constrained to lie in a proper subcone

of Also, there is a notion which reduces to that of nontangential convergence

in the case when D is a tube domain, i.e., when V2={0}.

Definition 2.1. For (a, c)e^, \(a, c)\ =max{\a\, \c\2}. For a>0, Ta(0) =

{*■(/*, 0) : \g\«*\t\}. For u°=go0eB, Ta(u°)=go-ra(0)-

We say that £ -> u° admissibly [5] if £ converges to u° within some Ta(u°). If

also t -> 0 restrictedly, the convergence is said to be restricted admissible.

Theorem 2.2. Under the hypotheses of Theorem 2.1, F(£)-> F(w) as

restrictedly admissibly, for almost every ue B.

3. The proof for domains of type I. Bounded symmetric domains fall into four

large classes, with the exception of two exceptional domains. Those of type II,

type Ilia, type IV and the exceptional domain of dimension 27 are holomorphically

equivalent to tube domains over domains of positivity. Theorems 2.1 and 2.2 for

these tube domains make up the content of [8].

We consider now domains of type I. There is one of these for each pair of

integers n, m, n>0, m^O. As bounded domains, they are realized as the space of

complex nx(n + m) matrices satisfying ££*</, where I is the n x n identity matrix.

In the realization we consider, V1 is the complexification of the real vector space

of complex hermitian symmetric n x n matrices and V2 is the complex vector space

of complex nxm matrices, so nx = n2, n2 = mn. Furthermore, £2 is the cone of

positive definite matrices and ®(w, w1) = ww*. We set

D = Dn_m = {(x+iy, w) : y-ww* > 0}.

(In the case m = 0, D is a tube domain.)

Our analysis will require diagonalization of the elements of Re Fx and V2.

We recall the standard decomposition

Re Fi = En x U(n),      k ' xd{r)k ~ (r, k),

where d{r) is the diagonal matrix whose entries correspond to the coordinates of

the vector r. The above map is locally biregular except on the lower dimensional

set of matrices with nondistinct eigenvalues. The map is not 1-1; it could be

made so by factoring out an appropriate subgroup, but here as below, it will

be more convenient not to do so. The euclidean volume element on Re Vy can

be written

dx = A(r) dr dk,     A(r) =c F] (r(-r,f.

The analogous decomposition for V2 depends on whether mS« or vice versa.
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We assume for now that the former is the case, noting that what we say can be

made to hold in the latter case by exchanging m and n. The decomposition is

V2 = U(n) xEmx U(m),      ud(s)v ~ (w, s, v),

Lemma 3.1. The euclidean volume element on V2 can be written as

Ä(s) ds du dv,     A(s) = c n (sfsf)2 n sfn~2m+1.
i<i i=1

Proof. Let

X =

<-ln

-Zi

Ss = (au ..., am). Then, neglecting terms of order greater than one,

(I+X)d(s + Ss)(I+Y) = \ +sszj( ••. +s,ztf

*«[l+«(rm + Tm)] + or„

= +

Setting tij^df+iZu, zi;=Zy + ;'z";, (/</'), Tt=tl+ru we see that the Jacobian

matrix »?u)/0(£y, 5«, zy, zw, Ji, c^) has on its diagonal /n terms equal to 1,

1 +2(n — m) terms equal to ±st for each i, and 1 each of the blocks

/  s,     sA       /s, sA

[-Sj     -jj' \Sj Si/

for each i<j. This proves the lemma.

The next result is necessary for a detailed estimate of the Poisson kernel in certain

cases.
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Lemma 3.2. Let

X =

0 z2

-*2

r = (A, 0,..., 0), A > 0,

and R2 = \z2\2+--- + \zn\2.

Then |det [id(r) + (I-X)d(r)(I+X)+I]\2^X2(l + X2Ri).

Proof. The matrix inside the brackets is

a+iA+1

Az2

Az„

Az2 Azn

/„.j + Azz*
where z

This is, except for the iX term, hermitian symmetric, and so

Imdet [•••] = Adet [I^+Xzz*] = Adet [d(l +XR2, 1,, 1)].

The lemma is thus proved.

We now define a class of rather complicated maximal functions on % keeping

in force the assumption that mSn, The Poisson integral Fconsidered as a function

on 9?, i.e., Ft(g)=Ft(g-0), geW, will be shown to be dominated by a sum of these

functions. A few preliminary definitions are needed.

Let (J) and (k) denote, respectively, n-tuples and m-tuples of nonnegative

integers such that j\£ ■ ■ ■ ̂ jn, k^ ■ ■ ■ ̂km. Let r>0.

R {r = (ri,...,rn)eEn : |r,| < 2>>t},

Slk) = {seEm: \st\ = 2k>t},

B\„ = {xeRcV! : x = k~1d{r)k, r e i?^, k e U(n)},

Q'fc) = {w e V2 : w = ud(s)v, s e Slk), u e U(ri), v e U(m)}.

The following estimates of the measures of B[}) and C(W will be necessary below.

Lemma 3.3.

(a) I B\f) I ~ t n22l2n ~ 1Mi+(2n " 3W2+ • • •+'n.

(b) I C'fc)I ~ 12nm22[(n+m~ 1)'ci+<n+m-3>fc2 + •••+<•-»+dk,,]

(The sign ~ is taken to mean "is bounded above and below by a constant multiple

of".)

Proof. The proof of (a) is contained in [8, Lemma 6.7]. The proof of (b), which

amounts to showing that

Ä(j) ds ~  sup Ä(j)

is the same.
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Let $By)(Wi be a neighborhood of the origin in ll(ri), the Lie algebra of U(n),

depending on (j), (k) and the nonnegative integer /. (The dependence will be given

below.) Set Nuxm = exp (SS0)(Wi). Finally, we define

Etnmi = {g = (x, w) = (k^d^k, ud(s)v) e 9c : r e R\n, s e S{n\ ku e NU)ikn}.

(The appearance of the r1/2 term is due to the quadratic term ww* in the Poisson

kernel.)

Definition 3.1. Let /be a function on 9?.

(a) fSxkfco, w0) = sup \B\n\~11C£? I"1 f    f     |/((x0, w0) ■ (x, w))\ dx dw.

(b) fuxkAxo, w0) = sup l^&owtl-1   ,     |/(*o. w0)-(x, w)\ dx dw.
t>0 JE\mk>i

The first step in the proof of Theorems 2.1 and 2.2 is to bound the Poisson

integral Ft(g O) by a certain sum of these maximal functions evaluated at g. An

estimate on the size of the latter will then suffice to obtain the desired result on

a.e. convergence. It will be easier to proceed without stating the precise inequality

that we are seeking.

First of all, let u°=g-0 e B, g e 9c. We notice that uf=g-(it, 0). By [3, Lemma

3.4], P(u, u?)=P(g~1u, (it, 0)), and so

Ft(u°) = jBf(u)P(u, u°) du = jBf(gu)P(u, (it, 0)) du

= jj(gh O)P(h-0, (it,0))dh.

On the other hand, if /* is one of the maximal functions of Definition 3.1, and

fg(h)=f(gh), then (fg*)(0)=f*(g), so it is enough to prove the inequality we seek

at the identity in 9c.

For D = Dn m, the Koecher norm function on Vx is 7V'(z) = (det z)n, and (1),

§2 becomes

(3)       P(u, (it, 0)) = PM = Pt(x, w) = c{|det(x+^ + r3)|2}n+m-

With the convention that (j — 1) = (jx — 1,..., jn — 1) and that 2 ~1=0, we set

Pfn = ^-5</-i> c Re Vb

G\k) — Co« - C'fc _ i) c F2,
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From here on, we assume for the sake of convenience and with no loss of

generality that our functions / are nonnegative. We would like to obtain an

inequality of the following form, where f{u) is understood to mean /(w-0), etc..

I"     f{u)Pt{u) du <. [ sup Pt(u)] f     /(«) du

= \ sup Pt(u)] f tWAu)du

(4) r ,
<.   sup Pt(M)\\BUl |C(^2|/„*Xk)(0)

= c'2-'""2t'*i'/(yo),

where |y| =/+ • ■ ■ +jn.

Let us examine the possibility of achieving (4) in the case of radial convergence.

In this case, we abuse notation by using t to denote both a positive number and

the matrix tl.

In our subsequent estimates of the Poisson kernel, we will at several stages be

appealing to Lemma 6.4 of [8]; the point of this result is, roughly, that |det (x+iy)\,

where x is hermitian symmetric and y positive definite, acts like the ordinary absolute

value I a + ib \, b > 0. We also use the fact that /=tl, so that/ and ww* can be diagon-

alized simultaneously.

By [8, 6.4], we can consider separately the contributions of the x term and the

ww* +1 term in (3), and so

sup Pt(x,w) <. -L 4(n+m)lkl   n(n + m) '

On the other hand, Lemma 3.3 yields the inequalities

\B\n\ <. 2*-»Wt+C\

IC7(fc)'21 < 22(m+n_1)"c'rmnC"

In particular, (4) holds whenever

....     4«-l    . ..        . ..    4m+4« —2 ...

The case \k\ =$\j \ is typical of the situation when neither of these last inequalities

hold. In this case, we have a common estimate,

sup Pt(u) <. 2-2(n + m)m/-n(n+m>C,

Hoxw

while \B\n\ |C&2| = 2<3" + m-2>i%"<" + m>C"C"', and so for (4) to hold it is necessary

that

2(«4-m)-(3rt + m-2) ^ 1,  i.e., n-m <. 1.
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In order to improve our estimates in the case m<n — 1, we must examine the

joint contribution of x and w to |det (x+i[vw* + r])|. As will be apparent shortly,

it is enough to consider the case (/) = (/, 0,..., 0), (k) = (J/2, 0,..., 0). Also, by

homogeneity, we may assume that r=l.

To recapitulate, x and ww* are hermitian symmetric n x n matrices, each having

one eigenvalue between 2,_1 and 2i in absolute value and the rest less than 1.

If, typically, x=k~1d(2i,0,.. .,Q)k, ww*=ud(2>, 0,..., 0)ir\ then the least

amount of "interaction" occurs when ku=I, in which case

Idet (x + i[ww*+I])\2 = 22' + (2> + 1 )2.

On the other hand, if ku is away from the origin in U(n), the value of |det (• • - )|2

can be as much as (2'+1)2(22'+1).

For a more quantitative view of the situation, we apply Lemma 3.2, noticing

that (ku)~1d(2j, 0,..., 0)(ku) depends only on the coset of ku modulo S1 x U(n— 1).

It follows that

(5) |det(x+/[wnv* + /])|2 2; 22'(1 + 22'Ri)

whenever A:w=exp X, X=(zu) and |z12|2H-r-\zln\2 = R2.

This estimate enables us to dominate Jh^/C^iC") du by a finite sum,

2~y 2f=o/(*(W((0), where L depends only on m and n.

Referring to Definition 3.1, we see that in order to define f(*iKn, we must specify

®o)«)icU(/j). In the present situation, (j) = (j, 0,..., 0), k=(j/2, 0,..., 0) and we

set

^O'XM! = {(zii) '• |z12|2+ " ' ' +|Zin|2 ^ RflXkll}-

The decreasing numbers Rumi = Rh 1=0,..., L will be defined inductively. We set

^OXfcM = K[ = [E'jxkH -1 — £y)(k)l] n -^(«(fc)

= {g = (x, w) = (k^d(r)k, ud(s)v) e 9c: r e

s e S(k) ~ S(kku € N-i~N

The object now is to obtain an inequality like (4), i.e.,

f f{u)PMdu^ fsup/»!(«)] f f{u)du^ [sup^C«)] f /(«)<*!

(6) r "I

^ [sup^^J l^-il/^-iCO) ^ C'2-n«'«+'*'J^«_1((D.

In the case at hand, it follows from (5) that

(7) supPiCw) g C[2-21(l+221Rf)-1]n + m

while on the other hand, we have from Lemma 3.3 that

(8) \E&o*-i\ = \B&\ \Qk)\ S c02<2"-1»2""+'-1«5fiV1>

if Rt _! is sufficiently small.
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We choose R0 in such a way that NUKk)0 is all of U(n). Then we choose i?j < R0

large enough to make (6) hold in the case /= 1, and continue the process. As we

shall see, after L steps Rt can be taken equal to zero and the process halted. It

should be emphasized that while R1 = RjiX -* 0 as j -> oo, the number L depends

only on m and n.

Combining (6), (7) and (8), we see that the equations determining the induction

are, neglecting multiplicative constants,

2-«n + m)j^-4<7i + m)2(3n + m-2)j < 2~>

and

2-i(n + m)iß-i(n + m)2(3n + m-2)iß2(n-l) < 2~> / > 1

From this it follows that we can take #1 = 2-«n+3m+1)/4(n+m)" and Rt =

-R1^-~i1),2(n+m>, /> 1. The Rt converges to a positive limit, R00=2~a', where

1 K + 3/n+l      n + 3m+\ 1
>

l-(n-l)/(2(« + w))  4(n + m)     2(n + 2m+l) 2

On the other hand, for us to take RL=0 in (6), we must have

2~ 2(n + m)j'2<3n + m- 2)i^2(n - 1) ^ 2~>

or

RL1 < 2-[<'l""m"1>'2<'l-1):l,

But («—w— l)/2(n— 1) <\, i.e., we can take RL-x >2~m, and so we can in fact

stop the process after a finite number of steps, a number independent of /

In general, the neighborhood SSo)(k)i of the origin in U(w) will depend on the

size of the first m rows of the (zy). But a few crude calculations are sufficient to

show that the situation we have examined in detail, with (j) = (j, 0,..., 0),

(k) = (j/2, 0,..., 0) is the worst possible. (As soon as x or ww* has more than

one eigenvalue, there must be some "interaction," in the sense described above.)

Finally, noticing that

\ Pt{u)f(u) du =   ^   f Pt{u)f(u)du,

we can bring together our calculations in

Proposition 3.4.

LUHk)

suPF((M-0)() 5  J 2-">"2+™
t>0 ü).(fc) i = i

where Z,0)(fc)5L awa" L depends only on m and n.

We remark here that the criterion {k~1d{r)k, ud(s)v) e E'jHk)l in the definition of

/*xfc)j is independent of a particular choice of k and u, as is easily seen. Also, we

mention that 3.4 holds equally well in the case m^n; in fact, when m^n, only the
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f*XK> are needed. Since the estimate of Lemma 3.3(b) is symmetric in m and n,

as is the formula (3), the same inequalities are still sufficient to establish (4), i.e.,

.,,       4/z-l   ...        . ..    4m+4n-2.,.
W = 4n + 4m + 2^   °r   ^ =    4m+l ^

One or the other always holds if (4n- l)/(4«+4w + 2)<(4m + l)/(4w + 4n—2),

which is indeed the case when m}±n.

We turn now to the maximal functions f^m. The situation is slightly neater

in the case when/e L"(B, ß), p> 1. Considering/as a function on 31 in the usual

way, we have

Proposition 3.5. \f*KkAp=Ap J|/||p, where Ap is independent of(j)(k) and I.

Proof.

fuxmig) =f*(g)

\$mm))mn)$u<n))r\„ .fs$2/(g; {k~1 d{r)k, ud(s)v))x{ku) A(r) A(s) ds dr dk du dv
= sup

)UU x(ku) A(r) Ä(s) ds dr dk du dv

where y is the characteristic function of Nij)mi.

Recalling from Lemma 3.3 that jB A(r) dr~ [sup A(r)]|i?| and similarly for

Ä(j), we have

«« f*(p) < a f w») f go f P(»>/(g; *» »» v)xiku) dk du dv
m JW*A liiX{ku)dkdudv

where

Kg; k, u, v) = fU)(k)(g; k, u, v)

= sup K,| "Wl -1 f f f(g(k-id(r)k, ud(s)v)) ds dr.

The function/may be thought of as giving maximal averages over m + n dimen-

sional rectangles "pointed" in the direction determined by u, v and k.

Let &ic,u,v = {h = (k~1d(r)k, ud(s)v) : r e En,se Em}. By the multiplication rule of

§2,

{k-xd{r)k, udisW ik-^ir'W, ud(s')v) = (k^dir+r^k, ud(s+s')v),

since Im [(ud(s)v)(ud(s')v)*] = 0, so §fc,u>„ is a subgroup of 9t isomorphic to En x £m.

It thus follows that /(■; k, u, v) restricted to the coset g-QkiU.v is a rectangular

maximal function in EnxEm. By known results about such maximal functions

(see [10, II, p. 310], where it is shown that no complications are added even though

some sides of the rectangle go to zero with t and others with r1'2), we have

(10) f      I f(gh;k,u,v)\'dh g Bp f      \f(gh)\" dh.
JSk.u.v JSbk.u.v
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Moreover, since 9? is nilpotent there is an 9c-invariant measure on the coset space

9c/§ [1, p. 369]. We can thus integrate over 9c/£> on both sides of (10), concluding

that

Finally, an application of the integral Minkowski inequality to (9) completes

the proof of the proposition.

Corollary 3.6. Suppose that f is supported on a bounded subset S o/SR. Then

Proof. The proof is that of 3.5, together with the result for rectangular maximal

functions analogous to 3.6. (See [8, Lemma 3.3].)

A weak-type estimate of the form

would yield Theorems 2.1 and 2.2 in the case p—\. But weak-type inequalities

cannot be "rotated" the way norm inequalities can, and so further analysis is

needed. This analysis has been performed by E. M. Stein and the author; it will

appear separately. (See [12].)

Proof of Theorem 2.1. The proof is a routine consequence of 3.4, 3.5 and 3.6.

The method is to regard / as the sum of a continuous function and a function of

small V (or L log+ L) norm, and then apply 3.4 and 3.5 or 3.6 to the second Sum-

mand. See [8, §4] for details.

We go on to consideration of restricted admissible convergence in two stages.

First, we show that F(w,°) -> f(u°) a.e. as t 0 when / is not assumed to be a scalar

multiple of I, but is assumed to approach 0 restrictedly, i.e., within a proper sub-

cone of D. To prove convergence in this case, it is enough to show that if ?>0

is the smallest eigenvalue of /, then Pt(u) ^ APi,(u) for all u. This last inequality

follows from [8, Lemma 6.4].

The second step is to consider restricted admissible convergence.

Lemma 3.7. Let l=gog-(it,0) e ra(u°), u°=g0-0. Then P(u, t)^AaP(u, w?) for

Proof. It is clear from the remarks above that we may take t = tl as before.

Also, since P(hu, hQ=P(u, Q, h e 9t, it is enough to consider the case u = 0. If

g0 = (x, w), g—(a, c), then by hypothesis max {\a\, |c|2}<af, and

I = (jc, w)-(a+i[cc* + t], c) = (£+i[(c+w)(c+w)* + t], c+w),

where ij=x+a + i[cw* — wc*]. It therefore follows from (1) §2 that it suffices to

prove that

(11) \det (Z+i[(c+w)(c+w)* + t])\ S Aa\det(x + i[ww* + t])\.

\{g:f*(g) > s}\ < As-'Wfl

all ueB.
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We establish (11) in two steps. First we show that for arbitrary £ e V,

(12) det(t + i[(c+w)(c+w)* + t])\ ^ Ba\det (£ + i[ww* +1])\

and then show that for our particular |,

(13) det (£+i[ww* + t])\ = Ca[det (x+i[ww* + t])\.

To establish (12), we show that as positive definite matrices,

(14) (c+w)(c + w)* + t = ba(ww* + t).

In fact, if a e E„ is a unit vector, then

(15) \(c + w)o\2 + t S (|wa|-|ca|)2 + ?.

Now applying the inequality |c|2<ar in the two cases |wcr| > \/(4«0 and \wa\

< y/(Aat), we see that the RHS of (15) dominates ba(\wa\2 + t), and that (14) holds.

The observation that (14) implies (12) involves another slight modification of

[8, Lemma 6.4].

As for (13), multiplication on the left and right by (ww* + t)~112, which can be

assumed to be diagonal, leads to the inequality

so in particular, \b'tj\ <2y/a. The inequality (11) now follows from the analogous

result for tube domains [8, Lemma 7.4]. This concludes the proof of 3.7.

Proof of Theorem 2.2. The proof is an immediate consequence of Theorem 2.1

together with the remarks above on restricted convergence and Lemma 3.7.

4. Completion of the proof. The remaining large class of domains (type Illb)

is indexed by the positive integers. As bounded domains, these are realized as the

space of 2n +1 x 2n +1 skew-symmetric complex matrices satisfying — ££* < /.

(Type Ilia domains, spaces of 2n x 2n matrices, are equivalent to tube domains.)

In the upper half-plane realization we consider, Vx is the complexification of the

real vector space of quaternionic hermitian symmetric n x n matrices, F2 is the

complex vector space of n-long quaternionic vectors, and so n1 = 2n2—n, n2 = 2n.

The bilinear form is 0(w, w1) = ww*, where the w are viewed as nx 1 matrices,

Qc:Re    is the cone of positive definite matrices, and so

(16) |det(jc'+a' + i' + i/)| S Pa|det (x' + il)\,

where x' e Re Vx is arbitrary, \a'\ <a and

b'u = (rt+ty^ncu-räXrf+t)-™

D = Dn {(x + iy, w) : y—ww* > 0}.

The formula (3), §3 is now

(17)
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To see that the noncommutativity of the quaternions leads to no problems,

e.g., that the determinants in (17) are well defined, refer to [9, §5]. The point is

that quaternionic matrices can be identified with appropriate complex matrices.

The techniques of §3 work equally well here. The analogous decompositions and

magnification factors are

Re Vx = Sp (n) x En,     A(r) = c n fa - nY,

V2 = Sp(n)xE1,      A(s) = sin-\

In the terminology of the proof of Proposition 3.4, we have in place of the

inequalities (7) and (8),

sup P^u) <. C [2 ' 2'(l + 22iRf)]2n+\
4

\E}A^\ = \B}\ \C}I2\ <. C02»-3M2a^JRf<?1-1>.

This leads to

JJi _ 2-Kn + 3>/2<2'> + 1)W an(J — 2-Kn + 3)/2(n + 2)M

while JR1_1 = 2"t(n-2)/2(n-lw, and so the inductive process is again a finite one.

The rest of the proof of Theorem 2.1 and 2.2 follows in the case of type IHb

domains exactly as it did for type I domains.

The remaining bounded symmetric domain which is not equivalent to a tube

domain is an exceptional domain of complex dimension 16. In its realization as a

generalized upper half-plane, V1=V1 = Ca, and Q. is the forward light cone in Ee,

i.e.,

£2 = {fo, ...,x8):xt> (4+ ■ ■ ■ +xl)1/2}.

We can proceed in this case without knowing the bilinear form O explicitly. For

ease of notation, we continue to write <P(vv, w1) = ww*.

Let D be the exceptional domain, B its distinguished boundary, and identify

B with EB x C8 as usual. For x, y e E8, we write

[x, y] = x1y1-x2y2-xBya.

In this case, the Koecher norm function is N(z)=[z, z]"'2, and it follows from

(1), §2 that

P(u, (it, 0)) = P((x, w), (it, 0)) = Pt(x, w)

(18) c{_MJ_X
\([x, x] - [ww* +1, ww* + t])2 + 4[x, ww* + t]2)J

The decomposition of Re Vx is

E8 = E2x SO(7)/SO(6) = E2x S°,      A(ru r2) = (r,-r2f,

where the two real parameters correspond to x1 ± (x2-\-hx§)1/2. Also

V2 = Ce = Ex x S15,     &(s) = s15.
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We show that there is an equality like (4), §3 in the exceptional case. If x =

(x1; ..., xB), we write p = (xl + ■ ■ ■ + x2)1'2, and notice that [x, x] = (xx + p)(x2 - p).

The sets that appear in the exceptional version of (4) are

B\n = {x : IxjI+p ^ 2'ir, | W\-P\ ^ 2**1},

Ci1" = {w:\w\ g 2kt112},

We have

(19) |£y,| |Cf2| ~ 2"i+^+18*r16.

As before, we can dominate Pt(u) by considering separately the contributions of

x and w, and assume that t=(t, 0,..., 0).

In particular,

(20) sup Pt(u) <, C2-16|'lr16.

As for P((0, w) when \w\~2kt112, the worst case occurs when ww* has one "eigen-

value " equal to a multiple of 22kt and the other equal to zero. And then

Pt(0, w) = C(t2/[ww* + t, ww* + t]2f ^ C'2-32kt'16.

Combining this with (18), (19) and (20), and considering separately the cases

\j\^2k, \j\^2k, we obtain

rsup/>((M)l|/iü)| ich ^ C'2-IWI,a+fcJ,
LHWk J

which enables us to proceed as in §3 and complete the proof of Theorem 2.1 for

the exceptional domain.

The argument of §3 proving restricted convergence a.e. goes through without

change, since it is basically a tube domain result. Finally, the argument proving

admissible convergence a.e. in §3 needs only slight modification to yield the same

result in the exceptional case. And thus Theorem 2.2 holds in the case of the

exceptional domain.

Proofs of Theorems 2.1 and 2.2. A generalized upper half-plane equivalent to a

bounded symmetric domain is the direct product of half-planes equivalent to

irreducible bounded symmetric domains. But half-planes of the latter type are

either tube domains over irreducible domains of positivity, for which 2.1 and 2.2

were proved in [8], or domains of the types considered in §3 and §4 above. The

usual methods [10, II, Chapter 17], [8, §7] for dealing with products of domains

lead to the proof of 2.1 and 2.2 in their full generality.

5. Concluding remarks. The notion of admissible convergence is an extension

of the euclidean one of nontangential convergence. In particular, Theorem 2.2

extends previously known results, e.g., [7], about a.e. convergence of holomorphic

functions of the class HP(D), where D is a domain of the type we have considered.
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The case-by-case method presented here lends little insight to some of the more

general problems involved. For instance, the requirement that the generalized

upper half-plane be equivalent to a bounded symmetric (homogeneous) domain

is not crucial. On the one hand, Knapp [2] proved Fatou's theorem for all symmet-

ric spaces of rank 1. And on the other hand, the theorem is also true for at least one

upper half-plane not equivalent to a bounded symmetric domain.

In fact, we can prove 2.1 and 2.2 for the half-plane of complex dimension 4

equivalent to a bounded, homogeneous, nonsymmetric domain. In this case, Vx

is the complexification of the space of real symmetric 2x2 matrices, O is the cone

of positive definite matrices, V2 = C, and

It is easy to establish an inequality like (4), §3, and the rest of the proof follows

as it did in §3.
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