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Introduction. In this paper we consider the following optimal control problem.

Consider a control system

where/maps J0 x Fx E into Y, J0 = [a0, b0] is an interval, and Y, E are Euclidean

spaces. By a solution of (0.1) is meant a triple (J, y, u), where J<=J0 is an interval,

y:J-+ Y is absolutely continuous, u.J^-E is Lebesgue measurable, and v(0

—f(t, X0> "(0), M(0 e V(t, y(t)) almost everywhere (a.e.) in J. The control domain

U is a map from J0 x Y into subsets of E.

Besides the system (0.1), a "cost function"

is given, where (J, y, u) is a solution of (0.1) and g maps J0x YxE into another

Euclidean space X. An order " = " is given in X and with respect to which the

positive cone C is convex and closed and C—C={x | x = c1 — c2, cx, c2 eC}=X.

The problem is to minimize / (with respect to the order in X) in a given class

of solutions of (0.1). The class O may be determined, for instance, by boundary

conditions y(a0) eA0, y(b0) e B0 where A0, B0 are given fixed sets. Since the order

is in general not total, we are thus looking for minimal points of I(Q.) rather than

an absolute minimum; that is, we want to find to* e £2 such that for each to e £2

the inequality /(to) g/(to*) implies I(w*) ^ /(to). Such an to* will be called an optimal

solution.

This problem (of minimizing a vector-valued function rather than a functional)

has been formulated and discussed and is of some interest in applications. For

references we refer the reader to the paper [2]. In this paper the authors give neces-

sary conditions for an optimal solution.

In this paper we seek conditions on /, g, U and £2 which guarantee the existence

of an optimal solution.

In a recent paper, Lamberto Cesari [1] gave several theorems of this nature for

the case when X is one-dimensional. In contrast to preceding papers (cf. for
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example, Filippov [3], Marcus and Lee [11], Roxin [15], Wazewski [17]), non-

compact control domains U are considered in [1], which allows the author to give

a unified and very general existence theory applying to both the Pontrjagin optimal

control problem and to the classical Lagrange problem in the calculus of variations.

The present paper is strongly inspired by Cesari's recent work and it presents

some generalizations of some of his theorems in [1]. The generalizations are two-

fold. On the one hand, we treat the problem with a vector-valued cost function

whereas Cesari considered the scalar case. On the other hand, we are able to relax

some of the regularity conditions on/, g and U assumed in [1]. To use an analogy

from ordinary differential equations, the continuity requirements are replaced by

Caratheodory's type assumptions. For a more detailed account of the relation

between our results and those of Cesari see Remark 2 of §3.

However, the novelty of this paper lies perhaps more in its approach than in its

results. In particular, the author believes that the lemma of §1 is by itself of some

interest.

To prove the existence of a minimal point of 7(0) one shows first that the closure

cl 1(0.) has such a point. This gives a minimizing sequence {<ofc}cO.; and now we

want to connect with such a sequence an element cu* of Q such that I(oj*)^

lim^oo I(wk) = a. minimal point of cl 1(0). This is usually done by establishing a

certain compactness property for Q and continuity for /. For example, Filippov's

existence theorem [3], [4] can be based upon the following fact (cf. [10]). Suppose

£2 is the set of absolutely continuous functions y: J —> Y uniformly bounded on J

(by a fixed constant) and such that y(t) e P(t) a.e. in J, where P(t) is a convex and

closed subset of Y and maxpeP(() \\p\\ is bounded by an integrable function. Then

Q is compact in the uniform convergence topology. The lemma of §1 is a suitable

extension of the above fact so that it applies also to the noncompact case con-

sidered by Cesari. To be more specific, the boundedness assumption on P, which

can be equivalently expressed as the statement for each c s Y there is an integrable

<j>c:J->R such that

(0.3) max <c, p} ^ <f>c(t)   a.e. in J,
P6P(f)

is replaced in the lemma by the same condition but restricted to c from an open

convex cone. This allows P(t) to be unbounded but only in certain directions. In

this case O is no longer compact but still each sequence contains a convergent

subsequence (pointwise, not uniformly) to a function which is not in general

absolutely continuous but is of bounded variation.

The absolutely continuous part of the limit belongs to O while the singular

part is positive and nondecreasing. The latter remark replacing the essence of the

usual lower semicontinuity argument in the calculus of variations is contained in

Cesari's paper (cf. [1, Closure Theorem II, p. 386, and the proof of Existence

Theorem I, p. 391]). The lemma exploits this idea further, expressing it explicitly

as well as in a more general setting.
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We believe our approach is different and more geometric. For instance, the so-

called growth condition in the existence theorems of the calculus of variations

appearing also in [1] is replaced here by a geometrical assumption expressed in

terms of "the shape" of certain convex sets. Also, the proof of the lemma is based

on a characterization of convex closed set which does not contain a line given in [7]

and on some simple ideas used in [10].

The optimal problem described above is equivalent to an optimization problem

for a system with multivalued right-hand side, or in Wazewski's terminology [17]

an orientor field. This latter problem is treated in §2.

In §3 we state and prove two existence theorems concerning the original optimal

problem described above. These results are obtained as a combination of the

results of §2 and an appropriate extension of the so-called Filippov's implicit

function lemma.

1. The principal lemma. Relevant to our considerations is the role played by

closed convex sets which do not contain a line, and we begin by discussing some of

their properties.

The following characterization of such sets is contained in [7], where a more

general case of infinite-dimensional linear spaces is considered.

Proposition 1. Let Z be a finite-dimensional Euclidean space and P a proper

subset of Z. Then the following two conditions are equivalent:

(i) P is closed, convex and does not contain a line.

(ii) For each dense subset DofZ the equality holds

where < , > is the scalar product in Z.

For our purpose we will need a modification of (ii). For each subset P of Z

define

The set CP is not empty (always contains 0) and is a cone. Indeed, it is clear by

definition (1.2) that if a e CP and A = 0 then Xa e CP; thus XCP<^CP for each A>0.

The set CP is called the asymptotic cone of P. If P is closed then CP is closed, and

if P is convex then so is CP. Finally, if P is closed and convex, the cone CP is proper

(does not contain a line: CP n (— CP) = {0}) if and only if P does not contain a line.

Summing up, we can state that, for a closed convex set P which does not contain

a line, the asymptotic cone CP is closed convex and proper.

Consider now the polar C° of CP; that is, the set

Note that the supremum in the right-hand side of (1.1) can be finite only if

d e CP. Thus (1.1) still holds if we replace D by D n CP or any dense subset of

(1.1)

(1.2) CP = {a I p + Xa e P for each p e P and A = 0}.

(1.3) Cj> = {c\ <c, a} <: 0 for each a e CP}.
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Cg. Since in (ii) the relation (1.1) is supposed to hold for each dense D, it follows

that if (ii) is true then C° has a nonempty interior and D can be replaced in (1.1)

byfln int CP.

On the other hand, if int C° is not empty and for each dense D^Z

(1.4) P=     H    {z\ <d,z) g sup (d,p>),
deDMntcj! I P£P )

then (1.1) holds. Indeed, for each D the set P is contained in the right-hand side

of (1.1) and the latter is contained in the right-hand side of (1.4) and therefore is

in P. Hence we have (1.1) and have shown the following:

Proposition 1'. If P is a proper subset ofZ, then (i) is equivalent to

(ii') C° has a nonempty interior and (1.4) holds for each dense subset D of Z.

Note that if P satisfies (i), then maxpeP <W,/?> exists for each d e int C°\{0} and

is finite. Indeed, the set

Pd,a = {z I id, z}^a}nP

is compact for each a if de int CP. If the set Pd-a were unbounded, there would

exist an a^=0 such that p + Xae PdyX for eachp e Pd a and A>0. Thus a e CPd ̂ CP.

But <d, p + Xa} ä ce for each A > 0 which implies that <d", a} ^ 0. The latter inequality

contradicts the assumption that d e int C°\{0}. Therefore Pdi<x is bounded, and since

it is always closed, it is compact, and the existence of maxPEP <d, p} follows. Hence

in (1.4) 'sup' can be replaced by 'max'.

In what follows, Z will be endowed with an order ' f£' such that (Z, "^")

forms an ordered vector space and such that the positive cone C is closed and

convex. (Note that the same is used to denote the usual inequality between

scalars.)

Let X=C—C={z I z = c1 — c2, cu c2 £ C). The set X is a closed subspace of Z.

By Y we denote the orthogonal complement of X. In particular, either X or Y

can be zero-dimensional. In other words, we do not exclude C={0} or C— C=Z.

Of course, Z is the direct sum of X and Y and therefore each zeZ can be uniquely

represented as the sum x+y where x e X and y e Y. If a letter other than z, say c,

is used to denote a point in Z, then cx and cy will stand for the unique components

of c in X and Y respectively. Now we can state our basic lemma.

Lemma. Let P be a map of an interval J= [a, b] into closed convex subsets of Z.

Assume that

(1.5) CPU) = C for each teJ

and that for each c e int C°\{0} there is an integrable <f>c:J^-R such that

(1.6) max <c,/>> ^ <f>c(t),
pePU)

where C° is the polar of C.
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Let zk: J—>- Z be absolutely continuous and uniformly bounded on J, fc= 1, 2,....

Assume that for each k

(1.7) zk(t)eP(t) a.e.inJ.

Under these assumptions there is a subsequence zkj, i= 1, 2,..., converging every-

where in J to a function z + v where:

1° z is absolutely continuous and

(1.8) z(t)eP(t) a.e.inJ.

2° v is singular and increasing; that is,

(1.9) v(t) = 0  a.e. inJ  and  v(s) = v(t)   if s = t.

3° If yki(t) denotes the Y-component of zkt(t), then

(1.10) yd')-*y(t)   uniformly in J,

where y(t) is the Y-component of z(t).

The proof of the lemma will be preceded by a proposition, which essentially is

the one-dimensional counterpart of the lemma.

Proposition 2. Let ak:J^R be absolutely continuous and uniformly bounded,

k=\,2,.... Assume that

(1.11) äk(t) = A(r) ^ <f>(t)   a.e. in J,

where <f> is integrable.

Then there exists a subsequence {aki} converging everywhere to a function a + ß,

where a:J-+R is absolutely continuous and

(1.12) *(/) <: A(0   a.e. in J,

and ß: J ^ R is singular and nonincreasing; that is

(1.13) (8(0 = 0  a.e.inJ  and ß(t) = ß(s)   ift = s.

Moreover, for each e > 0 there is an i0 such that

(1.14) ß(b)-E = aki(t)-a(t) = ß(a) + e   ifi = i0 andteJ.

Proof. Put y(t) = supk&k(t) and 8k(r) = afc(0-fa vir) dr. By (1.11), y(?)=A(?)

a.e. in J and y is integrable. Since {ak} is uniformly bounded, so is {8fc}. By definition,

the ok are nonincreasing for each k; 8k(t) = 0 a.e. in J for each k. Thus an every-

where convergent subsequence {8ki} can be chosen and the limit function is also

nonincreasing. As such, by the canonical decomposition theorem, it can be

represented as the sum o+ß, where 8 is absolutely continuous, ß is singular, and

both are nonincreasing. Thus the corresponding sequence {aki} converges every-

where to a+ß where a(r) = 8(/) + Jt0 y(r) dr. Hence a is absolutely continuous and

d(0 = S(r) + y(0 = y(0=A(0. Thus (1.12) and ß satisfies (1.13).
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To prove the second part of Proposition 2, take an e>0 and choose a partition

a = t0<t1< ■ ■ ■ <ts = b of J such that 0^S(r\,) —8(rJ+1)<£/2. Take i0 so large that

\8k.(t1)-8(tj)-ß(tJ)\<e/2 for f^i0 and j=0, 1,..., s. These inequalities and

monotonicity of 3,,.., 8, and /3 yield for i'^i0 and tj^t^tj+1

«fci(0~«(0 = Sk,(0-8(7) ^ h^-m + oß ^ ß(t,) + e
S ß(a) + e

and, similarly,

Sk,(r)-8(0 ^ 8fc/(f,+1)-S(ry+1)-e/2 ä (9(r,+1)-e g j3(6)-e.

Hence (1.14) follows, which completes the proof.

Proof of the Lemma. Let us take an arbitrary d e int C° and put ak(t) = id, zk(t)y.

Because of (1.6) and (1.7), {ak} satisfies the assumptions of Proposition 2 with

A(f) = maxpep(() id, p) and </> = <f>d. Therefore, there exists a subsequence {zki} such

that

(1.15) id,zki(t)}^ad(t)+ßd(t), teJ,

where ad is absolutely continuous,

(1.16) äd(t) ^ max id,p)   a.e. in/,
peP(()

ßd is singular and nonincreasing. Since int C° is not empty and open, there is a

basis {du ..., dn} of Z contained in int C°. Manifestly there is a subsequence {zkl}

such that (1.15) and (1.16) hold for each d=dj, j= 1,..., n. But {du ...,</„} is a

basis and hence the subsequence {zki} itself has to be convergent. Therefore the

limit function can be represented as a sum z + v where z(t) and v(t) are unique

solutions of the following systems, respectively

<dj, r(0> = «„,(/),     id,, v(t)} = ßdj(t),     7 =1,...,«,

and z is absolutely continuous and v is singular. Now since we have a convergent

subsequence, (1.15) holds for each de int C° and

«,(/) = id, z(0>,     A,(0 = id, v(t)}.

Clearly, ad is absolutely continuous and ßd is singular. Moreover, by Proposition

2 (1.16) holds and ßd is nonincreasing for each d e int C°. Hence

(1.17) <d, z(0> ^ max <</,/>>   a.e. in J
peP(i)

and

(1.18) <d, v(t)-v(s)) ^0   if r < s.

Both (1.17) and (1.18) hold for each de int C°. Now assumption (1.5) and (1.17)

yield (1.8), while (1.18) implies that v(t)-v(s) e C, that is, the second part of (1.9)

holds.

To prove that the F-component yki of zki converges uniformly to the Y-

component y of z, note that if c e int C° n X and de Y, then d+Xc e int C° for



1969] EXISTENCE THEOREMS FOR OPTIMAL PROBLEMS 165

each A>0. This follows from (1.2) and the fact that (d+Xc, a> = A<c, a) if a e C<= X

since Y is the orthogonal complement of X. Let {dlt ..., ds} be an orthonormal

basis in Y, and let c0 be a fixed point of int C° n X. Without loss of generality

we may assume that v(a) = 0. Then by (1.9), v(t) e C<= X for each t eJ. Take an

e>0 and choose A>0 such that for each i= 1,2,...

(1.19) X\(c0,xkt(t)-x(t)}\ + X\<c0,v(b)y\ < e, tej.

By (1.14) of Proposition 2, (1.19) and the equality

<4- + Ac0,zfci(0> = <dj,ykl(t)} + X(c0, xkl(t)>,

we obtain the inequality

(1.20) \(d„ yk,(0-X0>l = 2«  if t eJ and i = /0.

It is clear that z'0 can be chosen independently of j, since ; is from a finite set.

Hence (1.20) implies uniform convergence of yk( to y. Therefore the proof of the

lemma is completed.

In the next section we will be dealing with solutions of generalized differential

equations and they will not in general be defined on the same interval. Thus for

our purposes we need to extend the lemma slightly.

Suppose a sequence zk: Jk = [ak, bk] -> Z, A: =1,2,..., is given, where the

domain interval may change with k. We denote this sequence by {zk, Jk}. Assume

that Jk<^J for each k.

Definition 1. We say that {zk, Jk} converges as k -> co to {z0, J0}, J0=[a0, b0],

pointwise (uniformly) if

tffc -> aa,     bk^-b0  as k -> oo,

and the sequence {zj defined by

4(0 = zk(ak),    a = t = ak,

(1-21) = zk(t),    akStS bk,

= zk(bk),   bk<> t = b,

converges pointwise (uniformly on J) to z0, where z0 is a similar extension of

(zo> Jo)-

Remark 1. The lemma holds for the sequence {zk,Jk} when Jk^J if (1.7) is

replaced by zk(t) e P(t) a.e. in Jk and convergence in the conclusion is in the sense

of the above definition. In particular, for the convergent subsequence {zkl, Jk)

we have

,, 7r. (<*ki> ykt(ak)) -> (a0, y(a0)),

1 ' ; (bkl,ykt(bk))^(b0,y(bo)),

and

(1.23) x(bQ)-x(a0) S \\m(xki(bkt)-xki(ak)).
i-.00
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To prove Remark 1, it is enough to notice that the modified set valued function

Pd(t) = P(t) if te[a0 + 8,b0~8],

= clco [{0} uP(r)]   if teJ\[a0 + 8, b0-8]

(clco stands for convex closure) satisfies all assumptions of the lemma if P(t)

does and that the lemma can be applied to the sequence {zk} defined by (1.21).

Since this can be done for each 8 > 0 and since one chosen convergent subsequence

is good for any other 8, we may replace 8 with zero, and thus (1.7) holds on J0.

Now (1.22) follows from the uniform convergence of yki, while (1.23) is a conse-

quence of the monotonicity of v.

Remark 2. If in the above we assume that xk(ak)=0, then xk(t)—0 if t e [a0, ak]

for each k and thus also the x-part of the limit function x(t) + v(t) = 0 if a^t<a0.

Hence, fixing v(a) = 0, we conclude by continuity of x that x(a0) = 0. Hence, the

limit function satisfies the same initial condition.

Remark 3. If C={0} then Z= Y and we have the case discussed in the intro-

duction: any bounded sequence contains a uniformly convergent subsequence.

This special case of the lemma is given in [10] (cf. also [4] and [14]). Perhaps it is

worthwhile to point out that the set valued function P can be eliminated from both

the assumptions and the conclusion of the lemma. In other words, if we assume

that a sequence {zk} of absolutely continuous functions is bounded and, for each

c e int C°, <c, zk(r)> is bounded by an integrable function independent of k. then

the conclusion of the lemma remains valid with (1.8) deleted.

Remark 4. If the sequence {zk} in the lemma converges pointwise to an abso-

lutely continuous function, then the convergence is uniform. Indeed, if in Proposition

2 the singular part ß is zero, then by (1.14) akl —> a(t) uniformly. Thus, under our

assumption ßd(t) = 0 in (1.15) and the convergence is uniform for each d e int C°.

Hence, the singular part v has to be equal to zero and zk(t) —*-z(/) uniformly. In

fact, the same statement could be proved if the limit function is continuous (the

singular part is continuous). For that purpose part (1.14) of Proposition 2 should be

changed.

The above discussion brings to mind the classical Dini theorem. In fact Propo-

sition 2 is a combination of Helly's theorem and (1.14) is "almost" the Dini

theorem. Therefore our lemma could be considered as generalization of those two

results.

Finally, let us mention that the integrability of functions <j>c is not essential for

the validity of this remark. Indeed as follows from Theorem I of [10] and Proposi-

tion 1', it is enough to assume that <f>d is locally integrable; that is, for almost all

t e / there is a neighborhood of t on which <j>d is integrable. However the lemma

itself is no longer true if </>d is not integrable.

2. Existence theorems for orientor fields.   Consider a map Q: J0 x Z -> 2Z

(2Z stands for the set of all subsets of Z). The following expression

(2.1) zeQ{t,z)
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is called an orientor field or a differential equation with multi-valued right-hand side.

By a solution of (2.1) we will mean a pair (J, z) where J= [a, b]<=J0 is an interval,

z is an absolutely continuous function from J into Z and (2.1) is satisfied a.e. in J;

that is, z(t) e Q(t, z(t)) a.e. in J.

The optimal problem we described in the introduction can be reduced to the

following optimization problem for (2.1). As before let C be a closed, convex and

proper cone in Z, X= C—C and let Y be the orthogonal complement of X. For any

solution oj = (J, z) of (2.1) define

(2.2) I(J,z) = x(b)-x(a),

where x(t) denotes the X component of z(t).

The problem in question is to minimize / in a given class £2 of solutions of

(2.1). More precisely, we want conditions which will imply for a given £2 the exist-

ence of an optimal solution; that is, an a>* e £2 such that for each ueö the

inequality /(to)^/(to*) implies /(to*) =/(tu), where the order is that induced by the

cone C.

Naturally, £2 cannot be arbitrary and we impose upon O the following condi-

tions. Since the conditions which follow are different for the Y and X parts of the

solution, we shall in future denote a solution by (J, x, y) and mean that x.J->X,

y;J-+ Fare both absolutely continuous and that z(t) = x(t)+y(t) satisfies (2.1) on

J. Recall that J= [a, b].

(I) If (/, x, y) e £2, then x(a) = 0.

(II) If (J, x, y) e Q, (J, x, y) is a solution of (2.1) andx(a)=0, then (J, x, y) e D.

(Ill) If (Jk, xk, yk) e D, £=1,2,..., (J0, x0, y0) is a solution of (2.1), (Jk, yk)

-* (J0, y0) uniformly (cf. Definition 1) and if xQ(a) = 0, then (J0, x0, y0) e £2.

(IVa) There is a constant M>0 such that \\y(t)\\ S M for each (/, x, y) e £2 and

for each t eJ.

(IVb) There is a constant M > 0 with the property that for each (J, x, y) e £2

there is t e J such that ||y(t)\\ = M.

The above restrictions on £2 are motivated by applications. In fact the y part of

z will be a solution of system (0.1) while x(b) is the value of (0.2). Condition (III)

is replaced in more concrete cases by a boundary value type condition; for ex-

ample, the end points (a, y{a)) and (b, y(bj) are tied to compact sets. In this case

(IVb) will automatically be satisfied. We face condition (IVa), for example, when

we are restricted to solutions of (0.1) whose graphs are in a compact set. For

simplicity we shall call a class £2 admissible if (I), (II), (III) and (IVb) hold and

bounded admissible if (IVb) is replaced by (IVa).

The two theorems which follow give sufficient conditions for the existence of an

optimal element in a bounded admissible £2 and an admissible £2, respectively.

Below, by an upper semicontinuous (u.s.c.) map Q: Y-> 2Z (Y, Z-topological

spaces in general), we mean simply that the graph of Q in YxZ is closed (cf.

Kuratowski [8]). In particular, the map Q in (2.1) is u.s.c. in z for each fixed / if
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for any zk -> z0 and qk q0 such that qk e Q(t, zk) we can conclude that q0 e

Q(t, z0). If Q is u.s.c, then values of Q are closed sets.

Theorem 1. Assume that Q in (2.1) is u.s.c. in z for each fixed t, values of Q are

convex sets, and the asymptotic cone of Q(t, z) is constant and equal to C; that is,

(2.3) C0((i2) = C = const.

In addition, assume that

(2.4) Q(t, z) c Q{t, z)   ifz z

and that for each d e int C° and positive r there exists an integrable <j>d(t, r) such that

(2.5) max  (d,q) ^ 4>d{t,r) if\\y\\^r

where y is the Y-component of z.

Under these assumptions any bounded admissible class £2 contains an optimal

element.

If condition (IVa) for Q is replaced by the weaker condition (IVb), then the

conclusion is still true provided some additional restrictions on <f>d in (2.5) are

imposed. Namely, we have the following:

Theorem 2. Let Q in (2.1) satisfy all the assumptions of Theorem 1. In addition,

assume there is c e (int C°) o X such that one of the following conditions holds:

(A) The function (f>c(t, r)in (2.5) does not depend on r and there is anrj>0 such

that for each de Y, \\d\\ = 1, the function 4>d + nc is linear in r.

(B) The function <f>c(t, r) as well as <f>vc+d is linear in r for each de Y, \d\ = 1,

and -q e(0, rj0], -q0>0, and if<f>„c + d(t, r) = <f>„c + d(t) + r>(>m+d{t), then

(2.6) f i>nc+d(t) ̂  m < +co, = l,ve(0,Vo].

Then any admissible class Q of solutions of (2.1) contains an optimal element.

Remark 1. In applications of these theorems to the problem discussed in the

introduction, condition (2.4) is automatically satisfied since the set valued function

is independent of "jr" and depends only on        Thus Q(t, z)=Q(t, z) for any

ziSz.

Before proving Theorems 1 and 2 we show the following:

Proposition 3. Assume that the map Q:Z->2Z is u.s.c, the values of Q are

convex subsets of Z, the asymptotic cone C0(e) =C= const, and that for each r>0

and de int C°

(2.7) sup   sup   <d, <7> is finite.
H2ll<T oeO(z)
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Then the map Q has the following properly (property (Q) of Cesari [1]):

(2.8) Q(z0) = H clco    U ßO)-
r>0 ||s-e0||Sr

Proof. Let us select r0 and z0 so that ||z0|| <r0. It is clear that the left-hand side

of (2.8) is contained in the right-hand side. To prove the opposite take q0 $ Q(z0).

Since C is assumed to be the asymptotic cone of Q(z0) it follows from Proposition 1'

that there is a d0 e int C° and an e>0 such that

(2.9) max (d0,q} < (d0,q0}-e.
geO(20)

On the other hand, for the same reasons

(2.10) Q(z) n {q I (d0, q} = (d0, q0>-e]

is compact for each z whose norm is bounded by r0. We want to show that (2.10)

is empty if ||z — z0|| <rx and rx is small enough. Suppose the contrary. Then there

would exist sequences zn -> z0 and qn e Q(zn) such that

<d0, qny-*V = (d0, qo) - £•

If qn were convergent or contained a convergent subsequence, then we would have

a contradiction with upper semicontinuity of Q because of (2.9). Therefore ||c7„||

oo. But in that case, since C° has no empty interior, there exists d* e int C°

such that lim sup (d*, qn} is infinite which contradicts (2.7). Hence there is an

r1 >0 such that for |[z — z0J| <rx the set (2.10) is empty which shows that q0 does not

belong to the right-hand side of (2.8) and completes the proof.

Remark 3. Note that under the assumptions of Proposition 2 the function

sup„6Q(2) (d, q} is u.s.c. in z for each d in int C°. This is an immediate consequence

of (2.8). Note also that it suffices to assume (2.7) for d from any fixed dense subset

D of int C°. The last remark and Proposition 3 give the following.

Corollary. If Q: JxZ —> Z satisfies the assumptions of Theorem 1, then there

is a subset N<=J of measure zero such that Q(t, z) has property (2.8) in z if t eJ\N.

Indeed, fixing a denumerable dense subset D of int C° and a sequence rn -> oo,

there is a set N of measure zero such that cf>d(t, r) is finite if / eJ\N, r e {/„}, and

de D. Hence (2.7) holds for any fixed t from J\N.

Proof of Theorem 1. Let fijCQ be such that /(L^) is totally ordered by " = ".

By Kuratowski-Zorn lemma, Theorem 1 will be proved if we show that for each

such Qx there is w e Ü. such that I(ai)<:I(w) for each to 6 £2^

Let p e I(Q±) be arbitrary. Since 7(£2X) is totally ordered,

(2.11) /(Q1)c^ + (cu(-C)).

In particular, if we take an arbitrary de int C°\{0} and denote by n(d,p) the

hyperplane passing through p perpendicular to d, then because of (2.11)

(2.12) m1)nn(d,p) = {p}.
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The latter holds for each p e /(Oj). Thus we can conclude that /(Oi) is a graph

of a map from a subset of the line {z | z = Xd, X e R} into the subspace {x | (x, d} = 0}

of A". Moreover, because of (2.11) and the closedness of C, the map in question

satisfies a Lipschitz condition and therefore is continuous. Thus also the closure

cl /(Oj) is a totally ordered set, since it is again a graph of a Lipschitzian map. On

the other hand, by (2.5) and the integrability of <f>d(-, M) we have

(2.13) sup <</,/?>= f <f>ä(T, M) dr < +oo
peHClO Jja

where M is the constant in (IVa). Therefore we can conclude that there is p0 e

cl (/(üi)) such that pQ^p for each p e /(Oj).

Now to complete the proof we need to show that there is p* e 1(0) such that

p+fkp. Here is where the lemma is needed. Let (Jk, xk, yk) e ü1 and be such that

(2.14) I(Jk, xk, yk) = xk(bk) -^p0   as Ac oo.

Put zk = xk+yk and

(2.15) P(0 = clco U Q(t,zk{t)),
keKU)

where K(t) = {k \ teJk}. In this way (2.15) defines a set valued map on \JJk

whose values are convex closed sets. It is a simple matter to check that the sequence

{zk} and the map P satisfies all assumptions of the lemma. Therefore the latter,

together with Remark 1 and 2 of §1, imply that there exists a subsequence (for

simplicity still denoted by (Jk, xk, yk)) converging pointwise to (J*, x* + v, j+) and

such that v(t)^0,

(2.16) z*(f) = x*(t)+y*(t) eP(t)   a.e. in     = [a*, b*],

(2.17) (Jk,yk)-*-(J*,y*) uniformly,

(2.18) x*(a*) = 0,

and

(2.19) xt(bt) = /(/», z*) ^ p0 = lim xk(bk).

To finish the proof it is sufficient now to prove that (/„, z+) is a solution of (2.1)

belonging to O. The latter is a consequence of (2.17), (2.18) and condition (III)

provided (J*, z*) is a solution of (2.1). This we will prove now. For that purpose

define

PXO = clco    U    Q(h z*(0).

For exactly the same reason as above, we have

(2.16,) z*(0eP,(0   a.e. in/*,     j = 1,2,.
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The corollary to Proposition 3, (2.16j), assumption (2.3), the pointwise con-

vergence of (Jk, zk) to (/+, z* + v), and the monotonicity of v yield

(2.20) z,(0 e H PM) = QC, z*{t) + v(t)) = Q(t, z,(0)
j = i

for almost all tej*. Therefore (/„., z*) is a solution of (2.1) and the proof of

Theorem 1 is completed.

Proof of Theorem 2. Let us take an arbitrary iö = (J, x, y) e Q. and put Q0

={a> e £2 | /(tu) - /(«!)}. It is clear that any minimal point of Z(£20) is also a minimal

point of /(O). Thus it is enough to prove the existence of an optimal element in

£20- We will do this by proving that £20 satisfies condition (IVa) and thus reduce

the proof to Theorem 1.

For that purpose let tu=(/, x, y) e £20 be arbitrary but fixed (J = [a, b]). Denote

by

(2.21) ft/) = WOII   and  «(0 = <c, *(0>,

where c is the fixed point of (int C°\{0}) n X in conditions (A) and (B). Notice

that for each de Yand any ij >0, rjc+de int C°. Suppose for some rj>0 and each

de Y, \\d\\ = 1, the function in the right-hand side of (2.5) is of the form <f>a+„c(t)

+ r^d+„c(0. Using the orthogonality of A'and f we get

(2.22) <4xo>+*(o ̂ ̂ (o+pm+jo-

Since in both conditions (A) and (B) <f>c(t, r) is assumed to be linear, we may re-

place it by <£c(0 + r</>c(0 and the analog of (2.22) for d=0,17= 1 holds:

(2.23) d(0 ^ Ut)+ß{t)Mt).

Since (2.22) holds for both d and — d, it holds also with <</, j(0> replaced by its

absolute value, with obvious changes on the right-hand side. Therefore if dlt..., dn

is an orthonormal basis in Y, we can deduce from (2.22) the following inequality

(2.24) ||j(0|| +v*(t) = A„(0+f*„(0jS(0,  a.e. in/,

where

A„(0 = max {^(+„c(0»^-d,+TO(0},

H„(t) = maxty.d|+„c(0, -A-di+„c(0},

and thus both are integrable on /. Since (/, x, y) e Q0c Q we have by (I) and (2.21)

that a(0)=0, and from definition of Q„ we get

(2.25) a(b) = <c, x(b)} = <c, x(b)> = N0.

Moreover, (IVb) implies that there is a /„ e J such that

(2.26) 0 = j8(/0) = M.
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Taking into account the inequality \ß(t)\^ ||>>(0II and (2-26) we §et from (2.24)

if t^t0 that

(2.27') ß(t) ^ exp ^(r) dr) [m + j' (- ^(r) + A„(r)) exp (-j' pjs) ds} rfr],

and if /^r0 that

(2.27")    0(0 = exp ( - £ ^(r) dr) [m + £ (^(r) - A„(r)) exp (£ ^)     dr] •

Since A„ and n„ are nonnegative we can, using (2.27') and (2.27"), estimate ß(t)

as follows:

(2.28) ß(t) ^ exp (j M„(r) dr^M+r,^ + /V2),       ? e J0,

where #1=-/^ S_(t) dV, S_(/) = min (0, d(t)) and Ar2=JJ A„(t) dr. On the other

hand, putting S+(?) = max (0, a(t)) we obtain by (2.25)

(2.29) a(b) = j* S+(t) dr + j 8_(t) </t ^ W0,

and because of (2.23)

(2.30) j 8 + (t) </t ^ j &(r) dr + j^ /3(t)0c(t) dr.

If (A) holds, then in (2.30) </<c = 0 and thus Nx is bounded by a constant de-

pending only on N0 and <jjc. But (2.22) holds for some rj>0, and therefore (2.28)

is valid and it implies boundedness of ß(t) by a constant which does not depend on

oj e £10. Hence £20 satisfies condition (IVa).

If (B) holds, then (2.28) can be used for 77 e (0, -n0], 770 >0, and it is easy to see

that (2.6) implies the analogous condition for /u„. Hence we have

ian(T) dr ^ m0 < +co   if v e (0, r)0],
JJo

and this plus (2.28)-(2.30) yield

/Vi ̂  j 8+(t) dr - NQ = j &(t) rfr + e"o( A/+ijiVi + iVa) j &(t) dV - AV

This in turn shows that if tj > 0 is small enough, then Nt can be estimated by a

constant depending only on 17 and c but not on a particular element of O0. Thus

again £20 satisfies condition (IVa). Therefore in both cases we can apply Theorem

1 to O0 and this completes the proof of Theorem 2.

Example 1. In order to illustrate Theorem 1 and Theorem 2 and the difference

between them, let us consider a very simple example in which both X and Y are

one-dimensional. Then Z is a plane, C={(x,y) eZ | x^0,y = 0}, C° = {(x,y) \ x^0,
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y arbitrary}, and suppose /0 = [0, !]• As Q(t, z) we take the set valued function

depending only on y and given by

(2.31) Q(t, y) = {q = (q„ qy) \ qx = a(t, y)q2y + ß(t, y)q» + y(t, y)},

so that condition (2.4) is automatically satisfied (cf. Remark 1). The set (2.31) is

convex provided a(t, y) = 0 and u.s.c. in y if a, ß, y are continuous in y. The asymp-

totic cone C0<(,y) is equal to C if and only if a(t, y) > 0. It is clear that it is enough

to assume a(t, y)>0 for each (r, y) e (J\N) x Y where TV is a set of measure zero.

Now the maximum in (2.5) can easily be calculated and is equal (for ( — 7/, ±d)

e int C°) to

(2.32) (rf(t, y) + dr/4Va(t, y) - Vy(t, y).

Now assumption (2.5) says in this case that (2.32) is bounded on each compact

subset of Y by an integrable function of t depending on ti and d.

Theorem 1 deals with the case when Q. is bounded (condition (IVa)) and that is

why we are interested in having a bound for (2.32) on compact subsets of Y only.

One may say that in the case of Theorem 1 we assume (almost explicitly) two facts:

1° the inf x(b) for (J, x, y)e Ü. is finite, and 2° it can be approached by a sequence

with uniformly bounded j-components.

In the example we consider the additional assumption (A) of Theorem 2 is

expressed by two inequalities:

(2.33) ß\t,y)l4*(t,y)-y{t,y)^Ut) Xy*Y

and for some ->?>0;

(2.34) (vß(t, y) ± l)2/4^(/, y) -vy(t, y) = yn(t) +1y\Xn(t),

where it0, and A, are integrable. So in this case we still assume 1° (inequality

(2.33)) but not 2° since Q, is assumed to satisfy only (IVb). This is also the reason

why (2.33) is assumed to hold for all y. Finally, in the case (B) condition (2.33) is

relaxed by allowing on the right-hand side a term yo(0|j'|; so it is not obvious

any more that 1° holds and of course also 2° has to be proved. Naturally this

requires stronger assumption; this assumption is inequality (2.34), which now is

supposed to hold for ij e (0,Vo>0; and besides, there is a constant m0< +00

such that

(2.35) f A„(t) dr ^ m0 < +00   if v s (0, i,0].

It is easy to give many specific conditions on a, ß and y such that one of the cases

discussed takes place. We restrict ourself to two examples. In both we put ß=0.

First let

(2.36) <t,y)-tl-i(i+\y\)

so that the first term in (2.34) is r~1+E(4??)_1(l +1>>|); and therefore if y is supposed

to be linear in y, then the inequality (2.34) holds for ti > 0. However, because of the
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term (4i?) 1, (2.35) does not hold; therefore we are, in the case (A), assuming that

(compare (2.33))

(2.37) + y(r,jO*/*o(0,

Ho integrable.

On the other hand, if we put

(2.38) a(t,y) = t1-<

then condition (B) holds if we assume

(2.39) v(f,y)±M+W)\y\t

where     A0 are integrable and possibly negative.

Remark 2. Note that if Q in (2.1) does not depend on z then there is no differ-

ence between the assumptions of Theorem 1 and 2, and they coincide with the

assumptions concerning P in the lemma. Therefore it follows from Theorem 2

that the following problem minimizes x(b) in the class of absolutely continuous

functions z = (x, y): J->Z such that (a) x(a)=0, (b) y(a)=y1, y(b)=y2, (c) z(t)

e P{t), admits an optimal solution provided P(t) satisfies the assumptions of the

lemma.

In fact the above statement follows immediately from the lemma. The only

thing one has to prove is that a minimizing sequence is bounded.

Example 2. The aim of this example is to show that the statement in the above

remark is no longer true if <f>c in the lemma is not integrable for some c. So let Z

be the plane R2, P(t) a closed and convex subset of R2 such that for each t e [0, 1]

(2.40) Pit) n {(*, y) e R2 \ x $ 0} = {(0, 0)},

(2.41) CPU) = C - {(*, y) I y = 0, x £ 0},

and

(2.42) max (-x + r,ny) = <f>n(t),

where ti„>0, 0, ^n(f) is positive, measurable but jj ■£„(/) dt= +oo. Finally,

assume that for each n= 1, 2,... there are measurable a„, ßn such that (an(F), ßn(t))

eP(t) a.e. in [0, 1] and

(2.43) -«.(0+^(0 = WO-

Under these assumptions the class Q composed of all absolutely continuous

z: [0, l]~^R2, z = (x,y), such that x(0)=0, y(Q)=Q, y(\)=\ and z(t)eP(t) a.e.

in [0, 1] does not contain an optimal solution.

Clearly, Q satisfies (I), (II), (III) and (IVb). From (2.40) it follows that x(/)^0

a.e. in J for each (x, y) e Q.. Hence x(l)^0 and the inf of 7(Q) is nonnegative. We

shall show that it is equal to zero. For that purpose let En<=J be a measurable set

such that }Enßn(T) dr=\. Such En exist. Indeed, from (2.40), convexity of P(t)
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and the positivity of </>n, it follows that both a„(/) and ßn(t) are positive and if

t)„<1 then also an(t)<ßn(t). Thus (2.24) and the nonintegrability of <j>n implies

that f l ßn(t) dt = +00, which in turn yields the existence of En. Moreover

I   an(r) dt < +00.

Let us put now z„(r) = («„(/), ßn(t)) if / e En and (0, 0) otherwise and zn(0) = (0,0).

Clearly zn e £2. But from (2.43)

WnO) = t>n f   ßn(t)dt=   f    *n(t) dt + [   <f>n(t) dt.
JEn JEn JEn

Now t/„ 0, an(t) and <f>n(t) are positive, and therefore J£n an(r) t/r 0 as n -> oo.

But J£n an(r) </f=xn(l) = /(z„). Hence infwsn /(tu)=0. Suppose now that there is an

tu* e £2 such that /(tu*)=0. This would imply that x*(t)=0 a.e. in [0, 1] (tu* =

(x*,y*)). But, since (**(/), y*(t)) e £2 a.e. in [0, 1], it follows from (2.40) that

(x*(t), y(t)) = (0, 0) a.e. in [0, 1]. Hence y*(l)=0=y*(0) which contradicts the

fact that (x*, y*) e Q, and this completes the proof.

Notice that the sequence {zn} is convergent pointwise to a discontinuous function

and {yn} does not converge uniformly.

3. Existence theorems: control system case. In this section we proceed with the

discussion of the optimal control problem stated in the introduction.

Thus we consider a class i2 of solutions (/, y, u) of system (0.1); that is, J is an

interval, y.J-^- Y is absolutely continuous, u : 7-> E is measurable, and

(3.1) m=Rt,y(t),u(t)\     u{t)sU(t,y(t)) a.e.iny.

The cost function

(3.2) I(J,y,u) = jjg(t,y(t),u(t))dt

is a map /: D X.

As before, E, A'and Y are Euclidean spaces. We assume that an order is given in

X such that the positive cone C is convex, closed, proper and C—C=X. Our goal

is to give conditions implying the existence of minimal points of /(ß).

The following assumption will be imposed upon /, g and U throughout this

section.

Assumption 1. The maps f:J0x YxE-+ Y and g:J0x YxE^-X are both

continuous in (>•, u) for each fixed t eJ0 = [a0, b0] and measurable in / for each

fixed (y, u)e Yx E. The map U:J0x Y ̂  2E is u.s.c. in both variables (/, y).

Concerning £2 we assume the following conditions:

(i) If {(Jk, yk, uk)}<= Q, (/*,>»*,«*) is a solution of (3.1) and if (Jk,yk)->

(J*, y*) uniformly, then (7*, y+,     e £2.

(iia) There is an M>0 such that ||y(t)\\ = M for each (7, y, u) e £2 and t in J.
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(iib) There is an M>0 such that for each (J, y, u) e Ü. there is r in / with

\\y(t)\\^M.
Put Z= Xx Y, and define the scalar product (thus also the norm) by

(3.3) <z1, z2> = <*!, x2> + <yu y2y,

where Zi = (jcl5 yx), z2 = (x2, v2) are two points inZ, and on the right-hand side of

(3.3) are the scalar products in X and Y, respectively. In this way, we may identify

X and Y with subspaces X x {0} and {0} x Y of Z, respectively. As before, X and

Y are mutually orthogonal and Z = X® Y. We may consider also the cone C as

a cone in Z and thus extend the order to Z. However, note that (xlt y1)^(x2, y2)

if and only if x1^x2 and yx= y2. The polar C° of C in Z is then

(3.4) C° = {d= {d„ dy) I (d„ a) ^ 0  for each aeC,dye Y}.

Denote by h the map from J0x YxE into Z which sends (/, j>, u) into (g(r, j>, m),

/(/, y, u)). The map h satisfies Assumption 1.

The following two existence theorems correspond to Theorem 1 and Theorem

2 of the previous section.

Theorem 3. Suppose Assumption 1 holds. Assume that (i) the set

(3.5) Q(t, y)={qeZ\q^ h(t, y, ü), u e U(t, y)}

is convex for each (t, y) eJ0x Y; (ii) the map Q sending (t, v) into Q(t, y) is u.s.c.

in y for each fixed t; and (iii) for each d e int C° and positive r there is on J0 an

integrable scalar valued function <f>d(-, r) such that

(3.6) (d, h(t, y, «)> S Ut, r)   if \\y\\ ̂ r  and  ue U(t, y).

Under these assumptions, each nonempty class Q of solutions of (3.1) satisfying

(i) and (iia) contains an optimal solution.

Theorem 4. In addition to all the assumptions of Theorem 4 assume that either

condition (A) or (B) of Theorem 2 holds for the function <f>a(-, r) in (3.6). Then each

class £2 satisfying (i) and (iib) contains an optimal solution.

For the proof of the above theorems we will need the following extension of

"Filoppov's implicit function lemma" in [3].

Proposition 4. Let i: Jx E -> Z be continuous inue E for each t e J and measur-

able in t eJ for each ue E. Let W:J^2E be u.s.c. Define

(3.7) 0(0 = {z I z ^ i{t, u), u e W{t)}

and suppose there is a measurable z :J-+Z such that

(3.8) z(0 e Q(t)   a.e. in J.

Then there is a measurable u:J^E such that

(3.9) z(0 ^ i(t, w(0)   and  u{t) e W{t)   a.e. in J.
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We shall only sketch the proof of Proposition 3. It is in fact very much like the

case when in both (3.7) and (3.9) the inequality is replaced by equality. In the latter

case the result is known (cf. [5] and [6]).

We wish to prove the existence of the function u:J->E with the property

(3.10) u(t) e V(t) = {ue W(t) | i(t, u) = z(t)}.

In other words u is to be a measurable selection for the set valued function

V: J 2E. Such a selection does exist if V is itself measurable; that is, if for each

closed F<=: E, the set

3.11) V~F = {t I v(t) n F    0}  is measurable

(cf. [14]). Now (3.11) is true if one shows it is true for each compact F, since each

closed F= (J Fk where Fk are compact and V~(\J Fk) = \J (V~Fk). The set (3.11)

is closed when F is compact if i and z in (3.10) are continuous. This is so because

the positive cone is closed and therefore the inequality is preserved in the limit.

If i and z in (3.10) are not continuous but satisfy the assumption of Proposition 4,

then for each e>0 there is a closed subset K<^J such that the measure n(J\K)<e,

and z restricted to K and i restricted to Kx E are both continuous. The first is the

celebrated Lusin's theorem, the second is an extension of a result due to Scorza

Dragoni (cf. Jacobs [6, Corollary 2.3]). But this means that the set (3.11) can be

approximated as closely as desired by a closed set. Hence it is measurable.

Proof of Theorems 3 and 4. Consider the orientor field

(3.12) z(t)eQ(t,y(t))

where Q is given by (3.5). Let Ö be the set of solutions of (3.12) such that (/, x, y)

g D if and only if x(d)-0.

Now there is a measurable u:J-+E such that (J, y, w) satisfies (3.1) and belongs

to O. If (/, y, u) g O, and x(t) = J'a g(r, y(r), u(t)) dr, then it is clear that (/, x, y)

e D. since x(t)+ y(t) = h(t, y(t), u(t)) e Q(t, y(t)). Thus we have an e: O -> Ö which

maps (J, y, u) -*■ (J, x, y) where x(t) is defined as above. This map has the property

(3.13) I(w) = /(e(cu))   for each iueQ,

where /: £l —> X and 1(J, x, y) = x(b).

On the other hand, by Proposition 4, for each ü> = (J, x, y) e D. there is a measur-

able «:7->P such that (3.9) holds, where /(/, u) = h(t, y(t), u) = (g(t, y(t), u),

f(t,y{t),u)) and W(t) = U(t, y(t)). But the first inequality of (3.9) means that

y(t)=f(t,y(t), u(t)) and x(t)^g(t, y(t), u(t)). Thus (/, y, u) is a solution of (3.1)

belonging to Q and x(b)~ J7 g(t, y(t), u(t)) dt. Hence £l can be mapped into D,

say by a map e, with the property that

(3.14) I(e{w)) S /(«)  for each w e D.

It follows from (3.13) and (3.14) that each minimal point of /(D) is a minimal

point of 1(0.). Indeed, let p e I(D.) be minimal. By (3.14) there is q e 1(0.) such that
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qtkp. We claim that q=p and q is minimal for 7(0). Let q1 e 1(0.) and q^q. Then

by (3.13) q1 e I(D.) and q^qf^p. But p is minimal, and hence qi=p. Therefore

qi=q=p and q is minimal for 1(0.).

In order to prove Theorem 3 (or 4) it suffices to show that Ö and Q defined by

(3.5) satisfy the conditions of Theorem 1 (or 2). By definition, D satisfies (I) and

(II). Condition (III) follows easily from (i) and Proposition 4. Finally (IVa) and

(IVb) follow from (iia) and (fib), respectively.

The assumption (2.4) concerning Q is readily satisfied since Q depends only on

y and does not depend on x. Q is u.s.c. by assumption. It is clear by (3.5) that the

asymptotic cone CQ(Uy) contains C. Suppose that for some (t, y) the cone C is a

proper subset of C0(tiV) and let a e C0((>y)\C. Then there is d e int C° such that

(d, a} > 0. But for each qe Q(t, y) and A > 0, q+Xa e Q(t, y). This and (3.5) contra-

dict (3.6). Hence (2.3) holds. Finally (2.5) follows from (3.6) and (3.5), and con-

ditions (A) and (B) are the same in both Theorem 2 and Theorem 4. Thus the

proof is completed.

Remark 1. It follows from Assumption 1 that any change of either / or g or

both (and thus also Q defined by (3.5)) on a set TVx Fx E where N<=J0 has measure

zero is irrelevant and does not affect the conclusion of both Theorems 3 and 4.

On the other hand, from Proposition 1' it follows that if Q is defined by (3.5) and

<f>d(t, r) with (t, r) fixed is finite for d from a dense subset of int C°, then it has to

be finite for each d e int C°. Therefore there is no loss of generality from assuming

that (3.6) holds everywhere in J or that </>d(t, r) is finite for each / (compare this

with the corollary of §2).

Remark 2. The purpose of this remark is to contrast our Theorems 3 and 4

with Cesari's analogous result [1, Existence Theorem I, p. 390]. For that purpose

the reader can think about X being one dimensional, C as positive half x-axis in

Z, int C° = {(x, y) eZ \ x<0}. This is indeed the case considered by Cesari. In the

case corresponding to Theorem 3 (O satisfies (iia)), Cesari assumes the so-called

"growth condition" on each bounded subset of F; that is, for each bounded

subset B of Y there exist a continuous function <E>: R+ R such that $(£)/£ -* co

as £^co and two positive constants G, H such that g(t, y, w)^0(||m||) and

\\f(t,y,u)\\SG+H\\u\\ for (t,y)eJxB and we U(t, y). It is easy to check that

this implies (3.6) with <f>d independent of t. Indeed, if de int C°, d=(dx, dv), then

dxq(t,y, u) + (dy,f(t,y, «)>i +dM\\u\\)+ \\dy\\(G + H\\u\\) (remember that dx<0).

Since the latter sum tends to -co as \\u\\ -+ +co it is bounded from above. The

assumptions concerning the set Q are the same with the exception that Cesari

assumed condition (2.8) with respect to both variables while we assume Q is

u.s.c. in a weaker sense and only with respect to one variable. Similarly, / and g

are also assumed in [1] to be continuous in t.

Concerning the unbounded case (condition (iib)), besides the growth condition

it is assumed in [1] that there are constants G\ and Hx such that g(t, y, w)^

Gi\\f(t, y, u)\\ if ||y\\ >Hi, u e U(t, y). Those two conditions imply that the function



1969] EXISTENCE THEOREMS FOR OPTIMAL PROBLEMS 179

<f>d in (3.6) can be taken as constant if d=(y]dx, dd), dx<0, and -n is small enough.

Therefore this is taken care of by our Theorem 4 case (A). There is no counter-

part in [1] to our Theorem 4 case (B). In other words, Cesari always assumes

'almost explicitly' an a priori bound for the infimum of the cost functional.

As follows from the proof of Theorem 2 (see also the discussion of the example

in §2) conditions (A) and (B) are to guarantee that the subclass

O0 = {oj e £2 I I(co) ^ /(tu0)}

of D satisfying (IVb) (or (iib)) satisfies (IVa). This can be assured by different

kinds of conditions not connected with the bound in (3.6). These are the types of

conditions which supply an a priori bound for a solution of (3.1) satisfying a fixed

initial condition (independent of g). We omit details here.

Example. The problem we considered contains as a special case the classical

Lagrange problem in the calculus of variations which corresponds to the case when

f(t, y,u) = u and U(t, y) = E= Y. The convexity of the set Q(t, y) is now equivalent

to convexity of g in u. An extension of the existence theorems of Nagumo [13],

McShane [12], and Tonelli [16] can be formulated. However we restrict ourselves

to an example related to the examples at the end of §2.

Suppose we wish to minimize the functional

(3.15) ^Ht,y(tW{t)+y{t,y{t))]dt

in the class Ü of absolutely continuous functions satisfying the boundary value

condition:

(3.16) y(0) = 1,     y(t) = 0,     t i£ 1.

If a(t, y) = t and y=0, an optimal solution does not exist. In fact in this case the

bound in (3.6) (compare with (2.32)) is a constant times t~l and therefore is not

integrable (cf. Example 2 of §2). However, if aä/1"5, then an optimal solution

exists even with y(t, y)=y0(t)+yi(t)y provided that both y0 and y1 are integrable

on [0, 1].
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